
900 Series HP 3000 Computers

HP Symbolic Debugger/iX

User's Guide

ABCDE

HP Part No. 31508-90003

Printed in U.S.A. June 1992

Third Edition

E0692

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages
in connection with the furnishing, performance or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced or translated
to another language without the prior written consent of
Hewlett-Packard Company.

copyright c
1989, 1990, 1991, 1992 by Hewlett-Packard Company

Print History The following table lists the printings of this document, together with
the respective release dates for each edition. Many product releases
do not require changes to the document. Therefore, do not expect a
one-to-one correspondence between product releases and document
editions.

Edition Date

First Edition October 1989

Second Edition April 1990

Third Edition June 1992

iii

.

iv

Preface The HP Symbolic Debugger/iX User's Guide explains how to debug
computer programs on 900 Series HP 3000 computer systems. The
manual assumes that you are an experienced programmer familiar
with symbolic debuggers on other systems.

This manual contains the following chapters:

Chapter 1 Introduces the HP Symbolic Debugger/iX - what it
is and who can use it. This chapter also explains
how to prepare a program for use with the symbolic
debugger.

Chapter 2 Contains listings of sample debugger programs which
are used in sample debugger sessions online. Use
these listings for reference to the online programs
when experimenting with the debugger.

Chapter 3 Describes how to use HP Symbolic Debugger to
debug programs.

Chapter 4 Discusses the HP Symbolic Debugger commands.

Appendix A Lists warning and error messages, along with their
remedial actions.

Appendix B Lists the language operators for HP C.

Appendix C Lists the language operators for HP FORTRAN 77
and explains FORTRAN VMS record support.

Appendix D Lists the language operators for HP Pascal.

Appendix E Lists the language operators for HP COBOL II.

Appendix F Lists special variables used by the HP Symbolic
Debugger.

Appendix G Lists some limitations of HP Symbolic Debugger and
gives some usage hints.

Appendix H Lists installed HP Symbolic Debugger �les.

Appendix I Lists the HP Symbolic Debugger commands.

Appendix J Lists the registers displayed by the debugger in
disassembly mode.

Glossary Lists new terms and their de�nitions.

v

Additional
Documentation

This manual does not discuss the MPE/iX operating system in
detail. Only those aspects relevant to HP Symbolic Debugger are
mentioned. Similarly, details about compiling a program using HP
COBOL II, HP FORTRAN 77, HP Pascal, and HP C are only
discussed to the extent that they a�ect how you use HP Symbolic
Debugger. See the appropriate operating system or language manual
for complete information about those subjects. The following is a
partial list of the operating system and language manuals:

Manual Title Manual

Part Number

Number to Use to

Order Manual

HP COBOL II/XL Reference Manual 31500-90001 31500-90001

HP COBOL II/XL Programmer's Guide 31500-90002 31500-90002

HP COBOL II/XL Quick Reference Guide 31500-90003 31500-90003

HP FORTRAN 77/iX Reference 31501-90010 31501-60021

HP FORTRAN 77/iX Programmer's Guide 31501-90011 31501-60022

HP FORTRAN 77/iX Migration Guide 31501-90004 31501-90023

HP Pascal/iX Reference Manual 31502-90001 31502-90001

HP Pascal/iX Programmer's Guide 31502-90002 31502-90002

HP C/iX Reference Manual 31506-90005 31506-90005

HP C/iX Library Reference Manual 30026-90001 30026-90001

HP C Programmer's Guide 92434-90002 92434-90002

HP Link Editor/iX Reference Manual 32650-90030 32650-90030

MPE/iX Commands Reference Manual 32650-90003 32650-60002

MPE/iX Intrinsics Manual 32650-90028 32650-90028

PA-RISC 1.1 Architecture and Instruction Set 09740-90039 09740-90039

vi

Conventions CASE In a syntax statement, commands and
keywords are shown in uppercase and
lowercase characters. The characters must be
entered in the order shown; however, you can
enter the characters in either uppercase or
lowercase. For example:

SHOWJOB

can be entered as any of the following:

showjob Showjob SHOWJOB

It cannot, however, be entered as:

shojwob Shojob SHOW_JOB

italics In a syntax statement or an example, a word
in italics represents a parameter or argument
that you must replace with an actual value.
In the following example, you must replace
�lename with the name of the �le:

RELEASE �lename

Italics font is also used to emphasize a word
or words .

punctuation In a syntax statement, punctuation characters
(other than brackets, braces, vertical bars,
and ellipses) must be entered exactly as
shown. In the following example, the
parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive
dialog, user input and user responses to
prompts are indicated by underlining. In
the following example, \yes" is the user's
response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required
elements. When several elements are stacked
within braces, you must select one. In the
following example, you must select either ON
or OFF:

SETMSG

�
ON

OFF

�

Commands listed in braces are called
command lists throughout this manual.

vii

Conventions
(continued)

[] In a syntax statement, brackets enclose
optional elements. In the following example,
,TEMP can be omitted:

PURGE �lename[,TEMP]

When several elements are stacked within
brackets, you can select one or none of the
elements. In the following example, you can
select devicename or deviceclass or neither.
The elements cannot be repeated.

SHOWDEV

�
devicename

deviceclass

�

[. . .] In a syntax statement, horizontal ellipses
enclosed in brackets indicate that you can
repeatedly select the element(s) that appear
within the immediately preceding pair of
brackets or braces. In the example below,
you can select itemname zero or more times.
Each instance of itemname must be preceded
by a comma:

[,itemname] [...]

In the example below, you only use the
comma as a delimiter if itemname is
repeated; no comma is used before the �rst
occurrence of itemname:

[itemname] [,...]

| . . . | In a syntax statement, horizontal ellipses
enclosed in vertical bars indicate that you
can select more than one element within the
immediately preceding pair of brackets or
braces. However, each particular element
can only be selected once. In the following
example, you must select A, AB, BA or B. The
elements cannot be repeated.

�
A

B

�
| . . . |

. . .
... In an example, horizontal or vertical ellipses

indicate where portions of the example have
been omitted.

� In a syntax statement, the space symbol �
shows a required blank. In the following
example, modi�er and variable must be
separated with a blank:

viii

SET [(modi�er)]�(variable);

� � The symbol � �indicates a key on the
keyboard. For example, �RETURN� represents
the carriage return key.

ix

Conventions
(continued)

�CNTL�char �CNTL�char indicates a control character. For
example, �CNTL�Y means you press the control
key and the Y key simultaneously.

Comment Explains an operator entry or debug message.

> The HP Symbolic Debugger prompt.

j Represents \or".

; Separates commands in a command list.

base pre�xes The pre�xes %, #, and $ specify the
numerical base of the value that follows:

%num speci�es an octal number
#num speci�es a decimal number
$num speci�es a hexadecimal number

If no base is speci�ed, decimal is assumed.

Bits (bit:length) When a parameter contains more than one
piece of data within its bit �eld, the di�erent
data �elds are described in the format Bits
(bit:length) bit is the �rst bit in the �eld and
length is the number of consecutive bits in
the �eld. For example, Bits (13:3) indicates
bits 13, 14, and 15:

x

Contents

1. Introducing HP Symbolic Debugger/iX
Who Can Use HP Symbolic Debugger 1-2
Creating a Program with Debugger Information . . 1-3
Terminal Support 1-4
Command History 1-5
Where To Go from Here 1-6

2. Getting Started
The Debugger Session Scenario 2-2
Running the Sample Session 2-3
Where To Go from Here 2-4
Sample Program Listings 2-5
Sample HP COBOL II Program 2-6
Sample HP COBOL II Program 2-7
Sample HP FORTRAN 77 Program 2-8
Sample HP Pascal Program 2-9
Sample HP C Program 2-11

3. Using the HP Symbolic Debugger
Preparing the Program 3-2
Starting the HP Symbolic Debugger 3-4
Once You Start HP Symbolic Debugger 3-6

Starting the Program 3-9
Ending the Program 3-10
Ending the HP Symbolic Debugger 3-11
Displaying Lines in the Program 3-12
Controlling the Command Window Display 3-13
Changing the Source Window Size 3-14
Displaying Assembly Code 3-15
Displaying Source and Assembly Code 3-17
Stepping through the Program 3-18
Searching for a String in the Current File 3-19
Pausing during Execution 3-20
Setting Breakpoints 3-20
Resuming Execution After a Breakpoint 3-22
Listing Breakpoints 3-22
Deleting Breakpoints 3-23

Displaying Data 3-24
Modifying Data 3-26
Tracing Function and Procedure Calls 3-27
Capturing and Rerunning a Debugger Session . . . 3-28
Executing Commands At Each Source Line 3-29

Contents-1

Using Macros 3-30
Altering the Execution Sequence 3-31
Getting Help 3-32

4. HP Symbolic Debugger Commands
Entering Commands 4-1
Using Uppercase and Lowercase 4-2
Abbreviating Commands 4-3
Entering Variable Names 4-3
Entering Expressions 4-7
Entering Procedure Calls 4-12
Window Mode Commands 4-13
File Viewing Commands 4-16
Data Viewing and Modi�cation Commands . . 4-21
Stack Viewing Commands 4-31
Status Viewing Command 4-34
Job Control Commands 4-35
Breakpoint Commands 4-38
Overall Breakpoint Commands 4-46
Breakpoint Creation Commands 4-48
Breakpoint Status Commands 4-52
All-Procedures Breakpoint Commands 4-53
Global Breakpoint Commands 4-56
All-Paragraph Breakpoint Commands 4-57
Auxiliary Breakpoint Commands 4-59
Assertion Control Commands 4-60
Datatrace Control Commands 4-64
Record and Playback Commands 4-68
Record and Playback Commands 4-69
Macro Facility Commands 4-71
Miscellaneous Commands 4-74

A. Messages
User Errors (UE300 - UE785) A-3
Debugger Errors (DB1-DB8) A-41

B. HP C Language Operators
HP C Language Operators B-1
HP C Language Operators B-2

C. HP FORTRAN 77 Language Operators and VMS Record
Support
HP FORTRAN 77 Language Operators C-1
HP FORTRAN 77 Language Operators C-2
VMS FORTRAN Records C-3

Contents-2

D. HP Pascal Language Operators
HP Pascal Language Operators D-1
HP Pascal Language Operators D-2

E. HP COBOL II Language Operators
HP COBOL II Language Operators E-1
Dereferencing Operations E-2
Field Dereferencing E-2
Array Dereferencing E-3

F. Special Variables Used by the Symbolic Debugger
Special Variables F-1

G. Limitations and Hints
Limitations and Hints G-1

H. Installed Files
Debugger Installation H-1

I. HP Symbolic Debugger Commands
Window Mode Commands I-3
File Viewing Commands I-4
Data Viewing and Modi�cation Commands I-6
Stack Viewing Commands I-8
Status Viewing Command I-9
Job Control Commands I-10
Breakpoint Commands I-12
Assertion Control Commands I-21
Datatrace Control Commands I-23
Record and Playback Commands I-24
Macro Facility Commands I-26
Miscellaneous Commands I-28

J. Registers Displayed by HP Symbolic Debugger in Disassembly
Mode
Register Names J-1
Registers Displayed by HP Symbolic Debugger in

Disassembly Mode J-2
Registers Displayed in the General and

Floating-Point Register Window J-2
Registers Displayed in the Special Register Window J-2

Glossary

Index

Contents-3

Figures

1-1. Creating an Executable Program File 1-3
2-1. Sample Debugger Session Scenario 2-2
2-2. HP COBOL II Main Source File, DEMOCBMS . 2-6
2-3. HP COBOL II Subroutine Source File, DEMOCBSS 2-7
2-4. HP FORTRAN 77 Main Source File, DEMOFS . 2-8
2-5. HP Pascal Main Source File, DEMOPS 2-9
2-5. Pascal Main Source File, DEMOPS (Continued) . 2-10
2-6. C Main Source File, DEMOCS 2-11
2-6. C Main Source File, DEMOCS (Continued) . . . 2-12
3-1. The HP Symbolic Debugger Screen (Source Mode) 3-6
3-2. The HP Symbolic Debugger Screen (Disassembly

Mode) 3-15
3-3. The HP Symbolic Debugger Screen (Source and

Disassembly Mode) 3-17
4-1. Stack Depth 4-31
4-2. Listing a Breakpoint 4-46

Contents-4

Tables

3-1. Compiler Embedded and Info-string Options . . . 3-2
4-1. Escape Sequences 4-8
4-2. Symbolic Constants 4-9
4-3. Data Viewing Formats 4-28
4-4. Shorthand Notation for Size 4-28
4-5. Record and Playback Commands 4-69
4-6. Commands Used to Record Debugger Output . . 4-70
B-1. Language Operators for HP C B-2
C-1. Language Operators for HP FORTRAN 77 . . . C-2
D-1. Language Operators for HP Pascal D-2
E-1. Language Operators for HP COBOL II E-1
F-1. Special Variables F-1
I-1. Window Mode Commands I-3
I-2. File Viewing Commands I-4
I-3. Data Viewing and Modi�cation Commands . . . I-6
I-4. Stack Viewing Commands I-8
I-5. Status Viewing Command I-9
I-6. Job Control Commands I-10
I-7. Overall Breakpoint Commands I-12
I-8. Breakpoint Creation Commands I-13
I-9. Breakpoint Status Commands I-16
I-10. All-Procedures Breakpoint Commands I-17
I-11. Global Breakpoint Commands I-18
I-12. Paragraph Breakpoint Commands I-19
I-13. Auxiliary Breakpoint Commands I-20
I-14. Assertion Control Commands I-21
I-15. Datatrace Control Commands I-23
I-16. Record and Playback Commands I-24
I-17. Commands Used to Record Debugger Output . . I-25
I-18. Macro Facility Commands I-26
I-19. Miscellaneous Commands I-28

Contents-5

1

Introducing HP Symbolic Debugger/iX

The HP Symbolic Debugger is an interactive tool that assists you
in �nding errors in programs written in high-level programming
languages.

On most terminals, the HP Symbolic Debugger uses the full screen.
The screen is divided into areas that let you view source code,
commands that you enter and command and program output. When
you work with the debugger, you use the same language constructs
that are used in the program you're debugging.

The HP Symbolic Debugger lets you:

View source code You can view any program source line
readily.

Display and modify
variables

You can view the value of any type of data
item in the program and you can display it
in the format that is most appropriate.
When necessary, you can change the value of
a data item.

Trace program
ow You can execute one or more statements at
one time, allowing you to closely examine
program
ow and data areas. If the program
is large, you might prefer to set breakpoints
at certain statements in the program. When
the breakpoints occur, you can examine data
areas and alter them if necessary. If your
program contains several procedure calls,
you might want to display the program stack
to trace those calls.

Capture and rerun a
debugger session

If you think you might need to retrace your
steps during a debugger session, you can
have the debugger automatically record your
session commands in a �le. Then, at a later
time, you can replay those commands. This
playback feature can save you time because
it contains the \trail" of commands that led
to a given program state.

Execute debugger
commands before each
source statement

You can have the debugger execute one or
more commands before it executes each
source statement in the program. These
commands, called assertions, can save you
time when you need to examine execution
progress one line at a time.

Introducing HP Symbolic Debugger/iX 1-1

Who Can Use HP
Symbolic Debugger

HP Symbolic Debugger can be used by programmers who program in
HP COBOL II, HP C, HP Pascal, and HP FORTRAN 77.

1-2 Introducing HP Symbolic Debugger/iX

Creating a Program
with Debugger
Information

To debug a program on the symbolic level, you must compile and
link the source program with debugger information to create an
executable program �le. Figure 1-1 illustrates the process of creating
an executable program �le containing debugger information. If you
do not compile and link your program with debugger information, the
debugger can only display the register values, absolute addresses, and
labels.

Figure 1-1. Creating an Executable Program File

Introducing HP Symbolic Debugger/iX 1-3

Terminal Support Only Hewlett-Packard terminals with memory lock support the
command windows used by the debugger. Non|Hewlett-Packard
terminals or Hewlett-Packard terminals without memory lock operate
in line mode only. Use the -L command line option when invoking
the debugger to operate in line mode.

1-4 Introducing HP Symbolic Debugger/iX

Command History The symbolic debugger has a command history mechanism modeled
after MPE/iX's command interpreter. The symbolic debugger
recognizes the following history commands:

do

redo

listredo

The di�erences between MPE/iX's command interpreter and the
symbolic debugger's command history mechanism are as follows:

The symbolic debugger has a default redo stack size of 20.

The redo stack size is set to whatever size you want by changing
the value of the variable XDBREDOSIZE before invoking the
symbolic debugger.

The symbolic debugger only uses lower case editing directives.

Introducing HP Symbolic Debugger/iX 1-5

Where To Go from
Here

You are now familiar with the major features of HP Symbolic
Debugger.

To get hands-on practice in running the debugger, continue on with
the next chapter. It tells you how to run a sample debugger session.

If you don't have time to run the sample session, but want to start
debugging a program right away, skip to chapter 3. Chapter 3
introduces you to the most common ways to use the debugger and
should give you enough information to begin using it.

Use chapter 4 as a reference chapter. It lists details about each of the
HP Symbolic Debugger commands.

See appendix A for error message information.

See appendix B to �nd out the language operators for HP C.

See appendix C to �nd out the language operators for HP
FORTRAN 77 and VMS FORTRAN record support.

See appendix D to �nd out the language operators for HP Pascal.

See appendix E to �nd out the language operators for HP COBOL
II.

See appendix F for a list of the special variable used by the HP
Symbolic Debugger.

See appendix G for a list of limitations and hints.

See appendix H for a list of installed �les for HP Symbolic Debugger.

See appendix I for a list of the HP Symbolic Debugger commands.

See appendix J for a list of registers displayed by HP Symbolic
Debugger in disassembly mode.

See the glossary for de�nitions of new terms.

1-6 Introducing HP Symbolic Debugger/iX

2

Getting Started

HP Symbolic Debugger/iX comes with a sample debugger session
for each of the supported native mode languages, HP COBOL II,
HP FORTRAN 77, HP Pascal, and HP C. You can run it without
knowing anything about the debugger; the debugger guides you
through each step. The session takes only a few minutes to run.
When you're �nished, you will have a good overview of how the
debugger works and some important ways it can be used.

