
HP System Dictionary XL
General Reference Vol 1

HP 3000 MPE/iX Computer Systems

Edition 3
Manufacturing Part Number: 32256-90004
E1287

U.S.A. December 1987

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1987 by Hewlett-Packard Company
2

1- 5

1 Introduction

Overview
This chapter provides a brief description of System Dictionary/XL and the operating environment required
for the product. It also provides information about the programming languages and subsystems that
System Dictionary supports.

Data Dictionaries
Just as an ordinary dictionary is a collection of definitions of words, a data dictionary is a collection of
definitions and descriptions of data that resides on a computer system. In a dictionary, the smallest unit of
information is a word, while in a data dictionary the smallest unit of information is a data element.

You can compare a data dictionary to the file card system in a public library. Each card in the file contains
a description of a book in the library, and lists the title, author, publisher, location in the library, etc. of the
book. The card itself is not the book, but only represents and describes it.

Like the file cards, a data dictionary does not contain the data itself, but contains metadata --data about
data. This metadata can be descriptions and definitions of various kinds. It can describe such things as:

Data: Names and definitions of data elements

Data Relationships: How data is related to other data

Data Responsibility: Who is responsible for what data

Organizational Structure: The information flow, who uses the data

Location Information: Where files, programs, and reports reside

Security Information: Who has access to what data

A typical example of a piece of metadata is a data element called "SSN", which represents a piece of data--
a social security number. The social security number itself does not reside in the dictionary, but a
description of that piece of data does. For instance, the data dictionary might tell you the name of the data
element, the storage length, the display or output length, the type of data (numeric or character), its sign if
the element is numeric, which database or program that data resides in, and possibly which departments
in the organization use and maintain that data.

The data dictionary, therefore, serves many purposes. You can use it as a quick directory to the
information that resides on a computer system--where to go to get pieces of data. You can also, however,
use it as one of the primary means for ensuring consistency of data definitions and preventing data
redundancy. This means that programmers and developers may be required to check the data dictionary
for data elements that already exist on their system before they design a new program.

Therefore, if a data element already exists on the system describing a social security number (for example,
"SSN"), the dictionary reports this information and does not allow the programmer to add a new element
with the same name. This helps an organization to save time in program development by using data
definitions that already exist. It also saves data storage space by preventing data redundancy and helps to
standardize data definitions within an organization.

For a more detailed introduction to what data dictionaries are and how an organization can use a data
dictionary, see the HP primer entitled Managing Your Information Network: A Data Dictionary Primer.

1-6

System Dictionary Description
HP System Dictionary/XL is a flexible and extendible data dictionary that is designed to be a central
information resource and index to programs, users, input forms, and network configuration on a 900 Series
HP 3000 system. You can customize and localize this dictionary to meet the needs of your data resources.

The information contained in HP System Dictionary/XL defines, describes, and identifies the data in your
resources, and the relationships between that data.

HP System Dictionary/XL software is divided into two products:

• HP System Dictionary/XL, which consists of the core set, the intrinsics, and eight utilities: SDMAIN (the
user interface), SDINIT, SDCONV, SDDBD, SDDBC, SDVPD, SDUPGRAD, and SDUTIL.

• The HP System Dictionary/XL COBOL Definition Extractor Utility (SDCDE). This utility, though sold
as a separate product, requires System Dictionary to be already installed, in order to run.

Features
The Entity-Relationship Model The Entity-Relationship (E-R) model consists of entities,
relationships between entities, and attributes that define and characterize entities and relationships.

Extensibility and Customization The models and applications described in a dictionary will grow. To
handle this growth, System Dictionary provides the ability to extend the dictionary, by adding entity types,
relationship types, relationship classes, attributes, and type-attribute associations.

N-ary Relationships You may need to express a relationship between more than two entities. System
Dictionary supports relationships between six entities. This ability allows greater consistency of
information when renaming or deleting definitions.

Dictionary Domains Although most of the definitions in a dictionary are meant to be commonly shared
by all of you, many of you need separate name spaces, or separate partitions for different applications. HP
System Dictionary allows you to define entities and relationships within a local domain, which you may
use to separate applications or duplicate names.

Version Control You may have separate dictionaries to model your test and production environments.
System Dictionary allows you to define multiple versions of an entity or relationship within a single
dictionary.

Security HP System Dictionary will be central to your network processing environment, often containing
sensitive information. It therefore provides a security scheme that allows you to access the dictionary only
if you are authorized, and controls your access to dictionary data.

Utilities System Dictionary includes several utility programs, as described below:

• SDINIT initializes and re-initializes the dictionary.

• SDMAIN is a user interface that creates, maintains, and retrieves dictionary components.

• SDCONV is a program that converts and loads data from Dictionary/V to System Dictionary.

• SDDBD is a program that loads information about a TurboIMAGE/V database structure from an Tur-
boIMAGE/V root file into System Dictionary.

• SDDBC creates TurboIMAGE/V schemas and root files, using System Dictionary data as the source.

• SDVPD is a program that loads information about VPLUS forms from a VPLUS forms file into System
Dictionary.

• SDUPGRAD is a program that automates the inclusion of new, HP-provided definitions into the core
set.

• SDUTIL is a general purpose utility program which has the following capabilities:

1- 7

1 Allows users to merge parts of a dictionary into another dictionary, providing better dictionary
standardization and data resource management.

2 Allows users to create a compiled dictionary, using a master dictionary as the source, providing us-
ers with a fast-access, read-only dictionary, which can save them a significant amount of time.

3 Allows users to rename a dictionary.

4 Allows users to purge a dictionary.

• SDCDE, though closely linked with System Dictionary, is sold as a separate product. This utility gen-
erates COBOL II data definitions and copylibs from System Dictionary definitions.

Benefits
HP System Dictionary provides the following benefits, that can help you create and manage efficient, cost-
effective data resources.

• Minimizes data redundancy

• Supports system auditing and reporting

• Assures data integrity

• Improves system maintainability

• Tracks and controls data resources

• Reduces program development time

• Facilitates the standardization of naming conventions

• Enforces security rules

• Provides for analyzing the system impact of data and relationship changes

1-8

2-9

2 Dictionary Concepts

Overview
This chapter provides a basic description of System Dictionary. More details are provided in chapters 3, 4,
and 5.

Entity-Relationship Model
System Dictionary uses a simple but powerful entity-relationship (E-R) model in which the central
components are entities, relationships between entities, and attributes that define and characterize
entities and relationships. You can use the System Dictionary E-R model to describe the real-world objects
of an information network, and to define logical connections between these objects.

Entities and Relationships
Entities and relationships are the definitions that are stored in and retrieved from the dictionary. Entities
are dictionary definitions that refer to objects in the real world of an information network. An entity has
attribute values that further define the real-world object or that describe the entity itself. A relationship is
an ordered list of entities. Relationships express logical connections between real-world objects. Most
relationships involve two entities and are called binary relationships. System Dictionary also supports N-
ary relationships involving three to six entities. Relationships have attribute values that in some cases
describe the dictionary definition itself and in other cases describe one of the entities in the relationship.
Therefore, you can use relationship attribute values to document an entity in a particular context or usage.

Structures
The System Dictionary E-R model provides a set of structures that support the creation and retrieval of
entities and relationships. Entity types are structures that define, categorize, and qualify entities. For
example, IMAGE-DATABASE is a System Dictionary entity type that defines entities that describe
IMAGE databases. Relationship types are structures that define, categorize, and qualify relationships.
IMAGE-DATABASE contains IMAGE-DATASET is a System Dictionary relationship type that defines
relationships between an IMAGE database and data set.

Attributes are structures that define the attribute values of entities and relationships. IMAGE-DATASET-
TYPE is a System Dictionary attribute associated with the IMAGE-DATASET entity type. CAPACITY is
an attribute associated with the IMAGE-DATABASE contains IMAGE-DATASET relationship type.

In System Dictionary, each entity type and relationship type has an attribute list. Attributes are
associated with the entity type or relationship type by a structural component called a type-attribute
association. When an attribute is associated with an entity type or relationship type, each entity or
relationship of that type must have a value for the attribute.

System Dictionary supports six attribute types. Five of the types are fixed-length:

• Alias--A 32-byte character value

• Boolean--A 1-byte true or false value

• Character--A 1 to 255-byte, inclusive, alphanumeric value

• Floating--A 32-bit or 64-bit floating-point format

• Integer--A 16-bit or 32-bit binary value

2- 10

The remaining attribute type is variable. Alias and variable types are free-floating, in that they are never
assigned to entity types or relationship types, but you can assign values for them to any entity or
relationship. An alias attribute contains an alias value for an entity or relationship. An attribute of type
variable, also referred to as a variable-length attribute, has no maximum length, and normally stores
descriptions, edit masks, default values, long names, and other variable-length values. Since not every
entity or relationship needs alias and variable-length attributes, System Dictionary sets aside storage
space for them only if you explicitly assign them. When you delete an alias or variable-length attribute,
the storage space is released.

A relationship class is a name, like contains or uses that describes that action or connection of a
relationship. In System Dictionary, a relationship type belongs to a relationship class. The relationship
types RECORD contains ELEMENT and FORM contains ELEMENT, for example, belong to the contains
relationship class. In some cases, a relationship class serves as a qualifier for a relationship type. For
example, System Dictionary has three relationship types that involve element pairs:

 ELEMENT contains ELEMENT

 ELEMENT redefines ELEMENT

 ELEMENT references ELEMENT

The first type creates relationships between parent and child entities. The second type indicates that two
elements share common storage in a program. The third type documents an element that references
another element, as in a Pascal type reference. These ELEMENT ELEMENT relationship types are
qualified by a relationship class.

Extensibility
System Dictionary provides a built-in set of structures called the core set. The core set includes entity
types, relationship types, relationship classes, attributes, and type-attribute associations. You can extend
your dictionaries by creating new entity types, relationship types, relationship classes, attributes, or type-
attribute associations. You are also allowed to make limited changes to the core set, such as changing the
external names of structures. The extensibility feature allows you to customize the dictionary. It also
allows Hewlett-Packard to localize System Dictionary to your native language, and to update the core set
as new subsystems are added to MPE.

Domains and Versions
In System Dictionary, you can divide a single physical dictionary into multiple, logically separate domains.
A domain is a name space that contains entities and relationships. You typically use domains to keep the
entity and relationship definitions of one application group separate from others. You can also use
domains to avoid naming conflicts. Every System Dictionary has a built-in domain called the common
domain. The common domain is always present and is always public. You can add your own domains,
called local domains, and assign them a sensitivity level of public or private.

You can further subdivide domains into named partitions called versions. Versions allow you to designate
one set of entities and relationships in a domain as the current production version, and other sets as test or
archival versions. Unlike domains, which are considered separate name spaces, you should think of
versions as complete copies of the entities and relationships in a domain. In a version of test status, you
can add or delete entities and relationships, or change their attribute values. You cannot modify an
archival version, and you usually keep this version for historical purposes. Also, you cannot modify a
production version. System Dictionary allows only one production version in a given domain. The version
feature allows you to maintain a stable production version while you experiment with other versions. It
also allows you to reactivate an archival version if it becomes necessary to return to a previously used set
of definitions.

2-11

An important function of a data dictionary is to ensure the standardization and integrity of the definitions
you use in an information system. The domain and version features allow you to experiment with new
definitions and maintain separate sets of definitions. System Dictionary has security features that prevent
unauthorized users from creating domains and versions, and that prevent one user from creating new
versions of an entity or relationship that another user owns.

Dictionary Security
 System Dictionary provides a comprehensive security scheme consisting of scopes, sensitivity levels, and
scope associations. A scope is a dictionary user name with a password and a set of capabilities called scope
rights. The System Dictionary scope rights determine whether you can create or merely read entities and
relationships, extend the dictionary structure, create scopes and obtain information about dictionary
security, and create domains and versions.

Scopes own entities, relationships, structures, domains, versions, and other scopes. Some operations
require you to be the owner of the dictionary object on which the requested operation is to be performed.
Every dictionary has a built-in scope named CORESET that owns the entity types, relationship types, and
other structures of the core set. When you create a dictionary, you name and assign a password to a
Dictionary Administrator (DA) scope. The DA scope automatically has all scope rights plus other
capabilities not available to other scopes.

Each entity and relationship has a sensitivity level that determines whether other scopes can read or
modify it. Domains also have sensitivity levels that designate them as public or private.

If an entity or relationship has a sensitivity level of read or private, its scope-owner can grant a higher
level of access to a selected scope by creating a scope association.

Naming Considerations
All names used in System Dictionary are handled exactly the same. This subsection provides general
information and rules for handling names within System Dictionary.

Syntax
The syntax for all dictionary names is the same, with the exception of entity naming, which is discussed in
Chapter 3 under Special Entity Naming. All names must be 32 characters, left justified, and right blank
filled. No blanks are allowed between characters, however. All lowercase letters are upshifted. You may use
all alphanumeric and special characters in a name EXCEPT the following.

. System Dictionary Restricted Characters

 . , ; : ! " () < > ^ =

When you create or access an object, you can supply any combination of upper or lowercase characters in
the name, but System Dictionary always upshifts the name. Thus orders, Orders, and ORDERS all refer to
the same object.

Name Sets
Each name in System Dictionary must be unique within its set of names. The following sets of names exist
in the dictionary:

• domain names

• version names within a domain

• entity type names

2- 12

• relationship class names

• attribute names

• scope names

• entity occurrence names within a domain within an entity type

Each of the above sets is divided into two parts, internal names and external names, which are described
below. Each part is considered a set of names.

Internal and External Names
Every dictionary definition, whether a structural component (for example, entity type) or an entity
occurrence, has both an internal name and an external name associated with it. The internal name, which
can never change, is intended for use by software products used with the dictionary that rely on given
names for identification purposes. The external name, which is fully customizable and localizable, is
intended for end users or those accessing the dictionary through a user interface facility.

This flexible scheme allows software developers to extend the structure of the dictionary or add
occurrences using internal names of a personal nature (for example, ISV-RESOURCE entity type) that are
less likely to conflict with existing names. You can then use the external names to make the extensions
more friendly. For example, if a RESOURCE entity type did not exist, then ISV-RESOURCE could be
externally named RESOURCE.

System Dictionary requires only one name to create a definition in the dictionary. You can use that name
as both the internal and external name provided that no conflict occurs with any existing names. For
example, an end user creates a domain MY-DOMAIN and adds it to the dictionary. That name will become
both the internal and external name. However, if that name conflicts with an existing internal or existing
external domain name then the creation is not completed. The internal and external names are considered
to be part of different sets of names. The same name can exist in both sets, but it must be unique within
each set.

When opening the dictionary, you must specify whether you are using the internal or external name set
during the current dictionary session. During that session, with the exception of creation operations where
you can supply one or two names, you can use only one name type.

NOTE In the future, Hewlett Packard will prefix all names of objects it adds to the core set
with "HP". To avoid potential name conflicts, do not create any entity types, relation-
ship types, relationship classes, attributes, scopes, or domains, prefixed with "HP".

Internal Numbering
System Dictionary associates an internal number to each component within System Dictionary. The
responsibility for these numbers is completely under the control of System Dictionary. The number value
System Dictionary assigns to a particular component does not necessarily follow any set pattern. The
SDMAIN program and the System Dictionary intrinsics use internal numbering.

Dictionary Control Operations
Dictionary control operations consist of the functions that set global controls on the dictionary, and are
described separately below.

Initializing/Reinitializing the Dictionary
You can initiate System Dictionary only through the program SDINIT. The procedure for running this
program is explained in the first part of the HP System Dictionary/XL General Reference Manual, Volume

2-13

2.

Opening the Dictionary
Opening the dictionary is the procedure that defines a new access path to a dictionary you specify. You
establish an access path with the information you specify in the parameters of the SDOpen intrinsic or the
DEFINE command in SDMAIN. This information includes the dictionary open mode, scope, name mode,
domain, and version that you are using.

After you establish an access path, you may modify it by using the SDMAIN DEFINE command or the
appropriate dictionary intrinsic to switch the current name mode, scope, domain, or version. This
procedure takes less time and uses fewer system resources than closing and re-opening the dictionary.
This is especially true from the Exclusive Customization mode, as any changes made to the dictionary
structure would be automatically incorporated at that time through the restructuring process. Closing the
dictionary and calling SDOpen or specifying the DEFINE command again requires an allocation of system
resources, which can degrade the performance of System Dictionary.

It is also possible to define multiple access paths to a dictionary within the same session, that is, you may
call SDOpen repeatedly without closing previous OPENs. This may be useful, for example, for copying
definitions from one domain to another. Multiple OPENs are not generally recommended, however, as
serious problems can occur if they are not done correctly.

Remote Dictionary Access
System Dictionary includes a feature that allows remote dictionaries. This capability allows you to create,
access, and maintain dictionaries on systems located at remote sites without having to actually be there. A
company, then, can create and maintain standard dictionaries in its offices worldwide from a central
location, likely the corporate offices. You can also access the remote dictionaries locally, and modify them to
include local definitions as needed, but you will most likely use them as "read only" dictionaries,
implementing company standards and definitions throughout its offices.

For more information on how to use remote dictionaries, see the DEFINE command of the HP System
Dictionary/XL SDMAIN Reference Manual or the SDOpen intrinsic of the HP System Dictionary/XL
Intrinsics Reference Manual.

Compiled Dictionary
System Dictionary includes two types of dictionaries which containmetadata:

• Master Dictionaries. A master dictionary consists of a TurboIMAGE database that can be accessed by
all System Dictionary intrinsics and SDMAIN commands. Because of its complexity, however, the re-
sponse time while using master dictionaries may be inadequate for some subsystems, especially those
that must read from the dictionary at run-time.

• Compiled Dictionaries. A compiled dictionary contains metadata extracted from a master dictionary.
Like a compiled program, a compiled dictionary cannot be modified. A compiled dictionary is therefore
a read-only dictionary that can be accessed by those System Dictionary intrinsics and commands that
only read dictionary metadata.

Compiled dictionaries provide faster dictionary read access and are intended to be used by subsystems and
applications that need only to read the metadata. A compiled dictionary is less complex than a master
dictionary and is compacted into one or more flat files. Therefore, it requires less disc storage space and
provides a more efficient means of transporting dictionary data to other groups and accounts in the same
system, or other systems in a distributed network. For more information about compiled dictionaries, see
the SDUTIL utility of the HP System Dictionary/XL General Reference Manual, Volume 2.

2- 14

Merging Dictionary
The utility SDUTIL provides System Dictionary users with the capability to selectively merge certain
dictionary data into appropriate areas of the same or other dictionaries as follows:

• Dictionary structure definitions can be merged into the structure of another dictionary.

• Occurrences from a version in a dictionary can be merged into another version in the same or another
dictionary.

• Security definitions from one dictionary can be merged into the security scheme in another dictionary.

SDUTIL allows users to preview the results of the merge operation and provides users with information
about conflicts that will occur if the merge is allowed to continue. The user can then decide whether or not
to do the actual merge operation. Note that it is also possible to merge dictionary data and compile it
during the same session. For more information about merging dictionaries, see the SDUTIL utility of the
HP System Dictionary/XL General Reference Manual, Volume 2.

3- 15

3 Dictionary Architecture

Overview
The architecture of System Dictionary includes several major components (the E-R model and its
components, the core set, domains, versions, security, and the intrinsics) which are all interrelated and
work together to provide the benefits listed in Chapter 1. With the exception of the intrinsics, these
components are discussed individually in this and the following chapters.

This chapter provides a description of the Entity-Relationship Model, the structure on which System
Dictionary is based. It also includes information on the individual components that make up this model,
and tells how to use them. They are:

• Entities

• Relationships

• Entity types

• Relationship types

• Relationship classes

• Attributes

• Type-attribute associations

The main purpose of a data dictionary is to provide a mechanism for creating and accessing entities and
relationships. Entities and relationships are the definitions that are stored in the dictionary. The other
components of the E-R model (entity types, relationship types, attributes, and so on) are structures that
support the creation and retrieval of entity and relationship definitions.