When running the sample session, follow the instructions explained
at the beginning of the session. The program used in the debugger
session is listed at the end of this chapter.

Getting Started 2-1

The Debugger
Session Scenario

The following explains the scenario under which the sample debugger
session runs.

You're developing a program to read and process rainfall data.
Proceeding in stages, you're developing the user input section
and the portion that �lls in an array with data from the rainfall
�le.

During tests, you've encountered program aborts with messages
indicating that access to memory outside your program's
allotment has occurred. This type of error most frequently
results from bad pointer arithmetic or bad array subscripts,
especially in a loop. This program does no explicit pointer
arithmetic, so you've decided to use HP Symbolic Debugger to
check the loops in your program.

Figure 2-1. Sample Debugger Session Scenario

2-2 Getting Started

Running the Sample
Session

To run the sample debugger session, log on to your account. Then
enter the command below that corresponds to the language you're
most familiar with:

HP COBOL II|> xdb;info="-d pub.sys

democbx.pub.sys"

HP FORTRAN 77|> xdb;info="-d pub.sys

demofx.pub.sys"

HP Pascal|> xdb;info="-d pub.sys

demopx.pub.sys"

HP C|> xdb;info="-d pub.sys
democx.pub.sys"

This will get you inside HP Symbolic Debugger. You used the
-d option to specify the directory where the source �le is. (This
corresponds to the D (Directory) command which you can use inside
the debugger for the same purpose).

Now to run the sample session, type the command below that
corresponds to your language:

HP COBOL II|> <<democbxr.pub.sys

HP FORTRAN 77|> <<demofxr.pub.sys

HP Pascal|> <<demopxr.pub.sys

HP C|> <<democxr.pub.sys

You will now be in the debugger session. Follow the instructions on
the screen to continue. When the session ends, you will still be in the
debugger. To get out, enter:

>q

Note The sample session is really a playback �le which was created with
the debugger. If you want to know more about the Record and
Playback Facility of the debugger, refer to the section \Record
and Playback Commands" in Chapter 4 \HP Symbolic Debugger
Commands".

Getting Started 2-3

Where To Go from
Here

Now that you've completed the sample session, you have a good idea
about how HP Symbolic Debugger works. To learn more details
about the operations used in the debugger session or to begin
debugging your own programs, continue with chapter 3. If you want
to see the listing for the program you saw in the session, read on.

2-4 Getting Started

Sample Program
Listings

This section lists the language source �les used in the sample
debugger sessions on line.

These source �les: are listed in:

DEMOCBMS Figure 2-2
DEMOCBSS Figure 2-3
DEMOFS Figure 2-4
DEMOPS Figure 2-5
DEMOCS Figure 2-6

Getting Started 2-5

Sample HP COBOL II
Program

$CONTROL BOUNDS, VERBS, MAP, CROSSREF

IDENTIFICATION DIVISION.

PROGRAM-ID. RAIN-REPORT.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 NUMBER-YEARS PIC 9.

77 FIRST-YEAR PIC 9(4).

01 YEAR-INDEX PIC 9(4) COMP.

01 NUM-OF-MONTHS PIC 9(4) COMP.

01 MONTH-TOTALS VALUE ZEROS.

05 MT-TABLE PIC 9(6)V99

OCCURS 60 TIMES.

PROCEDURE DIVISION.

100-MAIN-ROUTINE.
PERFORM 200-GET-INPUT.

PERFORM 300-CALCULATE.

PERFORM 400-PRINT-REPORT.

PERFORM 500-STOP-RUN.

200-GET-INPUT.

DISPLAY "ENTER THE FIRST YEAR YOU WISH TO REPORT ON:".

ACCEPT FIRST-YEAR.

IF (FIRST-YEAR < 1950) OR (1988 < FIRST-YEAR) THEN

GO 200-GET-INPUT.

DISPLAY "ENTER THE # OF YEARS YOU WISH TO CONSIDER (1-5):".

ACCEPT NUMBER-YEARS.

IF (NUMBER-YEARS < 0) OR (5 < NUMBER-YEARS) THEN

GO 200-GET-INPUT.

300-CALCULATE.

COMPUTE YEAR-INDEX = (FIRST-YEAR - 1950) * 12.

COMPUTE NUM-OF-MONTHS = NUMBER-YEARS * 122.

CALL "LOADMT" USING YEAR-INDEX,

NUM-OF-MONTHS,

MONTH-TOTALS.

400-PRINT-REPORT.

500-STOP-RUN.

STOP RUN.

Figure 2-2. HP COBOL II Main Source File, DEMOCBMS

2-6 Getting Started

Sample HP COBOL II
Program

$CONTROL SUBPROGRAM, BOUNDS, VERBS, MAP, CROSSREF

IDENTIFICATION DIVISION.

PROGRAM-ID. LOADMT.

AUTHOR. ANON.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT RAINFILE ASSIGN TO "RAINFALL.pub.sys".

DATA DIVISION.

FILE SECTION.

FD RAINFILE.

01 INCHES-PER-MONTH PIC 9(6)V99.

WORKING-STORAGE SECTION.

77 77-INDEX PIC S9(4) COMP.

LINKAGE SECTION.
01 YEAR-INDEX PIC 9(4) COMP.

01 NUM-OF-MONTHS PIC 9(4) COMP.

01 MONTH-TOTALS.

05 MT-TABLE PIC 9(6)V99 COMP

OCCURS 60 TIMES.

PROCEDURE DIVISION USING YEAR-INDEX,

NUM-OF-MONTHS,

MONTH-TOTALS.

100-MAIN-SUBROUTINE.

OPEN INPUT RAINFILE.

PERFORM 200-READ-RAINFILE YEAR-INDEX TIMES.

MOVE 1 TO 77-INDEX.

PERFORM 300-LOAD-MT-TABLE NUM-OF-MONTHS TIMES.

CLOSE RAINFILE.

PERFORM 500-GOBACK.

200-READ-RAINFILE.

READ RAINFILE AT END GO 500-GOBACK.

300-LOAD-MT-TABLE.

PERFORM 200-READ-RAINFILE.

MOVE INCHES-PER-MONTH TO MT-TABLE (77-INDEX).

ADD 1 TO 77-INDEX.

500-GOBACK.

GOBACK.

Figure 2-3. HP COBOL II Subroutine Source File, DEMOCBSS

Getting Started 2-7

Sample HP FORTRAN
77 Program

$CONTROL RANGE, CODE_OFFSETS, TABLES

PROGRAM RAIN_REPORT

INTEGER*2 NUMBER_YEARS,

2 FIRST_YEAR,

3 YEAR_INDEX,

4 NUM_OF_MONTHS

REAL MONTH_TOTALS(60)

100 PRINT *,'ENTER THE FIRST YEAR YOU WISH TO REPORT ON: '

READ (5,*) FIRST_YEAR

IF ((FIRST_YEAR .LT. 1950).OR.(FIRST_YEAR .GT. 1988)) THEN

GOTO 100

ENDIF

110 PRINT *,'ENTER THE # OF YEARS YOU WISH TO CONSIDER (1-5): '

READ (5,*) NUMBER_YEARS

IF ((NUMBER_YEARS .LT. 1).OR.(NUMBER_YEARS .GT. 5)) THEN
GOTO 110

ENDIF

YEAR_INDEX = (FIRST_YEAR - 1950) * 12

NUM_OF_MONTHS = NUMBER_YEARS * 122

CALL LOADMT (YEAR_INDEX, NUM_OF_MONTHS, MONTH_TOTALS)

PRINT *,'PROGRAM ENDS'

STOP

END

SUBROUTINE LOADMT (YEAR_INDEX, NUM_OF_MONTHS, MONTH_TOTALS)

INTEGER*2 YEAR_INDEX,

2 NUM_OF_MONTHS,

3 TABLE_INDEX

REAL MONTH_TOTALS(60),

2 HOLD_RAINFALL

OPEN (UNIT=10, FILE='RAINFALL.pub.sys')

DO I=1, YEAR_INDEX

READ (10,*) HOLD_RAINFALL

END DO

DO TABLE_INDEX = 1,NUM_OF_MONTHS

READ (UNIT=10, FMT=10, END=900) HOLD_RAINFALL

MONTH_TOTALS(TABLE_INDEX) = HOLD_RAINFALL

END DO

900 RETURN

END

Figure 2-4. HP FORTRAN 77 Main Source File, DEMOFS

2-8 Getting Started

Sample HP Pascal
Program

$RANGE ON, CODE_OFFSETS ON, TABLES ON$

program RainReport (INPUT, OUTPUT, RainFall);

type

YearType = 1900..2000;

NumYearsType = 0..200;

MonthTotalType = REAL;

ArrayType = ARRAY [1..60] of MonthTotalType;

var

NumYears : NumYearsType;

FirstYear : YearType;

YearIndex : INTEGER;

NumOfMonths : INTEGER;

MonthTable : ArrayType;
RainFall : TEXT;

procedure GetInput;

{

This procedure prompts the user for the initial year and number of

years for the report. It also checks to see that the year and number

of years are within range.

}

const

YearPrompt = 'Enter the first year on which to report: ';

NumYearsPrompt = 'Enter the # of years to consider (1 - 5): ';

procedure GetFirstYear;

begin {GetFirstYear statements};

writeln (OUTPUT);

prompt (OUTPUT, YearPrompt);

readln (INPUT, FirstYear);

IF (FirstYear < 1950) or (FirstYear > 1988) THEN

GetFirstYear;

end {GetFirstYear statements};

Figure 2-5. HP Pascal Main Source File, DEMOPS

Getting Started 2-9

procedure GetNumYears;

begin {procedure GetNumYears statements};

writeln (OUTPUT);

prompt (OUTPUT, NumYearsPrompt);

readln (INPUT, NumYears);

IF (NumYears < 1) or (NumYears > 5) THEN

GetNumYears;

end;

begin {level 1 procedure};

GetFirstYear;

GetNumYears;

YearIndex := (FirstYear - 1950) * 12;

NumOfMonths := NumYears * 122;

end {level 1 procedure};

procedure LoadMonthTable;

var
ArrayIndex : INTEGER;

HoldRainFall : INTEGER;

begin {LoadMonthTable statements};

HoldRainFall := 0;

reset (RainFall, 'RAINFALL.pub.sys');

FOR ArrayIndex := 1 to YearIndex DO

{

This loop will perform dummy reads to get the file to the start

of the requested data.

}

readln (RainFall, HoldRainFall);

FOR ArrayIndex := 1 to NumOfMonths DO

begin {FOR loop}

readln (RainFall, HoldRainFall);

MonthTable[ArrayIndex] := HoldRainFall / 100

end {FOR loop}

end {LoadMonthTable statements};

begin {main program}

GetInput;

LoadMonthTable

end {of program}.

Figure 2-5. Pascal Main Source File, DEMOPS (Continued)

2-10 Getting Started

Sample HP C Program

#include <stdio.h>

#define YEAR_PROMPT "\nEnter the first year on which to report: "

#define NUM_YEARS_PROMPT "\nEnter the # of years to consider (1 - 5): "

typedef int year_type;

typedef int num_years_type;

typedef double month_total_type;

typedef month_total_type array_type[60];

num_years_type num_years;

year_type first_year;
int year_index;

int num_of_months;

array_type month_table;

FILE *rain_fall,

*fopen();

void get_first_year()

{

printf (YEAR_PROMPT);

scanf ("%d", &first_year);

if ((first_year < 1950) || (first_year > 1988))

get_first_year();

}

void get_num_years()

{

printf (NUM_YEARS_PROMPT);

scanf ("%d", &num_years);

if ((num_years < 1) || (num_years > 5))

get_num_years();

}

Figure 2-6. C Main Source File, DEMOCS

Getting Started 2-11

void get_input()

{

/*

* This function prompts the user for the initial year and number of

* years for the report. It also checks to see that the year and number

* of years are within range.

*/

get_first_year();

get_num_years();

year_index = (first_year - 1950) * 12;

num_of_months = num_years * 122;

}

void load_month_table()

{

int array_index;

int hold_rain_fall = 0;

rain_fall = fopen("RAINFALL.pub.sys", "r");

/* This loop will perform dummy reads to get the file to the start

* of the requested data.

*/

for (array_index = 1; array_index <= year_index; array_index++)

fscanf (rain_fall, "%d", &hold_rain_fall);

for (array_index = 1; array_index <= num_of_months; array_index++) {

fscanf (rain_fall, "%d", &hold_rain_fall);

month_table[array_index] = hold_rain_fall / 100;

}

}

main()

{

get_input();

load_month_table();

}

Figure 2-6. C Main Source File, DEMOCS (Continued)

2-12 Getting Started

3

Using the HP Symbolic Debugger

This chapter shows you how to start HP Symbolic debugger and how
to use its major features. The �rst sections of the chapter list the
steps you must perform to begin using the debugger and familiarize
you with the screen display. The last sections of the chapter show
you how to perform various tasks. You do not perform these tasks
necessarily in the same order as they are listed; pick and choose the
tasks depending on your requirements.

To get started with HP Symbolic Debugger, read and perform these
sections in order:

Preparing the Program

Starting the HP Symbolic Debugger

Starting the Program

Once you start the program, read and perform the sections below
that correspond to the tasks you need to perform:

Ending the Program

Ending the HP Symbolic Debugger

Displaying Lines in the Source Program

Controlling the Command Window Display

Changing the Source Window Size

Displaying Assembly Code

Displaying Source and Assembly Code

Stepping through the Program

Searching for a String in the Program

Pausing during Execution

Displaying Data

Modifying Data

Tracing Function and Procedure Calls

Capturing and Rerunning a Debug Session

Executing Commands at Each Source Line

Using Macros

Altering the Execution Sequence

Getting Help

Using the HP Symbolic Debugger 3-1

Preparing the
Program

Before starting HP Symbolic Debugger, compile your HP COBOL II,
HP FORTRAN 77, HP Pascal, or HP C program using the symbolic
debugger option. If you do not use the symbolic debugger option,
you can only debug the program in disassembly mode; the debugger
can track only register values, absolute addresses and labels.

When you're con�dent that the program will compile without errors,
use the symbolic debugger compile option. When you use the
symbolic debugger option, the compiler generates tables containing
the names and addresses of variables, labels and source lines. These
tables are the symbolic hooks into your program.

There are two ways to compile your program with symbolic debugger
information:

Embed the symbolic debugger option in the �rst statement of your
source code.

Use the info-string option to specify the symbolic debugger option
when you compile your program.

Table 3-1 lists the compiler embedded and info string options you can
use to prepare programs for use with HP Symbolic Debugger.

Table 3-1. Compiler Embedded and Info-string Options

Compiler Source Language Option Info-string Argument

HP COBOL II $control symdebug =
xdb

Info = \$control symdebug
= xdb"

HP FORTRAN
77

$symdebug xdbjo� Info = \symdebug xdbjo�"

HP Pascal $symdebug 'xdb'$ Info = \symdebug 'xdb'"

HP C None Info =\-g"

When compiling and linking, you need to link the �le xdbend.lib.sys
with the object �les of your program. Specify xdbend.lib.sys as the
last �le in your link list. xdbend.lib.sys provides space in the user
process for the debugger and is required.

The example below compiles and links the HP C program test1c
producing the executable object program TEST1P :

:CCXL TEST1C, TEST1O;INFO="-g"

:LINK FROM=TEST1O, XDBEND.LIB.SYS; TO=TEST1P; RL=LIBCINIT.LIB.SYS

3-2 Using the HP Symbolic Debugger

For HP COBOL II programs only, HP Symbolic Debugger uses the
listing �le cobxdb rather than the source �les for the source viewing
inside the debugger. Therefore, when you are debugging HP COBOL
II programs derived from more than one source �le, you must equate
the default listing �le cobxdb to a permanent listing �le name before
you compile each source �le. You do not link the listing �les with the
object �les.

For example, suppose you have an HP COBOL II program comprised
of the source �les cob1 and cob2 . When you compile each �le, use
the xdb= parameter to name your listing �le. The following example
compiles cob1 into the object �le cob1o, naming the listing �le lcob1 .

:COB85XL COB1, COB1O; XDB=LCOB1

Do the same with each additional program �le.

:COB85XL COB2, COB2O; XDB=LCOB2

Alternatively, you can use the MPE �le command to equate cobxdb
to the listing �le name. For example, to compile the same program
�les using this method, start by equating cobxdb to the listing �le
name lcob1 .

:FILE COBXDB=LCOB1;SAVE

Then, compile cob1 into the object �le named cob1o. After
compiling, you should be able to see the �le lcob1 when you do a
listf .

:COB85XL COB1, COB1O

When you are ready to compile the second source �le, change the
cobxdb �le equation:

:FILE COBXDB=LCOB2;SAVE

Then, compile cob2 into an object �le named cob2o. Again, you
should be able to see the �le lcob2 when you perform a listf .

:COB85XL COB2, COB2O

Repeat this procedure for each source �le comprising the program.

Once you have compiled all your source �les by using one of the two
previous methods, link the object �les and the xdbend.lib.sys �le
together into an executable �le named cobx :

:LINK FROM=COB1O, COB2O, XDBEND.LIB.SYS;TO=COBX

The debugger information in the object �les know about the listing
�les lcob1 and lcob2 so you do not need to link these �les. Once
you've linked your program, you are ready to start HP Symbolic
Debugger.

Using the HP Symbolic Debugger 3-3

Starting the HP
Symbolic Debugger

When using HP Symbolic Debugger, the debugger is the parent
process and the program that you're debugging becomes a child
process. The debugger controls only the child process and can debug
only one child process at a time.

You can use HP Symbolic Debugger with sharable code, but you
should be the only person using it at one time. (If someone else is
using it also, they will encounter the same breakpoints, for example.)

Enter the following command to start the debugger:

run xdb.pub.sys

2
6666664
;info="

2
6666664

-d group
�
.acct

�
-r �le

-p �le

-L

-S num

object�le

3
7777775
�
. . .

�
"

3
7777775

You can run the debugger without options by entering:

xdb object�le

You can also just type xdb and you will be prompted for the
object�le .

The HP Symbolic Debugger options are described below:

3-4 Using the HP Symbolic Debugger

-d group.[acct] This option names an alternate group and (optional)
account containing the source �les used to create the
object�le. Group and accounts are searched in the
order that you list them. The current group and
account is used if the �le is not found in the group
and account that you enter here. You can enter more
than one -d option.

-p �le This option names a playback �le created in a
previous debugger session (see the -r option) or one
that you created yourself.

-r �le This option names the �le to which all debugger
commands that you enter are recorded. You can use
this �le as a playback �le in subsequent debug sessions
(see the -p parameter). Recording begins as soon as
you start the debugger. Any previous contents of the
�le are overwritten (no appending takes place).

-L This option allows you to use the debugger in line
mode when you do not have a terminal that supports
memory lock.

-S num This option sets the string-cache size to the number of
bytes speci�ed. The string cache holds data read from
the object�le. The default is 1024 bytes (1kb).
Increasing the string cache size can improve debugger
performance for large programs.

object�le This argument names the �le that contains the
executable code for the program. If you do not enter
this option, you will be prompted for the object�le. If
this is the �rst time you are running the debugger,
object�le will be preprocessed to allow faster debugger
startups in subsequent sessions.

Using the HP Symbolic Debugger 3-5

Note Equivalent debugger commands exist for the -d , -p, and -r options.
See the dir (directory) and the \Record and Playback Commands"
section in chapter 4, HP Symbolic Debugger Commands.

Once You Start HP
Symbolic Debugger . . .

When you start HP Symbolic Debugger from a terminal that
supports windowing, you see a source window similar to the one
shown in Figure 3-1. If this is a large program and it is the �rst time
you've run it under the debugger, it might take a few moments for
the screen to appear. (The debugger preprocesses a program the �rst
time it is run and displays the screen in less time during subsequent
debugger sessions.)

Figure 3-1. The HP Symbolic Debugger Screen (Source Mode)

Note The above screen appears only on terminals that allow memory
locking. If your terminal does not have memory locking, the
debugger displays information one line at a time (line mode).

3-6 Using the HP Symbolic Debugger

The screen has three parts, which are described below. This is the
screen you see when debugging in symbolic (source) mode.

Source window The source window is located at the top of the screen,
above the highlighted line. This is the area where you
view the source statements. If your terminal has 24
lines, the top 15 are used for the source window. To
alter the number of lines in the source window, see the
section \Changing the Source Window Size" in this
chapter.

Source statements are displayed one window at a time.
See the section \Displaying Lines in the Source
Program" for directions on locating and displaying
lines in the source window.

The > prompt in the margin of the source window
points to the current line. When you �rst start the
debugger, this is the �rst executable statement. At
other times, it is the line where the debugger is
currently paused. Note that the source window is not
limited to viewing the current line, and the > prompt
may not always be visible.

Location window The location window (or location line) is the
highlighted line near the middle of the screen. This
line shows you the current program �le and procedure
names and the source line number of the current line
(the line currently being viewed in the source window).

Command window The command window is the area located below the
location window (highlighted line). This window is
where the debugger commands that you enter are
displayed. The debugger shows its own output in this
area. The command window also shows output from
the child process (program being debugged) The
window automatically scrolls up when full, but this
does not a�ect the other windows. A scrolling more

feature lets you view debugger output on window-full
at a time.

The debugger prompts you to enter a command by
displaying >. When you enter a command, enter the
entire command on one line (continuation lines are not
allowed).

For information about controlling the display of lines
in the command window, see the section \Controlling
the Command Window Display."

At this point, before starting program execution, you might want
to set breakpoints in the program, or change the source window
size. The remaining sections in this chapter describe how you can
accomplish these tasks and others as well (the tasks can also be
performed during any execution pause). The sections are not listed

Using the HP Symbolic Debugger 3-7

in any particular order. You need to determine which are relevant to
the debugging session at hand and perform only those.

3-8 Using the HP Symbolic Debugger

Starting the Program Once you start the debugger and you are ready to begin debugging
your program, enter either an r (run), R (Run), s (step) or S (Step)
command. The r (run) command starts execution of the program
and allows you to enter arguments with it. The R (Run) command,
as shown below, starts executing the program, but does not allow you
to enter run-time arguments:

>R

To execute one statement (or one step of a Pascal statement) at a
time, enter either the s (step) or S (Step) command. The initial step
command executes the �rst statement of the program. The following
s (step) command allows single-stepping through the program and
any procedures that it contains:

>s

The following S (Step) command allows single-stepping through the
program, stepping over procedure calls|A procedure call is treated
as a single statement.

>S

Note HP Symbolic Debugger commands are case sensitive; you must type
them exactly as documented. To see command syntax, refer to each
command's listing in chapter 4 \HP Symbolic Debugger Commands".

Using the HP Symbolic Debugger 3-9

Ending the Program If you want to terminate your program before it normally completes,
enter the k (kill) command:

>k

You will be prompted to con�rm this request. To have the debugger
ignore the request,
enter n; otherwise, enter y.

At this time, you can restart the program, quit the debugger, or
enter other commands.

3-10 Using the HP Symbolic Debugger

Ending the HP
Symbolic Debugger

To end HP Symbolic Debugger, enter the q (quit) command:

>q

You will be prompted to con�rm this request. To have the debugger
ignore the request,
enter n; otherwise, enter y.

Using the HP Symbolic Debugger 3-11

Displaying Lines in
the Program

There are several ways to display program lines in the source
program window.

To display a particular source line, enter the v (view) command with
the line number. For example, to display line 11:

>v 11

To move one or more lines forward in the program, enter the plus
sign (+) and the number of lines you want to move. When moving
forward or backward in the program, the source and location
windows are adjusted accordingly. For example, to move �ve lines
forward, enter:

>+5

To move backward in the program, enter the minus sign (-) and the
number of lines you want to move. To move backwards �ve lines,
enter:

>-5

Note When you reach the end (or beginning) of the source program using
the + and - commands, no further movement may take place.

You can repeat a previous + or - command (see +5 and -5 above)
by pressing �RETURN�).

To display a procedure that has been called but is currently
suspended at a given depth in the run-time stack, enter the V
(View) command. The following example displays the procedure at
depth two in the run-time stack. (Stack depth one is the current
procedure's caller, depth two is its caller, etc.)

>V 2

To view the current point of suspension during program execution in
the source window, use the V (View) command with no arguments:

>V

Note The source window automatically tracks where the program becomes
suspended, and the V (View) is only needed after using the v (view),
+, or - commands.

3-12 Using the HP Symbolic Debugger

Controlling the
Command Window
Display

Command and program output is displayed one screen at a time in
the command window. You can use the terminal keys PgUp, PgDn,
Home, End and the �CTRL�arrow keys (or the equivalent scroll keys
on your terminal) to scroll the command window. When you enter
a command that requires more than the number of lines in the
command window to display, the debugger displays enough lines to
�ll the command window then displays --More--at the bottom.

Use one of the following commands to continue.

�SPACE BAR� Displays one more window-full.

�RETURN� Displays one more line.

q Quits scrolling and ignores the rest of the output
until another debugger prompt is issued.

To view command window output in a continuous stream, use the sm
(suspend more) command to suspend the more feature. �CNTL�S may
be used to temporarily suspend scrolling when the more feature is
suspended. Use �CNTL�Q to continue scrolling.

To return to single-window output, enter the am (activate more)
command.

Note Output from the child process (program being debugged) also
appears in the command window, but it is not controlled by the more
feature.

Using the HP Symbolic Debugger 3-13

Changing the
Source Window Size

To change the size of the source window, use the w (window)
command and specify the number of lines you want for this window.
For example, to change the size of the source window to 12 lines
enter:

>w 12

The number of lines for the source window range from one to 21 for a
24-line terminal (the default is 15). Changing the size of the source
window also changes the size of the command window.

3-14 Using the HP Symbolic Debugger

Displaying
Assembly Code

If you didn't use the symbolic debugger option when compiling the
program, you will be debugging in disassembly mode and will see a
screen similar to the one shown in Figure 3-2. Even if you compiled
with the symbolic debugger option, you can debug in disassembly
mode by entering the td (toggle disassembly) command as follows:

>td

In disassembly mode, the program is debuggable at the machine
instruction level. Note that corresponding source-line numbers are
displayed along with the absolute and symbolic address of each
instruction. The values of all hardware registers are also shown in
disassembly mode. A highlighted register value indicates its contents
were modi�ed by the last instruction executed.

Figure 3-2. The HP Symbolic Debugger Screen (Disassembly Mode)

Using the HP Symbolic Debugger 3-15

To return to source mode, enter td again.

Disassembly mode can also be used when only parts of your program
were compiled with the symbolic debugger option. Libraries linked in
with your program are generally not debuggable unless disassembly
mode is used, regardless of whether your program was compiled
with the symbolic debugger option. Refer to appendix F \Registers
Displayed by HP Symbolic Debugger" to see the registers displayed
by the debugger in disassembly mode.

3-16 Using the HP Symbolic Debugger

Displaying Source
and Assembly Code

To view both the source code and its matching assembly code, enter
the ts (toggle screen) command. When you do this, the source
window is divided into two windows, the top for source code and the
bottom for assembly code as shown in Figure 3-3.

To view source and assembly code, enter:

>ts

Figure 3-3.

The HP Symbolic Debugger Screen (Source and Disassembly Mode)

To return to source mode, enter ts again.

Using the HP Symbolic Debugger 3-17

Stepping through
the Program

The debugger lets you step through a program one (or more)
statements at a time. If you're in disassembly mode, you execute
one or more machine instructions; if you're in source mode, you
execute one or more source statements. If you're in split-screen
mode, the single step mode (symbolic or assembly) is indicated on
the highlighted line separating the source window from the assembly
window.

Stepping lets you closely examine program execution. During
stepping, you can display and alter variables or perform other tasks.

The following command executes the next six statements (or machine
instructions) then pauses:

>s 6

To repeat the step command, press �RETURN� or type a tilde (~)
followed by �RETURN�.

If the program contains procedure calls and you do not want to step
through the code in the procedures themselves individually, use the S
(Step) command. The procedure call statements (or instructions) are
treated as one step. To single step through a program and to treat
procedure calls as one step, enter:

>S

3-18 Using the HP Symbolic Debugger

Searching for a
String in the Current
File

This section explains how to locate certain text elements in the
current source �le. For example, you can search for array elements
and pointers by name or you can search for arithmetic expressions.
You can search forward or backward in the current �le for any text
string. When you reach the end of the current �le, searching starts
again at the beginning. Likewise, when searching backwards and you
reach the beginning of the current �le, searching continues at the end
of the �le.

The following example searches forward in the program for the string
r:= 0 and stops at the �rst occurrence of it.

>/r:= 0

To search backward in a program for the string const n = 10, enter:

>?const n = 10

String searches can be case sensitive or case insensitive. Use the tc
(toggle case) command to control case sensitivity.

Search strings will be matched exactly (possibly disregarding case).
All characters are signi�cant, including blank spaces. If no match is
found, the current viewing location does not change. Note that after
locating an occurrence of the search string, the debugger may not
always know what procedure the string was found in and will display
Procedure: Unknown in the location window.

Note To repeat a previous search command searching in the same
direction, enter the n (next) command. To repeat the previous search
command but search in the opposite direction, enter the N (Next)
command.

Using the HP Symbolic Debugger 3-19

Pausing during
Execution

When you want to temporarily suspend the execution of the program
to examine some aspect of it, such as a variable's value, set one or
more breakpoints in the program. This must be done before starting
the program, or when it is suspended by an existing breakpoint or an
exception condition.

Breakpoints direct the debugger to stop execution at or immediately
before executing the speci�ed line (or instruction). When you resume
execution, the program will continue until this or another breakpoint
is reached. While the program is suspended, you can enter any
debugger command.

Setting Breakpoints To set a breakpoint in source mode, enter the line number before
which you want execution to pause. In disassembly mode, enter
an address or a label and o�set to specify the location for the
breakpoint. If it is not an executable statement, the debugger sets a
breakpoint at the �rst executable statement following that line. You
can set breakpoints before step and run commands or after another
breakpoint occurs.

The following example sets a breakpoint before line 10:

>b 10

When a breakpoint is set, the debugger displays in the command
window the procedure and line number where the breakpoint is
set and the source statement located at that line. If your terminal
supports windowing, the line is marked in the source window with an
asterisk (*). From this point on, the debugger pauses each time line
10 is encountered.

To pause after a speci�c number of occurrences of the breakpoint,
enter the b (breakpoint) command followed by a number. In the
following example, a breakpoint is set at line 10. The debugger
pauses every other time line 10 is encountered.

>b 10 \2

To set a breakpoint at the �rst executable statement in every
debuggable procedure in the program, enter:

>bp

To execute a series of debugger commands before each procedure
is executed, enter the bp (breakpoint procedure) command with
a command list. For example, to track the value of a particular
variable, the following command sets a breakpoint at the beginning of
each procedure and executes three commands (Q , p and c) at each of
these breakpoints.

>bp {Q; p someglobal; c}

In this example, the Q (Quiet) command suppresses the debugger
messages that are normally displayed when a breakpoint is
encountered. The p (print) command displays the current value of

3-20 Using the HP Symbolic Debugger

the global variable someglobal . The c (continue) command resumes
execution of the program.

Using the HP Symbolic Debugger 3-21

You can also set all-procedure breakpoints with the bpt and the
bpx commands. The bpt command sets a trace breakpoint at the
beginning and exit of all procedures. The bpx command sets a
breakpoint at each procedure's exit.

For HP COBOL II programs, use the bpg (breakpoint paragraph) and
the tpg (trace paragraph) commands to set all-paragraph breakpoints.

The procedure and paragraph breakpoints are set for all procedures
and paragraphs. You cannot set individual procedure breakpoints
in this manner. The b (breakpoint) command can be used to set
individual procedure or paragraph breakpoints, which will co-exist
with any all-procedure or all-paragraph breakpoint that may be set
at the same location.

Resuming Execution
After a Breakpoint

Once the debugger pauses for a breakpoint and you have �nished
entering commands at that breakpoint, enter the c (continue)
command:

>c

This causes execution to continue until another breakpoint is
encountered or the program terminates.

Listing Breakpoints To list the breakpoints that are set in the program, enter the lb (list
breakpoints) command as follows:

>lb

When the lb (list breakpoints) command is executed, information
about each breakpoint is displayed. For example, two breakpoints
are shown below. The �rst number on each breakpoint line is
the debugger-assigned breakpoint number, which you use with
other commands (such as db (delete breakpoint)). The number
following count is the number of times the source statement will
be encountered before the program pauses. The breakpoint state
(active or suspended) is listed next, followed by the line at which the
breakpoint is set and the source statement on that line.

Overall breakpoints state: SUSPENDED

1: count: 1 Active sortall: 12: abc += 1;

2: count: 5 Suspended fixit: 29: def=abc >> 4;

3-22 Using the HP Symbolic Debugger

Deleting Breakpoints To delete a breakpoint, enter the debugger-assigned number of the
breakpoint (see the previous section \Displaying Breakpoints") with
the db (delete breakpoint) command.

For example, to delete the breakpoint whose number is 2, enter:

>db 2

If you do not enter the breakpoint number, the breakpoint at the
current line, if any, is deleted. If there is no breakpoint at the current
line, the debugger displays all of the breakpoints.

To delete all breakpoints, enter:

>db *

To delete all-procedure breakpoints (only those breakpoints
set by the bp (breakpoint procedure), bpt (breakpoint trace), or
bpx (breakpoint exit) commands), enter the following respective
commands:

>dp

>Dpt

>Dpx

To delete all-paragraph breakpoints (breakpoints set by the bpg
(breakpoint paragraph) or tpg (trace paragraph) commands), use the
dpg (delete paragraph) command:

>dpg

Using the HP Symbolic Debugger 3-23

Displaying Data Whenever program execution pauses, you can display the contents of
simple variables, arrays, structures and pointers.

For HP COBOL II programs, use the disp (display) command. You
can display simple items, �elds, array elements, and expressions.
Types of items displayed can be edited or non-edited .

The following example displays the variable X :

disp X

For HP FORTRAN 77, HP Pascal, or HP C programs, use the p
(print) command. Various options and formats are available for
greater control over displaying data.

The example below shows how to display the value of the variable fob
in a form that is consistent with the language used (if the variable is
an integer variable, for example, the value is expressed in decimal
form):

>p fob

To display a variable or expression in a hexadecimal format, enter a
print command in a form similar to this:

>p fob\x

To interpret an expression as a long integer, enter the print command
in this form:

>p hanoi\D

To display the next data item using the current format (the format
most recently used) and data item size, enter the print command in
this form:

>p+

This interprets the next sequential data item after the one previously
printed.

To display the next data item using a format di�erent from the
current one, use this form:

>p+ \x

To display the previous data item using the current format and data
item size, enter the print command in this form:

>p-

To display the previous data item using a format di�erent from the
current one, use this form:

>p- \x

p+ and p- are best used to traverse the elements of an array.

To display the variable used with the last command, enter:

>p .

3-24 Using the HP Symbolic Debugger

To display the contents of the location that is 30 bytes ahead of the
last displayed data item in memory (HP C), enter:

>p *(&.+30)

This assumes the speci�ed location begins a data item of the same
type and size.

Using the HP Symbolic Debugger 3-25

Modifying Data When you need to alter the value of a variable, array item or pointer,
use the mov (move) command for HP COBOL II programs. The mov
(move) command requires a source and destination. The source can
be any non-edited �eld, a string literal, a number, a named constant
(\spaces" or \blanks"), or an expressions involving any of these data
elements. The destination can be any non-edited �eld.

The following example sets y to the value of the expression x+24 .

mov x+24 to y

For HP FORTRAN 77, HP Pascal, and HP C programs, use the
p (print) command followed by an expression that contains an
assignment operator. Enter the expression in the same syntax as the
language in which the program is written.

This example changes the value of the variable A1 to 30 (HP C or
HP FORTRAN 77):

>p A1=30

The following example sets the variable j to the value of the
expression j + 17 :

>p j = j + 17

In HP Pascal, this same example is:

>p j := j + 17

3-26 Using the HP Symbolic Debugger

Tracing Function
and Procedure Calls

When a program contains several functions or procedure calls, you
might need to know the sequence of calls that led to the current
point of suspension. Displaying this sequence is called \viewing the
stack". To view the stack, enter the t (trace) command:

>t

0 f2 (i = 3) [t.c: 17]

1 f1 (i = 2) [t.c: 11]

2 main () [t.c: 5]

The debugger lists the current (depth 0) procedure �rst.