The Entity-Relationship Model
System Dictionary is based on a structure called an Entity-Relationship model. The theoretical model
is composed of entities, that represent pieces of real-world data in an information network, and
relationships between entities. This model is general enough that it can describe most, if not all, of the
information processing done on a computer network.

A simple example of the E-R model might represent a data base called COMPANY, which contains a file
called PERSONNEL. In this example, the entities are COMPANY and PERSONNEL, and the relationship
between the two is contains. A standard illustration for this example is shown in Figure 3-1 below.

3- 16

Figure 3-1. E-R Model

Within System Dictionary, the E-R model has been enhanced and also includes entity types,
relationship types, relationship classes, and attributes. These are definitions within the structure
of System Dictionary, and they support the creation, maintenance, and retrieval of the entities and
relationships, which comprise the bulk of the definitions within the dictionary. The components of the E-R
model are described on the following pages. The E-R structure is illustrated in Figure 3-2.

3- 17

Figure 3-2. System Dictionary E-R Structure

Entities
Entities are dictionary definitions that refer to tangible objects in an information network. In System
Dictionary, an entity definition has three parts:

• An entity name --usually the name of a real object.

• The entity type, a dictionary category to which the entity belongs.

• Attribute values that further define and characterize the entity.

An entity is therefore a unique pairing of an entity name with an entity type. For example, to create a
dictionary definition of an IMAGE data base named ORDERS, you would need to create an entity named
ORDERS of entity type IMAGE-DATABASE. To define a VPLUS form named CUSTOMERS, you would
need to create an entity named CUSTOMERS of type FORM. If there is also an IMAGE data set named
CUSTOMERS, you would need to define an entity named CUSTOMERS of type IMAGE-DATASET. The
dictionary would then contain two CUSTOMERS entities, but they would be unique when qualified by
entity type FORM or IMAGE-DATASET.

Special Entity Naming
Entity names have the same restrictions as discussed in Chapter 2 under the Syntax discussion. Along
with those restrictions there are two reserved entity names. The two reserved entity names in System
Dictionary are the slash (/) and the question mark (?). These entity names have a special meaning in
creating or accessing relationships. You can use the slash name in a relationship to indicate a null entity.
You can use the question mark name in relationship retrieval to indicate that any entity name is
acceptable in a given position. Entity names may include slashes and question marks. The restriction is
that you cannot use them as entity names except in the relationship contexts just described. For example,
you cannot create an entity named ?, but you can create entities named ORDER?NUMBER or A/B.

3- 18

Specifying Entity Types
Entity types are dictionary categories that you must specify when you create, delete, modify, or retrieve an
entity. When you create or access an entity, you must specify an entity type that already exists in the
dictionary. If the entity type you specify does not exist, the access fails. System Dictionary has a built in
set of entity types, called core set entity types. You can also add your own extended set of entity types.
Any entity type in the core set or extended set is available to all users of the dictionary. The core set and
extended set are discussed in Chapter 6 of this manual.

An example of entities and entity types is illustrated in Figure 3-3. The top half of the figure shows the
entity types (as ellipses) and the attributes of those entity types (as boxes). The lower half shows specific
entity occurrences (CORP and R&D) of the respective entity types, and the attribute values of the
attributes associated with them.

Figure 3-3. Entity Types vs. Entities

Entity Attribute Values
Entities have attribute values that define and characterize the entity definition itself (when it was created
in the dictionary, the owner, etc.) or that describe the entity's tangible object. Table 3-1 shows some
sample entities of the entity type IMAGE-DATASET. Each entity in the table refers to a data set in an
IMAGE data base. In the first column of the table are the entity names. The other columns contain values
for the attributes SCOPE-OWNER, DATE-CREATED, and IMAGE-DATASET-TYPE. The SCOPE-

3- 19

OWNER and DATE-CREATED attributes describe the entity definitions themselves--who owns them and
when they were created in the dictionary. The IMAGE-DATASET-TYPE attribute describes each entity's
real-world object, a particular IMAGE data set. In the CUSTOMERS entity, for example, the IMAGE-
DATASET-TYPE attribute indicates that the CUSTOMERS data set is a manual master.

Every entity of type IMAGE-DATASET must have a value for each of these attributes (plus other
attributes not shown in the abbreviated table). You can think of an entity type as defining an imaginary
"table" of entity information. Each "row" in the table corresponds to an entity, including its name and
attribute values. The entity type has a list of associated attributes, and each attribute has a "column" in
the table. When you create an entity, a row is added to the table, and you must specify a value in each
attribute "column" (or allow the attribute value to be defaulted).

When you retrieve an entity, you can request all or part of the conceptual "table" by specifying a complete
or partial attribute list. Only the values corresponding to the attributes you specify are returned. The
complete attribute list of the IMAGE-DATASET entity type is shown in Table 3-2. When you retrieve an
entity of type IMAGE-DATASET, you can request a value for any of these attributes. System Dictionary
supports attributes of type alias and variable-length (described later in this chapter). These attributes are
"free-floating" in that they are never associated with an entity type, but you can assign values for these
attributes to any entity. Not every entity needs alias or variable-length attributes, so the as-needed
method of attribute assignment helps conserve space in the dictionary.

Table 1: Entities of type IMAGE-DATASET

IMAGE-DATASET SCOPE-OWNER DATE-CREATED IMAGE-DATASET-TYPE

CUSTOMERS DA 5/20/86 MANUAL

SALES RON 4/18/86 RELATION

BURGERS KELLY 4/25/86 DETAIL

CHEESE-CODES SAM 7/21/86 AUTOMATIC

Table 2: Core-Set Attribute List Examples

Entity Type Core-Set Attribute List

ELEMENT DATE-CREATED COUNT

 DATE-CHANGED DECIMAL

 SCOPE-OWNER DISPLAY-LENGTH

 SCOPE-CHANGED ELEMENT-TYPE

SENSITIVITY JUSTIFY

ID-NUMBER SIGN

BLANK SYNCHRONIZE

 BYTE-LENGTH UNITS

3- 20

 Creating and Accessing Entities
In System Dictionary, you can create, delete, modify, and retrieve entities.

To create an entity, the dictionary must be open in shared or exclusive update mode. When you create
an entity, you must specify its external name, its entity type, an attribute list, and values for each attribute
in the list. The attribute list may contain any attribute associated with the entity type, plus any alias
attribute. Variable-length attribute values are assigned later, after you create the entity. When you create
an entity, you can specify an internal name. If you do not specify an internal name, it will default to the
external name.

Modifying an entity means changing the entity's external name or assigning new attribute values. To
modify an entity, the dictionary must be open in shared or exclusive update mode.

To delete an entity, the dictionary must be open in shared or exclusive update mode. When you delete an
entity, relationships, variable-length attribute values, aliases, and other information are also deleted. To
retrieve an entity, the dictionary must be open in read, read only, shared update, or exclusive update
mode. One reason to retrieve an entity is to determine whether it exists. Another reason is to retrieve one
or more of the entity's attribute values. You retrieve the attribute values by specifying the list of attributes
for which values are to be returned.

When the dictionary is open in read, read only, shared update, or exclusive update mode, you can retrieve
information about dictionary structure that is needed to create, modify, delete, or retrieve entities. When
you create or access an entity, you must specify the entity type. System Dictionary allows you to retrieve
the list of entity types available in the dictionary. You can also retrieve information about the attributes
associated with an entity type so that you can assign values to the appropriate attributes. Since you can
assign any alias or variable-length attribute to any entity, System Dictionary also allows you to retrieve
information about these attributes.

Detailed instructions for creating, deleting, modifying and retrieving entities are located in other HP
System Dictionary/XL manuals. Refer to the HP System Dictionary/XL SDMAIN Reference Manual for
instructions to do these operations with the System Dictionary user interface, or to the HP System
Dictionary/XL Intrinsics Reference Manual, if using the System Dictionary intrinsics.

Relationships
Relationships are dictionary definitions that express a logical connection between the real-world objects of
an information network. Most relationships involve two entities and are called binary relationships.
System Dictionary supports binary relationships, as well as N-ary relationships that involve from three to
six entities. A relationship serves two main purposes:

• Relationships express a connection between entities. The fact can be expressed that a VPLUS form

 IMAGE-DATASET SCOPE-OWNER SENSITIVITY

SCOPE-CHANGED ID-NUMBER

DATE-CREATED IMAGE-DATASET-TYPE

DATE-CHANGED

Table 2: Core-Set Attribute List Examples

Entity Type Core-Set Attribute List

3- 21

named WINERY contains a field named VINTAGE by creating the relationship WINERY contains VIN-
TAGE using the relationship type FORM contains ELEMENT. This dictionary definition documents the
true connection between the form and the field.

• Relationships describe a context in which an entity is used. As already mentioned, an entity has at-
tribute values that provide a general description of an object. Relationships also have attribute values.
They document the entity in a specific context or usage.

A relationship definition has three parts:

• An ordered list of the entities involved in the relationship.

• A relationship type, a dictionary category to which the relationship belongs. A relationship type is an
ordered list of entity types paired with a connecting name called a relationship class.

• Attribute values that further define and characterize the relationship (or, in some cases, one of the en-
tities in the relationship).

These relationship components are discussed next.

Specifying Entity Lists
A relationship does not have a name. It has a list of names representing the entities involved in the
relationship. Before you can create a relationship, all the entities in the entity list must already exist.
Also, if you delete one of the entities involved in a relationship, System Dictionary automatically deletes
the relationship. The order of the entity list is significant. The relationship CUSTOMER-ADDRESS
contains LAST-NAME, for example, is not the same as LAST-NAME contains CUSTOMER-ADDRESS.

Specifying Relationship Types
Relationships belong to categories called relationship types. A relationship type has two parts: an ordered
list of entity types that serves as a template for defining the entity list, and a relationship class that
expresses the action or connection of the relationship. When you create or access a relationship, you must
specify the relationship type.

For example, RECORD contains ELEMENT is a relationship type in the System Dictionary core set. This
relationship type requires that all relationships of this type must involve two entities. The first entity
must be of type RECORD, and the second must be of type ELEMENT. The relationship class (contains)
expresses the fact that the record contains the element.

When you create or access a relationship, you must use a relationship type that already exists in the
dictionary or System Dictionary issues an error. System Dictionary comes with a built-in set of
relationship types called core set relationship types. You can also add an extended set of relationship
types. You can create relationships using any relationship type in the core set or extended set. Figure 3-4
illustrates an example of a relationship type and a relationship occurrence of that relationship type. In the
example, IMAGE-DATABASE and IMAGE-DATASET are the entity types of the relationship type,
CONTAINS is the relationship class, and SCOPE-OWNER, IMAGE-DATABASE-TYPE, and IMAGE-
DATASET-TYPE are attributes of the entity types. SCOPE-OWNER and CAPACITY are attributes of the
relationship type.

In the RELATIONSHIP shown, ENGINEERING, TURBO, and MANUAL are the attribute values of the
entities CORP and R&D, while ENGINEERING and 117 are the attribute values of the relationship.

 Click here to view figure.

3- 22

 Figure 3-4. Relationship Types vs. Relationships

Specifying Relationship Classes
In System Dictionary, a relationship type and, consequently, all relationships belonging to the type are
qualified by a relationship class that describes the connection or action of the relationship. The System
Dictionary core set includes relationship types like contains, uses, redefines, and other commonly used
connecting words.

The relationship class is required when more than one relationship type in the dictionary involves the
same ordered list of entity types.

In the core set, for example, there are three relationship types involving element pairs:

 ELEMENT contains ELEMENT

 ELEMENT redefines ELEMENT

 ELEMENT references ELEMENT

The first type describes a parent-child relationship. The second describes elements that share common
storage space in a program. The third type documents an element that references another element, as in a
Pascal type reference. When creating or retrieving relationships defined with non-unique entity type lists
like these, you must specify the relationship class as a qualifier or System Dictionary issues an error.

Remember that a relationship type is an entity-type list paired with a relationship class. Many of these
pairs are built into the dictionary core set, and you can extend the dictionary structure by adding your own
pairs. When you create a relationship, however, you cannot mix and match entity-type lists and

3- 23

relationship classes. You must use an existing pair, or System Dictionary issues an error stating that the
relationship type does not exist.

Relationship Attribute Values
Relationships have attribute values that describe the relationship definition itself, such as when it was
created, who "owns" it, and so on. You can also use the attribute values of a relationship to describe one of
the entities involved in the relationship. Attribute values can provide a description of the entity in a
particular context.

Table 3-3 shows some sample relationships of the type FORM contains ELEMENT. Each "row" in the table
represents a relationship involving two entities, shown in the first two columns. The other columns
contain values for the attributes SCOPE-OWNER and FIELD-ENHANCEMENT. The SCOPE-OWNER
attribute applies to the relationship definition itself (who owns it in the dictionary). The FIELD-
ENHANCEMENT value refers to an object.

N-Ary Relationships
System Dictionary allows relationships that involve up to six entities. Relationships involving more than
two entities are called N-ary relationships.

An example of an N-ary relationship type is the core set type IMAGE-DATASET ELEMENT ELEMENT
IMAGE-DATASET IMAGE-DATABASE chains. This relationship type defines an IMAGE data base chain
by including the detail data set, search item, sort item, master set, and data base in a single relationship.

An N-ary relationship allows you to define multiple relationships in a single definition. It also prevents
part of the definition from being left out. You cannot create an N-ary relationship unless you specify all the
entities. If it is necessary to omit one of the entities in an N-ary relationship, you may use a slash (/) to
indicate a null entity.

Creating and Accessing Relationships
You can create, delete, modify, and retrieve relationships. To create, delete, or modify a relationship, the
dictionary must be open in shared or exclusive update mode. To retrieve a relationship, the read and read
only mode are sufficient.

When you create a relationship, you must specify a list of already existing entities that will be involved in
the relationship. You must specify the relationship type as an ordered list of entity types corresponding to
the entity list. If the entity type list you specify is not unique in the dictionary (for example, ELEMENT
ELEMENT), you must qualify the entity type list by relationship class (for example, contains). When you
create a relationship, you can specify a list of attributes and their values. The list may contain any
attribute associated with the entity type, plus any alias attribute. Variable-length attribute values are to
be assigned later, after you create the relationship.

Table 3: Relationships of type FORM contains ELEMENT

FORM ELEMENT SCOPE-OWNER FIELD-ENHANCEMENT

CUSTOMERS LAST_NAME DA N

SALES PURCHASE_PRICE RON HI

BURGERS PURCHASE_PRICE KELLY HIU

CHEESE_CODES NAME SAM B

3- 24

To retrieve a relationship, the dictionary can be open in read, read only, shared update, or exclusive
update mode. You retrieve a relationship to determine whether it exists, or to retrieve one or more of its
attribute values. You can request a value for any attribute associated with the relationship type, or for any
alias or variable-length attribute.

When the dictionary is open in read, read only, shared update, or exclusive update mode, System
Dictionary allows you to retrieve dictionary structure information that is needed to create, delete, modify,
and retrieve relationships. You can retrieve a list of relationship types and relationship classes available
in the dictionary. Also, you can retrieve the list of attributes associated with a relationship type, and a list
of the alias and variable-length attributes since you can assign these to any relationship.

Detailed instructions for creating, deleting, modifying, and retrieving relationships are located in other HP
System Dictionary/XL manuals. Refer to the HP System Dictionary/XL SDMAIN Reference Manual
(32256-90001) for instructions to do these operations with the System Dictionary user interface, or to the
HP System Dictionary/XL Intrinsics Reference Manual (32256-90002), if using the System Dictionary
intrinsics.

Entity Types
An entity type is a template for defining entities in the dictionary. System Dictionary comes with a set of
built-in entity types, called core set entity types. The entity types of the core set are intended to be
comprehensive enough to define most subsystem objects. You can also add new entity types if desired. In
System Dictionary, the ability to add new entity types is restricted to users with a special capability (the
extend scope-right).

An entity type has two parts:

• The entity type name.

• A list of attributes associated with the entity type.

You can think of entity types as categories. All IMAGE data base entities, for example, are grouped under
the entity type IMAGE-DATABASE. You can also view an entity type as a qualifier. If a VPLUS form and
an IMAGE data set both happen to be named CUSTOMERS, you can define the form as an entity of type
FORM, and the data set as an entity of type IMAGE-DATASET. Since it is possible to have multiple
entities with the same name, you must qualify an entity by specifying its entity type.

You cannot delete one of the entity types involved with the relationship type unless you explicitly request
that all the relationship types involving that entity type are to be deleted.

Specifying Attribute Lists
Entity types have attribute lists such that each entity of the type must have a value for each entity in the
list. Every entity type has built-in attributes, called special attributes (special attributes are discussed
later in this chapter). When you create an entity type, System Dictionary automatically associates these
attributes with the new entity type.

In addition, each entity type may have other attributes associated with it. For each attribute in an entity
type’s attribute list, there must be a corresponding attribute value assigned to each entity of that type. You
can add attributes to an entity type’s attribute list by creating type-attribute associations (discussed later).

Creating and Accessing Entity Types
You can create, delete, modify, and retrieve entity types. The actual instructions for doing these operations
are located in other HP System Dictionary/XL manuals. Refer to the HP System Dictionary/XL SDMAIN

3- 25

Reference Manual (32256-90001) for instructions to do these operations with the System Dictionary user
interface, or to the HP System Dictionary/XL Intrinsics Reference Manual (32256-90002), if using the
System Dictionary intrinsics.

Relationship Types
A relationship type is a template for defining relationships in the dictionary. A relationship type has three
parts:

• An ordered entity type list.

• A relationship class.

• An attribute list.

Like an entity type, you can think of a relationship type as a category or grouping. Relationships between
IMAGE data bases and data sets are grouped under the relationship type IMAGE-DATABASE contains
IMAGE-DATASET. You can also view a relationship type as a qualifier. The entity type list of the
relationship type qualifies the entities in the relationship. You can have multiple relationships between
entities named ORDERS and INVENTORY provided you qualify them by different relationship types.

Specifying Entity Type Lists
A relationship type does not have a name. It has a list of names representing the entity types involved in
the relationship type. Before you can create a relationship type, all the entity types in the entity type list
must already exist. Also, you cannot delete one of the entity types involved with the relationship type
unless you explicitly request that all the relationship types involving that entity type are to be deleted.

Specifying Relationship Classes
In System Dictionary, a relationship type is qualified by relationship class. The relationship class
describes the connection or action of a relationship. In the relationship type IMAGE-DATABASE contains
IMAGE-DATASET, for example, the relationship class is contains. It expresses the fact that, in each
relationship of this type, the first entity contains the second.

To create a relationship type, you must specify a relationship class that already exists in the dictionary.
You cannot delete a relationship class without explicitly requesting the deletion of all the relationship
types of that class.

Specifying Attribute Lists
Relationship types have attribute lists such that each relationship of the type must have a value for each
attribute in the list. Every relationship type has six built-in attributes, called special attributes (special
attributes are discussed later in this chapter). When you create a relationship type, System Dictionary
automatically associates these attributes with the new relationship type.

In addition, each relationship type may have other attributes associated with it. For each attribute in a
relationship type’s attribute list, there must be a corresponding attribute value assigned to each
relationship of that type. You can add attributes to a relationship type’s attribute list by creating type-
attribute associations (discussed later in this chapter).

Creating and Accessing Relationship Types
You can create, delete, modify, and retrieve relationship types. Detailed instructions for doing these

3- 26

operations are located in other HP System Dictionary/XL manuals. Refer to the HP System Dictionary/XL
SDMAIN Reference Manual for instructions to do these operations with the System Dictionary user
interface, or to the HP System Dictionary/XL Intrinsics Reference Manual, if using the System Dictionary
intrinsics.

Relationship Classes
A relationship class is a name in the dictionary structure that you can use to express the action or
connection of a relationship type. See the Syntax discussion in Chapter 2 for more information on
relationship class names. The System Dictionary core set contains several commonly used relationship
classes. You can add relationship classes to the dictionary, and you can change external names of the core
set classes.