Using the HP Symbolic Debugger 3-27

Capturing and
Rerunning a
Debugger Session

If, before a debugging session, you think you might need to retrace
your steps, you can capture the debugger commands you used during
the session. You can save the debugger commands in a �le and \play
them back" during a subsequent session.

To write the debugger commands to a �le, start the debugger using
the -r option. The example below starts the debugger and directs it
to write all commands to the �le acdebug:

XDB;INFO="-r ACDEBUG TEST1P"

To play back the �le in subsequent debugger sessions, enter this
command:

XDB;INFO="-p ACDEBUG TEST1P"

This �le may also be played back from inside the debugger using the
< command:

>< ACDEBUG

3-28 Using the HP Symbolic Debugger

Executing
Commands At Each
Source Line

When you suspect that bugs might be occurring at several places in a
program, or you have a bug that is especially di�cult to track down,
you can direct the debugger to execute one or more commands before
every source statement is executed. For example, you might want to
track the value of one or more variables through a series of detailed
calculations.

The commands that you execute are called assertions. Assertion
command lists must be enclosed in braces.

The following example shows how to display the variables payw8 and
paynet before each source statement is executed:

>a {p payw8; p paynet}

The if command is very useful in assertion and breakpoint command
lists. For example, if paynet should always be less than 23000, but its
value becomes greater, the assertion:

>a {if (paynet >=23000) {x}}

will stop the program when paynet exceeds the legal value.

Using the HP Symbolic Debugger 3-29

Using Macros Macros are words that represent one or more debugger commands.
You create macros by entering names for them and specifying
the commands for which they stand. Macros are very useful for
representing a group of commands that you execute often. You do
not have to re-enter the commands; just enter the macro name for
them.

The following command de�nes the macro xyz . Every time xyz is
used, the commands b 10, b 20, lb and r; info="test1p" are
executed:

>def xyz b 10 {}; b 20 {}; lb; r ; info="test1p"

The braces (fg) indicate that no command list is used with the
commands. This is required if you want to have a breakpoint
command followed by another command on the same line. Without
the braces, the debugger would assume the rest of the line to be the
breakpoint's command list.

Macro expansion can be enabled or disabled with the tm (toggle
macros) command. Initially, macro expansion is disabled.

3-30 Using the HP Symbolic Debugger

Altering the
Execution Sequence

When the program is paused at a breakpoint or you are stepping
through it, you can change the normal execution sequence of the
program and cause it to resume at a di�erent line. To resume
execution of a program at a speci�c line, use the g (goto) command
with the appropriate line number. The new line must be in the same
procedure or paragraph as the current one.

The following example directs the debugger to change the next line
to execute to be line 600:

>g 600

Use a continue or step command to begin execution at line 600.

>c

Using the HP Symbolic Debugger 3-31

Getting Help When you need help with the format of a debugger command or
can't remember which command performs a particular function, use
the h (help) command as follows:

>h

Help text is displayed one window at a time when the more feature
is activated. You can use the terminal keys PgUp, PgDn, Home,
End and the �CTRL�arrow keys (or the equivalent scroll keys on your
terminal) to scroll the command window. The debugger displays
enough lines to �ll the command window then displays --More--at
the bottom.

Use one of the following commands to continue.

�SPACE BAR� Displays one more window-full.

�RETURN� Displays one more line.

q Quits scrolling and ignores the rest of the help
information until another debugger prompt is issued.

If the more feature is suspended, help text is displayed in a
continuous stream. To temporarily suspend scrolling, press �CNTL�S.
To resume the display, press �CNTL�Q.

Note You can activate and suspend the more feature with the am (activate
more) and sm (suspend more) commands. For more information, see
the listings for these commands in chapter 4 \HP Symbolic Debugger
Commands".

3-32 Using the HP Symbolic Debugger

4

HP Symbolic Debugger Commands

This chapter describes the commands recognized by the HP Symbolic
Debugger. These commands are arranged by function in alphabetical
order and can be entered in short form (abbreviated) or long form
(spelled out). If you use the long form, space between command
words is optional.

Entering Commands The HP Symbolic Debugger keeps track of the current �le, procedure,
line and data locations of the executing program. The current
�le, procedure, and line are always displayed in the source and
location windows, but their values do not necessarily correspond to
the point at which execution is suspended. However, the debugger
always knows at any point in time where to continue execution. For
example, you can stop execution to view a di�erent source �le, then
continue where you left o�.

Most debugger commands assume that the command applies to the
current location and its scope. For example, if you stop in procedure
abc and then view procedure def and ask for the value of a local
variable that exists in both, the debugger returns the value of that
variable as it exists in def .

Note def must be a caller of abc, or the variable must be statically
declared, for its value to be meaningful.

The general format of most debugger commands is:

command [location] [command arguments] [command-list]

Commands are one- or two-word names or abbreviations for these
names. A location is a particular line, procedure or �le. (It can also
be an address in some instances). Command arguments are explained
in the description of each command, in this chapter and a command
list is a sequence of commands separated by semicolons.

HP Symbolic Debugger Commands 4-1

Using Uppercase and
Lowercase

Some HP Symbolic Debugger commands are case-sensitive. The two
cases are treated di�erently by the debugger. For example:

s or step Lowercase \s" tells the HP Symbolic Debugger to
single step to the next executable statement and step
into a procedure, if necessary.

S or Step Uppercase \S" tells the HP Symbolic Debugger single
step to the next executable statement and step over a
procedure call.

4-2 HP Symbolic Debugger Commands

Abbreviating
Commands

You can enter commands in their complete spelled-out form (long
form) or in an abbreviated form (short form). Generally, you can
abbreviate one-word commands using the �rst character of the
word. Abbreviate two-word commands using the �rst character of
each word in the command (do not leave a space between the two
characters). If you use the long form, you can leave a space between
words. For example:

�
w

window

�
number Changes the size of the source

window.

�
db

delete breakpoint

�
�
number

�
Deletes the selected breakpoint
number.

Some debugger commands are not abbreviated by following the
previous rules. Refer to the individual command syntax in this
chapter to �nd abbreviations for these commands.

Entering Variable
Names

When using HP Symbolic Debugger, use the same names for
variables as are used in the source program. Global variables may
be preceded by a colon to distinguish them from local variables of
the same name. In the following example, the global variable gvar is
preceded by a colon to distinguish it from a local variable gvar .

p :gvar

Note Use of variable names in debugger commands is normally case
insensitive; for example, gvar is the same variable as GVAR. This
may be changed with the tc (toggle case) command.

In addition to program variables the debugger allows you to use
special variables. Special variables are used like regular program
variables, but are maintained by the debugger. You assign values to
them using the assignment operator of the language you're using.
You can only assign integer values to special variables.

Special variables have names that are pre�xed by a $. Some special
variable are prede�ned and have special meaning. Other special
variables are user-de�ned, variables to which the user can assign
values. Special variable names can be up to 98 characters long, but it
is recommended that you limit the names of special variables to 80
characters long for display purposes. The �rst time you reference
special variables, they are created and set to their initial values.
Special variables can be used for the duration of the debugging
session or you can rede�ne them.

For example, if you enter the following command (in HP FORTRAN
77 or HP C),

HP Symbolic Debugger Commands 4-3

p $xyz = 3*4

the special variable $xyz is created and assigned the value of 12.

4-4 HP Symbolic Debugger Commands

To view special variables (except hardware registers), use the ls (list
specials) command. There are several special variables that are
available; all but user-de�ned special variables are prede�ned by the
debugger. The special variables are:

$var
Represents user-de�ned variables. They are of type long integer
and do not take on the type of any expressions assigned to them.

Hardware Registers

$r0 . . . $r31 General Registers
$f0 . . . $f31 Floating Point Registers
$pc Program Counter
$sp Stack Pointer
$dp Data Pointer
$arg0 . . . $arg3 Argument Registers
$ret0 . . . $ret1 Return-value Registers

Represents the HP-PA registers. Some registers have both
a register number and a \register use" name. For example,
$arg3 and $r23 refer to the same register. The lr (list registers)
command provides a list of accessible registers and their contents.
See the section \Data Viewing and Modi�cation Commands" in
this chapter for more information. For example:

>p $sp\x
$sp = 0x68023208

For more information on the HP-PA registers, refer to the HP
Precision Architecture and Instruction Reference Manual and the
HP Procedure Calling Conventions Manual .

$result

References the return value from the last procedure called from the
command line. $short and $long are used as other ways of viewing
$result . Where possible, $result takes on the type of the procedure.
$result is only meaningful if an integer value is returned.

$lang

Allows you to view and modify the current source language
ag
for expression evaluations. Valid values for $lang are COBOL,
FORTRAN , Pascal , C , and default. For example, if $lang is set to
C, the debugger expects HP C syntax, regardless of the language
you are debugging.

When $lang is set to \default", any language expression syntax is
expected to be the same as the source language of the procedure
currently being viewed.

$line
Displays the current source line number (the next statement to be
executed).

$malloc

Allows you to see the amount of memory (in bytes) currently

HP Symbolic Debugger Commands 4-5

allocated by the debugger for its own use. This does not re
ect
memory-use of the program being debugged.

$step

Allows you to see and change the number of machine instructions
the debugger steps through while in a non-debuggable procedure,
before setting an uplevel breakpoint and free-running to it. (this is
where a breakpoint is set immediately after the return location in
the non-debuggable procedure's caller). This situation occurs only
when the program is executing in a single step or assertion mode.

4-6 HP Symbolic Debugger Commands

Entering Expressions An expression is a symbolic or mathematical representation.
Expressions consist of variables, constants and operators, or any
syntactically correct combination of these items. The HP Symbolic
Debugger evaluates user expressions as if they are part of the
high-level language being debugged and, therefore, uses the same
operators and assignment rules as the high-level language.

See Appendices B, C, D, and E for a list of operators that you can
use with each language. Note that the symbolic debugger tries as
much as possible to let you write expressions with the same syntax
as the current language. You can change the current language by
setting the value of the special variable $lang . By default, this
variable is set to the language of the program you are debugging.

The $in operator, a special unary operator, evaluates to true (1) if
the operand is a debuggable procedure and if $pc (the current child
process program location) is in that procedure; otherwise, $in is false
(0). For example, $in load_month_table is true if the child process
is currently suspended in load month table. Also, $addr , the unary
operator for retrieving the address of a variable and $sizeof , another
unary operator for retrieving the byte size of a variable, are available
for all languages.

The rules in each language for character and string constants are as
follows:

For HP COBOL II, HP FORTRAN 77 and HP Pascal, string
constants are represented by one or more characters, enclosed by
single quotation marks (') or double quotation marks
(").

For HP C, single quotation marks enclose single characters for
character constants. Double quotation marks enclose zero or more
characters for string constants.

Character and string constants can contain standard backslashed
escapes as understood by the HP C compiler, including those
shown in table 4-1.

HP Symbolic Debugger Commands 4-7

Table 4-1. Escape Sequences

Character Description

backspace nb

form feed nf

carriage return nr

horizontal tab nt

vertical tab nv

backslash nn

single quote n'

double quote n"

bit pattern nnnn (octal digits)

new line nn

4-8 HP Symbolic Debugger Commands

Expressions can also contain the symbolic constants listed in table
4-2.

Table 4-2. Symbolic Constants

Language Constants

HP COBOL II SPACES

ZEROS

HP Pascal NIL

MAXINT

MININT

TRUE

FALSE

HP FORTRAN 77 .TRUE.

.FALSE.

HP C NONE

If you do not have an active child process, you can only evaluate
expressions containing constants.

Floating point constants must be of the form:

digits.digits

2
666666666664

e

E

d

D

l

L

+

-

3
777777777775

digits

For example, any of the following is in the correct form:

1.0

3.14e8

26.62D-31

One or more leading digits is required to avoid confusion with .
(dot). A decimal point and one or more following digits is required to
avoid confusion for some command formats. If the exponent does not
exactly �t the pattern shown, it is not taken as part of the number,
but as separate tokens. The d and D exponent forms are allowed for
compatibility with HP FORTRAN 77. The l and L exponents forms
are allowed for compatibility with HP Pascal.

HP Symbolic Debugger Commands 4-9

In the absence of a su�x character, the constant is assumed to be of
type double (8 byte IEEE real).

4-10 HP Symbolic Debugger Commands

Expressions approximately follow the HP C language rules of
promotion. In other words, char, short, and int become long
and float becomes double. If either operand is a double,
oating
math is used. If either operand is unsigned, unsigned math is used.
Otherwise, normal (integer) math is used. Results are then cast to
proper destination types for assignments.

If a
oating point number is used with an operator that does not
normally permit it, the number is cast to long and used that way.
For example, the HP C binary number ~ (bit invert) applied to the
constant 3.14159 is the same as ~3.

Note that = means assign in all languages but HP Pascal and HP
COBOL II; to test for equality, use .EQ. for HP FORTRAN 77 and
== for HP C.

In HP Pascal, = is a comparison operator; use := for assignments.
For example, suppose you invoked the debugger on a C program,
then set $lang to Pascal using this command:

p $lang = Pascal

If you want to return to HP C, you must use the := operator as
follows:

p $lang := C

If you invoked the debugger on an HP COBOL II program, then you
would use the move command as follows to return to HP Pascal:

p move Pascal to $lang

You can dereference any constant, variable, or expression result using
the HP C * operator. If the address is invalid, an error is given.

Type casting is allowed. For simple types, the syntax is identical to
HP C. For example:

(short) size

(double *) mass_ptr

These casts are limited to char, short, long, int, unsigned, float,
double, approximate combinations of these keywords, and single level
pointer types. Also supported are structure and union pointer type
dereferences. For example:

bat_ptr = &bat

(struct fob) &bat

(struct fob) bat_ptr

Both of these casts treat bat as a struct of type fob during printing.
Structure and union pointer casts can only include the keyword
struct or union and an appropriate tag. No pointers (*) are allowed.
The argument of the cast is simply treated as an address.

HP Symbolic Debugger Commands 4-11

Whenever an array variable is referenced without giving all its
subscripts, the result is the address of the lowest element referenced.
For example consider the following declared arrays:

HP FORTRAN 77 x(5,6,7)

HP Pascal x[1..5,2..6,3..7]

HP C x[5][6][7]

Referencing it simply as x is the same as the following:

HP FORTRAN 77 x(1,1,1)

HP Pascal x[1,2,3]

HP C x

If a not-fully-quali�ed array reference appears on the left side of an
assignment, the value of the right-hand expression is stored into the
element at the address speci�ed.

String constants are stored in a bu�er in the xdbend.lib.sys �le which
you link with your program. The debugger starts storing strings at
the beginning of this bu�er, and moves along as more assignments
are made. If the debugger reached the end of the bu�er, it goes back
and reuses it from the beginning. This does not usually cause any
problems. However, if you use very long strings, or if you assign a
string constant to a global pointer, problems could arise.

Entering Procedure
Calls

You can include calls to procedures in expressions. You can call
any executable procedure from the command line whether or not it
was compiled with debugger information. You can use the lp (list
procedures) command to list procedures in an executable program
�le. The following command evaluates an expression that calls the
procedure ref and uses its return value:

p $xyz = $abc*(3 + ref (ghi - 1, jkl, "Hi Folks"))

An argument list must follow each procedure call, even if it is empty.
When a procedure is called, the following might occur:

The HP Symbolic Debugger has one active command line at a
time. During command line procedure calls, breakpoints reached
during program execution are treated as usual (by suspending
execution as speci�ed). If execution stops in a called procedure,
the remainder of the old command line is ignored and you are
informed of this.

If you try to call a procedure when the child process is not active,
then a child process is started by the debugger. This process
is similar to using the single step command after starting the
debugger.

4-12 HP Symbolic Debugger Commands

Window Mode Commands

Window Mode
Commands

Window mode commands let you control what is displayed on the
screen. The window mode commands are:

fr (
oating point registers)
gr (general registers)
sr (special registers)
td (toggle disassembly)
ts (toggle screen)
u (update)
U (Update)
w (window)

The source window displays source lines in a program. In
disassembly mode, the top �ve lines of the screen show the
oating
point, general or special registers (the register window) followed
by assembly language instructions (the assembly window). In
split-screen mode, the top part of the screen displays source code
followed by the corresponding assembly language instructions.

fr (floating point
registers)

�
fr

floating point registers

�

Displays the HP-PA
oating point registers in the register window
when the debugger is in disassembly mode. Each register appears as
a two-word pair (two sets of eight hexadecimal digits). When the
value of a register changes, that register is highlighted until after the
next command. Use the special variables $f0 through $f15 to modify
these registers.

Caution Modi�cation of
oating point registers is not recommended during
normal debugger usage.

For more information about the HP-PA
oating point registers,
see appendix F \Registers Displayed by HP Symbolic Debugger in
Disassembly Mode" or refer to the HP Precision Architecture and
Instruction Reference Manual .

HP Symbolic Debugger Commands 4-13

Window Mode Commands

gr (general registers)
�
gr

general registers

�

Displays the HP-PA general registers in the register window when
the debugger is in disassembly mode. When the value of a register
changes, that register is highlighted until after the next command.
Use the debugger's special variables $r0 through $r31 (or equivalent
usage names such as $arg3) to modify these registers.

When displaying the general registers or the
oating point registers,
the line dividing the registers from the assembly code displays the
current space number, pc o�set, privilege level, sar and psw . The
psw is displayed as a string of letters, with each letter representing
one
ag bit in the psw . For example, b stands for branch taken

trap and n stands for nullify. A lower case letter indicates that
the bit is OFF while upper case indicates it is ON . You cannot
modify the sar or psw registers. For more information about the
HP-PA general registers, see appendix F \Registers Displayed by
HP Symbolic Debugger in Disassembly Mode" or refer to the HP
Precision Architecture and Instruction Reference Manual .

sr (special registers)
�
sr

special registers

�

Displays the special registers (space and control) when the debugger
is in disassembly mode. When the value of a special register changes,
that register is highlighted until after the next command. You
cannot modify the special registers. For more information about the
HP-PA special registers, see appendix F \Registers Displayed by
HP Symbolic Debugger in Disassembly Mode" or refer to the HP
Precision Architecture and Instruction Reference Manual .

td (toggle disassembly)
�
td

toggle disassembly

�

Toggles the source window between disassembly mode and source
mode. When in disassembly mode, this command displays the
assembly language instructions that correspond to the source code as
well as one of the three sets of registers (
oating point, general or
special).