In System Dictionary, relationship types belong to a relationship class. For example, it is possible to
retrieve all the relationship types that belong to a relationship class. To get a list of all the relationship
types in the dictionary, you must first get the list of relationship classes and retrieve the relationship types
of each class.

You can create, delete,modify, and retrieve a relationship class. The actual instructions for doing these
operations are located in other HP System Dictionary/XL manuals. Refer to the HP System Dictionary/XL
SDMAIN Reference Manual for instructions to do these operations with the System Dictionary user
interface, or to the HP System Dictionary/XL Intrinsics Reference Manual, if using the System Dictionary
intrinsics.

You cannot delete a relationship class without explicitly requesting the deletion of all the relationship
types of that class.

Attributes
An attribute is a characteristic, property, or description of an entity or relationship. In System Dictionary,
attributes are dictionary structures that allow attribute values to be assigned to entities and relationships.
System Dictionary has a core set of attributes that are built into every dictionary. You can also create an
extended set of attributes if desired.

An attribute definition has four parts:

• The attribute name.

• The attribute type (alias, Boolean, character, floating, integer, or variable).

• The attribute length--a value, dependent on the attribute type, that specifies the maximum length al-
lowed for values of the attribute.

• An optional list of edits that specify the default and allowable values for attributes of type Boolean, char-
acter, floating, and integer.

You can associate attributes of type Boolean, character, floating, or integer with an entity type or
relationship type. Attributes of type alias and variable are "free-floating" in that they are never associated
with an entity type or relationship type but you can assign them to any entity or relationship. In either
case, attributes serve as templates for defining the attribute values of entities and relationships. Attribute
values do not exist independently. They are always associated with a specific entity or relationship. When
you delete an entity-type-attribute association, System Dictionary must remove the corresponding
attribute value from each entity of the affected type.

Since attributes are part of the dictionary structure and are available to you, you should avoid obscure or

3- 27

redundant attribute names. This is especially true for alias and variable attributes, because you can
assign them to any entity or relationship.

Specifying Attribute Type and Length
System Dictionary supports six attribute types: alias, Boolean, character, floating, integer, and variable.

Boolean attributes are used to store true-or-false values. Internally, Boolean values are stored in a single
byte, but their values are typically displayed as TRUE or FALSE. An example of a Boolean attribute in the
core set is the BLANK attribute. BLANK is an attribute of all entities of type ELEMENT, and it specifies
whether zero values should be displayed as blanks or zeros.

For example, suppose a COBOL program contains a variable named YEAR-TERMINATED that displays
the year in which an employee leaves the company. If an individual is currently employed, the value of this
field is zero but is displayed as blanks. To document this variable in the dictionary, you would need to
name an entity named YEAR-TERMINATED of type ELEMENT. The attribute list of the ELEMENT
entity type (shown in Table 3-2) includes the BLANK attribute. For the YEAR-TERMINATED entity, you
would need to set this attribute to TRUE.

Integer and floating attributes store numeric values. Integer attributes can have a length of 2 bytes (16
bits) or 4 bytes (32 bits). A floating attribute can have a length of 4 bytes or 8 bytes.

Attributes of type character store fixed-length alphanumeric values. A character attribute can have a
length between 1 and 255 bytes inclusive.

Specifying Attribute Edits
An attribute of type Boolean, character, floating, or integer can have a list of edits that specify the default
and allowable values of the attribute. The first value in the edit list indicates the default value. Other
values indicate allowable values. To specify a default value while allowing any other value, you must
supply an edit list with only one edit (the default value).

Variable-Length Attributes
A variable-length attribute is an attribute of type character whose length is unrestricted. Variable-length
attributes are "free-floating" in that they never appear in the attribute list of an entity type or relationship
type but you can assign them to any entity or relationship.

Variable-length attributes typically contain descriptions, defaults, edit masks, picture clauses, or other
free-format values. Since not every entity or relationship needs these values, and since the values can be
quite large, System Dictionary reserves storage space for variable-length attribute values only if you
explicitly assign them to an entity or relationship. When you delete a variable-length attribute value,
System Dictionary releases the storage space.

DESCRIPTION, for example, is a variable-length attribute in the System Dictionary core set. Table 3-4
shows some sample entities and their DESCRIPTION attribute values. In the first and second columns
are the entity and entity type names. The third column contains the description. As the table suggests, if a
DESCRIPTION attribute value exists, it is linked to a specific entity of a specific type. Unlike the sample
attributes in Table 3-1 and Table 3-3, the DESCRIPTION attribute is not associated with any entity type

3- 28

or relationship type.

You can assign a DESCRIPTION attribute to the entity LAST-NAME of type ELEMENT. It is up to you
whether other entities of type ELEMENT also have DESCRIPTION attribute values.

When you request a variable-length attribute value of an entity or relationship you specify, two outcomes
are possible. The first outcome is that the entity or relationship you specify has a value for the attribute
you specify (DESCRIPTION, for instance), and the value is returned. The second possibility is that the
value you requested was never assigned to the entity or relationship you specified, and this is reported as
an error.

Alias Attributes
An alias is an alternate entity name that reflects the entity’s usage in a particular subsystem. In System
Dictionary, an alias is a fixed-length, 32-character attribute that you can assign to any entity or
relationship. Alias attributes never appear in the attribute list of an entity type or relationship type.
Since not every entity or relationship needs aliases, storage space for alias attributes is assigned as
needed.

Table 3-5 shows a list of entities that have IMAGE-ALIAS attribute values. IMAGE-ALIAS, for example,
is an alias attribute that you can use to document an alternate name used in an IMAGE data base. In the
first column are the entity names, with their entity types in the second column. The entity CUSTOMER-
LAST-NAME of type ELEMENT has an IMAGE-ALIAS value of CUST-LAST-NAME. This alternate name
was chosen because IMAGE item names must be 16 characters or less. For the entity ORDERS-MIS-
DATABASE, the IMAGE alias is ORDERS, because IMAGE data base names must be 6 characters or less.
The IMAGE alias of the BURGER_NAME entity is BURGER-NAME, because IMAGE does not allow
underscores in item names.

When you retrieve an alias attribute value of an entity or relationship, a value is always returned. If the
alias exists, a 32-byte value containing the alias name is returned. If the alias does not exist, a blank value
is returned. You can delete an alias attribute value by replacing it with all blanks. When you delete an
alias attribute value, its storage space is released.

Table 4: DESCRIPTION Attribute Values

Entity Entity Type DESCRIPTION

CUSTOMERS FORM Customer info for Admin group

ORDERS IMAGE-DATABASE Order-tracking data base

LAST_NAME ELEMENT Last name is upshifted

DATE RECORD Divided into month/day/year elements

Table 5: IMAGE-ALIAS Attribute Values

Entity Entity Type IMAGE-ALIAS

CUSTOMER-LAST-NAME ELEMENT CUST-LAST-NAME

ORDERS-MIS-DATABASE IMAGE-DATABASE ORDERS

BURGER_NAME ELEMENT BURGER-NAME

3- 29

Special Attributes
Every entity type and relationship type has a set of special attributes automatically associated with it as
part of the process by which it is created. The set of attributes is not the same for entity types and
relationship types. Most of these attributes have values automatically inserted when you create an
occurrence. A typical example of this is the attribute date-created. This attribute is automatically
associated with every entity type and relationship type as it is created, and whenever an entity or a
relationship is created, the current date is assigned as the value for that attribute. The following
attributes are designated special attributes:

Some characteristics that make these attributes "special" are:

• * They are built into every core set entity type and relationship type.

• If you extend the dictionary by creating new entity types and relationship types, System Dictionary au-
tomatically assigns these attributes to them, and they cannot be removed later.

• You cannot add the id-number attribute to a relationship type, and you cannot add the relationship-po-
sition attribute to an entity type.

• When you create or modify an entity or relationship, you cannot assign values to scope-changed, date-
created, and date-changed, because these attributes are managed exclusively by System Dictionary. Al-
so, you cannot assign a value to the scope-owner attribute when you create an entity or relationship;
System Dictionary sets this attribute. You can, however, assign an existing entity or relationship to a
new scope-owner by modifying its scope-owner attribute.

Type-Attribute Associations
You can assign an attribute of type Boolean, character, floating, or integer to any entity type or
relationship type. This is referred to as creating a type-attribute association. When an attribute is
associated with an entity type or relationship type, all entities or relationships of that type must have a
value for that attribute. Type-attribute associations build the attribute lists of entity types and
relationship types.

System Dictionary has a built-in set of type-attribute associations. These type-attribute associations are
part of the core set and cannot be deleted. You can extend the dictionary by creating other type-attribute
associations. You can add attributes to core set entity types and relationship types or to new entity types
and relationship types. You can later remove these associations from the extended set.

Entity-Type-Attribute Associations
Entity types are templates for defining the set of attribute values in each entity of that type. When you
create a type-attribute association, the template is changed and a corresponding change must be made in
the attribute values of each entity of that type. The change, which involves assigning the attribute’s

 Special Attributes for Entity Types Special Attributes for Relationship Types

scope-owner scope-owner

date-created date-created

date-changed date-changed

scope-changed scope-changed

sensitivity sensitivity

id-number relationship-position

3- 30

default value to each entity, happens during restructuring when the dictionary is closed. (Restructuring of
the dictionary is discussed later in this chapter.)

Similarly, when you delete an entity-type-attribute association, System Dictionary must remove the
corresponding attribute value from each entity of the affected type.

Relationship-Type-Attribute Associations
Relationship types are templates for defining the attribute values of relationships. When you create or
delete a relationship-type-attribute association, the template is changed, and a corresponding change must
be made in each relationship of the affected type.

Naming Mechanisms

System Dictionary provides a variety of naming conventions that support the definition of the following:

• Modifiable and non-modifiable names

• Alternate entity names called synonyms

• Subsystem-related names called aliases

• Internal numbers that programmers can use

A discussion of these naming mechanisms follows.

Internal and External Names
Every dictionary definition or structure that you can name has two names, an internal name and an
external name. The internal name is a stable, non-modifiable name, while the external name can be
changed. You can also modify the external names of core set structures. This allows the dictionary to be
customized to meet the requirements of a particular application, or localized to your native language,
while still retaining a compatible set of internal names.

When the dictionary is open, you specify a name mode, either internal or external. If you select internal
name mode, all definitions and structures are accessed by their internal names only. In external name
mode, you can see only external names.

Primary Names
In System Dictionary, a primary name is the name of an entity as opposed to its synonyms or aliases.
Since an entity has two names--internal and external--there are actually two primary names for each
entity. In internal name mode, an entity’s primary name is its internal name. In external name mode, an
entity’s primary name is its external name. The primary name of the entity is the name returned when
System Dictionary returns an entity name.

Synonyms
A synonym is an alternate name that uniquely identifies an entity. An entity may have multiple
synonyms, but a synonym can refer to only one entity. You can think of a synonym as a "pointer" that
points to an entity’s primary name. All synonyms of a given entity, point to the same primary name. You
can use synonyms in any context where entity names are allowed. You can modify, delete, or retrieve an
existing entity by using the synonym in place of the entity name.

3- 31

A synonym has three parts:

• The synonym name.

• The name of the entity that the synonym points to.

• The entity type of the referenced entity. A synonym implicitly has the same entity type as the entity it
references.

A synonym name must be 32 characters or less. It may not contain embedded blanks, and you cannot use
the restricted characters in Table 2-1. Because System Dictionary allows you to use entity names and
synonyms interchangeably, synonyms are subject to the same uniqueness requirements as entities. Two
synonyms of a given entity type cannot have the same name, and a synonym may not have the same name
as an entity of the same type.

A synonym points to a specific entity of a specific type. To create a synonym, the underlying entity must
already exist.

Aliases
An alias is an alternate name related to an entity’s usage in a particular subsystem. In System Dictionary,
aliases are stored in attributes of type alias. Alias attribute values are 32-byte character strings that you
can assign to any entity or relationship.

Unlike other dictionary names, an alias may contain embedded blanks. It may also contain any
combination of uppercase and lowercase characters. System Dictionary always upshifts entity names, but
aliases allow a case-sensitive name to be kept exactly as it appears in a program.

An alias may contain any special characters, even the restricted characters in Table 2-1. There are no
uniqueness requirements for aliases. An alias name can be the same as its entity name if desired, and any
number of entities and relationships can have the same alias.

When an alias is assigned to an entity, it documents an alternate name that should meet the naming
restrictions of the target subsystem (although System Dictionary does not check the name against the
subsystem restrictions).

When you assign an alias to a relationship, it provides an alternate name for the second entity in the
relationship. For example, consider the relationship CUSTOMERS contains LAST-NAME of type FORM
contains ELEMENT. You can give the relationship a VPLUS-ALIAS attribute that contains the value
LAST_NAME. In this case, the relationship-level alias documents an alternate name for the LAST-NAME
entity.

Internal Numbers
Every definition and structure in the dictionary has an internal number that System Dictionary uses to
optimize storage and retrieval. You can retrieve these numbers by dictionary intrinsics and use them in
place of names for improved performance.

Relationship Identification
A relationship does not have a name. Instead, it is identified by a list of entity names. A relationship type
is similarly identified by a list of entity type names rather than by a single name. Relationship classes

3- 32

further qualify relationships and relationship types.

Each relationship in the dictionary has a single internal number that you can use in place of the
relationship’s entity list. Similarly, each relationship type has a single internal number that you can use
in place of the entity type list. A single internal number therefore, replaces up to six names in a
relationship or relationship type.

Restructuring the Dictionary
Whenever you modify the dictionary structure, that is, whenever you add, delete, or modify any entity
types, relationship types, relationship classes, attributes, entity type/attribute pairs, or relationship type/
attribute pairs, System Dictionary requires that you use a process called restructuring to incorporate those
changes into the working dictionary. Restructuring is essentially a compilation of the dictionary structure
into a form easily accessible by the dictionary intrinsics, and reformatting any dictionary occurrences that
are affected by the structure changes.

NOTE The entire dictionary structure is not necessarily recompiled. Only those definitions
that are affected by the changes made to the dictionary structure will be involved in
the restructuring process.

Many structure changes may be incorporated into a single restructuring, thereby increasing the overall
efficiency of the restructuring operation. This grouping of structure changes is controlled by allowing
structure changes to be made only while the dictionary is open in the exclusive customization mode.

You may make as many structure changes as desired during a session open in this mode. However, the
only operations allowed in this mode are:

• Structure changes

• Retrieval of structure information

• Limited retrieval of security information

You cannot perform any operations involving dictionary occurrences while the dictionary is open in
exclusive customization mode. When you close the dictionary, any restructuring required is performed
prior to the actual termination of access. Opening the dictionary with this special mode implies exclusive
access to the dictionary and is limited to the DA scope or scopes with extend capability.

A dictionary structure change can affect occurrences in the dictionary in several ways. For example,
deleting an entity type causes any existing occurrences of that type to be deleted and adding an attribute
to an existing entity type causes all occurrences of that type to be modified. This restructuring of the
dictionary and reformatting of occurrences is completely transparent to you. The different types of
changes are handled in the following manner:

• Adding an attribute to an entity or relationship type causes all occurrences of that type to receive a de-
faulted attribute value for the new attribute.

• Deleting an alias or variable length attribute causes all attribute values associated with the attribute
to be deleted.

• Deleting an attribute from an entity or relationship type causes that attribute to be removed from the
attribute list of the entity or relationship type and causes the attribute value of the attribute to be re-
moved from all occurrences of that type.

• Changing the size of an attribute causes the attribute value to be adjusted in size for all occurrences of
entity and relationship types that have that attribute.

• Deleting a relationship class causes any relationship types that use that class to be deleted.

• Deleting an entity type causes any relationship types that include that entity type to be deleted.

3- 33

• Deleting an entity type or relationship type causes all occurrences of that type to be deleted.

Dictionary Size Limits
The number of System Dictionary components (core set and extended set combined) that may exist in the
dictionary at any one time is subject to certain limits. The following list summarizes the limits on
dictionary components.

Domains 128

Versions in a Domain 128

Scopes 128

Entity Types 256

Relationship Classes 128

 Relationship Types 512

Attributes 1024

Alias Attributes (subset of Attributes) 128

Entity Type - Attribute Associations per Type 128

Relationship Type - Attribute Associations per Type 128

Entity Type - Attribute Associations per Dictionary 5120

Relationship Type - Attribute Associations per Dictionary 5120

Entity Occurrences per Dictionary 1000000

Relationship Occurrences per Dictionary 1400000

3- 34

4- 35

4 Domains and Versions

Overview
This chapter provides a description of domains and versions, which are the spaces within System
Dictionary where the entities and relationships reside. Information on security for domains and versions
is discussed in Chapter 5 of this manual.

Domains and Versions
One important function of a data dictionary is to maintain standardization of the data in an information
system. As shown in the previous chapter, System Dictionary includes this capability by providing you
with a standard set of structure definitions, but also the means to extend them to meet your particular
needs.

Similarly, System Dictionary provides you with the means for maintaining a standard set of occurrences--
the entities and relationships. However, though most of the occurrences in a data dictionary are meant to
be shared by all users, there are sometimes circumstances, applications, or users that need separate sets of
occurrences.

System Dictionary handles these needs by allowing multiple spaces called domains within a single
dictionary. Domains are similar in some ways to accounts in the MPE file system, and you can use them as
separate partitions for different applications, or as "name spaces" to separate duplicate names used for
different purposes.

Figure 4-1 shows examples of domains that could exist within a particular configuration of System
Dictionary. The center area represents the common domain, which is the domain provided with System
Dictionary. The other spaces represent user-created domains, called local domains. The common domain
and local domains are discussed further on in this chapter.

 Picture not available

Figure 4-1. Dictionary Domains

Using Domains
You can use domains to satisfy a number of your needs. Some of the more common uses for domains are:

• Providing partitions for separate applications, or "name spaces" for different definitions which have the
same name.

• Providing spaces for temporary definitions which may be deleted all at once by simply deleting the do-
main that contains them. This is similar to storing files in a temporary account in MPE and then delet-
ing the account. Note that you can also do this at the version level, just as you can create a temporary
group within an account and then purge when you no longer need it. Versions are discussed further on
in this chapter.

Using Domains as Name Spaces
You can use domains as "name spaces" to avoid naming conflicts that can occur when two or more of you
want to use the same name for different purposes. For example, the Personnel and Manufacturing

4- 36

departments of a company both want to use an entity called P-NUM. The Personnel department defines P-
NUM as a personnel number, while the manufacturing department wants to use it for part number.
System Dictionary easily handles this conflict by allowing you to create a domain for each application.

Within a single domain, System Dictionary does not allow two occurrences of the same type to have the
same name. For example, you cannot have two entities called PRODUCT-NAME of the same entity type
(for example ELEMENT) in the same domain. The same is true for relationships of the same relationship
type. However, System Dictionary does allow two entities that use the same name if the entities are of
different entity-types in the same domain. For example PRODUCT-NAME of type RECORD, and
PRODUCT-NAME of type ELEMENT do not conflict with each other. This also applies to relationships.

Using Domains as Partitions
Just as you can use an account in the MPE file system to contain a set of related files, you can use a domain
to contain a set of occurrences a specific application uses. For example, you may want to have similar sets
of occurrences for the Marketing, Personnel, Manufacturing, and R&D departments. You can easily
accomplish this by creating a domain for each of them, as shown in figure 4-1. Note that this also keeps
the occurrences for that application separate from those of all others in the dictionary.

The Common Domain
System Dictionary includes a built-in domain called the common domain, which is created when the
dictionary is initialized. You can use this domain as the standard dictionary, that is, the space where all
the standard entities and relationships reside, and it is accessible by any dictionary user.

The common domain in each dictionary may be its only domain, or instead, serve as the domain containing
information common to any number of local domains. (See the discussion on "linking", further on in this
chapter.) If you have no need for partitioning the dictionary, you would use the common domain only. You
can ignore the concept of domains, and when opening a dictionary, allow System Dictionary to default to
the common domain.

Local Domains
You can create your own domains, called local domains, which you can use as partitions or name spaces, as
described above. Local domains can be completely self-contained, that is, the occurrences contained in
them can have their own attribute values. Instead of the occurrences in each domain having their own
unique set of attribute values, which takes up more space and can make a dictionary "non-standard",
System Dictionary allows occurrences in local domains to share attribute values with occurrences in the
common domain. This saves space and creates a more standard dictionary, which is also easier to
maintain. Sharing attribute values is discussed further on in this chapter.

Creating Domains
You can create domains through either the System Dictionary intrinsics or an SDMAIN command. No
matter what method you use, an empty domain is created and given a user-specified name.

Domains and the Dictionary Structure
Although you can use the domain feature of System Dictionary to create separate sets of entities and
relationships, you cannot use it to create separate dictionary structure definitions. All domains in a
dictionary exist in the same dictionary structure, and therefore, regarding the structure, entities and
relationships are always specified and used the same way, no matter which domain you are using.
Accessing Domains

4- 37

A domain is part of the "access path" to System Dictionary. Therefore, you must specify a domain each
time System Dictionary is open in a mode that allows access to domains. Unlike domains that you name,
the common domain does not have a name (its name is blank), and you access it by using blanks when
specifying the domain to use.

Because only one dictionary can be open at a time through SDMAIN, you are restricted to using only one
domain at a time. You can switch to another domain (modify the current access path), but the rule that
you can use only one domain at a time is enforced. Although you can establish multiple access paths to one
or more dictionaries simultaneously via the System Dictionary intrinsics, and can switch between paths,
you can only specify one domain at a time per access path, and only one of these paths may be used at a
time. Therefore, the rule that you may use only one domain at a time is still enforced. In any case, you
must work entirely within the specified domain except when using a local domain that has links to the
common domain. (See the discussion on "linking", further on in this chapter.) Note that you are able to
access only the occurrences in the domain specified in the current access path.

Versions
Some applications require multiple versions of dictionary occurrences. System Dictionary provides a
version feature that allows multiple versions of the same entities and relationships to exist simultaneously
within a single domain. A version in the dictionary is a name space within a domain, and you can think of
it of as a partition of the domain, or as a copy of the entities and relationships in the domain.

Versions as Partitions
Versions are named partitions of a domain, and you can identify them by creating names for them. These
names must be valid System Dictionary names, and can take the form of a number such as ’051743’, or a
name such as ’TEST_VERSION_ONE’, etc. For example, a domain named MFG could contain two
versions named MFG1 and MFG2. Every domain must contain at least one version. In this sense,
versions in System Dictionary are similar to groups within an MPE account. Figure 4-2 illustrates

4- 38

versions within a domain. Note that this domain could be either the common domain or a local domain.

 Figure 4-2. Versions

Versions As Copies
You can also think of versions as copies of the entities and relationships in a domain. In this sense, the
version feature allows the creation of different versions of entities and relationships. For example, a
domain called ADDRESSES contains two versions, ADRSHORT and ADRLONG. Both versions contain an
entity called ZIP-CODE of type RECORD, which is described by the attribute BYTE-LENGTH. In version
ADRSHORT the value of BYTE-LENGTH is 5, meaning that the entity ZIP-CODE in this version
describes a 5-digit zip code. In version ADRLONG, however, the value of the attribute BYTE-LENGTH is
changed to 9. The entity ZIP-CODE in version ADRLONG is therefore a different version of the entity ZIP-
CODE in version ADRSHORT, and describes a 9-digit zip code.

You can copy an entire set of version occurrences from one version to another. This is useful, for example,
when creating a test version with all the occurrences of the current production version. Note, however,
that it is not necessary for each version of a domain to contain all the entities and relationships in that
domain. A version of a domain can contain more occurrences than other versions of the domain, or fewer, or
may even be empty (a newly created version is always empty).

With certain exceptions, the attribute values of a given entity or relationship may vary from one version to
another. In fact, the main purpose of the version feature is to allow you to experiment with one version by
changing attribute values or adding new definitions while other versions remain undisturbed.

4- 39

All versions of an occurrence use the same name and occurrence-scope associations, however, because
these are defined at the domain level, as are the values for the following attributes for occurrences:

• scope-owner

• sensitivity

• id-number (entities only)

The values for all other attributes are assigned at the version level, and may be different for each version
of an occurrence.

Creating Versions
You can create versions through either the System Dictionary intrinsics or an SDMAIN command, and you
must create them before you can add entities or relationships to them. No matter what method you use, an
empty version is created and given a user-specified name.

Version Status
Each version is assigned to one of three statuses, whose characteristics are described below.

Test Status
System Dictionary automatically assigns Test status to each version when you create it, and this status is
intended for use with unproven versions of resource definitions. It is the least restricted of all the statuses,
and you may assign it to more than one version in a domain at the same time. You can modify dictionary
occurrences in test versions, while you cannot modify those in other statuses. Therefore, you can assign
Test status to any version.

Production Status
Production status is assigned by you and is intended for the version driving a production system. You can
only read occurrences of this version. Only one version per domain can have Production status at any one
time.

Archival Status
Archival status is also assigned by you and is intended for use with versions that have previously been
production versions and need to be maintained in the dictionary for historical reference, or as insurance
against current production versions that may not function properly. Archival status is similar to Test
status in that you may assign any number of versions at one time. Archival status is similar to Production
status in that you can only read occurrences in an archival version. Figure 4-3 shows domains that include

4- 40

a possible set of versions.

 Figure 4-3. Version Examples

Changing Version Status
You may change the status of an existing version from one status to another, but you can set a version to
only one status at a time. To ensure that no other user is operating in a version when you change that
version’s status, the dictionary must be open in Exclusive Update mode during that time.

Versions and Restructuring
All dictionary occurrences, regardless of the domain and version they are located in, use the same
dictionary structure, because there is only one dictionary structure. This is an important consideration
when you customize the System Dictionary structure after placing resource definitions into the dictionary.
When you assign a version to either archival or production status, it is considered frozen, protecting its
occurrences from modification. However, when you change the dictionary structure, all occurrences in
archival and production versions are restructured like the occurrences in test versions. Adding a definition
(for example, an attribute) does not cause any problems, as all existing archival information is still saved.
If you delete a definition from the structure however, it is also deleted from all versions, including archival
versions, thereby destroying their ability to provide accurate historical reference and backup capability.
You should consider restructuring carefully, and possibly make a copy of the dictionary before
restructuring.

Audit Trail
A chronological record of status changes is maintained for each version to provide an effective audit trail of
system rollover. You can retrieve the following information:

4- 41

• Every status change a version has undergone since its creation, and the date and time of each change.

• Every version that currently has a particular status.

Accessing Versions
Like domains, versions are part of the access path to a particular dictionary. Therefore, you must specify a
version each time System Dictionary is open in a mode that allows access to versions. Note that you can
specify the version by either version name or version status. As with domains, you can access only one
version at a time, and you may switch versions while the dictionary is open. It is possible, through the
System Dictionary intrinsics, to establish multiple access paths to the same dictionary, specifying a
different version in each access, but you can specify only one version per dictionary access path. You can
reference the version currently in Production status, and the versions most recently assigned to Test and
Archival statuses without knowing their names, by specifying their status.

Linking Versions
Before you can link occurrences in a local domain version to occurrences in a common domain version
(linking is discussed below), the local domain version must be linked to the common domain version. Once
you link the versions, you can only link occurrences contained in the local domain version to occurrences in
the common domain version it is linked to. For example, if you link version MFG1 of local domain OPS to
common domain version A, then you can only link version MFG1 occurrences to common domain version A
occurrences. Note that the linked versions are not required to have the same name.

You can move the link from a local domain version to a different version in the common domain. Before
you can move the link, however, the new common domain version must contain a corresponding occurrence
for each occurrence in the existing common domain version that is linked from an occurrence in the
specified local domain version. For example, the local domain version MFG1 contains entities LE1 and
LE2 of type RECORD, which are linked to entities CE1 and CE2 of type RECORD in common domain
version A. Before you can move the links from common domain version A to common domain version B,
common domain version B must contain entities CE1 and CE2 of type RECORD.

Deleting Versions
You can remove a version and the set of occurrences it contains from the dictionary as a unit. As with
domains, this feature allows you to see a version as a storage space for temporary definitions, which you
may delete all at once by simply deleting the version. Note, however, that you cannot delete any version
having the status of Production. You would have to change the status of the version from Production to
either Test or Archival to delete it. Note also, that you cannot delete a version in the common domain
until you delete all links to occurrences it contains, and you delete all links to it from local domain
versions.

Linking Occurrences
One of the major functions of a data dictionary is to ensure the standardization and integrity of the
definitions used in an information system. However, you can use the domain feature of System Dictionary
to unintentionally defeat this standardization. You can create "non-standard" dictionaries by creating
identical occurrences in different domains, or by creating occurrences in different domains which, though
not identical, should be. For example, an entity named LAST-NAME of type ELEMENT exists in four local
domains. Each entity was created by a different user, and has a different value for one of its attributes,
BYTE-LENGTH. These different values mean that there is possibly no standard length for last names
described in the dictionary. If these differences are due to application requirements, the domain feature
serves a useful purpose, but if they are unnecessary, the domain feature is allowing non-standardization,
and its use should be looked at carefully.

4- 42

Sharing Attribute Values
To prevent some of these non-standardization problems, and to allow you to create smaller dictionaries
that are easier to maintain, System Dictionary allows you to create entities and relationships in a local
domain version and link them to existing entities or relationships of the same type in the common domain
version. The linked occurrences will then share the attribute values (and the memory storage space) of the
occurrences they are linked to.

For example, a Dictionary Administrator wants all last names described in the dictionary to be 32
characters long, and therefore creates an entity called LAST-NAME of type ELEMENT in the common
domain version, setting the value of its attribute BYTE-LENGTH, to 32. The DA then instructs the
dictionary users to use this entity for all last names. User #3, however, needs to call the entity by a
different name, creates an entity called CUSTOMER-LAST-NAME and links it to the entity LAST-NAME
in the common domain version. The entity CUSTOMER-LAST-NAME (the local entity) now shares the
attribute value (32) of the attribute BYTE-LENGTH of the entity LAST-NAME (the common entity). Note
that the names of the two linked entities do not have to be the same.

The linking feature, therefore, promotes standardization within the dictionary, and allows you to save
space by using the same set of attributes for multiple entities or relationships. It also makes the
dictionary simpler and easier to maintain by having only one set of attributes to modify, etc. for a set of
linked occurrences, instead of several separate sets. Figure 4-4 below illustrates the common domain and
one local domain, which contain common version CV1 and local version LV1 respectively. The local version
LV1, which is linked to the common version CV1, contains local entity LE1 and local relationship LR1,
which are linked to common entity CE1 and common relationship CR1 respectively, in the common
version. Note that entities called E2 in both the common and local domains are not linked. They are
therefore completely separate entities, and do not share the same attributes, even though they have the
same name. Remember that you must link the local domain version to the common domain version before

4- 43

you can link occurrences they contain. (Linking versions is explained on the previous page.)

 Figure 4-4. Linking Occurrences Between Domains

Special Attribute Values
A local domain occurrence shares all the attribute values of the occurrence it is linked to in the common
domain, except for the values of its special attributes. (Special attributes are introduced in Chapter 3.)
The values of the special attributes of the local domain occurrence are allowed to differ from those of the
occurrence in the common domain, so that they will describe the linked occurrence in the local domain.
This exception is necessary because System Dictionary assigns values to these attributes based on the
event in which you create them.

For example, the attribute date-created, describing a linked occurrence in a local domain, contains the date
on which the linked occurrence was created, not the date on which the occurrence in the common domain
was created. The values of the scope-changed, and date-changed attributes are handled the same way.
The values for the attributes scope-owner and sensitivity are allowed to vary so that the users of each
domain have control over these security attributes. The value of the id-number attribute assigned to an

4- 44

entity is arbitrary, so there is no need to keep it synchronized between occurrences. The relationship-
position attribute assigns ordinal numbers to a set of relationships of the same type that have the same
parent entity. The ordinal numbers implicitly define the order in which the child entities of these
relationships occur within the parent entity. For example, in a series of relationships of the type RECORD
contains ELEMENT that have the same RECORD entity, the relationship-position attribute implicitly
defines the ordering of elements within the record. You can vary relationship-position attribute values
among linked relationships so that users in each domain can re-arrange their order. The relationship
CUSTOMER-ADDRESS contains LAST-NAME, for example, may be linked between domains. But in one
domain, its relationship-position value may indicate that LAST-NAME comes first in the record while in
another domain it may come last.

Linking Restrictions
Note that you can link entities only to entities, and you can link relationships only to relationships, and
only from a local domain version to a common domain version which must be linked together first.
Further, you can make links only between occurrences of the same type. For example, you cannot link an
entity of type RECORD to an entity of type FILE, nor can you link a relationship of type DATABASE
contains DATASET to a relationship of RECORD contains ELEMENT.

5- 45

5 Dictionary Security

Overview
System Dictionary includes a security scheme to limit access to authorized users, and to control the level of
access of each user. Generally, this scheme consists of the following requirements:

1 You must use the correct scope and its associated password to have the necessary access rights
to the dictionary.

2 To have unlimited access to a definition or occurrence, the current scope must be either its owner
scope or the Dictionary Administrator scope. A scope that does not own a particular occur-
rence may have explicit access to it by being associated with that occurrence.

3 The entities and relationships in the dictionary must have the correct sensitivity to allow access
by a scope that is not its owner scope, the Dictionary Administrator scope, or a scope that is as-
sociated with the occurrence.

System Dictionary checks for the necessary dictionary open mode and scope rights it needs to
succeed, and if attempting to access an occurrence, also checks the association and sensitivity of that
occurrence. If any of the following occur, the operation fails and an appropriate error code is returned.

• The dictionary is not open in the proper mode.

• The current scope does not have sufficient scope rights.

• The scope attempting to access an occurrence does not have the necessary association with that occur-
rence.

• The sensitivity of the occurrence restricts access.

This chapter contains references to all System Dictionary security operations, and to a number of
operations whose performance and output depend greatly on the particular security scheme installed at
the time you call them. To completely understand all of the information in this chapter, it may be necessary
to refer to the detailed explanations of either the System Dictionary intrinsics, which are located in
Chapter 4 of the HP System Dictionary/XL Intrinsics Reference Manual, or the descriptions of the
SDMAIN commands, which are located in Chapter 4 of the HP System Dictionary/XL SDMAIN Reference
Manual.

Scopes
Scopes and their associated passwords are the primary means that System Dictionary uses to limit
dictionary access to authorized users, and to control the level of access they have to the definitions that
System Dictionary contains. Each scope may have up to six scope rights (see next page) which define the
capabilities/access rights that the scope has to the dictionary.

Scopes are global in System Dictionary and are defined across structure, domains, versions, and
occurrences.

Ownership
Every System Dictionary component is owned by a scope. System Dictionary includes a built-in scope
called CORESET, which owns all of the entity types, relationship types, relationship classes, and
attributes supplied on the installation tape. It also owns the Dictionary Administrator scope, which

5- 46

either directly or indirectly owns all other scopes you create in the dictionary. All structure definitions and
dictionary occurrences you create are owned by a scope. Each owner scope has unlimited access to and
authority over the items it owns. An owner scope can transfer any or all of its owned items to another
scope. It can allow other scopes to access the occurrences it owns by creating an association between
those scopes and specified occurrences in the dictionary.

Specific information on occurrence ownership is located further on in this chapter, under the heading
"Access Rights".

The Dictionary Administrator Scope
This special scope, generally referred to as the DA scope, has ultimate authority over and unlimited
access to the entire System Dictionary. This scope exists after you initialize System Dictionary. It is owned
by the core set, and you can never delete it. The DA scope has all of the scope rights listed on the next
page, which, in this scope, you can never delete or modify. The DA scope is the only scope that can change
the DA password and DA scope external name. It can also call any System Dictionary intrinsic.

NOTE The DA scope and its password are considered highly sensitive and privileged infor-
mation.

The DA scope may create other scopes (which it then owns) and may assign them individual scope rights.
If they have the Secure scope right, those scopes may, in turn, create other scopes (which they own) and
may assign to them, any of their own scope rights. Although there is no limit to the number of nested
levels of scopes in the dictionary, the maximum number of scopes that System Dictionary allows is 128.

Scope Rights
• Scope rights are capabilities associated with a scope. Scope rights specify the dictionary components

that the scope is allowed to manipulate. They also specify the dictionary operations that a particular
scope is allowed to perform. The six scope rights are:

• Secure capability indicates that a scope has the ability to create and own other scopes, and retrieve in-
formation about security.

• Extend capability indicates that you have the ability to extend and customize the dictionary by creating
and owning new entity types, relationship types, relationship classes, and attributes.

• Create capability indicates that a scope has the ability to create and own entities and relationships.

• Read capability indicates that a scope can read entities and relationships accessible to that scope. Note
that if a scope has create capability, read capability is automatically assigned.

• Domain capability indicates that you can create and own dictionary domains, and retrieve information
about domains.

• Version capability indicates that you can create or own versions and perform version control opera-
tions. Note that if a scope has domain capability, version capability is automatically assigned.

Scope Right Restrictions There are some restrictions on modifying scope rights. Generally, System
Dictionary does not allow any scope right to be removed from a scope if that scope right is currently in use.
For example:

• A scope cannot be modified to remove secure capability if that scope owns any scopes.

• A scope cannot be modified to remove extend capability if that scope owns any attributes, entity types,
relationship types, relationship classes, or type/attribute associations.

• A scope cannot be modified to remove create capability if that scope owns any entity or relationship oc-
currences.

• A scope cannot be modified to remove domain capability if that scope owns any domains.

• A scope cannot be modified to remove version capability if that scope owns any versions.

5- 47

Scope Restrictions
The following restrictions apply to scopes.

• Only the DA scope or a scope with secure capability can create a new scope.

• When a scope creates a new scope, it becomes the owner of the new scope.

• A scope cannot assign a scope right that it does not have itself.

• Only the DA scope or the owner of a scope can modify, delete, or retrieve information about that scope.
Note, however, that a scope can change its own password, and retrieve information about itself.

• When a scope is deleted, an existing scope may be specified to become the new owner of everything that
is owned by the scope to be deleted. The new owner scope must, however, have at least the same scope
rights as the scope it replaces. If a scope is not specified, the current scope will become the new owner,
but only if it has at least the same scope rights as the scope it replaces.

• Only the DA scope can retrieve all the scopes in the dictionary, but a scope with secure capability can
retrieve all of the scopes it owns.

Scope Password
Each scope in System Dictionary has an associated password. A password is necessary to gain access to a
particular scope. Scope passwords are case sensitive.

Using Scopes
System Dictionary allows five different operations to be performed directly on scopes. There are also a
number of dictionary operations that use scopes, these are covered further on in this chapter. The five
operations are:

• Creating scopes.

• Deleting scopes.

• Modifying scopes (can change its own password or that of another scope it owns, or change that scope's
name, scope rights, or scope owner).

• Retrieving information about a specified scope.

• Retrieving a list of all the scopes in the dictionary, or all that the scope owns.

Structure Security
The following groups of restrictions are placed by System Dictionary on the operations associated with the
dictionary structure. Each group contains the restrictions for a single component type in the dictionary
structure. Although the groups contain similar restrictions, they are listed separately for ease of use.

Entity Type Restrictions
System Dictionary provides the following security for entity types:

• Only the DA scope or a scope with extend capability is allowed to create new entity types.

• When a scope creates a new entity type, it becomes the owner of that entity type.

• Only the DA scope or the owner scope can delete or rename an entity type, or change its owner scope.

• Core set entity types are owned by the core set and can never be deleted or modified (exception: core set
entity type external names may be modified by the DA scope.)

5- 48

Relationship Type Restrictions
System Dictionary provides the following security for relationship types:

• Only the DA scope or a scope with extend capability is allowed to create new relationship types.

• When a scope creates a new relationship type, it becomes the owner of that relationship type.

• Only the DA scope or the owner scope can delete a relationship type or change its owner scope.

• Core set relationship types are owned by the core set and can never be deleted or modified.