When in disassembly mode, the single step command steps one
machine instruction at a time (rather than one source statement at a
time). The assembly language display of each instruction consists of:
the source line number, the address in hexadecimal, the address in
the form of the nearest label plus the o�set and the actual symbolic
assembly instruction and operands.

4-14 HP Symbolic Debugger Commands

Window Mode Commands

ts (toggle screen)
�
ts

toggle screen

�

Toggles the source window between all source or all assembly and
split-screen mode. In split-screen mode, the source window displays
both source code and corresponding assembly instructions. Single
stepping occurs at either the source statement or the assembly
instruction level, depending on the part of the split-screen in which
you are single stepping. The stepping mode is displayed in the line
separating the source and assembly windows.

u (update)
�
u

update

�

Updates the source and location windows to show the current
location of the user program. This command is useful in an assertion.
For example, this command:

a
�
u
	

will continuously update the screen to show the execution of the
program as it runs.

U (Update)
�
U

Update

�

Clears the screen of data and redraws the screen. Use this command
if the screen gets corrupted by a system-wide announcement that
overwrites your session.

w (window)
�
w

window

�
number

If your terminal supports windowing, this command changes the size
of the source window to the number of lines that you specify. Enter
a number from 1 to 21 (the default is 15). Changing the size of the
source window also changes the size of the command window.

If your terminal does not support windowing, this command prints
the speci�ed number of lines surrounding the current line. If no
number is speci�ed, the last number used with the w (window)
command is used again. You can press �RETURN� to repeat this
command. The next speci�ed number of lines will be displayed.

HP Symbolic Debugger Commands 4-15

File Viewing
Commands

The �le viewing commands let you view program source code. The
�le viewing commands are:

+
-
/
?
D (Directory)
ld (list directories)
lf (list �les)
L (Location)
n (next)
N (Next)
v (view)
V (View)
va (view address)

+ +
�
number

�
Moves forward in the current �le the speci�ed number of lines (or the
speci�ed number of instructions in disassembly mode). If you do not
enter a number, the next line (or instruction) becomes the current
line (or instruction).

You can press a �RETURN� to repeat this command. If your terminal
supports windowing, a new group of lines are displayed. If it does not
support windowing, only the new current line and its line number are
displayed.

- -
�
number

�
Moves the speci�ed number of lines (or the speci�ed number of
instructions in disassembly mode) backward in the current �le and
updates the windows. The default is one line (or instruction) before
the current line (or instruction).

You can press �RETURN� to repeat this command. If your terminal
supports windowing, a new group of lines (or instructions) are
displayed. If it does not support windowing, only the new current
line and its line number are displayed.

/ /
�
string

�
Searches forward in the �le for the speci�ed string. Searches wrap
around the end of the �le. If you do not enter a string, the last one
that you entered is used again. The string must be literal; wild cards
are not supported.

You can select case sensitivity for string searches with the tc (toggle
case) command. Initially, searches are case insensitive.

4-16 HP Symbolic Debugger Commands

File Viewing Commands

? ?
�
string

�
Searches backward in the current �le for a speci�c pattern. Searches
wrap around the beginning of the �le. If you do not enter a string,
the last search string is used again. The string must be literal; wild
cards are not supported.

You can select case sensitivity for string searches with the tc (toggle
case) command. Initially, searches are case insensitive.

D (Directory)
�
D

Directory

�
"dir"

Adds the directory that you specify to the list of directory search
paths for source �les. You can add more that one directory, but only
one can be added at a time. Directories are searched in the order
that they are added.

ld (list directories)
�
ld

list directories

�

Lists all the alternate directories that are searched when the
debugger tries to locate the source �les.

lf (list files)
�
lf

list files

��
string

�

Lists all source �les containing executable statements that were
compiled to build the executable �le. Code address ranges are shown
for each �le. Only �les containing executable code are shown. If
a string is speci�ed, only those �les beginning with this string are
listed.

This command also lists any include �les containing executable
code with their code addresses. A �le can appear several times if it
contains include �les. An example of the output is:

0: STDIO.PUB.C 0x00001834 to Ox00002524

1: TREE1.SRC.PROJECT 0x00002530 to 0x00003210

2: TREEGLOBS.PUB.PROJECT 0x00003344 to 0x00004002

3: TREE2.NEWSRC.PROJECT 0x00004040 to 0x00006832

HP Symbolic Debugger Commands 4-17

File Viewing Commands

L (Location)
�
L

Location

�

Displays in the command window the current �le, procedure, line
number and the source text for the current point of execution. This
command allows you to determine where you are in the program and
is useful when included in an assertion or breakpoint command list.
For example:

>L

doproc.c: eval_q: 8: if (qp != NULL) {

You cannot press �RETURN� to repeat this command.

n (next)
�
n

next

�

Repeats the previous search (/ or ?) command.

N (Next)
�
N

Next

�

Repeats the previous search (/ or ?) command, searching in the
opposite direction.

4-18 HP Symbolic Debugger Commands

File Viewing Commands

v (view)
�
v

view

��
location

�

Displays one source window forward from the current source window.
One line from the previous window is preserved for context. If your
terminal does not support windowing, only the new source line is
displayed.

A location can be a particular line, procedure, or any text �le,
whether used in the program or not. For COBOL, a location can
also be a paragraph or section. Using the location option causes the
speci�ed location to become the current location, and the source at
the speci�ed location is then displayed in the source window. The
source location window is adjusted accordingly.

If a procedure (proc) name is speci�ed for the location, the
procedure's �rst executable line becomes the current line.

You can press �RETURN� to repeat this command. If a location was
given, subsequent �RETURN�'s move forward from that point.

Note Filenames entered with the v (view) command cannot be quali�ed by
a path name. This means the debugger must be able to determine
where the �le is either by using the -d option when running the
debugger or by using the D (Directory) command. Note that the
debugger uses the same pathnames for �nding source as were used
during compilation.

V (View)
�
V

View

��
depth

�

Displays the text for the procedure at the depth on the program
stack that you specify. If you do not enter a depth, the current
active procedure is used. This command is normally used to view
the current point of suspension when the current viewing location is
elsewhere in the program.

If your terminal supports windowing, the new lines are displayed in
the window. Pressing �RETURN� lets you view successive windows.
If your terminal does not support windowing, the current line
(including its line number and description) is displayed. Pressing
�RETURN� lets you view the next line in sequence.

HP Symbolic Debugger Commands 4-19

File Viewing Commands

va (view address)
�
va

view address

�
address

Displays in the source window assembly code at the speci�ed address.
A speci�ed address can be an absolute address or symbolic code label
with an optional o�set (for example, start + 0x20). This command
is used in disassembly mode only.

4-20 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Data Viewing and
Modification
Commands

Data viewing and modi�cation commands allow you to view program
data in a variety of formats and change the values of variables. The
data viewing and modi�cation commands are:

disp (display)
l (list)
lc (list common)
lg (list globals)
ll (list labels)
lm (list macros)
lp (list procedures)
lr (list registers)
ls (list specials)
mov (move)
p (print)

disp (display)
�
disp

display

�
expression

Used only with HP COBOL II programs to print COBOL variables
or expressions. Simple items, �elds, array elements, and expressions
can be displayed. Items displayed can be of type \edited" or
\non-edited". For example:

>disp z of y of x of w(3,7,11)

0x40003028 345.67

This command is equivalent to the p (print) command for other
source languages.

HP Symbolic Debugger Commands 4-21

Data Viewing and Modification Commands

l (list)
�
l

list

��
proc

�
:depth

� �

Lists all parameters and local variables of the current procedure. You
can optionally specify any active procedure and its depth on the
stack. If a procedure name is given without a depth, then the most
recent invocation of that procedure is used. If an invocation of that
procedure other than the most recent is desired, then a depth must
be speci�ed. The following illustrates the use of this command.

If the current stack trace (generated with the command t 5) is:

0 groucho() [marx.c:23]

1 harpo() [marx.c:70]

2 chico() [marx.c:55]

3 harpo() [marx.c:73]

4 main() [marx.c:16]

and groucho is the procedure currently viewed (where execution is
currently suspended), then:

l Lists the local variables and parameters of groucho.

l harpo Lists the local variables and parameters of harpo at
level 1 on the stack.

l harpo:3 Lists the local variables and parameters of harpo at
level 3 on the stack.

The nn (normal) format is used to display the procedures,
parameters, and local data except for arrays and pointers, which are
displayed as addresses.

4-22 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

lc (list common)
�
lc

list common

��
string

�

Used when debugging an HP FORTRAN 77 program, this command
displays HP FORTRAN 77 common blocks and their associated
variables. If a string is speci�ed, only those common blocks whose
names begin with that string are printed; otherwise, all common
blocks within the current subroutine or function are printed.

Sample output is:

>lc

COMMON /COM1/

BR4 = 0

INT1 = 0

BR8 = 0

BI4 = -2097152000

BI2 = -32000

BCX8 = 0

BC1 = '\000'

BL4 = .FALSE.

lg (list globals)
�
lg

list globals

��
string

�

Lists all global variables and their values. If a string is speci�ed, only
those global variables whose names begin with this string are listed.

ll (list labels)
�
ll

list labels

��
string

�

Lists all labels and program entry points known to the linker. If a
string is speci�ed, only those symbolic addresses with this pre�x are
used.

lm (list macros)
�
lm

list macros

��
string

�

Displays all user-de�ned macros and their de�nitions. If a string is
speci�ed, only those macros whose names begin with this string are
listed.

HP Symbolic Debugger Commands 4-23

Data Viewing and Modification Commands

Sample output is:

>lm

pheadtuti ==> p flavor:list->head.tutifruti
unS ==> bu\t {}; c

Overall macros state: ACTIVE

lp (list procedures)
�
lp

list procedures

��
string

�

Lists all procedure names and their aliases as well as their locations
in memory. If a string is speci�ed, only those procedures whose
names begin with this string are listed.

Sample output is:

0: main 0x00001218 to 0x000013c0

0: _MAIN_

1: proc1 0x000013c8 to 0x00001438

2: proc2 0x00001440 to 0x0000148c

3: _end_ 0x000047e8 to 0x000047fc

Note The following notes apply to when using the lp (list procedures
command):

Only subprograms are shown when using this command with HP
COBOL II subprograms.

The procedure name main is used as the alias name for the
main program in all supported languages. Do not use it for any
debuggable procedures.

For code that is not debuggable or does not have a corresponding
source �le, the debugger displays unknown for the unknown �le
and procedure names. The debugger cannot show code locations or
interpret parameter lists and so on. However, procedure names are
provided for most procedures, even if not debuggable.

lr (list registers)
�
lr

list registers

��
string

�

Lists all registers and their contents. This command displays all
general and
oating point registers, as well as the program counter,
stack pointer registers, and other registers. If a string is speci�ed,
only those registers beginning with this string are listed (the $ is
signi�cant). All register values are printed in hexadecimal.

4-24 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

ls (list specials)
�
ls

list specials

��
string

�

Lists all special variables and their values. Registers are not listed. If
a string is speci�ed, only those special variables whose names begin
with this string are listed.

Sample output is:

$lang = COBOL (default)

$line = 49

$signal = 0

$malloc = 43008

$step = 100

$long = 0

$short = 0

$result = 0

$result is normally interpreted to be the same type as the last
procedure call (if the call returns a structured type, $result defaults
to integer). Note that there are two alternate ways of looking at
$result , as a 32 bit integer ($long) or as a 16 bit integer ($short).

You can also list special variables de�ned by usage. For example:

p $var = 10

de�nes the variable $var to be equal to 10. The ls (list specials)
command will also display $var and its current value.

mov (move)
�
mov

move

�
expr1 to expr2

Used only with HP COBOL II programs to modify variables. The
�rst expression is the source; the second is the destination. The
source and destination cannot be an edited �eld. The source can be
any non-edited COBOL �eld, a string literal, a number, or a named
constant (such as SPACES or BLANKS). The destination can be any
non-edited COBOL �eld. For example:

>mov zeros to n-comp-03-u

N-COMP-03-U = .000

This command is equivalent to print expr2=expr1 in other source
languages.

HP Symbolic Debugger Commands 4-25

Data Viewing and Modification Commands

p (print) �
p

print

�8<
:
expr

�
?format

�
�
+

-

�� �
\
�
format

�
9=
;

Displays and optionally modi�es program data. You can choose to
display data in one of the formats shown in tables 4-3 and 4-4. The
p (print) command is also used to evaluate arbitrary expressions
involving constants and/or program data.

A format has the syntax:

�
count

��
formchar

	�
size

�
Formchar , which is required, speci�es the actual format in which
you choose to display the data. Count is the number of times to
apply the format. Size is the number of bytes that are formatted for
each data item, and overrides the default size for the given format.
The count must be a decimal, octal, or hexadecimal number. The
size must be a decimal number or the letters b, s, and l which are
prede�ned sizes of 1 byte (8 bits), 2 bytes (short), and 4 bytes (long)
respectively. For example:

>p abc\4x2

prints four two-byte numbers in hexadecimal starting at the address
designated by the variable abc. If abc is an array, you need to specify
a subscript if you want to see the contents of consecutive array
elements. For example:

>p abc[5]\4n

will display four elements of array abc starting with element 5.

Table 4-3 lists the possible data formats and corresponding
formchars. Note that there is usually a di�erence between a
lowercase and uppercase character.

For example, the d and D formats print in short and long decimal:

d Displays 16 bits

D Displays 32 bits

Short and long form apply only to the following formats:

Short Long

d D
e E
f F
g G
o O
u U
x X

4-26 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Many of the the data formats have a default size if the size is not
given. For example, X has a default size of four bytes. There are
also some shorthand notations for size . These shorthand notations
are shown in table 4-4. Shorthand notations can be appended to
formchar instead of a numeric size. For example:

xb

prints one byte in hexadecimal.

There is also a default for the format, if the format is not speci�ed.
For example: D is the default for a long integer variable or �eld,
X is the default for a pointer or array variable or �eld, and S is
the default for a structure variable. The n format speci�es the
default. In general, if the expression describes a named data object,
the debugger will display its value in a manner consistent with the
object's declared type, even if it is a structured type. if the debugger
cannot determine the type of an expression or data object, X is used.

The following example prints a dynamically allocated C structure
that is local to procedure
avor .

>p *flavor:list->head

0x68023004 struct {

chocolate = 1597845365;

tutifruti = 2.21414e-10;

}

HP Symbolic Debugger Commands 4-27

Data Viewing and Modification Commands

Table 4-3. Data Viewing Formats

Formchar Description

a Prints a string using the expression as the address of the �rst
byte.

(b|B) Prints a byte in decimal.

(c|C) Prints a character.

(d|D) Prints in decimal as an integer or long integer, respectively.

(e|E) Prints in e
oating point notation as a
oat or double,
respectively. (4 bytes, 8 bytes)

(f|F) Prints in f
oating point notation as a
oat or double,
respectively.

(g|G) Prints in g
oating point notation as a
oat or double,
respectively.

n Prints in normal (default) format, based on the type. (if
known)

(o|O) Prints the expression (expr) in octal as an integer or long
integer, respectively.

p Prints the name of the procedure containing the given address.
(expr)

s Prints a string using an expression as the address of a pointer
to the �rst byte. In HP C, this is the same as specifying
*exprna.

S Prints a formatted dump of structures, �elds and their values.
The expression (expr) must be the address of a structure, not
the address of a pointer to a structure.

t Shows the type of the expression (expr), usually a variable or
procedure name.

(u|U) Prints the expression (expr) in unsigned decimal as an integer
or long integer. If the quantity is known to be a full word, u
gives the same result as U .

(x|X) Prints in short and long hexadecimal, respectively. If the
quantity is known to be a full word, x gives the same result as
X .

Table 4-4. Shorthand Notation for Size

Mnemonic Actual Size

b 1 byte (8 bits)

s 2 bytes (16 bits)

l 4 bytes (32 bits)

4-28 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Use the nformat option to display the value of the expression in a
speci�c format. For example:

>print abc\x

prints the contents of abc in hexadecimal. If a format is not given,
the expression is displayed in a format consistent with the type of the
expression. For example:

>print (abc*3/25)+2

prints the results of evaluating the given expression using the current
value of abc in decimal. Use the ?format option to print the address
of the evaluated expression in the selected format. For example:

>print abc?o

prints the address of abc in octal. If the expression is not a named
data item, ? is equivalent to n.

Display absolute addresses with the p (print) command when you are
debugging a program with no debugger information. For example:

>p *0xC0000348

or

>p *($sp-36)\x)

p+ prints the next element. Based on the size of the last item
displayed, p+ increments the current data address by the size of the
previous format and then displays the contents of memory starting
at the new address, using the format if it is supplied, or the previous
format, if not supplied. This command is useful for displaying
successive elements of an array. The initial p (print) command can
determine the array's format by its type.

p- prints the previous element. Based on the size of the last item
displayed, p- decrements the current data address by the size of the
previous format and then displays the contents of memory starting
at the new address, using the format if it is supplied, or the previous
format, if not supplied.

The p (print) command is also used to modify the value of a
variable. Modi�cation of variables is done by using the assignment
operator in the expression (= in HP C, HP FORTRAN 77, and HP
COBOL II, or := in HP Pascal). For example:

>p fob=7

In the case of an assignment, the debugger will also show the name of
the variable being modi�ed or the address used if the expression is
not a simple name.

HP Symbolic Debugger Commands 4-29

Data Viewing and Modification Commands

Here are some symbol table dependencies:

1. When you try to display a variable which is an HP FORTRAN
77 format label, an HP Pascal �le-of-text, or an HP Pascal set,
with no display format or with normal format (nn), the value is
shown as fformat-labelg, f�le-of-textg, or fsetg, respectively. You
can use other formats, such as nx , to display the contents of such
variables.

2. When a compiler does not know array dimensions, such as for
some HP FORTRAN 77 and HP C array parameters, it uses
0:MAXINT or 1:MAXINT as appropriate. The nt format shows such
cases with [] (no bounds speci�ed), and subscripts from 0 (or 1)
to MAXINT are allowed in expressions.

3. Even though the symbol table supports C structure, union, and
enumeration tags, C typedefs, and Pascal types, the debugger does
not know how to search for them, even for the nt format. They
are \invisible".

4. Some variables are indirect, so a child process must exist in order
for the debugger to know their addresses. When there is no child
process, the address of any such variable is shown as 0xfffffffe.

4-30 HP Symbolic Debugger Commands

Stack Viewing Commands

Stack Viewing
Commands

Stack viewing commands trace the stack of a program. The stack
viewing commands are:

t (trace)

T (Trace)

Figure 4-1 illustrates the stack depth of a program and shows that A
called B, B called C, C called D, D called E, E called F, and program
execution is currently suspended in F. The procedure at which the
program is currently stopped is always at depth zero.

Figure 4-1. Stack Depth

HP Symbolic Debugger Commands 4-31

Stack Viewing Commands

t (trace)
�
t

trace

��
depth

�

Prints a stack trace. You can optionally specify a depth. The
default depth is 20 levels. If an optional depth is supplied, only the
procedures up to this depth in the stack are displayed. For each
procedure in the stack trace, the following is displayed:

Stack depth

Name of procedure at that depth

Name of procedure parameters and their values (printed in normal
(nn) format)

Source �le and line number where it is suspended (depth 0) or
where a call to the next procedure (at the next lowest depth)
occurred.

The following example is a NON-COBOL trace.

>t

0 icecream (i = 7) [ice.c: 8]

1 flavor (year = 1988) [flavors.c: 19]

2 main () [main.c: 59]

The following example is an HP COBOL II trace. Note that this
trace shows both stacked subprograms as well as paragraphs.

>t 3

0 PROGRAM-9 () [LCBTST21.V.JOE: 74]

0 Paragraph PARA-9x2

1 Paragraph PARA-2y

1 PROGRAM-8 () [LCBTST21.V.JOE: 48]

0 Paragraph PARA-1C

2 PROGRAM-7 () [LCBTST21.V.JOE: 43]

0 Paragraph EVAL-CK

4-32 HP Symbolic Debugger Commands

Stack Viewing Commands

T (Trace)
�
T

Trace

��
depth

�

Prints a stack trace. You can optionally specify a depth . The
default depth is 20 levels. If an optional depth is supplied, only the
procedures up to this depth in the stack are displayed. For each
procedure in the stack trace, the following is displayed:

Stack depth

Name of procedure at that depth

Name of procedure parameters and their values (printed in normal
(nn) format)

All local variables and their values (printed in normal (nn) format)

Source �le and line number where execution is suspended (depth
0) or where a call to the next procedure (at the next lowest depth)
occurred.

All arrays, structures, and pointers are shown as addresses. Only the
�rst word of a structure is shown.

The following example is a NON-COBOL Trace.

>T

0 icecream (i = 7) [ice.c: 8]

c = 00000000

1 flavor (year = 1988) [flavors.c: 19]

harpo = 1995

list = 0x680235bc

2 main () [main.c: 59]

i = 3

j = 2987

k = 1988

icecream = 0x00000000

buff = 0x6802377e

When displaying a Trace of an HP COBOL II program, paragraph
\stacking" is shown within the subprograms called (if any). Variables
local to a given subprogram are shown. For example:

>T
0 PROGRAM-9 () [LCBTST21.V.JOE: 74]

0 Paragraph PARA-9x2

1 Paragraph PARA-2y

TALLY = 0

Y = 427

1 PROGRAM-8 () [LCBTST21.V.JOE: 48]

0 Paragraph PARA-1C

2 PROGRAM-7 () [LCBTST21.V.JOE: 43]

0 Paragraph EVAL-CK

CK-LBL = 6536-A

HP Symbolic Debugger Commands 4-33

Status Viewing
Command

The status viewing commands display the state of the debugger and
the program being debugged. Various list commands can be used.
Refer to the section on Data Viewing and Modi�cation for further
information about list commands. The other major status viewing
command is:

Inquire

I (Inquire)
�
I

Inquire

�

Prints the current status of the debugger. The output contains
information such as the version number of the debugger, program
name, number of source �les and procedures, process ID of the child
process, number of breakpoints, record and playback information and
so on. A sample output is displayed:

Version HP31508 A.02.03 HP SYMBOLIC DEBUGGER (XDB)

Program "tree"

Core File None

Procedures 10

Child process None

Breakpoints 4 (Active)

Assertions 3 (Suspended)

Macros 9 (Active)

Recording Suspended

Record file None

Record-all Active

Record-all file .. mysession

Playback file None

Searches NOT case sensitive

Address format ... "%#10.81x"

Bytes malloc'd ... 7168

Run arguments ""

4-34 HP Symbolic Debugger Commands

Job Control Commands

Job Control
Commands

The job control commands let you control execution of the program.
The parent (HP Symbolic Debugger) and child (object�le) processes
take turns running. The debugger is only active while the child
process is stopped, due to encountering a signal or a breakpoint, or
by terminating.

The job control commands are:

c (continue)
C (Continue)
k (kill)
r (run)
R (Run)
s (step)
S (Step)

c (continue)
�
c

continue

��
location

�

Resumes execution after a breakpoint has been encountered, ignoring
the signal, if any. If a location is speci�ed, a temporary breakpoint is
set at that location. See \Breakpoint Commands" in this chapter for
more information.

C (Continue)
�
C

Continue

��
location

�

Resumes execution after a breakpoint has been encountered, allowing
the signal, if any, to be received by the child process. If a location
is speci�ed, a temporary breakpoint is set at that location. See
\Breakpoint Commands" in this chapter for more information.

Note Since signals are currently unsupported on the MPE/iX operating
system, this command will operate exactly as the c (continue)
command.

k (kill)
�
k

kill

�

Terminates the current child process, if any. You are asked to
con�rm this command; this guards against accidental termination of
the child process.

HP Symbolic Debugger Commands 4-35

Job Control Commands

r (run)
�
r

run

��
;info='info-string'

��
;parm='number'

�

Lets you run a program as a new child process with an optional info
string and run parm. If a child process already exists, the debugger
asks if you want to terminate the child process �rst.

If you do not enter an info string , the debugger uses those supplied
with the last r (run) command (if any). info string can contain
a \<" and/or a \>" for redirecting standard input and standard
output ($STDIN) and ($STDOUT).

R (Run)
�
R

Run

�

Lets you run a program as a new child process with no argument
list. If a child process already exists, the debugger asks if you want
to terminate the child process �rst. Use this command to explicitly
indicate no arguments.

s (step)
�
s

step

��
number

�

Single steps through a program, executing one source statement or
machine instruction at a time before pausing and prompting for
another command. In source mode, one source statement is executed
(or one step of a multiple step statement in HP Pascal or HP C);
in disassembly mode, one machine instruction is executed (several
machine instructions might be equivalent to one source statement). If
a procedure call is encountered, the procedure is single stepped in the
same manner (stepped \into").

Note One s (step) is required to go from the calling statement to the �rst
statement of the called procedure.

To execute more than one statement or instruction, enter that
number as the number parameter. The debugger executes this
number of statements or instructions before stopping unless it
encounters a breakpoint.

Note Single stepping through a procedure for which there is no debugger
information (for example, printf) can be slow. You might prefer to
use the c (continue) or S (Step) command instead.

If you accidentally step down into a procedure you don't care about,
use the bu command to set a temporary \uplevel" breakpoint, and
then continue using a continue command.

You can press �RETURN� to repeat this command.

4-36 HP Symbolic Debugger Commands

Job Control Commands

S (Step)
�
S

Step

��
number

�

Single steps through a program. In source mode, one source
statement (or one step of a multiple step statement in HP Pascal or
HP C) is executed; in disassembly mode, one machine instruction
is executed (several machine instructions might be equivalent to
one source statement). If a procedure call is encountered, it is not
\stepped into". Instead, execution steps to the statement following
the call. The procedure call is treated as a single statement. If a
breakpoint is encountered in the procedure or any that is called, its
commands are executed.

Note Using a continue command in a breakpoint command list within a
procedure will cause the program to keep executing through the
procedure! If the breakpoint does not explicitly continue, the current
act of stepping \over" the procedure ceases. The command list

>bu\t {}; c

continues back to the calling statement, e�ectively completing the S
(Step) command.

The S (Step) command does not step \over" PERFORM statements
in HP COBOL II programs, only CALL statements.

To execute more than one statement or instruction, enter that
number as the number parameter. The debugger executes this
number of statements or instructions unless it encounters a
breakpoint.

You can press �RETURN� to repeat this command as a single step.

HP Symbolic Debugger Commands 4-37

Job Control Commands

Breakpoint
Commands

A breakpoint, when encountered, suspends the execution of the
program at a particular location. HP Symbolic Debugger provides
a number of commands for setting, deleting, and managing
breakpoints. The breakpoint commands are:

Overall

lb (list breakpoints)
tb (toggle breakpoints)

Creation

b (breakpoint)
ba (breakpoint address)
bb (breakpoint beginning)
bt (breakpoint trace)
bu (breakpoint uplevel)
bx (breakpoint exit)

Status

ab (activate breakpoint)
bc (breakpoint count)
db (delete breakpoint)
sb (suspend breakpoint)

All-Procedures

bp (breakpoint procedure)
bpt
bpx
dp (delete procedure)
Dpt
Dpx

Global

abc
dbc

All-Paragraph (HP COBOL II only)

bpg (breakpoint paragraph)
dpg (delete paragraph)
tpg (trace paragraph)

Auxiliary

\any string"
i (if)
Q (Quiet)

4-38 HP Symbolic Debugger Commands

Breakpoint Commands

Once a breakpoint has been encountered during program execution,
you can examine the program state, unless the breakpoint command
list includes a command that causes the child process to continue
or terminate. Examples of these commands are the c (continue), r
(run), k (kill) and q (quit) commands. Individual breakpoints are
identi�ed by a unique number, which is assigned by the debugger.

Breakpoints can be activated or deactivated (suspended) individually.
When a breakpoint is suspended, information for that breakpoint is
retained, but it will not a�ect program execution. There is also an
overall breakpoint mode for breakpoint activation and suspension,
which is independent of the state of any individual breakpoint.
Any given breakpoint will a�ect program execution only if it is
individually activated and the overall mode is activated. Any active
breakpoint whose location is visible in the source window will be
marked with an asterisk (*) in the leftmost screen column. Note
that only those breakpoints that are associated with a line number
are marked in the source window in source mode. In disassembly
mode, all breakpoints are displayed whether associated with a line or
machine instruction.

Three parameters are associated with breakpoint commands,
location, count and
command list . These parameters are described below:

Location You can set a breakpoint at the current
location (where the prompt (>) appears
in the source window) or at any other
executable statement or instruction. You can
specify the location of the breakpoint in a
variety of ways:

line number

procedure name

label

symbolic address (with or without o�set)

absolute (numeric) address

Each of these ways of specifying a location
is simply an alternate way to specify the
breakpoint address. The breakpoint is
encountered whenever the location is about
to be executed, regardless of the path taken
to get there. Only one breakpoint at a time
of a particular type may be set at a given
location. Setting a new breakpoint at the
same location replaces the existing one.

Count The count is the number of times a
breakpoint statement or instruction is
executed before the program is stopped.
If the count is positive, the breakpoint is

HP Symbolic Debugger Commands 4-39

Breakpoint Commands

permanent. If the count is negative, the
breakpoint is temporary and is cleared when
the program stops there. When you enter
a new breakpoint without a count, the
breakpoint is permanent and a count of 1
is used. To change the count of an existing
breakpoint, use the bc (breakpoint count)
command.

An alternate way to enter a breakpoint is to
enter t for a temporary breakpoint and p for
a permanent breakpoint. Entering a t or p by
itself sets the count to -1 or 1, respectively.
You can precede a t or p with a positive
integer for a count of more than one.

4-40 HP Symbolic Debugger Commands

Breakpoint Commands

Command List A command list is one or more commands
that are executed when its associated
breakpoint occurs. Separate commands in a
command list by semicolons. Use braces fg to
separate the breakpoint
command list from other debugger commands
on the same line.

Caution Only one active command line can exist at one time. A command
line is either the sequence of commands you enter at the debugger
prompt or the command list associated with a breakpoint or
assertion. If a new command line is encountered before all commands
in the previous command line are executed, those remaining
commands are discarded. For example, suppose you set a breakpoint
in a function called func1 which has the following command list:

{Q;p "hello\n";c}

Then, from the command line you execute:

>p func1();p "goodbye\n"

This will print hello, but not goodbye.

Types of Breakpoints Breakpoints can be separated into two general classes:

Individual (single) breakpoints

These are explicitly set by the user at a given location.

All-Procedure or All-Paragraph breakpoints

These are breakpoints attached to all debuggable procedures or
paragraphs by a single command. They do not have a count or
lifespan.

HP Symbolic Debugger Commands 4-41

Breakpoint Commands

There are six basic types of single breakpoints. There can only be
one type of single breakpoint at a given location in the code.

Generic Set with the b
(breakpoint) command
at a given source-line.

Address Set with the ba
(breakpoint address)
command at a given
address (which might
not correspond directly
to a source line).

Procedure or paragraph beginning (entry) Set with the bb
(breakpoint beginning)
command at the �rst
executable statement of
a procedure.

Procedure or paragraph exit Set with the bx
(breakpoint exit)
command at the
common exit point of a
procedure, for example,
the procedure epilogue
where all returns go
through (usually does
not correspond to a
source line).

Procedure trace (entry/exit) Set with the bt
(breakpoint trace)
command at the
procedure entry and
exit.

Uplevel Set with the bu
(breakpoint uplevel)
command at the
return address of a
given procedure call,
for example, the �rst
instruction executed
after a return (which
might not correspond
directly to a source
line).

There are three basic types of all-procedure breakpoints. These
may co-exist with other all-procedure breakpoints and/or a single
breakpoint at a given location.

4-42 HP Symbolic Debugger Commands

Breakpoint Commands

Procedure (beginning) Set with the bp (breakpoint procedure)
command at the �rst executable
statement of all procedures.

Procedure exit Set with the bpx command at the
common exit point of all procedures.

Procedure trace Set with the bpt command at the
entry and exit of all procedures.

HP Symbolic Debugger Commands 4-43

Breakpoint Commands

At a given procedure entry, up to four command lists can be
associated with the location:

Global breakpoint command list

Set with the abc command.

Individual procedure beginning breakpoint command list

Set with the bb (breakpoint beginning) command.

All-procedure beginning breakpoint command list

Set with the bp (breakpoint procedure) command.

All-procedure trace breakpoint command list

Set with the bpt command.

Also, at a given procedure exit, up to four command lists can be
associated with the location:

Global breakpoint command list

Set with the abc command.

Individual procedure exit breakpoint command list

Set with the bx (breakpoint exit) command.

All-procedure exit breakpoint command list

Set with the bpx command.

All-procedure trace breakpoint command list

Set with the bpt command.

4-44 HP Symbolic Debugger Commands

Breakpoint Commands

There are two basic types of all-paragraph breakpoints. These
may co-exist with other all-paragraph breakpoints and/or a single
breakpoint at a given location.

Paragraph (beginning) Set with the bpg (breakpoint
paragraph) command at the
�rst executable statement of all
paragraphs.

Paragraph trace Set with the tpg (trace paragraph)
command at the entry of all
paragraphs.

At a given paragraph entry, up to four command lists can be
associated with the location:

Global breakpoint command list

Set with the abc command.

Individual paragraph beginning breakpoint command list

Set with the bb (breakpoint beginning) command.

All-paragraph beginning breakpoint command list

Set with the bpg (breakpoint paragraph) command.

All-paragraph trace breakpoint command list

Set with the tpg command.

At a given paragraph exit, up to two command lists can be
associated with the location:

Global breakpoint command list

Set with the abc command.

Individual paragraph exit breakpoint command list

Set with the bx (breakpoint exit) command.

HP Symbolic Debugger Commands 4-45

Overall Breakpoint
Commands

lb (list breakpoints)
�
lb

list breakpoints

�

Displays all breakpoints in the program, both active and suspended,
and the overall breakpoint state.

The display shows the number, count, status and commands for each
breakpoint. Figure 4-2 gives an example of the information that is
displayed for a typical breakpoint. This information is also displayed
whenever a breakpoint is added or deleted.

Figure 4-2. Listing a Breakpoint

4-46 HP Symbolic Debugger Commands

Overall Breakpoint Commands

tb (toggle breakpoints)
�
tb

toggle breakpoints

�

Toggles the overall breakpoint state from active to suspended or vice
versa. The state of the individual breakpoints remains unchanged.

HP Symbolic Debugger Commands 4-47

Breakpoint Creation
Commands

b (breakpoint)
�
b

breakpoint

��
location

��
\count

��
command-list

�

Sets a breakpoint at the location that you specify. If you do not
enter a location, the current line in the source window is used. The
breakpoint is executed on each occurrence (count) that you specify.
You can enter a list of commands to be executed at the breakpoint
by entering the command list. The command list will be executed
when the breakpoint is reached and its count is zero. See the
de�nition for location, count, and command list at the beginning of
this section, \Breakpoint Commands".

In the following example, a breakpoint is set at the current location
in the source window and is executed every fourth execution of the
source statement. Since there is no command list, no commands are
executed when the breakpoint is reached. Instead, the debugger will
just enter command mode at that point.

> b \4

To set a breakpoint in a di�erent �le, procedure, or HP COBOL II
subprogram, use the v (view) command to display the �le, procedure,
or subprogram in the current viewing location window and search for
the line on which to set the breakpoint. If you know where to set
the breakpoint in another �le, procedure, or subprogram enter this
command with the procedure and line. For example, the following
command sets a breakpoint at line 355 in procedure cmp80.