Relationship Class Restrictions
System Dictionary provides the following security for relationship classes.

• Only the DA scope or a scope with extend capability is allowed to create new relationship classes.

• When a scope creates a new relationship class, it becomes the owner of that relationship class.

• Only the DA scope or the owner scope can delete or rename a relationship class or change its owner
scope.

• Core set relationship classes are owned by the core set, and can never be deleted or modified (exception:
core set relationship class external names may be modified by the DA scope).

Attribute Restrictions
System Dictionary provides the following security for attributes:

• Only the DA scope or a scope with extend capability is allowed to create new attributes, or add an at-
tribute to either an entity type’s attribute list or to a relationship type’s attribute list.

• When a scope creates a new attribute, it becomes the attribute’s owner. When a scope adds an attribute
to an attribute list, it becomes the owner of that entity type/attribute pair or relationship type/attribute
pair.

• Only the DA scope or the owner scope can delete or rename an attribute or change its owner scope,
length, or edit values.

• Only the DA scope or the scope that owns the pair may delete an attribute from an entity type’s attribute
list or from a relationship type’s attribute list.

• Core set attributes and attribute pairs are owned by the core set and can never be deleted or modified.
(exception: core set attribute external names and edit value lists may be modified).

Domain and Version Security
This subsection describes the security scheme for System Dictionary domains and the versions of the
dictionary occurrences within each domain. The occurrences also have protection, which is discussed
further on in this chapter. (Descriptions of domains and versions are located in Chapter 4 of this manual.)

Domain Security
Domain security controls which scopes have access to which domains. Therefore, the current scope must
have access to the specified domain when opening the dictionary or switching domains. Further, when
switching scopes, the new scope must have access to the current domain. The security for any domain
depends on:

• The access rights of the current scope to that domain.

• The sensitivity of the domain.

5- 49

Access Rights.

The access rights of a scope to a domain are determined by whether the scope owns the domain or is just
associated with it. Association and ownership are discussed below.

DOMAIN OWNERSHIP

When a scope owns a domain, it has all rights to that domain, and can therefore modify it, transfer its
ownership to another scope, or even delete it. It can also allow another scope access to the domain by
associating the domain with that scope. Note that the DA scope always has all rights to all domains.

The security of a domain applies indirectly to all versions within that domain. Although the version itself
does not have security, the current scope must have access to the domain containing the version it is trying
to access.

DOMAIN/SCOPE ASSOCIATION

An association between a domain and a scope is an explicit access capability granted to that scope by the
owner scope of that domain. However, even though a scope has access to a given domain, it cannot do
operations within that domain (create, access, or delete occurrences, for example) unless it also has the
necessary scope rights for those operations.

A scope can delete domain associations it has created from any domain/scope association. It can also delete
domain/scope associations from itself.

Sensitivity.

The security of a domain is actually set by its Sensitivity. Domain sensitivity is set to one of two values
when you create a domain, and can be changed only by its owner scope or the DA scope. The two values
are:

1 1. = Private sensitivity: Only the DA scope or the scope that owns the domain is allowed access to
it, unless the DA scope or owner scope assigns access to other scopes through domain/scope asso-
ciations.

2 2. = Public sensitivity: Any scope may access the domain.

When using the intrinsics to create a domain, you must specify the sensitivity of that domain, as no default
exists except when using SDMAIN. Note that the sensitivity of a domain should be carefully determined.
If you change the sensitivity from public to private, all scopes that previously had access to this domain
will no longer have access, unless that domain is explicitly associated with them.

NOTE The sensitivity of the common domain is set to public, and cannot be modified.

Domain Restrictions
System Dictionary provides the following security for domains.

• Only the DA scope or a scope with domain capability is allowed to create new domains.

• When a scope creates a new domain, it becomes the owner of that domain.

• Only the DA scope or the owner scope can delete or rename a domain or change its owner scope.

Version Restrictions
System Dictionary provides the following security for versions:

5- 50

• Only the DA scope or a scope with version capability is allowed to create new versions.

• When a scope creates a new version, it becomes the owner of that version.

• Only the DA scope or the owner scope can delete or rename a version or change its owner scope.

• Only the DA scope or a scope with version capability can set the status of a version, or copy all occur-
rences of an existing version and assign them to a new version.

Note that when a version is copied, all occurrences of the existing version are copied to another version.
The owner for each occurrence will be the same across all versions.

Occurrence Security
The security scheme for entities is exactly the same as that for relationships, and is accomplished by two
parallel sets of operations, one for entities and one for relationships. In the following paragraphs,
therefore, occurrence can mean either entity or relationship.

Figure 5-1 outlines the security scheme for occurrences. Note that the boxed text in the sections labeled
’Scope Capability’ and ’Linked Scope Access’ lists the capability of the scope. The text in parentheses
shows the actual access the scope has to an occurrence. This access is determined by the combination of
occurrence sensitivity and scope access rights, which are explained in detail on the following pages, and
illustrated below.

In the example, note that a scope having create capability can read or modify an occurrence whose
sensitivity is set to public modify, but cannot modify an occurrence whose sensitivity is set to public read,
unless that scope is either the owner of the occurrence or has been given modify access to the occurrence by
its owner.

 Figure 5-1. Occurrence Security

5- 51

The security for any occurrence depends on the following:

 * The access rights of the current scope to that occurrence.

 * The sensitivity of the occurrence.

Access Rights
The access rights of a scope to an occurrence are determined by whether the scope owns the occurrence or
is just associated with it. Association and ownership are discussed below.

Occurrence Ownership.

When a scope owns an occurrence, it has all rights to that occurrence, and can therefore read it, modify it,
transfer its ownership to another scope, or even delete it. It can also allow another scope access to the
occurrence by associating the occurrence with that scope. Note that the DA scope always has all rights to
all occurrences.

The security of an occurrence applies to all versions of that occurrence. When you create an occurrence, if
no other version of that occurrence exists, the current scope becomes the owner scope. If another version of
that occurrence already exists, then the current scope must be the DA scope or the owner scope of the
existing version of the occurrence.

Occurrence/Scope Association.

An association between an entity or relationship occurrence and a scope is an explicit access capability
granted to that scope by the owner scope of that occurrence. When a scope is associated with an occurrence,
its rights to that occurrence are dependent upon the type of association it has. Associations between
scopes and occurrences can be either of two types:

• Read Access, which gives the associated scope the capability to read the occurrence. Further information
about retrieving information about occurrences is located in Chapter 4 of the HP System Dictionary/XL
Intrinsics Reference Manual. Refer to the intrinsics SDGetEnt, SDGetEntList, SDGetRel, and SDGe-
tRelList, which are used to retrieve information about occurrences.

• Modify Access, which not only gives the associated scope the capability to read the occurrence, but also
allows it to change the values of most of its attributes.
To modify an occurrence, the associated scope must also have create capability, and if creating links,
must also have read access to the common domain entity or common domain relationship involved in the
link.

When an occurrence is associated to a scope, all versions of that occurrence are associated with the scope.

A scope can delete occurrence associations it has created from any occurrence/scope association. It can also
delete occurrence/scope associations from itself. For a local domain occurrence to be linked to a common
domain occurrence, the owner scope must have at least read access to the common domain occurrence.
Only the owner scope or DA scope can modify the link to a common domain occurrence. Note that a scope
that has access to a common domain occurrence can also read the names of all of the local domain
occurrences that are linked to that common domain occurrence.

A two step process is required to modify an occurrence/scope association (change the association between
an occurrence and a scope).

• Delete the current association.

• Create a new association.

Further details on associations are located in the descriptions of intrinsics SDAddEntScope,
SDAddRelScope, SDDeleteEntScope and SDDeleteRelScope in Chapter 4 of the HP System Dictionary/XL
Intrinsics Reference Manual.

5- 52

Sensitivity
Sensitivity is an attribute of an occurrence. It is set to one of three values when you create the occurrence,
and can be changed only by its owner scope or the DA scope. The three values are:

1 0 = Private sensitivity: Only the DA scope or the scope that owns the occurrence is allowed access
to it, unless the scope assigns access to other scopes through occurrence/scope associations.

2 1 = Public Read sensitivity: Any scope with at least read capability may read the occurrence. The
DA scope or owner scope can assign other scopes modify access to the occurrence through occur-
rence/scope associations.

3 2 = Public Modify sensitivity: Any scope with read capability may read the occurrence. Any scope
with at least create capability may read and modify the occurrence.

You should determine the sensitivity of an occurrence carefully. If you do not specify the sensitivity when
you create the occurrence, it defaults to the value specified in its attribute edit, or to private, if no attribute
edit exists. If you change the sensitivity from public to private, all scopes that previously had access to this
occurrence will no longer have access, unless that occurrence is explicitly associated with them.

Specific Restrictions
System Dictionary provides security that is specific to entities and security that is specific to relationships.
These are discussed here.

Only the DA scope or the owner scope can create or delete a synonym for an entity. Any scope with at least
read access to an entity can list all of an entity’s synonyms.

Only the DA scope or the owner scope can change the scope-owner and sensitivity attribute values of an
occurrence, even if other scopes have modify access to the occurrence.

NOTE If a scope deletes an entity it owns, then all relationships involving that entity are also
deleted, even if the scope does not own or have access to all those relationships.

Example of Entity Security
The next two pages provide an example of how you could set up security for specific scopes and entities in
System Dictionary, and then modify them to increase the access of each scope.

You define Scope1 and Scope2 in the dictionary with create and read capability. You define Scope3 in the
dictionary with read capability. A user opens the dictionary with the scope Scope1. This user creates the
file File1 and the record Record1, both with sensitivity set to private, and element Element1 with
sensitivity set to public modify. Scope1 is the owner of these three entities. Only Scope1 or the DA scope
can delete these entities.

Another user opens the dictionary with Scope2. This user creates element Element2 with sensitivity set to
public read and element Element3 with sensitivity set to private. Scope2 is the owner of these entities.
Only Scope2 or the DA scope can delete these entities.

The table below lists each of the entities the scopes have access to at this point. Note that neither Scope2
nor Scope3 have access to File 1 or Record 1, and that Scope3 has at most have read access to an entity

5- 53

because it has just read capability.

To allow Scope2 and Scope3 access to File1 and Record1, Scope1 associates these entities to those scopes.
Both Scope2 and Scope3 are given read ScopeAccess to Record1, Scope2 is given modify ScopeAccess to
File1, and Scope3 is given read ScopeAccess to File1.

The table below lists each of the entities the scopes have access to after these changes were made. Note
the addition of File 1 and Record 1 to Scope2 and Scope3.

To create a relationship between File1 and Record1, the scope must be either the DA scope, Scope1, or a
scope with create capability and at least read access to File1 and Record1 which includes Scope2 but not
Scope3. Again, Scope3 is only able to read from the dictionary because it has just read capability. If
Scope2 creates a relationship between File1 and Record1 then Scope2 becomes the owner of that
relationship. Only Scope2 or the DA scope can delete that relationship. Only Scope2, the DA scope or a
scope with modify access to that relationship can modify that relationship.

Table 6: Security Example

SCOPE ENTITIES ACCESS CAPABILITY

Scope1 (create, read) File1
Record1
Element1
Element2

modify, delete, read
modify, delete, read
modify, delete, read
read

Scope2 (create, read) Element1
Element2
Element3

modify, read
modify, delete, read
modify, delete, read

Scope3 (read) Element1
Element2

read
read

Table 7: Security Example After Modifying Scopes

SCOPE ENTITIES ACCESS CAPABILITY

Scope1 File1
Record1
Element1
Element2

modify, delete, read
modify, delete, read
modify, delete, read
read

Scope2 Element1
Element2
Element3
File1
Record1

modify, read
modify, delete, read
modify, delete, read
modify, read
read

Scope3 Element1
Element2
File1
Record1

read
read
read
read

5- 54

6- 55

6 The Core Set

Overview
This chapter describes the core set of definitions provided with System Dictionary, and shows how this set
supports various HP subsystems.

The Core Set
System Dictionary contains a number of predefined entity types, relationship types, relationship classes,
and attributes, known as the core set. These structures are created when the dictionary is initialized,
and are owned by a scope called CORESET. (Ownership is discussed in Chapter 5 of this manual.) The
purpose of the core set is to provide a standard base of definitions for you, and to support the description of
the following HP subsystems:

• MPE files

• MPE Accounting structure

• IMAGE and TurboIMAGE DBMS

• VPLUS forms

• RAPID/V

• Network node locations

• COBOL data definitions

• Pascal data definitions (subset of Pascal data types)

• RPG programs

Modifying the Core Set
Only the Dictionary Administrator scope can modify the core set. Only limited modifications can be made,
as listed below.

• Change the external names of entity types, relationship classes, and attributes.

• Modify attribute edits of core set attributes.

• Add attributes to core set entity types or relationship types. Note that although the individual compo-
nents are owned by the core set, the entity type/attribute pair or relationship type/attribute pair is
owned by the scope that created it.

Extending the Dictionary Structure
System Dictionary is designed to be a repository for resource definitions. However, because many types of
definitions may exist within your resources, it is necessary to customize the dictionary to fit your
environment. The primary means of customizing System Dictionary is to extend the dictionary structure.
Operations that extend the dictionary structure include the following:

• Adding attributes to core set entity types or relationship types.Note that although the individual com-
ponents are owned by the core set, the entity type/attribute pair or relationship type/attribute pair is
owned by the scope that created it.

• Adding entity types, relationship types, relationship classes, and attributes that you created.

-
that you
e com-
6- 56

• Adding attributes to an entity type or relationship type that you created.

You can use these operations to create a custom structure that closely models your resource environment.

CAUTION The core set is included in System Dictionary to provide a standard set of defini-
tions. Extending this set should be carefully planned, as extension may cause the
loss of standardization between dictionaries.

The process to extend the dictionary structure is actually quite simple, as shown below.

1 Open the dictionary in exclusive customization mode with a scope that has extend capability and
the necessary access rights to any definitions being modified or deleted.

2 Use the appropriate SDMAIN commands or dictionary intrinsics to add, modify, or delete the de-
sired structure definitions.

3 Close the dictionary.

The Extended Set.

The set of definitions you create that extends the core set is called theextended set, and you can access it in ex
actly the same way as the core set. The only real difference between the core set and the extended set is
can modify and delete the components in the extended set, while you essentially cannot modify or delete th
ponents in the core set.

Restructuring the Dictionary
A process called restructuring is necessary to include any structure changes into the working dictionary.
This process is similar to compiling a program, and occurs automatically whenever the dictionary is closed
from the exclusive customization mode. Refer to Chapter 3 for more information on restructuring the
dictionary.

Core Set Attributes
The following attributes are included in the System Dictionary core set:

access This attribute is a 2-character field that describes the IMAGE access rights. Valid val-
ues are ' ', 'R' and 'W'.

back-reference-flag Attributes that are associated to a relationship type and are also associated to the
second entity type of that relationship type are called corresponding attributes (ex-
cluding the special attributes). This attribute is a Boolean field that indicates where
the relationship's corresponding attribute values reside. If false, the corresponding at-
tribute values reside with the relationship. If true, then the corresponding attributes
values reside with the definition of the second entity of the relationship.

blank This attribute is a Boolean field that describes the display option on an element entity.
If true, then an element entity whose value is zero is displayed as a blank character
string.

blocking-factor This attribute is a 2-byte binary field that describes the blocking factor a data set en-
tity uses.

blocking-max This attribute is a 2-byte binary field that describes the maximum blocking factor a
file entity uses.

blocking-min This attribute is a 2-byte binary field that describes the minimum blocking factor a file

6- 57

entity uses.

blocking-units This attribute is a 10-character field that describes the blocking factor units a file en-
tity uses. The valid values are 'RECORDS' or 'CHARACTERS'.

byte-length This attribute is a 4-byte binary field that describes the number of bytes you need to
store an entity.

byte-offset This attribute is a 4-byte binary field that describes the byte offset of a child record or
element within a parent record.

capacity This attribute is a 4-byte binary that field describes the capacity of an IMAGE data
set.

category-type This attribute is a 10-character field that contains the category type.

cctl-flag This attribute is a Boolean field that describes carriage control for a file entity. If true,
then the file has carriage control; if false, then no carriage control.

char-type This attribute is a 10-character field that describes the character set that a file uses.
The valid values are 'ASCII' or 'EBCDIC'.

class-number This attribute is a 4-byte binary field that contains the IMAGE security class number.

cobol-alias This alias attribute is a name field that contains aliases for COBOL source declara-
tion.

constant-type This attribute is a 2-character field that describes the type of a constant. The possible
values are:

 U = upper case ASCII

 X = upper or lower case ASCII

 9 = numeric ASCII

 Z = zoned decimal

 P = packed decimal

 I = integer binary

 J = integer binary (COBOL)

 K = logical

 R = floating point (commercial)

 E = floating point (E format)

 B = Boolean

 S = Pascal string

 D = Basic Business decimal

count This attribute is a 4-byte binary field that specifies the number of elements in an ar-
ray.

date-created This attribute is a 16-character field that describes the date and time an entity or re-
lationship was created. The dictionary intrinsics always generates its value. The for-

6- 58

mat of the attribute is: YYYYMMDDhhmmsstt where

 YYYY is the year

 MM is the month

 DD is the day

 hh is the hour

 mm is the minute

 ss is the seconds

 tt is the tenths of seconds

date-changed This attribute is a 16-character field that describes the date and time the entity or re-
lationship was last changed. The dictionary intrinsics always generate its value. The
format of the attribute is the same as that described in the date-created attribute.

decimal This attribute is a 4-byte binary field that describes the number of places to the right
of the decimal point of an element.

default This attribute is a variable length field that contains a default value.

description This attribute is a variable length field that holds description text.

directive This attribute is a 10-character field that describes a compilation directive.

directory-version This attribute is a 2-byte binary field that indicates the version of the Network Direc-
tory Path Report.

display-length This attribute is 4-byte binary field that contains a count of the number of display
characters or digits of an entity.

document-type This attribute is a 10-character field that contains the document type. Example doc-
ument types are 'CHART', 'DRAW', 'FIGURE'.

edit-mask This attribute is a variable length field that contains an edit mask used for displaying
or inputting an entity's value.

element-display This attribute is a Boolean field that flags whether an element entity should be dis-
played on the Inform Data Names Menu. If true, it is displayed. If false, it is not dis-
played.

element-type This attribute is a 2-character field that describes the type of an element. The possible
values are:

 U = upper case ASCII

 X = upper or lower case ASCII

 9 = numeric ASCII

 Z = zoned decimal

 P = packed decimal

 I = integer binary

 J = integer binary (COBOL)

6- 59

 K = logical

 R = floating point (commercial)

 E = floating point (E format)

 B = Boolean

 S = Pascal string

 * = back references

 D = Basic Business decimal

 A numeric type followed by a '+' indicates positive values only.

entity-long-name This attribute is a variable length field that stores the descriptive long name of an en-
tity.

entry-text This attribute is a variable length field that contains a prompt string for an entity.

field-enhancementThis attribute is a 4-character field that describes the display enhancement for a
VPLUS form field. Some combination of up to 4 of the following codes may be used:

 H = half bright

 I = inverse video

 U = underline

 B = blink

 S = security

 1-8 = color

 NONE = none

field-number This attribute is a 2-byte binary field that contains the VPLUS form field number.

field-type This attribute is a 2-character field that describes the level of requirement of a
VPLUS field. Possible values are:

 D = display

 R = required

 O = optional

 P = process

file-dev-class This attribute is a 2-character field that describes the class of device on which a file
resides, used by COBOL. Possible values are:

 DA = ss storage device

 UT = utility device (such as tape drive)

 UR = unit record device (such as a card reader)

file-size This attribute is a 4-byte binary field that specifies the maximum file capacity. The
units depend on the record-format: for FIXED length record-formats the file-size is
in terms of logical records; for VARIABLE or UNDEFINED record-formats the file-

6- 60

size is in terms of blocks.

file-type This attribute is a 10-character field that describes the access method of the file. Pos-
sible values are 'SEQUENTIAL', 'RELATIVE', and 'LOG' for log files.