>b cmp80:355

To set a breakpoint using a label instead of a line number, enter the
label name instead of the line number. For example,

>b cmp80#totsls

ba (breakpoint address)
�
ba

breakpoint address

�
address

�
\count

��
command-list

�

Sets a breakpoint at the speci�ed address. Note that the address
can be speci�ed by giving the name of a procedure, subprogram, or
an expression containing such a name. The breakpoint is executed
on each occurrence (count) that you specify. You can enter a list
of commands to be executed at the breakpoint by entering the
command list. See the de�nition for address (location), count,
and command list at the beginning of this section, \Breakpoint
Commands".

4-48 HP Symbolic Debugger Commands

Breakpoint Creation Commands

The following is an example:

>ba printf+0x0018
Overall breakpoints state: ACTIVE

Added:

2: count: 1 Active printf +0x00000018: (line unknown)

Caution Be sure the address given in the ba (breakpoint address) command is
a code address in the child process or errors might ensue.

bb (breakpoint
beginning)

�
bb

breakpoint beginning

��
depth

��
\count

��
command-list

�

Sets a breakpoint at the �rst executable statement of the procedure
or subprogram at the speci�ed depth on the program stack. If you
do not enter a depth, the procedure or subprogram shown in the
source window is used (this might not be the same as the procedure
or subprogram at depth zero in the stack).

The breakpoint is executed on the occurrence (count) that you
specify. You can enter a list of commands to be executed at the
breakpoint by entering the command list. See the de�nitions for
count and command list at the beginning of this section, \Breakpoint
Commands".

bt (breakpoint trace)
�
bt

breakpoint trace

��
proc

depth

��
\count

��
command-list

�

Sets a trace breakpoint at the current or named procedure or
subprogram or at the procedure or subprogram that is at the
speci�ed depth on the program stack. A breakpoint is set at the
entry and exit point of the procedure or subprogram. The breakpoint
is executed on the occurrence (count) that you specify. You can enter
a list of commands to be executed at the breakpoint by entering the
command list. See the de�nitions for count and command list at the
beginning of this section, \Breakpoint Commands".

If you include a command list, it is executed at the beginning of
the procedure or subprogram. The following command list will be
executed at the end of the procedure or subprogram.

�
Q;p $ret0\d;c

	
If you omit a command list, the following two command lists are
executed at the beginning and end of the procedure or subprogram,
respectively.

�
Q; t 2; c

	 �
Q;p $ret0\d;c

	
The �rst (entry) command list above displays the two procedures at
the top of the stack (the current procedure and the procedure which
called it) and their parameters, then continues. The exit command
list prints the return value of the procedure, then continues.

HP Symbolic Debugger Commands 4-49

Breakpoint Creation Commands

To enter a di�erent command list for the exit point of the procedure
or subprogram, use the bx (breakpoint exit) command.

4-50 HP Symbolic Debugger Commands

Breakpoint Creation Commands

bu (breakpoint uplevel)
�
bu

breakpoint uplevel

��
depth

��
\count

��
command-list

�

Sets an uplevel breakpoint to occur immediately on return from the
procedure or subprogram at the speci�ed depth on the program
stack. This command is useful for examining values returned from
procedures or subprograms. For example, when execution pauses
in procedure B (called from procedure A), you can set an uplevel
breakpoint so that a breakpoint occurs when execution returns to
procedure A.

If you omit depth, one is used (zero is the current location). The
following example sets a permanent breakpoint at the current level in
the stack (the current level is the value of the program counter $pc):

>bu 0

If $pc corresponds to the beginning of a source line, this is equivalent
to:

>b

The breakpoint is executed on the occurrence (count) that you
specify. You can enter a list of commands to be executed at the
breakpoint by entering the command list. See the de�nitions for
count and command list at the beginning of this section, \Breakpoint
Commands".

bx (breakpoint exit)
�
bx

breakpoint exit

��
depth

��
\count

��
command-list

�

Sets an exit breakpoint at the epilogue code of the procedure or
subprogram at the speci�ed depth on the program stack. The
breakpoint is set at a point such that all returns go through it. If you
do not enter a depth, the procedure shown in the source window is
used (this might not be the same as the procedure at depth zero in
the stack).

The breakpoint is executed on the occurrence (count) that you
specify. You can enter a list of commands to be executed at the
breakpoint by entering the command list. See the de�nitions for
count and command list at the beginning of this section, \Breakpoint
Commands".

HP Symbolic Debugger Commands 4-51

Breakpoint Status
Commands

ab (activate breakpoint)
�
ab

activate breakpoint

��
number

*

�

Activates the breakpoint having the number (ID) that you specify.
If you do not enter a number, the breakpoint at the current line is
activated. If there is no breakpoint at the current line, the debugger
displays all the breakpoints so that you can select one to activate.

Use the asterisk (*) to activate all breakpoints including,
all-procedure and all-paragraph breakpoints.

bc (breakpoint count)
�
bc

breakpoint count

�
number expr

Sets the count of the speci�ed breakpoint number to the integer
value of the evaluated expression that you enter. A negative value
indicates a temporary breakpoint. A count cannot be assigned to
an all-procedures or all-paragraphs breakpoint. Use the lb (list
breakpoints) command to determine the number to enter.

db (delete breakpoint)
�
db

delete breakpoint

��
number

*

�

Deletes the breakpoint having the number (ID) that you specify.
If you do not enter a number, the breakpoint at the current line
is deleted. If the breakpoint that you specify does not exist, the
debugger displays all the breakpoints so that you can select one to
delete.

Use the asterisk (*) to delete all breakpoints, including all-procedure
and all-paragraph breakpoints.

sb (suspend breakpoint)
�
sb

suspend breakpoint

��
number

*

�

Suspends (deactivates) the breakpoint having the number (ID) that
you specify. If you do not enter a number, the breakpoint at the
current line is suspended (use the lb (list breakpoints) to determine
the numbers to enter). To reactivate the breakpoint use the ab
(activate breakpoint) command.

Use the asterisk (*) to suspend all breakpoints, including
all-procedure and all-paragraph breakpoints. This also causes the
overall breakpoint state to become suspended.

4-52 HP Symbolic Debugger Commands

All-Procedures Breakpoint Commands

All-Procedures
Breakpoint
Commands

bp (breakpoint
procedure)

�
bp

breakpoint procedure

��
command-list

�

Sets permanent procedure breakpoints at the �rst executable
statement of every procedure for which debugger information is
available (this is equivalent to executing a bb (breakpoint beginning)
for every procedure. The breakpoint is encountered each time
the procedure is entered. When any entry procedure breakpoint
is encountered, the command list is executed. See the de�nition
for command list at the beginning of this section, \Breakpoint
Commands".

This command is useful for stepping through and tracing an HP
FORTRAN 77, HP Pascal, or HP C program. Refer to the bpg
(breakpoint paragraph) command in this chapter for HP COBOL II
programs.

The following example sets breakpoints at the beginning of each
procedure. The command list causes the name of the procedure and
the values of its arguments to be displayed before continuing.

bp {Q; t 1; c}

You can set other breakpoints, either permanent or temporary, at the
same locations as the procedure breakpoints without replacing them.
However, if an all-procedure and nonprocedure breakpoint are set at
the same location, the nonprocedure breakpoint is executed �rst.

You cannot alter the count of a procedure breakpoint. You also
cannot set or delete procedure breakpoints individually. To delete
procedure breakpoints, use the dp command.

HP Symbolic Debugger Commands 4-53

All-Procedures Breakpoint Commands

bpt bpt
�
command-list

�
Sets permanent procedure trace breakpoints at the �rst and last
executable statement of every procedure for which debugger
information is available. The breakpoints are encountered each time
the procedure is entered and exited. The command list, if any, is
associated with the entry breakpoint. See the de�nition for command
list at the beginning of this section, \Breakpoint Commands".

If no command list is speci�ed, the entry command list defaults to:

{Q;t 2;c}

where:

Q Is the Quiet command that tells the debugger not to
display a breakpoint.

t 2 Pops the top two entries o� the stack.

c Is the command used to continue debugging.

The exit command list is:

{Q;p $ret0\d;c}

where:

Q Is the Quiet command that tells the debugger not to
display a breakpoint.

p $ret0\d Displays the value of the special variable ret0 as an
integer value.

c Is the command used to continue debugging.

You can set other breakpoints, either permanent or temporary, at the
same locations as the procedure breakpoints without superceding
them. However, if an all-procedure and nonprocedure breakpoint are
set at the same location, the nonprocedure breakpoint is executed
�rst.

You cannot alter the count of a procedure trace breakpoint. You also
cannot set or delete procedure breakpoints individually. To delete
procedure trace breakpoints, use the dpg command.

4-54 HP Symbolic Debugger Commands

All-Procedures Breakpoint Commands

bpx bpx
�
command-list

�
Sets permanent procedure exit breakpoints after the last executable
statement of every procedure for which debugger information is
available. The breakpoint is encountered each time the procedure
is exited. When any procedure exit breakpoint is encountered, the
command list is executed. See the de�nition for command list at the
beginning of this section, \Breakpoint Commands".

You can set other breakpoints, either permanent or temporary, at the
same locations as the procedure breakpoints without superceding
them. However, if an all-procedure and nonprocedure breakpoint are
set at the same location, the nonprocedure breakpoint is executed
�rst.

You cannot alter the count of a procedure exit breakpoint. You also
cannot set or delete procedure exit breakpoints individually. To
delete procedure exit breakpoints, use the Dpx command.

dp (delete procedure)
�
dp

delete procedure

�

Deletes all procedure breakpoints set with the bp (breakpoint
procedure) command. All breakpoints set by commands other than
the bp command will remain set.

You cannot delete procedure breakpoints individually.

Dpt Dpt

Deletes all procedure trace breakpoints at the �rst and last executable
statement of every procedure. All breakpoints set by commands
other than the bpt command will remain in e�ect.

You cannot delete procedure trace breakpoints individually.

Dpx Dpx

Deletes all procedure exit breakpoints at the last executable
statement of every procedure. All breakpoints set by commands
other than the bpx command will remain in e�ect.

You cannot delete procedure exit breakpoints individually.

HP Symbolic Debugger Commands 4-55

Global Breakpoint
Commands

abc abc command-list

De�nes a global breakpoint command list which will be executed
whenever any user-de�ned breakpoint is encountered. This includes
single, procedure, procedure trace, procedure exit, paragraph, or
paragraph trace breakpoints. These commands will be executed
before any commands associated with the breakpoint. See the
de�nition for command list at the beginning of this section,
\Breakpoint Commands".

This example suppresses the breakpoint at address message
normally printed for all breakpoints.

>abc Q

dbc dbc

Deletes the global breakpoint command list.

4-56 HP Symbolic Debugger Commands

All-Paragraph Breakpoint Commands

All-Paragraph
Breakpoint
Commands

bpg (breakpoint
paragraph)

�
bpg

breakpoint paragraph

��
command-list

�

Sets permanent paragraph breakpoints at the �rst executable
statement of every HP COBOL II paragraph and section for which
debugger information is available. The breakpoint is encountered
each time the paragraph or section is entered. When any entry
paragraph breakpoint is encountered, the command list is executed.
See the de�nition for command list at the beginning of this section,
\Breakpoint Commands".

This command is useful for stepping through and tracing an HP
COBOL II program. Refer to the bp (breakpoint procedure) command
for HP FORTRAN 77, HP Pascal, and HP C programs.

The following example sets breakpoints at the beginning of each
paragraph and section. The breakpoints are traced quietly without
suspending the program.

>bpg {Q; t 1; c}

You can set other breakpoints, either permanent or temporary, at the
same locations as the paragraph breakpoints without superceding
them. However, if a paragraph and nonparagraph breakpoint are set
at the same location, the nonparagraph breakpoint is executed �rst.

You cannot alter the count of a paragraph breakpoint. You also
cannot set or delete paragraph breakpoints individually. To delete
all-paragraph breakpoints, use the dpg command.

dpg (delete paragraph)
�
dpg

delete paragraph

�

Deletes all paragraph breakpoints set with the bpg (breakpoint
paragraph) or tpg (trace paragraph) commands. Breakpoints set with
other commands will remain in e�ect.

You cannot delete individual paragraph breakpoints.

HP Symbolic Debugger Commands 4-57

All-Paragraph Breakpoint Commands

tpg (trace paragraph)
�
tpg

trace paragraph

��
command-list

�

Sets permanent paragraph trace breakpoints at the �rst executable
statement of every HP COBOL II paragraph and section for which
debugger information is available. The breakpoints are encountered
each time the paragraph or section is entered. The command list,
if any, is associated with the entry breakpoint. See the de�nition
for command list at the beginning of this section, \Breakpoint
Commands".

If no command list is speci�ed, the entry command list defaults to:

{Q;t 2;c}

where:

Q Is the Quiet command that tells the debugger not to
display a breakpoint.

t 2 Pops the top two entries o� the stack.

c Is the command used to continue debugging.

You can set other breakpoints, either permanent or temporary, at
the same locations as the trace paragraph breakpoints without
superceding them. However, if a paragraph and nonparagraph
breakpoint are set at the same location, the nonparagraph breakpoint
is executed �rst.

You cannot alter the count of a trace paragraph breakpoint. You also
cannot set or delete trace paragraph breakpoints individually. To
delete trace procedure breakpoints, use the Dpt command.

This command is very similar to the bpt command, but di�ers in the
following ways:

bpt is targeted at HP FORTRAN 77, HP Pascal, or HP C
procedures. tpg operates on all HP COBOL II paragraphs and
sections.

bpt, by default, prints results upon exiting a procedure. tpg does
not.

4-58 HP Symbolic Debugger Commands

Auxiliary Breakpoint Commands

Auxiliary Breakpoint
Commands

Although the any string , if , and Quiet commands are not actually
breakpoint commands, they are used almost exclusively in breakpoint
and assertion command lists. Consequently, they are documented
here.

\any string" "any string"

Causes any string that is enclosed in quotation marks to be echoed
to the screen. The string command is useful for labeling breakpoint
output, particularly for recording a debugger session. You can
include character escape sequences in the string (for example, nt).
See table 4-1 \Escape Sequences" for more information.

In the following example, the \any string" command is used to label
the display of a data-item which otherwise doesn't have a name (the
debugger just prints an address in such cases). Note the use of the
character escape nn (new line).

>"flavor_list head =>\n"; p *flavor:list->head

flavor_list head =>

0x68023004 struct {

chocolate = 1597845365;

tutifruti = 2.21414e-10;

}

i (if)
�
i

if

�
expr command-list

�
command-list

�

Lets you conditionally execute commands in a command list. If the
expression evaluates to a non-zero value, the �rst group of commands
is executed. If the expression evaluates to zero, the second command
list, if it exists, is executed. The i (if) command can be nested in
other command lists.

The following b (breakpoint) command (set at entry to procedure
proc) uses the i (if) command to conditionally print a value only if a
certain condition is true.

>b proc {Q; if (list->head.fld > 0) {p list->head.name}; c }

Q (Quiet)
�
Q

Quiet

�

Suppresses the breakpoint at address debugger messages that are
normally displayed when a breakpoint is encountered. This enables
you to display variable values without cluttering the command
window. The Q (Quiet) command must be the �rst command in a
command list; otherwise, it is ignored.

HP Symbolic Debugger Commands 4-59

Assertion Control
Commands

An assertion is a list of one or more debugger commands that are
executed before each source statement. Assertions are useful for
tracing serious software defects, such as corrupt global variables, or
mysterious side e�ects. The assertion control commands are:

a (assert)
aa (activate assertion)
da (delete assertion)
la (list assertions)
sa (suspend assertion)
ta (toggle assertions)
x (exit)

Assertions can be activated or inactivated (suspended) individually.
When an assertion is suspended, information for that assertion is
retained, but it will not be evaluated during program execution.
There is also an overall assertion mode for assertion activation and
suspension which is independent of the state of any individual
assertion. Any given assertion will be evaluated during program
execution only if it is individually activated and the overall mode is
activated.

The if , Quiet and \any string" commands are useful in assertion
command lists. For more information about these commands, see
the subsection called \Auxiliary Breakpoint Commands" in the
\Breakpoint Commands" section.

Note Assertions slow program execution because the commands for all
active assertions are executed before each source statement. If you
use the assertion commands in a breakpoint command list, you will
be able to limit the regions of slowed execution to your actual areas
of interest in the program.

a (assert)
�
a

assert

�
command-list

Creates an assertion consisting of the command list that you enter.
You can enclose an assertion command list in braces to separate it
from other commands on the same line. Errors in assertion command
lists are not identi�ed until the assertion is executed. If there is
an error, an error message is displayed, but execution continues.
Assertions, like breakpoints, are identi�ed by a unique number
assigned by the debugger. They also have an overall state, whereby
all assertions can be activated or suspended as a group. Use the la
(list assertions) command to see a list of assertions, their identifying
numbers (ID), and the overall state.

4-60 HP Symbolic Debugger Commands

Assertion Control Commands

Caution In an assertion command list, you can use the following job control
commands only after an x (exit) command, which suspends execution
of the program.

r (run)
R (Run)
c (continue)
C (Continue)
s (step)
S (Step)
k (kill)

Also, job control commands cannot be used in an assertion command
list unless all assertions are suspended �rst. The following is an
example of a typical command list command sequence.

{l; x 1; c}

The following examples show how to use this command.

a {L}

This \assert list" command traces program execution one line at
a time until the program stops. (The program stops on normal
termination, when a breakpoint is encountered or when �CNTRL�Y is
pressed).

a {L; if (xyz> (def-9) *10) {ta;x 1; c} {p abc -= 10}}

This assertion displays the line that will be executed next, then
checks the if statement condition. If it is true, assertion mode and
all assertions are suspended, and the program continues executing.
If the condition is false, the value of abc is decremented by 10, the
next source line is executed, and the command list is executed again.
The number after the exit command (x 1) enables the debugger to
recognize the continue command which follows it. If just x or (x 0)
was used, the remainder of the command would not be executed, and
the debugger would again prompt for commands as if a breakpoint
was reached. Note that the ta (toggle assertions) command is used to
toggle assertions to suspend them because the c (continue) command
cannot be used while assertions are active.

a {if (abc .NE. $abc) {p $abc = abc; if (abc .GT. 9) {x} } p abc}

This command list displays the value of the global variable, abc, and
suspends program execution if the variable exceeds a certain value.
$abc is a special variable that keeps track of when the value of abc
changes.