function-result This attribute is a 32-character field that describes the resulting type of a function
subroutine module entity.

head-form This attribute is a Boolean field to flag that a form is the head form of a formsfile. If
true, the form is the head form.

heading-text This attribute is a variable length field that contains a report heading for an entity.

hp-condition-valueThis attribute is a variable length field that holds all values and ranges to be assigned
to a COBOL condition-name.

hpdbe-file-type This attribute is a 10 character field that describes the DBEFile type. Valid values
are 'MIXED', 'INDEX', and 'TABLE'.

hpdbe-log-buffers This attribute is a 2 byte binary field that defines the number of log buffers a DBEn-
vironment uses.

hpdbe-max-transactionsThis attribute is a 2 byte binary field that defines the maximum number of con-
current transactions a DBEnvironment supports.

hpdbe-multi-users This attribute is a Boolean field that indicates whether a DBEnvironment allows mul-
tiple user access. If TRUE, multiple user access is allowed. If FALSE, only single user
access is allowed.

hpdbe-page-buffersThis attribute is a 2 byte binary field that defines the number of page buffers a DBEn-
vironment uses.

hpdbe-pages This attribute is a 4 byte binary field that defines the number of pages in a DBEnvi-
ronment file.

hpsql-alias This attribute is a name field that contains aliases for HP SQL access.

hpsql-alter-auth This attribute is a Boolean field that indicates whether alter authority has been grant-
ed. If true, alter authority has been granted.

hpsql-auth-name-type This attribute is a 10-character field that describes the HP SQL authorization
name type. Valid values are 'AUTH-GROUP' and 'USER'.

hpsql-clustering This attribute is a Boolean field that describes whether clustering has been specified
for an HP SQL index within an HP SQL table. If true, clustering has been specified.

hpsql-connect-authThis attribute is a Boolean field that indicates whether connect authority has been
granted. If true, connect authority has been granted.

hpsql-dba-auth This attribute is a Boolean field that indicates whether dba authority has been grant-
ed. If true, dba authority has been granted.

hpsql-delete-auth This attribute is a Boolean field that indicates whether delete authority has been
granted. If true, delete authority has been granted.

hpsql-index-auth This attribute is a Boolean field that indicates whether index authority has been
granted. If true, index authority has been granted.

hpsql-insert-auth This attribute is a Boolean field that indicates whether insert authority has been

6- 61

granted. If true, insert authority has been granted.

hpsql-lock-mode This attribute is a 10-character field that contains the lock mode of an HP SQL table.
Valid values are 'PUBLIC', 'PUBLICREAD' and 'PRIVATE'.

hpsql-resource-auth This attribute is a Boolean field that indicates whether resource authority has been
granted. If true, resource authority has been granted.

hpsql-select-auth This attribute is a Boolean field that indicates whether select authority has been
granted. If true, select authority has been granted.

hpsql-select-command This attribute is a variable length field that contains an HP SQL select command.

hpsql-update-auth This attribute is a Boolean field that indicates whether update authority has been
granted. If true, update authority has been granted.

id-number This attribute is a 4-byte binary field that contains a numeric identifier for an entity.
Its value is not generated by the dictionary intrinsics and it is not checked for unique-
ness.

image-alias This alias attribute is a name field that contains aliases for IMAGE database access-
ing.

image-class-type This attribute is a 10-character field that contains the security class type.

image-database-type This attribute is a 10-character field that describes the database type. Possible val-
ues are 'IMAGE', 'HPIMAGE', or 'TURBO'.

image-dataset-typeThis attribute is a 10-character field that describes the data set type. Possible values
are 'MANUAL', 'AUTOMATIC', 'DETAIL', or 'RELATION'.

inform-group-type This attribute is a 10-character field that contains the group type.

justify This is a Boolean field that describes the justification an element entity uses. If true,
the alphanumeric element entity should be right justified.

ksamfile-type This attribute is a 10-character field that describes the type of the KSAM file. Possible
values are 'DATA' and 'KEY'.

language This attribute is a 10-character field that describes the programming language that a
module or program is written in.

ldev-number This attribute is a 2-byte binary field that contains the logical device number.

link-value This attribute is 2-byte binary field that contains the link priority of an element entity.
Valid values are:

 -1 = the element cannot be used for linking

 0 = the element may or may not be used for linking

 1 or more = the element should be used as a link when possible; the lower
the positive integer the higher the priority

lockword This attribute is an 8-character field that contains a lockword.

max-record-size This attribute is a 4-byte binary field that describes the maximum record size of a file
entity in bytes.

6- 62

min-record-size This attribute is a 4-byte binary field that describes the minimum record size of a file
entity in bytes.

module-type This attribute is a 10-character field that contains the module type.

node-name-changed This attribute is a 50-character field that contains the NODE NAME which de the
last change to any NODE NAME.

node-name-type This attribute is a 2-byte binary field that contains the NODE NAME type. Valid val-
ue is: 1.

not-null This attribute is a Boolean field that indicates whether an element cannot have null
values. If true, the element cannot have null values.

parm-flag This is a Boolean field that describes that the element is a parameter of a module.

parm-number This is a 4-byte binary field that describes the position of a parameter in a module.

pascal-alias This alias attribute is a name field that contains aliases for Pascal source declaration.

pass-method This is a 10-character field that describes the method in which a parameter is passed
to a module. Valid values are 'REFERENCE', 'VALUE' and 'READONLY'.

password This attribute is a 16-character field that contains a password used with an IMAGE
security class entity.

path-report This attribute is a variable length field that contains the path report of a NODE
NAME.

primary-flag This attribute is a Boolean field that describes the primary key in a KSAM entity type
or an IMAGE chain.

primary- record This attribute is a Boolean field that describes the primary record in a data set, file,
KSAM file, table, or record.

record-fort This attribute is a 10-character field that describes the file record type. Valid values
are 'FIXED', 'VARIABLE', 'UNDEFINED' and 'SPANNED'.

recording- mode This attribute is a 10-character field that describes the file type: 'ASCII' or 'BINARY'.

relationship-position This attribute is a 4-byte binary field that describes the relationship position of an
entity (for example, first child, second child, etc.). The value must be a unique positive
integer. A zero causes the dictionary intrinsics to generate a default value greater
than the current largest value for the relationship position.

right-justify This attribute is a Boolean field that describes the type of justification the element en-
tity value uses; if true then the value of the element entity should be right justified.

scope-changed This attribute is a 32-character field that contains the name of the scope which last
modified an entity or relationship. Its value is always generated by the dictionary in-
trinsics.

scope-owner This attribute is a 32-character field that contains the scope owning the entity or re-
lationship. Its value is always generated by the dictionary intrinsics. Detailed infor-
mation on scopes and scope ownership is located in Chapter 4 of this manual.

sensitivity This attribute is a 2-byte binary field that describes the accessibility of an occurrence
as follows:

6- 63

 0 = Private; only the scope that owns the occurrence is allowed access,
unless it assigns access to other scopes with occurrence/scope associ-
ations.

 1 = Public Read; any scope may read the occurrence. The owner scope
can assign other scopes modify access to the occurrence with occur-
rence/scope associations.

 2 = Public Modify; any scope may read or modify the occurrence. More
information on sensitivity is located in Chapter 4 of this manual.

sign This attribute is a 2-character field that contains the sign position of a numeric ele-
ment entity:

 blank = no sign

 LO = leading overpunch

 LS = leading separate

 TO = trailing overpunch

 TS = trailing separate

standard-alias This alias attribute is a name field that contains aliases for general purposes.

synchronize This is a Boolean field that describes the storage alignment an element entity uses. If
true, the element entity should always be aligned on word boundaries.

system-type This attribute is a 10-character field that contains the system type.

unique This is a Boolean field that describes that a KSAM file key or a table index must be
unique.

units This attribute is a 10-character field that specifies the unit of measure of an entity.

vplus-alias This alias attribute is a name field that contains aliases for VPLUS formsfile access-
ing.

Core Set Entity Types
The following entity types are included in the System Dictionary core set.

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

CATEGORY Describes a Dictionary/3000 category. category-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

6- 64

CONSTANT Describes a constant value used in programs or mod-
ules.

constant-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

COPYLIB Describes a COBOL copylib. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

DEVICE Describes a device on a node or in the network. ldev-number
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

DEVICE-CLASS Describes a class of devices on a node or network. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

DICTIONARY Describes a System Dictionary. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

 DICTIONARY-REPORT Describes a System Dictionary report scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

6- 65

DOCUMENT Describes a document. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
document-type

ELEMENT Describes a data item used in modules, programs,
datasets, tables, KSAM files, formfiles, etc.

scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
display-length
decimal
byte-length
count
units
sign
blank
justify
synchronize
element-type

FILE Describes a sequential or relative file. file-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
lockword
file-size
blocking-units
blocking-min
blocking-max char-type
record-format
recording-mode
min-record-size
max-record-size
file-dev-class

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

6- 66

FORM Describes a VPLUS form. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

FORMSFILE Describes a VPLUS/3000 forms file scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
lockword

HP-CONDITION-NAME Describes a COBOL condition-name used in a
LEVEL-88 description

scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

HPDBE-FILE Describes a DBEnvironment DBEFile. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
hpdbe-file-type
hpdbe-pages

HPDBE-FILESET Describes a DBEnvironment DBEFileSet. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

HPDBE-LOGFILE Describes a DBEnvironment logfile. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
hpdbe-pages

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

6- 67

HPDBENVIRONMENT Describes an HP SQL DBEnvironment scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
hpdbe-multi-users
hpdbe-page-buffers
hpdbe-log-buffers
hpdbe-max-transactions

HPSQL-AUTH-NAME Describes an HP SQL authorization group or user. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
hpsql-auth-name-type
hpsql-connect-auth
hpsql-dba-auth
hpsql-resource-auth

HPSQL-INDEX Describes an HP SQL index. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

HPSQL-TABLE Describes an HP SQL table. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
hpsql-lock-mode

HPSQL-VIEW Describes an HP SQL view. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

6- 68

 IMAGE-CLASS Describes an IMAGE security class image-class-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
password
class-number

IMAGE-DATABASE Describes an IMAGE database. image-database-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

IMAGE-DATASET Describes an IMAGE data set. image-dataset-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

INFORM-CLASS Describes an Inform/3000 security class. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
password
class-number

 INFORM-GROUP Describes an Inform/3000 group. inform-group-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

6- 69

INFORM-REPORT Describes a report. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

KSAMFILE Describes a KSAM file. ksamfile-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
lockword
blocking-units
blocking-min
blocking-max
record-format
min-record-size
max-record-size
file-size

LOCATION Describes the location of a data entity. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

MODULE Describes a module, procedure, function or program module-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
language
function-result

MPE-ACCOUNT Describes an MPE account. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

6- 70

MPE-GROUP Describes an MPE group. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

 NETWORK-CONTROL Describes the global information for the Network
Directory.

scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
directory-version
node-name-changed

NETWORK-DOMAIN Describes a network domain which is the name space
above NODE

scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

NETWORK-ORGANI-
ZATION

Describes a network organization which is the name
space above NODE

scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

NODE Describes a node in a network. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number

RECORD Describes a record format used in a dataset, table, file
or KSAM file.

scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
byte-length

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

t entity

ne to

tains

 is a

e to
6- 71

Core Set Relationship Classes
The following relationship classes are included in the core set:

SYSTEM Describes an application system system-type
scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
byte-length

TRANSACTION Describes a transaction. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
byte-length

USER Describes a user on a system. scope-owner
scope-changed
date-created
date-changed
sensitivity
id-number
byte-length

Table 9: Core Set Relationship Classes

Class Description

accesses This relationship class classifies those relationship types that define the access the firs
type has to the second entity type.

chains This relationship class classifies those relationship types where the entity types combi
form a database chain.

contains This relationship class classifies those relationship types where the first entity type con
the other entity.

key This relationship class classifies those relationship types where the second entity type
key for the first entity type.

names This relationship class classifies those relationship types where the entity types combin
form a qualified name.

Table 8: Core Set Entity Types

Entity Type Description Core Set Attributes

s the

o-

fines

fer-

s the
6- 72

Core Set Relationship Types
The following relationship types are included in the core set. Note that in the first column, the entity types
are shown in upper case, while the relationship class is shown in lower case. Following this table are
diagrams that represent how the relationship types are used to represent various subsystems. A diagram
of IMAGE entity types and relationships is included in Chapter 7, Subsystem Support.

owns This relationship class classifies those relationship types where the first entity type own
other entity.

processes This relationship class classifies those relationship types where the first entity type pr
cesses the second entity type.

redefines This relationship class classifies those relationship types where the first entity type rede
the second entity type.

references This relationship class classifies those relationship types where the first entity type re
ences the second entity type.

uses This relationship class classifies those relationship types where the first entity type use
second entity type.

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

CATEGORY contains CATE-
GORY

This relationship type category is con-
tained in a category.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

CATEGORY contains ELE-
MENT

This relationship type establishes the ele-
mentthat is contained in a category.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

COPYLIB key KSAMFILE This relationship type establishes the
KSAM file key for a copylib.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 9: Core Set Relationship Classes

Class Description

6- 73

DEVICE-CLASS contains
DEVICE

This relationship type establishes the
devices contained in a device class

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

ELEMENT contains ELEMENT This relationship type establishes a child
element which is a part of the parent ele-
ment.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
back-reference-flag
 element-type
byte-offset
display-length
decimal
blank
justify

ELEMENT contains HP-CONDI-
TION-NAME

This relationship type establishes a
COBOL condition name that is subordi-
nate to the elemen

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

ELEMENT redefines ELEMENT This relationship type establishes that the
first element redefines the second element.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
element-type
 display-length
decimal
blank
justify

ELEMENT references ELE-
MENT

This relationship type establishes a refer-
ence to the second element by the first ele-
ment, for example, a Pascal typereference

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 74

 ELEMENT contains IMAGE-
CLASS

This relationship type establishes the
IMAGE data items secured by the IMAGE
security class.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
access

FILE contains RECORD This relationship type establishes a record
layout for the file.

scope-owner
date-created
date-changed
scope-changed
relationship-position
primary-record
sensitivity

FILE uses DEVICE This relationship type establishes that a
file will use a device for output

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
cctl-flag

FILE uses DEVICE-CLASS This relationship type establishes that a
file will use a device class for output

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
cctl-flag

FORMSFILE contains FORM This relationship type establishes that a
form is a part of a formsfile.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
head-form

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 75

 FORM contains ELEMENT This relationship type establishes that an
element is a part of a form.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
element-type
byte-offset
display-length
decimal
field-enhancement
field-type
field-number

HPDBE-FILE contains FILE This relationship type defines the system
file name of a dbefile (ie. the MPE file
name).

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBE-FILESET contains
HPDBE-FILE

This relationship type establishes that an
HPSQL dbefile is contained in an HPSQL
dbefileset.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBE-FILESET contains
HPSQL-TABLE

The relationship type establishes that the
rows of an HPSQL table are contained in
an HPSQL dbefileset

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBE-LOGFILE contains FILE The relationship type defines the system
file name of a dbefile (ie. the MPE file
name).

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 76

HPDBENVIRONMENT con-
tains HPSQL-AUTH-NAME

The relationship type establishes that an
HPSQL authorization group is contained
in an HPSQL DBEnvironment.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBENVIRONMENT con-
tains HPDBE-FILESET

The relationship type establishes that an
HPSQL dbefileset is contained in an
HPSQL DBEnvironment

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBENVIRONMENT con-
tains HPDBE-LOGFILE

The relationship type establishes that a
logfile is contained in a DBEnvironment

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBENVIRONMENT con-
tains HPSQL-TABLE

The relationship type establishes that an
HPSQL table is contained in an HPSQL
DBEnvironment.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBENVIRONMENT con-
tains HPSQL-VIEW

The relationship type establishes that an
HPSQL view is contained in an HPSQL
DBEnvironment.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPDBENVIRONMENT con-
tains IMAGE-DATABASE

The relationship type establishes that an
IMAGE database is contained in a DBEn-
vironment.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 77

HPSQL-AUTH-NAME contains
USER MPE-ACCOUNT

The relationship type establishes an
HPSQL authorization name that repre-
sents an HPSQL user.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME contains
HPSQL-AUTH-NAME

The relationship type establishes the
HPSQL authorization groups and HPSQL
users that belong to an HPSQL authoriza-
tion group

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME accesses
ELEMENT HPSQL-TABLE

The relationship type establishes that an
HPSQL authorization name has update
authority to an element within the HPSQL
table.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME accesses
ELEMENT HPSQL-VIEW

The relationship type establishes that an
HPSQL authorization name has update
access to an element within the HPSQL
view.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME accesses
HPSQL-TABLE

The relationship type establishes that an
HPSQL authorization name has access to
any element within the HPSQL table.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
hpsql-alter-auth
hpsql-delete-auth
hpsql-index-auth
hpsql-insert-auth
hpsql-select-auth
hpsql-update-auth

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 78

HPSQL-AUTH-NAME accesses
HPSQL-VIEW

The relationship type establishes that an
HPSQL authorization name has access to
any element within the HPSQL view

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
hpsql-alter-auth
hpsql-delete-auth
hpsql-index-auth
hpsql-insert-auth
hpsql-select-auth
hpsql-update-auth

HPSQL-AUTH-NAME accesse
MODULE

The relationship type establishes that an
HPSQL authorization name has the
authority to run a module

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME owns
HPSQL-AUTH-NAME

The relationship type establishes that an
HPSQL authorization name owns an
HPSQL authorization group

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME owns
HPSQL-TABLE

The relationship type establishes that an
HPSQL authorization name owns an
HPSQL table.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME owns
HPSQL-VIEW

The relationship type establishes that an
HPSQL authorization name owns an
HPSQL view

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-AUTH-NAME owns
MODULE

The relationship type establishes that an
HPSQL authorization name owns a mod-
ule

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 79

HPSQL-INDEX contains
ELEMENT

The relationship type establishes the ele-
ments that make up an HPSQL index

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

HPSQL-TABLE contains
RECORD

The relationship type establishes a record
layout for an HPSQL table.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
primary-record

HPSQL-TABLE key
HPSQL-INDEX

The relationship type establishes an index
of an HPSQL table.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
hpsql-clustering
unique

HPSQL-VIEW contains
RECORD

The relationship type establishes the
record layout of a view.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
primary-record

IMAGE-DATASET
ELEMENT
ELEMENT
IMAGE-DATASET
IMAGE-DATABASE
chains

This five-way relationship type estab-
lishes the path between an IMAGE master
or relation data set and an IMAGE detail
or relation data set, and gives the search
and sort items, and the database which
this chain is in. The entity types describe
the following:IMAGE-DATASET : the
detail or relation dataset ELEMENT : the
search item of this chain ELEMENT : the
sort item of this chain IMAGE-DATASET
: the path master or relation dataset
IMAGE-DATABASE : the database this
chain is in

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
primary-flag

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 80

IMAGE-DATABASE contains
IMAGE-CLASS

This relationship type establishes the
classes in an IMAGE database.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

IMAGE-DATABASE contains
IMAGE-DATASET

This relationship type establishes the data
sets in an IMAGE database.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
blocking-factor
capacity

IMAGE-DATASET contains
HPDBE-FILE

This relationship type establishes that a
dbefile is contained in an HPImage
dataset.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
access

IMAGE-DATASET contains
IMAGE-CLASS

This relationship type establishes the
IMAGE data sets secured by the IMAGE
security class.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
access

IMAGE-DATASET contains
RECORD

This relationship type establishes the
record layout of an IMAGE data set.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
primary-record

IMAGE-DATASET key ELE-
MENT

This relationship type establishes the key
data item of an IMAGE master data set.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 81

IMAGE-DATASET uses
DEVICE CLASS

This relationship type specifies the device
class at which a dataset resides.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

INFORM-CLASS contains
IMAGE-CLASS

This relationship type establishes the
IMAGE security classes contained in an
Inform class to describe Inform user secu-
rity.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

INFORM-CLASS contains
INFORM-GROUP

This relationship type establishes the
Inform group that is secured to an Inform
security class.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

INFORM-GROUP contains
INFORM-GROUP

This relationship type establishes that the
child Inform group is a part of the parent
Inform group.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

INFORM-GROUP contains
ELEMENT FILE

This relationship type establishes that the
data element from the MPE file is con-
tained in an Inform group.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
link-value
element-display

INFORM-GROUP contains
ELEMENT IMAGE-DATASET
IMAGE-DATABASE

This relationship type establishes that the
data element from the IMAGE dataset/
database is contained in an Inform group.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
link-value
element-display

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 82

INFORM-GROUP contains
ELEMENT KSAMFILE

This relationship type establishes that the
data element from the KSAM file is con-
tained in an Inform group.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
link-value
element-display

INFORM-GROUP contains
ELEMENT HPSQL-TABLE
HPDBENVIRONMENT

This relationship type establishes that the
data element from the HPSQL table/
DBEnvironment is contained in an Inform
group.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
link-value
element-display

KSAMFILE contains RECORD This relationship type establishes a record
format for a KSAM file.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
primary-record

KSAMFILE key KSAMFILE This relationship type establishes for a
KSAM data file its KSAM key file.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

KSAMFILE key ELEMENT This relationship type establishes a key for
a KSAM file.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
primary-flag
unique

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 83

LOCATION contains COPYLIB This relationship type establishes that a
copylib resides at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains DEVICE This relationship type establishes that a
device resides at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains
DICTIONARY

This relationship type establishes that a
dictionary resides at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains
DOCUMENT

This relationship type establishes that a
document resides at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains
HPDBENVIRONMENT

The relationship type scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains
IMAGE-DATABASE

The relationship type establishes the loca-
tion of a database.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 84

LOCATION contains FILE The relationship type establishes that a file
is at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains FORMS-
FILE

The relationship type establishes that a
VPLUS forms file is at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

 LOCATION contains KSAM-
FILE

The relationship type establishes that a
KSAM file is at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION contains MODULE This relationship type establishes that a
module is at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

 LOCATION names MPE-
GROUP MPE-ACCOUNT

This relationship type names the MPE
group and MPE account that make up a
location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

LOCATION names NODE NET-
WORK-DOMAIN NETWORK-
ORGANIZATION

This relationship type names the node,
network domain and network organization
that make up a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 85

LOCATION contains INFORM-
REPORT

This relationship type establishes that a
report is at a location.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

MODULE contains MODULE This relationship type establishes that the
child module is a part of the parent mod-
ule.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
directive

MODULE processes ELEMENT This relationship type establishes that an
element is processed by a module.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
parm-flag
parm-number
pass-method

MODULE processes FILE This relationship type establishes that a
file is processed by a module.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

MODULE processes IMAGE-
DATABASE

This relationship type establishes that a
database is processed by a module.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

MODULE processes KSAMFILE This relationship type establishes that a
KSAM file is processed by a module.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

6- 86

MODULE processes MODULE This relationship type establishes that the
parent module calls the child module.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
directive

MPE-ACCOUNT contains USER This relationship type establishes that a
user is assigned to an MPE account.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

MODULE contains
TRANSACTION

This relationship type establishes that a
transaction is part of a module.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

NODE NETWORK-DOMAIN
NETWORK-ORGANIZATION
names

This 3-way relationship type names a fully
qualified Network Directory node name.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

RECORD contains ELEMENT This relationship type establishes that an
element is part of a record.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity
back-reference-flag
element-type
byte-offset
display-length
decimal
blank
justify
not-null

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

 It
6- 87

Core Set Domains
The following domains are included in the core set:

RECORD redefines RECORD This relationship type establishes that the
first record redefines the second record.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

SYSTEM contains SYSTEM This relationship type establishes that a
child system is part of a parent system.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

SYSTEM contains MODULE This relationship type establishes that a
module is part of a system.

scope-owner
date-created
date-changed
scope-changed
relationship-position
sensitivity

This relationship type

This relationship type

This relationship type

Table 11: Core Set Domains

Domain Description

DICTIONARY-REPORT This domain stores SDMAIN reports.

INFORM-REPORT This domain stores RAPID reporting information.

the common domain This domain is created when you initialize System Dictionary.
is unnamed and you use blanks to access the common domain.
(Refer to Chapter 4 for more information.)

Table 10: Core Set Relationship Types

Relationship Type Description Core Set Attributes

 capa-
 to
6- 88

Core Set Scopes
The following scopes are included in the core set:

Core Set Diagrams
The following figures illustrate the core set structures of the following relationships/subsystems:

• Category (Figure 6-4)

• Location (Figure 6-5)

• Module (Figure 6-6)

• INFORM (Figure 6-7)

• KSAM files (Figure 6-8)

• MPE files (Figure 6-9)

• Formsfile (VPLUS) (Figure 6-10)

Table 12: Core Set Scopes

Scope Description

CORESET This scope owns all core set definitions and structures.

the DA scope This scope (Dictionary Administrator) has access to the entire dictionary and has all
bilities. The DA scope name is created when you initialize System Dictionary. (Refer
Chapter 5 for more information.)

6- 89

Figure 6-4. Category Relationship Types

6- 90

Figure 6-5. Location Entity and Relationship Types

Figure 6-6. Module Relationship Types

6- 91

Figure 6-7. Inform Entity and Relationship Types

6- 92

Figure 6-8. KSAM File System Entity & Relationship Types

6- 93

Figure 6-9. MPE File System Entity & Relationship Types

Figure 6-10. VPLUS Entity and Relationship Types

6- 94

7- 95

7 Subsystem Support

Overview
This chapter shows how the core set of definitions provided with System Dictionary supports various HP
subsystems.

The System Dictionary core set includes support of TurboIMAGE, HP IMAGE and HP SQL database
definitions. Examples of a TurboIMAGE database, an HP IMAGE database, and an HP SQL database are
provided to show how IMAGE, HP IMAGE, and HP SQL objects are mapped into the dictionary. Each
example includes a figure which illustrates how the respective entity types and relationship types for that
example are included in the core set.

NOTE In the examples, bold print indicates TurboIMAGE, HP IMAGE, or HPDB terminol-
ogy. Italic print indicates System Dictionary terminology.

Mapping TurboIMAGE Into System Dictionary
The TurboIMAGE objects listed in Figure 7-1 are supported in the core set of the System Dictionary. For
each of these objects, an example is provided to show how to define each object in the dictionary. All of the
examples for these TurboIMAGE objects refer to the database in Figure 7-2.

 data item

 data set

 chain

 search item

 sort item

 path

 user class

 password

 data item class list

 data set class list

 database

 Figure 7-1. TurboIMAGE Objects

 begin data base STORE;

 passwords:

7- 96

 1 clrk; << CLERICAL class >>

 2 bbb12; << BUYER class >>

 3 mgr; << MANAGER class >>

 items:

 ACCOUNT, J2;

 CITY, X40 (1,2/3);

 DATE, X6;

 DELIV-DATE, X6 (/1);

 NAME, 3X30;

 PURCH-DATE, X6 (2/1);

 TOTAL, J2;

 sets:

 name: CUSTOMER, manual (1/2,3);

 entry: ACCOUNT(1),

 NAME,

 CITY;

 capacity: 101;

 name: DATE-MAST,automatic;

 entry: DATE(2);

 capacity: 101;

 name: SALES, detail (2/1);

 entry: ACCOUNT(CUSTOMER(PURCH-DATE)),

 TOTAL,

 PURCH-DATE(!DATE-MAST),

 DELIV-DATE(DATE-MAST);

 capacity: 101;

 end.

 Figure 7-2. STORE TurboIMAGE database schema

7- 97

Data Item
A data item is an element entity. The sub-item count, type designator and sub-item length of a data item
is stored in the element attributes count, element-type and byte-length, respectively.

Example

To define the data item NAME, create the element NAME with the following attributes:

 count = 3

 element-type = X

 byte-length = 30

Data Set
A data set is an image-dataset entity. The data set type is stored in the data set attribute image-dataset-
type. A manual master data set has the image-dataset-type MANUAL. An automatic master data set has
the image-dataset-type AUTOMATIC. A detail data set has the image-dataset-type DETAIL.

For each data set there should be a record entity occurrence that defines the record layout for that data set
entry. Each element (data item) that is in that data set should be related to the record with a specified
byte-offset for the relative position of that element within that record. The record should be related to the
data set entity occurrence that it describes. This relationship is established with the image-dataset
contains record relationship type.

Typically, only one record is related to a data set to define a data set entry layout. However, you have the
flexibility of defining more than one record layout for an image-dataset entity. Each image-dataset can
have one primary record layout which is indicated with the image-dataset contains record relationship
type attribute primary-record.

Example

To define the data set CUSTOMER, create the data set CUSTOMER with image-dataset-type equal to
MANUAL.

Create the record CUSTOMER-REC to define the record layout of data set CUSTOMER.

Create the elements ACCOUNT, NAME, and CITY.

Relate each of these elements to record CUSTOMER-REC using the record contains element relationship
type. The byte-offset for ACCOUNT is 1, for NAME is 5, for CITY is 95.

Relate CUSTOMER-REC to CUSTOMER using the image-dataset contains record relationship type.

Search Item
The search item of a master data set is defined by the image-dataset key element relationship type. That
is, the element (search item) is related to the MANUAL data set for which it is a key. Note that the
primary record layout for this data set should contain this element. Also note that there is no need to
establish a key for an AUTOMATIC data set since the primary record layout should contain only the
search item.

7- 98

Example

To define the search item for data set CUSTOMER, relate the element ACCOUNT to the data set
CUSTOMER with the image-dataset key element relationship type.

Chain
Every chain within a detail data set is fully defined by:

1 The detail data set the chain is in

2 The search item

3 The sort item, if any

4 The path to a master data set

5 The database the chain is in

This is considered a five-way relationship. To define this five-way relationship in the dictionary, use the
five-way relationship type:

 image-dataset

 element

 element

 image-dataset

 image-database

where the relationship class is chains. Note that the order of these entity types is very important.

Information on N-ary (3, 4, 5, and 6-way) relationships is located in Chapter 3 of this manual.

Example

To define the ACCOUNT chain in data set SALES, relate the detail data set SALES, the element
ACCOUNT, the element PURCH-DATE, the data set CUSTOMER, the database STORE, in that order,
with the relationship class chains. To indicate that this is the primary path, set the attribute primary-flag
to true.

User Class Number
A user class number is defined as an image-class entity. Note that in the dictionary the class can be given
a name instead of the actual image class number. Password is specified in the image-class attribute
password. The user class number is stored in the image-class attribute class-number.

Example

To define the user class number 1, create the image-class CLERICAL (or any name that implies which
class this is) with password equal to clrk, and class-number equal to 1. To establish that class-number 1 is
in database STORE, use the relationship type image-database contains image-class.

Data Item Class List
A data item class list is defined by the element contains image-class relationship type. An element (data
item) should be related to each image-class in its class list with READ/WRITE access specified in the
element contains image-class relationship type attribute access.

7- 99

Example

To define the class list for element DELIV-DATE, relate the element DELIV-DATE to the class CLERICAL
using the ELEMENT contains IMAGE-CLASS relationship type with access equal to W.

Data Item Class List
A data set class list is defined by the image-dataset contains image-class relationship type. A data set
should be related to each class in its class list with READ/WRITE access specified in the image-dataset
contains image-class relationship type attribute access.

Example

To define the class list for data set SALES, relate the data set SALES to the classes CLERICAL and
BUYER using the image-dataset contains image-class relationship type with access equal to W for
CLERICAL and R for BUYER.

Database
A database is an image-database entity. The image-database contains image-dataset relationship type
defines which data sets are contained in an TurboIMAGE data base. Attributes of this relationship type
are block and capacity.

Example

To define the TurboIMAGE database STORE, create the image-database STORE. To establish which data
sets are in STORE, relate the data sets CUSTOMER, DATE-MAST and SALES to database STORE using
the image-database contains image-dataset relationship type. For each of these relationships, the

7- 100

attribute CAPACITY is set to 101.

 Figure 7-3

Mapping HP IMAGE Into System Dictionary
The System Dictionary core set supports the HP IMAGE objects listed below in Figure 7-4. This
subsection provides a description and an example of each of these objects, to show how to define them in
the dictionary. All of the examples for these HP IMAGE objects refer to the database in Figure 7-5.

 data item

 data set

 chain

 search item

 SEARCH ITEM

7- 101

 sort item

 path

 security class

 password

 data item class list

 data set class list

 database

 DBEnvironment

 DBEFile

 Figure 7-4. HP IMAGE Objects

 begin database STORE;

 passwords:

 1 clrk; << CLERICAL class >>

 2 bbb12; << BUYER class >>

 3 mgr; << MANAGER class >>

 items:

 ACCOUNT, J2;

 CITY, X40 (1,2/3);

 DATE, X6;

 DELIV-DATE, X6 (/1);

 NAME, 3X30;

 PURCH-DATE, X6 (2/1);

 TOTAL, J2;

 sets:

 name: CUSTOMER, manual (1/2,3);

 entry: ACCOUNT(1),

 NAME,

 CITY;

7- 102

 capacity: 101;

 name: DATE-MAST,automatic;

 entry: DATE(2);

 capacity: 101;

 name: SALES, detail (2/1);

 entry: ACCOUNT(CUSTOMER(PURCH-DATE,DELIV-DATE)),

 TOTAL,

 PURCH-DATE(!DATE-MAST),

 DELIV-DATE(DATE-MAST);

 capacity: 101;

 end.

 Figure 7-5. STORE HP IMAGE Database Schema

Data Item
A data item is an ELEMENT entity. The sub-item count, type designator and sub-item length of a data
item is stored in the ELEMENT attributes count, element-type and byte-length, respectively.

Example

To define the data item NAME, create the ELEMENT NAME with the following attributes:

 count = 3

 element-type = X

 byte-length = 30

Data Set
A data set is a IMAGE-DATASET entity. The data set type is stored in the data set attribute image-
dataset-type. A manual master data set has the image-dataset-type MANUAL. An automatic master data
set has the image-dataset-type AUTOMATIC. A relation data set has the image-dataset-type RELATION.
A detail data set has the image-dataset-type DETAIL.

For each data set there should be a RECORD entity occurrence that defines the record layout for that data
set entry. Each ELEMENT (data item) that is in that data set should be related to the RECORD with a
specified byte offset for the relative position of that ELEMENT within that RECORD. The RECORD
should be related to the MANUAL, AUTOMATIC, RELATION, or DETAIL data set entity occurrence that
it describes. This relationship is established with the IMAGE-DATASET contains RECORD relationship
type. Typically, only one record is related to a data set to define a data set entry layout. However, you have
the flexibility of defining more than one record layout for an IMAGE-DATASET entity. Each IMAGE-
DATASET can have one primary record layout which is indicated with the IMAGE-DATASET contains
RECORD relationship type attribute primary-record. To define the DBEFiles associated to a data set, use

7- 103

the IMAGE-DATASET contains HPDBE-FILE relationship type.

Example

To define the data set CUSTOMER, create the data set CUSTOMER with image-dataset-type equal to
MANUAL.

Create the RECORD CUSTOMER-REC to define the record layout of data set CUSTOMER.

Create each of the ELEMENTs ACCOUNT, NAME and CITY.

Relate each of these ELEMENTs to RECORD CUSTOMER-REC using the RECORD contains ELEMENT
relationship type. The byte-offset for ACCOUNT is 1, for NAME is 5, for CITY is 95.

Relate CUSTOMER-REC to CUSTOMER using the IMAGE-DATASET contains RECORD relationship
type.

Search Item
The search item of a master or relation data set is defined by the IMAGE-DATASET key ELEMENT
relationship type. That is, the ELEMENT (search item) is related to the MANUAL or RELATION data set
for which it is a key. Note that the primary record layout for this data set should contain this ELEMENT.
Also note that there is no need to establish a key for an AUTOMATIC data set since the primary record
layout should contain only the search item.

Example

To define the search item for data set CUSTOMER, relate the ELEMENT ACCOUNT to the data set
CUSTOMER with the IMAGE-DATASET key ELEMENT relationship type.

Chain
Every chain within a detail data set is fully defined by:

1 The child (detail or relation) data set the chain is in

2 The search item

3 The sort item, if any

4 The path to a parent (master or relation) data set

5 The database the chain is in

This is considered a five-way relationship. To define this five-way relationship in the dictionary, use the
five-way relationship type:

 image-dataset

 element

 element

 image-dataset

 image-database

where the relationship class is chains. Note that the order of these entity types is very important.
Information regarding the order of entity types in a relationship type is located in Chapter 3 of this
manual.

7- 104

Example

To define the ACCOUNT chain in data set SALES, relate the detail data set SALES, the ELEMENT
ACCOUNT, the ELEMENT PURCH-DATE, the data set CUSTOMER, the database STORE, in that order,
with the relationship class chains. To indicate that this is the primary path, set the attribute primary-flag
to true.

Note that there is more than one sort item for this path. To define the second sort item, create the exact
same relationship just described except for the sort item, as follows: Relate the detail data set SALES, the
ELEMENT ACCOUNT, the ELEMENT DELIV-DATE, the data set CUSTOMER, the database STORE, in
that order. The attribute relationship-position keeps track of the order of the sort items.

Security Class Number
A security class number is defined as an IMAGE-CLASS entity. Note that in the dictionary you must give
the class a name and you should reference the class by that name, not the Image class number. Password
is an IMAGE-CLASS attribute.

Example

To define the security class number 1, create the IMAGE-CLASS CLERICAL (or any name that implies
which class this is) with password equal to clrk, and class-number equal to 1. To establish that class-
number 1 is in database STORE, use the relationship type IMAGE-DATABASE contains IMAGE-CLASS.

Data Item Class List
A data item class list is defined by the ELEMENT contains IMAGE-CLASS relationship type. An
ELEMENT (data item) should be related to each IMAGE-CLASS in its class list with READ/WRITE access
specified in the ELEMENT contains IMAGE-CLASS relationship type attribute access.

Example

To define the class list for ELEMENT DELIV-DATE, relate the ELEMENT DELIV-DATE to the class
CLERICAL with the ELEMENT contains IMAGE-CLASS relationship type with access equal to WRITE.

Data Set Class List
A data set class list is defined by the IMAGE-DATASET contains IMAGE-CLASS relationship type. A
data set should be related to each class in its class list with READ/WRITE access specified in the IMAGE-
DATASET contains IMAGE-CLASS relationship type attribute access.

Example

To define the class list for data set SALES, relate the data set SALES to the classes CLERICAL and
BUYER using the IMAGE-DATASET contains IMAGE-CLASS relationship type with access equal to
WRITE for CLERICAL and READ for BUYER.

Database
A database is a IMAGE-DATABASE entity. The IMAGE-DATABASE contains IMAGE-DATASET
relationship type defines which datasets are contained in an IMAGE database. Attributes of this
relationship type are BLOCK and CAPACITY.

7- 105

Example

To define the Image database STORE, create the IMAGE-DATABASE STORE.

To establish which data sets are in STORE, relate the IMAGE-DATASETs CUSTOMER, DATE-MAST and
SALES to IMAGE-DATABASE STORE using the IMAGE-DATABASE contains IMAGE-DATASET
relationship type. For each of these relationships, set the attribute CAPACITY to 101.

DBEnvironment
A DBEnvironment is a HPDBENVIRONMENT entity. The HPDBENVIRONMENT contains IMAGE-
DATABASE relationship type defines which databases are contained in an DBEnvironment. The
HPDBENVIRONMENT contains HPDBE-LOGFILE relationship type defines which log files are

7- 106

contained in a DBEnvironment.

 Figure 7-6

7- 107

Mapping HP SQL Into System Dictionary
The System Dictionary core set supports the HP SQL objects listed below in Figure 7-7. This subsection
provides a description of each of these objects, to show how to define them in the dictionary.

| column |
| table |
| view |
| index |
| DBEFileSet |
| DBEFile |
| module |
| authorization group |
| user |
| owner |
| grants |
| DBEnvironment |
 Figure 7-7. HP SQL Objects

Column
A column is an ELEMENT entity. The data type of a column is stored in the element attributes element-
type, byte-length, display-length, and decimal. The HP SQL data types map into System Dictionary core
set data types as follows:

 *note1: Pascal string byte length

 *note2:

 if p is odd: byte-length = (p+1)/2

 if p is even: byte-length = (p+2)/2

Table
A table is an HPSQL-TABLE entity. The lock mode of a table is defined in the hpsql-table attribute hpsql-

 HP SQL System Dictionary

 element-type
element-

type
display-
length

byte-length decimal

 CHAR(n) X n n -

VARCHAR(n) S n *note1 -

INTEGER I 10 4 -

SHORTINT I 5 2 -

FLOAT E 27 8 -

DECIMAL(p[,s]) p p *note2 s

record
ENT
. The
ed with
efine
tity.
D re-
7- 108

lock-mode.

For each table there should be a RECORD entity occurrence that defines the record layout of that table.
The record layout consists of the columns (elements) of that table, which is defined with the RECORD
contains ELEMENT relationship type. You should specify a byte offset for the relative position of that
element within that record. The record should be related to the HPSQL-TABLE entity occurrence that it
describes. This relationship is established with the HPSQL-TABLE contains RECORD relationship type.
Typically, only one record is related to a table to define a table record layout. However, you have the
flexibility of defining more than one record layout for a table entity. Each table can have one primary
record layout which is indicated with the hpsql-table contains record relationship type attribute primary-
record. The NOT NULL specification for a column is defined in the attribute not-null of the record
contains element relationship type, where the record is the primary record of the table.

The HPDBE-FILESET contains HPSQL-TABLE relationship type defines where the rows of the table are
stored.

View
A view is an HPSQL-VIEW entity. The variable length attribute hpsql-select-command defines the select
command from which the view is derived.

For each view there should be a RECORD entity occurrence that defines the record layout of that view. The
layout consists of the columns (elements) of that view, which is defined with the RECORD contains ELEM
relationship type. You should specify a byte offset for the relative position of that element within that record
record should be related to the hpsql-view entity occurrence that it describes. This relationship is establish
the HPSQL-VIEW contains RECORD relationship type. Typically, only one record is related to a view to d
a view record layout. However, you have the flexibility of defining more than one record layout for a view en
Each view can have one primary record layout which is indicated with the HPSQL-VIEW contains RECOR
lationship attribute primary-record.

Index
An index is an HPSQL-INDEX entity. To define the columns of the index, use the HPSQL-INDEX contains
ELEMENT relationship type. That is, relate each element (column), in the order they appear in the index,
to the index entity occurrence. Relate the index occurrence to the table that it is an index of with the
HPSQL-TABLE key HPSQL-INDEX relationship type. Attributes of the hpsql-table key hpsql-index
relationship type include hpsql-clustering to indicate whether clustering is specified for the index and
unique to specify if index values must be unique.

DBEfileset and DBEfile
A DBEFileSet is an HPDBE-FILESET entity. A DBEFile is an HPDBE-FILE entity with attributes
hpdbe-file-type to define the DBEFile type and hpdbe-pages to define the number of pages in the DBEFile.
The relationship type HPDBE-FILESET contains HPDBE-FILE defines the DBEFiles that belong to a
DBEFileSet. The relationship type HPDBE-FILE contains FILE defines the system file name by which
the DBEFile is known to MPE.

Module
A module is a module entity.

Authorization Groups and Users
An Authorization Group and an HP SQL user are an HPSQL-AUTH-NAME entity with the attribute

7- 109

hpsql-auth-name-type to indicate authorization group or user, and with the attributes hpsql-connect-auth,
hpsql-dba-auth and hpsql-resource-auth to define the HP SQL special authorities granted an
authorization group or user (an HP SQL GRANT). To fully define a ’user’ HPSQL-AUTH-NAME entity use
the relationship type HPSQL-AUTH-NAME contains USER MPE-ACCOUNT (3-way) to define the user
and account that the ’user’ is made up of.

The relationship HPSQL-AUTH-NAME contains HPSQL-AUTH-NAME defines the authorization groups
and users that belong to an authorization group.

Owner
HP SQL tables, views, modules and authorization groups are owned by either an authorization group or a
user. Relationship HPSQL-AUTH-NAME owns HPSQL-TABLE defines the owner of an HP SQL table.
Relationship HPSQL-AUTH-NAME owns HPSQL-VIEW defines the owner of an HP SQL view.
Relationship HPSQL-AUTH-NAME owns MODULE defines the owner of a module. Relationship HPSQL-
AUTH-NAME owns HPSQL-AUTH-NAME defines the owner of an HP SQL authorization group.

Grants
Privileges can be granted to a user or an authorization group regarding access to tables, views and
modules.

Relationship type HPSQL-AUTH-NAME accesses HPSQL-TABLE establishes that the user or
authorization group has access to an HP SQL table. Relationship type HPSQL-AUTH-NAME accesses
HPSQL-VIEW establishes that the user or authorization group has access to an HP SQL view. Both of
these relationship types have the attributes hpsql-alter-auth, hpsql-delete-auth, hpsql-index-auth, hpsql-
insert-auth, hpsql-select-auth and hpsql-update-auth to define the authorities the user or authorization
group has to the table or view.

Relationship type HPSQL-AUTH-NAME accesses MODULE establishes that the user or authorization
group has the authority to run the module.

The authority to update a column within a table or view can be granted to a user or an authorization
group. Relationship type HPSQL-AUTH-NAME accesses ELEMENT HPSQL-TABLE (3-way) establishes
that a user or authorization group has update authority on a column within the specified table.
Relationship type HPSQL-AUTH-NAME accesses ELEMENT HPSQL-VIEW (3-way) establishes that a
user or authorization group has update authority on a column within the specified view.

HP SQL has a special category of user called PUBLIC. To grant privileges to the PUBLIC, create an hpsql-
auth-name called PUBLIC and create any of the ’accesses’ relationships listed above that are needed to
define what authorities the PUBLIC has been granted. For example, the authorities granted the PUBLIC
to table TABLE-ONE are defined by the relationship hpsql-auth-name accesses hpsql-table where the
hpsql-auth-name entity is PUBLIC and the hpsql-table entity is TABLE-ONE with the HP SQL
authorities attributes set to define which authorities the PUBLIC has to TABLE-ONE.

DBEnvironment
An HP SQL DBEnvironment is an HPDBENVIRONMENT entity. The HPDBENVIRONMENT contains
HPSQL-TABLE relationship type defines the tables in the HP SQL DBEnvironment. The
HPDBENVIRONMENT contains HPSQL-VIEW relationship type defines the views in the HP SQL
DBEnvironment. The HPDBENVIRONMENT contains HPSQL-AUTH-NAME relationship type defines
the authorization groups in the HP SQL DBEnvironment. The HPDBENVIRONMENT contains HPDBE-
FILESET relationship type defines the DBEFileSets in the HP SQL DBEnvironment. The
HPDBENVIRONMENT contains HPDBE-LOGFILE relationship type defines the logfiles used in the HP
SQL DBEnvironment. The HPDBE-LOGFILE contains FILE relationship type defines the system file by

7- 110

which the logfile is known by MPE.

 Figure 7-8 HPSQL Coreset

HPDBEnvironment

HPSQL-View

HPDBE-Logfile

HPSQL-Table HPDBE-File

HPDBE-Fileset

HPSQL-Index

Element

Record

Contains

Contains

Contains

Contains

Contains

Contains

Contains Contains

Contains

Contains

Key

7- 111

 Figure 7-9

7- 112

A-113

A Glossary

This appendix provides a glossary of System Dictionary terms.

Access - The right to read or manipulate a dictionary domain or occurrence.

Access Rights - The rights of a scope to read or manipulate a domain or occurrence, as determined by
whether that scope is the owner of the item, or is just associated with it.

Alias Name - Different names associated with different external subsystem uses of an occurrence,
including a difference in programming syntax (e.g. the use of the underscore (_) instead of the hyphen (-)
in names).

Association - An explicit access assigned between a scope and a domain, entity, or relationship, which
has been granted to that scope by the owner scope of the domain, entity, or relationship.

Attribute - An object in the dictionary structure that is a piece of information describing an entity type or
relationship type.

Attribute Edit - A value or range of values used for determining if input attribute values are valid when
creating or modifying an occurrence. Also used to specify the default attribute value to use when an
occurrence is created.

Attribute Prompting - A facility that prompts for attribute values whenever you issue a CREATE,
MODIFY, or REPORT command without the ATTRIBUTE-LIST parameter. (SDMAIN only)

Attribute Value - The specific information (e.g. text, numbers, etc) assigned to an attribute, describing a
particular occurrence of an entity type or relationship type.

Binary Relationship - A relationship involving two entities.

Child Entity - The second entity in a relationship.

Command - The SDMAIN-defined name that specifies the action to be taken.

Common Domain - The primary name space for dictionary occurrences. It is provided with System
Dictionary, is represented by a blank name, is owned by the core set, has a sensitivity of Public, and can
never be modified or deleted.

Compiled Dictionary - A read-only dictionary that contains metadata extracted from the master
dictionary. A compiled dictionary consists of one or more flat files.

Core Set - A predefined set of entity types, relationship types, relationship classes, attributes, and
domains that are provided with System Dictionary. It also includes the scope CORESET, which owns
everything in the core set. A second scope, the Dictionary Administrator scope, is included in the core set,
and is also owned by the scope CORESET.

DA scope - See Dictionary Administrator Scope.

DCB - See Dictionary Control Block.

Dictionary Administrator Scope - A special scope provided with the System Dictionary core set, which
has unlimited access to all items in the dictionary, and ultimate authority.

Dictionary Control Block - An array of data which contains information about the current status of the
dictionary to an intrinsic.

Dictionary Environment - The dictionary environment includes the name of the dictionary that is open,

A- 114

the scope, the open mode, the name mode, the domain, version, and version status that are used for
creating and retrieving definitions.

Domain - A name space within the dictionary. See Common Domain and Local Domain.

E-R Model - See Entity-Relationship model.

Entity - An entity is a description of an object in the information network, and belongs to a specific Entity
Type.

Entity List - The ordered list of entities that make up a relationship.

Entity Type - An object in the dictionary structure that classifies entity occurrences. Each entity type is
further defined by an associated set of attributes.

Entity-Relationship Model - A logical structure that is general enough that it can describe most, if not
all, of the information processing done on a computer network. The entity-relationship model is composed
of entity types, relationship types, relationship classes and attributes.

Environment - The computer system hardware and software required for the operation of System
Dictionary.

Extended Set - The user-created set of structure definitions within the dictionary; an extension of the
Core Set.

External Name - One of two names (see also Internal Name) assigned to every item in the dictionary. It
is a customizable and localizable reference that is intended for dictionary end users.

Homonym - The same name used for conceptually different entity occurrences of the same entity type.

Internal Name - One of two names (see also External Name) assigned to every item in the dictionary. An
internal name is not changeable, and is intended for use by software products used with System Dictionary
which rely on specific names for identification purposes.

Internal Number - An identification number automatically assigned to all dictionary components when
they are created. These numbers may be read from the Status array (parameter) of intrinsics used for
creation and retrieval of dictionary components and, when used, can greatly increase the efficiency and
speed of some dictionary operations.

Keyword-Clause - A keyword clause can be either a single keyword or a keyword followed by an equal
sign (=) that is followed by either nothing, a single value, or a list of values separated by commas. The
keywords are SDMAIN-defined, while their values are either SDMAIN defined or user-defined. Keyword
clauses are separated by semicolons.

List Terminator - A semicolon (;) that indicates to the intrinsic using a specific list, that there are no
more entries in the list.

Local Domain - A user-created name space that separates a set of names, which includes names used for
a different purpose. See also Common Domain.

Locking - A process that allows only one user at a time to access the dictionary. System Dictionary
provides two types of locking: automatic, which protects individual operations, and manual, which can
protect a sequence of operations.

Logging - A process that can automatically create a log of all dictionary transactions, providing a means
to repeat those transactions in the event of data loss.

Macro - A user-defined set of commands that you can save in a file and call using macro names. When
you call the macro, each defined command is executed in the same way that it would have been had you
entered each command individually. (SDMAIN only)

A-115

Master Dictionary - A dictionary that consists of a database and multiple files. A master dictionary can
be accessed by any of the System Dictionary intrinsics and commands.

Merge - A process that combines structure, security, and occurrence date of one dictionary into the same
or other dictionaries.

Metadata - Descriptive information about data, but not the data itself. Example: a file card in a library,
which contains information about a book, but is not the book itself; an address of a building, which
provides information about its location, but is not the location itself.

N-ary Relationship - A relationship that involves N entities, where 3<=N<=6 (see also Binary
Relationship).

Name mode - A parameter set while opening the dictionary, used to cause intrinsics to reference either
internal or external names when accessing dictionary items.

Name set - A group of names within the dictionary that includes names for any one of the following types
of dictionary definitions: domains, versions in the same domain, entity types, relationship classes,
attributes, scopes, and entity occurrences of a specific type that are located in the same domain.

Object-Clause - The user-defined name of the object. This is the specific target of the action specified by
the command.

Occurrence - A specific instance of an entity or relationship.

Open mode - One of five dictionary operating modes, set when opening the dictionary for use.

Owner scope - A scope that is directly associated with an object in the dictionary and has all rights to it,
because the scope has either created that object, or has been given ownership by the scope that created it
or previously owned it.

Parent Entity - The first entity in a relationship. Password - A combination of up to 32 special or
alphanumeric characters, and/or blanks used for user identification purposes to limit access to data or
objects within the dictionary.

Preview - A process that allows the potential results of a merge operation to be seen before the actual
merge operation is performed.

Primary Name - The principal name of an entity, not a synonym, that is initially assigned when the
entity is created. Whenever an entity name is returned by System Dictionary, the primary name is
returned.

Relationship - A logically connected, ordered series of two to six entities, which belongs to a specific
Relationship Type.

Relationship class - The specific class of association or logical connection between the entities in a
relationship.

Relationship position - The logical order of a child entity (the second entity in a relationship) relative to
all other child entities for the same parent entity (the first entity in a relationship) of the same relationship
type.

Relationship type - An object in the dictionary structure that classifies relationship occurrences; a
logical connection between entity types specified by a series of two to six ordered entity types and a
relationship class. Each relationship type is further defined by an associated set of attributes.

Restructuring - A process similar to compiling. Restructuring incorporates all changes made to the
dictionary structure in a single session into the working dictionary, and reformats any dictionary
occurrences that are affected by those structure changes.

Scope - A security definition within the dictionary environment that sets the level of access a user has to

A- 116

all objects in the dictionary. It includes up to six scope rights.

Scope Right - One of six specific capabilities associated with a scope. The scope right specifies which
dictionary components that scope is allowed to manipulate.

Security - A protection scheme within System Dictionary that limits access to objects in the dictionary to
authorized users. The primary elements of dictionary security are scopes In addition, dictionary domains
and occurrences each have a sensitivity, which further define their access by a specific scope.

Sensitivity - An access right associated with a dictionary domain or occurrence.

Special Attributes - The set of attributes that are automatically assigned to entity types and
relationship types when the types are created.

Status - Information about the success or failure of an intrinsic call. The status is returned as the final
parameter of intrinsic calls.

Structure - The part of System Dictionary that includes both core set and extended set entity types,
relationship types, relationship classes, and attributes.

Subcommand - The SDMAIN-defined name hat specifies the general target of the action.

Synonym - An alternate name for an entity in the dictionary. A synonym must uniquely identify a given
entity.

Variable Length Attribute - An attribute whose value must be explicitly defined, and whose length is
dependent upon that value. Example: an attribute description, whose value is sixty bytes of text.
Therefore, the length of the attribute is sixty.

Version - A set of occurrences within a domain, set apart from other sets within the domain.

	1 Introduction
	Overview
	Data Dictionaries
	System Dictionary Description
	Features
	Benefits

	2 Dictionary Concepts
	Overview
	Entity-Relationship Model
	Entities and Relationships
	Structures
	Extensibility
	Domains and Versions
	Dictionary Security
	Naming Considerations
	Syntax
	Name Sets
	Internal and External Names
	Internal Numbering
	Dictionary Control Operations
	Initializing/Reinitializing the Dictionary
	Opening the Dictionary
	Remote Dictionary Access
	Compiled Dictionary
	Merging Dictionary

	3 Dictionary Architecture
	Overview
	The Entity-Relationship Model
	Entities
	Special Entity Naming
	Specifying Entity Types
	Entity Attribute Values
	Creating and Accessing Entities

	Relationships
	Specifying Entity Lists
	Specifying Relationship Types
	Specifying Relationship Classes
	Relationship Attribute Values
	N-Ary Relationships
	Creating and Accessing Relationships

	Entity Types
	Specifying Attribute Lists
	Creating and Accessing Entity Types

	Relationship Types
	Specifying Entity Type Lists
	Specifying Relationship Classes
	Specifying Attribute Lists
	Creating and Accessing Relationship Types

	Relationship Classes
	Attributes
	Specifying Attribute Type and Length
	Specifying Attribute Edits
	Variable-Length Attributes
	Alias Attributes
	Special Attributes
	Type-Attribute Associations
	Entity-Type-Attribute Associations
	Relationship-Type-Attribute Associations

	Naming Mechanisms
	Internal and External Names
	Primary Names
	Synonyms

	Aliases
	Internal Numbers
	Relationship Identification
	Restructuring the Dictionary
	Dictionary Size Limits

	4 Domains and Versions
	Overview
	Domains and Versions
	Using Domains
	Using Domains as Name Spaces
	Using Domains as Partitions
	The Common Domain
	Local Domains
	Creating Domains
	Domains and the Dictionary Structure

	Versions
	Versions as Partitions
	Versions As Copies
	Creating Versions
	Version Status
	Test Status
	Production Status
	Archival Status
	Changing Version Status
	Versions and Restructuring
	Audit Trail
	Accessing Versions
	Linking Versions
	Deleting Versions
	Linking Occurrences
	Sharing Attribute Values
	Special Attribute Values
	Linking Restrictions

	5 Dictionary Security
	Overview
	Scopes
	Ownership
	The Dictionary Administrator Scope
	Scope Rights
	Scope Restrictions
	Scope Password
	Using Scopes

	Structure Security
	Entity Type Restrictions
	Relationship Type Restrictions
	Relationship Class Restrictions
	Attribute Restrictions
	Domain and Version Security
	Domain Security
	Access Rights.
	DOMAIN OWNERSHIP
	DOMAIN/SCOPE ASSOCIATION
	Sensitivity.

	Domain Restrictions
	Version Restrictions
	Occurrence Security
	Access Rights
	Occurrence Ownership.
	Occurrence/Scope Association.

	Sensitivity
	Specific Restrictions
	Example of Entity Security

	6 The Core Set
	Overview
	The Core Set
	Modifying the Core Set
	Extending the Dictionary Structure
	The Extended Set.

	Restructuring the Dictionary
	Core Set Attributes
	Core Set Entity Types
	Core Set Relationship Classes
	Core Set Relationship Types
	Core Set Domains
	Core Set Scopes
	Core Set Diagrams

	7 Subsystem Support
	Overview
	Mapping TurboIMAGE Into System Dictionary
	Data Item
	Example

	Data Set
	Example

	Search Item
	Example

	Chain
	Example

	User Class Number
	Example

	Data Item Class List
	Example

	Data Item Class List
	Example

	Database
	Example

	Mapping HP IMAGE Into System Dictionary
	Data Item
	Example

	Data Set
	Example

	Search Item
	Example

	Chain
	Example

	Security Class Number
	Example

	Data Item Class List
	Example

	Data Set Class List
	Example

	Database
	Example

	DBEnvironment

	Mapping HP SQL Into System Dictionary
	Column
	Table
	View
	Index
	DBEfileset and DBEfile
	Module
	Authorization Groups and Users
	Owner
	Grants
	DBEnvironment

	A Glossary