Caution If you single step or run with assertions through a call to longjmp (on
setjmp(LIBC)), the child process will probably take o� free-running
as the debugger sets but never hits an uplevel breakpoint.

HP Symbolic Debugger Commands 4-61

Assertion Control Commands

aa (activate assertion)
�
aa

activate assertion

��
number

*

�

Activates the assertion having the number (ID) that you enter. Use
the la (list assertions) command to determine the number associated
with an assertion. Using the * option causes all assertions to be
activated.

Overall assertion mode is activated if the last suspended assertion is
activated.

da (delete assertion)
�
da

delete assertion

��
number

*

�

Deletes the assertion having the number (ID) that you enter. Use the
la (list assertions) command to determine the number associated
with an assertion. Using the * option causes all assertions to be
deleted.

la (list assertions)
�
la

list assertions

�

Lists the number, the state (active or suspended) and the command
list for each assertion, as well as the overall assertion state (active or
suspended).

Use this command to �nd the number of a particular assertion
before using the aa (activate assertion), da (delete assertion) and sa
(suspend assertion) commands.

The following example lists the status of two assertions:

Overall assertion state: ACTIVE

1: Active if(abc.NE.$abc){$abc = abc;p abc/d; if(abc.GT.9){x}}

2: Suspended L;if(xyz.GT.(def-9)*10) {ta;x 1;c} {p abc-=10}}

4-62 HP Symbolic Debugger Commands

Assertion Control Commands

sa (suspend assertion)
�
sa

suspend assertion

��
number

*

�

Suspends the assertion having the number (ID) that you enter. Use
the la (list assertions) command to determine the number associated
with an assertion. Using the * option causes all assertions to be
suspended.

Suspended assertions continue to exist but are not evaluated until
activated again. Overall assertion mode is suspended if the last
active assertion is suspended.

ta (toggle assertions)
�
ta

toggle assertions

�

Toggles the overall assertion state between active and suspended.
The overall assertion state does not a�ect the state of individual
assertions.

x (exit)
�
x

exit

��
expr

�

Causes program execution to stop as if a breakpoint has been
reached. A message like the following will be printed:

Hit on assertion 1: command-list

Last line executed was:

�le: source text

Next line to execute is:

�le: source text

If the expression (expr) is not given or it evaluates to zero, the
debugger returns to command mode, ignoring any remaining
commands in the assertion command list. If expr evaluates to
non-zero, any remaining commands in the command list are
executed.

Note This command can only be used in an assertion command list.

HP Symbolic Debugger Commands 4-63

Datatrace Control
Commands

A datatrace is used to monitor the value of one or more variables.
When the value changes, commands speci�ed in a command list are
executed. Datatraces are useful for tracing serious software defects,
such as corrupt global variables, or mysterious side e�ects. The
datatrace control commands are:

ndt
adt (activate datatrace)
ddt (delete datatrace)
ldt (list datatraces)
sdt (suspend datatrace)
tdt (toggle datatraces)
x (exit)

Datatraces can be activated or inactivated (suspended) individually.
When a datatrace is suspended, information for that datatrace is
retained, but it will not be evaluated during program execution.
There is also an overall datatrace mode for datatrace activation
and suspension which is independent of the state of any individual
datatrace. Any given datatrace will be evaluated during program
execution only if it is individually activated and the overall mode is
activated.

The if , Quiet and \any string" commands are useful in datatrace
command lists. For more information about these commands, see
the subsection called \Auxiliary Breakpoint Commands" in the
\Breakpoint Commands" section.

Note Datatraces slow program execution because the value of the monitor
variables are checked before each source statement. If you use the
datatrace commands in a breakpoint command list, you will be
able to limit the regions of slowed execution to your actual areas of
interest in the program.

ndt (datatrace)
�
ndt

datatrace

�
var

� �
command-list

	�
silent

� �

Creates a datatrace for the speci�ed variable var consisting of the
command list that you enter. You can enclose a datatrace command
list in braces to separate it from other commands on the same
line. Errors in datatrace command lists are not identi�ed until
the datatrace is executed. If there is an error, an error message is
displayed, but execution continues. Datatraces, like breakpoints, are
identi�ed by a unique number assigned by the debugger. They also
have an overall state, whereby all datatraces can be activated or
suspended as a group. Use the ldt (list datatraces) command to see
a list of datatraces, their identifying numbers (ID), and the overall
state.

4-64 HP Symbolic Debugger Commands

Datatrace Control Commands

Caution In a datatrace command list, you can use the following job control
commands only after an x (exit) command, which suspends execution
of the program.

r (run)
R (Run)
c (continue)
C (Continue)
s (step)
S (Step)
k (kill)

Also, job control commands cannot be used in a datatrace command
list unless all datatraces are suspended �rst. The following is an
example of a typical command list command sequence.

{l; x 1; c}

The following examples show how to use this command.

ndt i

This sets a datatrace on variable i. The symbolic debugger will
display the current value of i and stop when that value changes. The
default command list {L} will be used.

ndt i { if(i < 10) {c} }

This sets a datatrace on the variable i, but stops execution only
when the new value reaches or exceeds 10.

ndt i { if(i <= 10) {c} {"i is greater than 10"} } silent

This sets a datatrace on the variable i. When the value of i exceeds
10, the message:

i is greater than 10

is printed. The silent option prevents the symbolic debugger from
printing the standard messages.

Caution If you single step or run with datatraces through a call to
longjmp (on setjmp(LIBC)), the child process will probably take
o� free-running as the debugger sets but never hits an uplevel
breakpoint.

HP Symbolic Debugger Commands 4-65

Datatrace Control Commands

adt (activate datatrace)
�
adt

activate datatrace

��
number

*

�

Activates the datatrace having the number (ID) that you enter.
Use the ldt (list datatraces) command to determine the number
associated with a datatrace. Using the * option causes all datatraces
to be activated.

Overall datatrace mode is activated if the last suspended data trace
is activated.

ddt (delete datatrace)
�
ddt

delete datatrace

��
number

*

�

Deletes the datatrace having the number (ID) that you enter.
Use the ldt (list datatraces) command to determine the number
associated with a datatrace. Using the * option causes all datatraces
to be deleted.

ldt (list datatraces)
�
ldt

list datatraces

�

Lists the number, the state (active or suspended) and the command
list for each datatrace, as well as the overall datatrace state (active or
suspended).

Use this command to �nd the number of a particular datatrace
before using the adt (activate datatrace), ddt (delete datatrace) and
sdt (suspend datatrace) commands.

4-66 HP Symbolic Debugger Commands

Datatrace Control Commands

sdt (suspend datatrace)
�
sa

suspend datatrace

��
number

*

�

Suspends the datatrace having the number (ID) that you enter.
Use the ldt (list datatraces) command to determine the number
associated with a datatrace. Using the * option causes all datatraces
to be suspended.

Suspended datatraces continue to exist but are not evaluated until
activated again. Overall datatrace mode is suspended if the last
active datatrace is suspended.

ta (toggle datatraces)
�
tdt

toggle datatraces

�

Toggles the overall datatrace state between active and suspended.
The overall datatrace state does not a�ect the state of individual
datatraces.

x (exit)
�
x

exit

��
expr

�

Causes program execution to stop as if a breakpoint has been
reached. A message like the following will be printed:

Hit on datatrace 1: command-list

Last line executed was:

�le: source text

Next line to execute is:

�le: source text

If the expression (expr) is not given or it evaluates to zero, the
debugger returns to command mode, ignoring any remaining
commands in the datatrace command list. If expr evaluates to
non-zero, any remaining commands in the command list are
executed.

Note This command can only be used in a datatrace command list.

HP Symbolic Debugger Commands 4-67

Datatrace Control Commands

Record and
Playback
Commands

The record and playback commands allow reproduction of an HP
Symbolic Debugger session by saving debugger commands in a �le,
which can later be used to execute the commands. The record and
playback commands are useful for �nding bugs that require many
debugger actions to isolate or reproduce. The record-all command is
useful for saving a log of the entire session.

The record and playback commands do not:

Save debugger responses to commands in the record �le. An
exception to this is the record-all command that logs all debugger
output as well as user input to the debugger. Note that a record-all
�le cannot be used as a playback �le.

Record commands in command lists for breakpoints and assertions
as they are executed.

Copy command lines that begin with > , < , :, or ! to the current
record �le. However, this limitation can be overridden by beginning
those lines with blanks.

Record output from the user program (child process). This may be
done using output redirection (>) in the r (run) command line.

The only commands recorded are those read from the keyboard or a
playback �le. Commands in a breakpoint or assertion command list
are not recorded as they are evaluated.

Table 4-5 lists the record and playback commands and table 4-6
lists the record-all commands. These are used to log all of the
output generated in the command window by the debugger. Output
generated by the child process is not recorded.

Caution Be careful not to try to play back from a �le currently opened for
recording or record from a �le currently opened for playback. This
could cause problems with your debugger session.

4-68 HP Symbolic Debugger Commands

Record and Playback Commands

Record and
Playback
Commands

Table 4-5. Record and Playback Commands

Command Description

>�le Sets or changes the record �le to �le, turns recording
on, rewrites the �le from the beginning, and only
records commands. If �le exists, you are asked if you
want to overwrite.

>>�le Sets or changes the record �le to �le, turns recording
on, and only records commands. All recording is
appended to the existing �le; otherwise, a new �le is
created.

> Displays the recording state and the current recording
�le. Can also use \>>".

<�le Starts playback from the �le.

<<�le Starts playback from the �le using the \line-at-a-time"
feature. Each command line from the playback �le is
shown before it is executed, and the debugger provides
a list of the following commands for you to take some
action:

command (<cr>,S, <num>, C, Q, or ?):

You can use any of the above options as described:

<cr> execute one command line

S skip one command line

<num> execute number of command lines

C continue through all playback

Q quit playback mode

? gives this explanation of the

above commands

tr Toggles recording; toggles the state of the record
mechanism between active and suspended.

>t Turns recording on. (active)

>f Turns recording o�. (suspended)

>c Closes the record �le.

HP Symbolic Debugger Commands 4-69

Record and Playback Commands

Table 4-6. Commands Used to Record Debugger Output

Command Description

>@�le Sets or changes the record-all �le to �le, rewrites from
the beginning, and turns recording on. If �le exists, you
are asked if you want to overwrite. Captures all input
to and output from the debugger command window,
except user program output.

>>@�le Sets or changes the record-all �le to �le, and turns
recording on. Appends record-all output to the existing
�le. Captures all input to and output from the
debugger command window.

>@ Displays the current record-all state and �le. Can also
use \>>@".

tr @ Toggles the state of the record-all mechanism between
active and suspended.

>@t Turns record-all on.

>@f Turns record-all o�.

>@c Closes the record-all �le.

4-70 HP Symbolic Debugger Commands

Macro Facility Commands

Macro Facility
Commands

The macro facility allows you to substitute your own names for
debugger commands or sequences of debugger commands. To do so,
you simply de�ne the text to be used as a straight replacement for
the macro name. Thereafter, you can use your newly de�ned macro
name to represent the debugger commands while inside a debugger
session.

Note Macros do not allow argument substitution and are only recognized
when used where a command is valid. They cannot be used to
modify debugger command syntax.

When de�ning a macro, replacement text is not immediately scanned
for additional macro invocations. Rather, macro substitutions are
performed as late as possible by HP Symbolic Debugger. This
means that when a macro is referenced and has been evaluated, its
replacement text is rescanned to determine if the replacement text
contains any additional macros. Macros are not recognized inside
character constants, strings, or comment (#) commands during
command line processing.

Debugger commands can be rede�ned by a macro. However,
rede�ning a debugger command does not rede�ne its abbreviation.
Each must be rede�ned separately to change the meaning of both.
For example, rede�ning the list breakpoints command as bplist has no
e�ect on the lb abbreviation.

The invocation of recursive macros is trapped and terminates with an
error message. Recursive macros are macros whose replacement text
contains another reference to the same macro, or to a macro whose
expansion eventually references the same macro. For example,

define a a

is
agged as an error.

Macros are not recognized unless the state of the macro mechanism is
activated with the tm (toggle macros) command. If you want to see a
list of your macros and their current state (active or suspended), use
the lm (list macros) command.

def def name replacement-text

De�nes a macro substitution (user-de�ned command) for HP
Symbolic Debugger commands. Name can be any string of letters or
digits, beginning with a letter. Replacement-text can be any string
of letters, blanks, tabs or other printing characters that represent
one or more debugger commands. The string begins with the �rst
non-white-space character following name and ends with the �rst
�RETURN�. For example, executing this command:

>def myprint p flavor:list->head.tuttifrutti

myprint ==> p flavor:list->head.tuttifrutti

HP Symbolic Debugger Commands 4-71

Macro Facility Commands

creates a macro called myprint which can be entered at the debugger
prompt in the place of typing:

p flavor:list->head.tuttifrutti

4-72 HP Symbolic Debugger Commands

Macro Facility Commands

Note If a macro can be de�ned with the same name as a previous macro,
The new de�nition will replace the old one, until it is unde�ned with
the undef command, at which point the old de�nition is active.

tm (toggle macros)
�
tm

toggle macros

�

Toggles the state of the macro mechanism between active and
suspended. When macros are suspended, the currently de�ned
macros continue to exist, but are not replaced in the command line
by their de�nitions. Additional macros can be de�ned while the
macro state is suspended.

undef undef

�
name

*

�

Removes the macro de�ned by name. Using the * option causes all
macros to become unde�ned.

HP Symbolic Debugger Commands 4-73

Miscellaneous
Commands

The miscellaneous commands perform a variety of individual tasks.
The miscellaneous commands are:

!
:
#
�RETURN�
~
am (activate more)
debug
f (format)
g (goto)
h (help)
q (quit)
sm (suspend more)
tc (toggle case)

! !
�
MPE command

�
Escapes out of the debugger into the operating system. If a
command is speci�ed, it is automatically executed. Otherwise, a
session is invoked and must be explicitly ended before the debugger
can resume. When you execute the ! command interactively, return
to the debugger by hitting the �RETURN� key. When you use this
command in an assertion or breakpoint command list, control returns
to the debugger automatically.

A command can be enclosed in braces (fg) to delimit it from
debugger commands on the same line. For example:

b 14 {!{SHOWTIME}; continue}; trace; list assertions

If you use the escape without giving a list of commands, you are
given a colon prompt. You can now execute any MPE/iX operating
system command. You can return to the debugger by typing exit at
the colon prompt.

Note It is recommended that you return to the debugger when �nished
with your session.

This command is synonymous with the : command.

4-74 HP Symbolic Debugger Commands

Miscellaneous Commands

: :
�
MPE command

�
Escapes out of the debugger into the operating system. If a
command is speci�ed, it is automatically executed. Otherwise, a
session is invoked and must be explicitly ended before the debugger
can resume. When you execute the : command interactively, return
to the debugger by hitting the �RETURN� key. When you use this
command in an assertion or breakpoint command list, control returns
to the debugger automatically.

A command can be enclosed in braces (fg) to delimit it from
debugger commands on the same line. For example:

b 14 {:{SHOWTIME}; continue}; trace; list assertions

If you use the escape without giving a list of commands, you are
given a colon prompt. You can now execute any MPE/iX operating
system command. You can return to the debugger by typing exit at
the colon prompt.

Note It is recommended that you return to the debugger when �nished
with your session.

This command is synonomous with the ! command.

#
�
text

�
Causes the text to be interpreted as a comment. This command can
be used to document the contents of record and playback �les. The
number symbol (#) must be the �rst nonblank character on the line.
The rest of the line is treated as a comment and is written to the
record �le if the recording is on. Otherwise, it is ignored.

�RETURN� �RETURN�

Repeats the previous command. You can use this command with the
following commands:

+

-

p (print)

v (view)

s (step)

S (Step)

This command is synonomous with the ~ command.

HP Symbolic Debugger Commands 4-75

Miscellaneous Commands

~ ~

Repeats the previous command. You must use the �RETURN� key
after typing the ~ . You can use this command with the following
commands:

+

-

p (print)

v (view)

s (step)

S (Step)

This command is synonomous with the �RETURN� command, but is
more \visible" in a record or playback �le.

am (activate more)
�
am

activate more

�

Activates (enables) the more feature. (Active is the initial state).
When activated, all command window output following a debugger
command is presented to you a window-full at a time, and you are
prompted before displaying successive windows.

Use one of the following commands to continue.

�SPACE BAR� Displays one more window-full.

�RETURN� Displays one more line.

q Quits scrolling and ignores the rest of the output
until another debugger prompt is issued.

To view command window output in a continuous stream, use the sm
(suspend more) command to suspend the more feature. �CNTL�S may
be used to temporarily suspend scrolling when the more feature is
suspended. Use �CNTL�Q to continue scrolling.

Note Output from the child process (program being debugged) also
appears in the command window, but it is not controlled by the more
feature.

debug debug

Transfers control to the MPE NMdebugger by causing the child
process to call the \DEBUG" entry point. When you exit, control
returns to the HP Symbolic Debugger.

4-76 HP Symbolic Debugger Commands

Miscellaneous Commands

f (format)
�
f

format

��
"printf-style-format"

�

Sets the printing format used by the debugger to print an address.
Only the �rst 19 literal and formatting characters are used (see the
section on printf in the HP C/XL Library Reference Manual for a
discussion of valid formats). If the format is set incorrectly, an error
message appears.

Using the f (format) command without an argument will reset the
format to the default format: 8 hexadecimal digits, preceded by \0x".

Note This command is generally not needed for typical debugger use.

Caution If you set the address printing format to something printf does not
like, you might get an error (usually memory fault) each time you try
to print an address, until you �x the format with another f (format)
command.

g (goto)
�
g

goto

��
line

#label

�

Moves the current point of execution suspension to the speci�ed
line or label. The speci�ed line or label must be within the same
procedure (or HP COBOL II paragraph) where execution is currently
suspended (at depth zero on the stack). This is not necessarily in the
procedure currently being viewed. The program counter will change
so that the given line number or the line that #label appears on
becomes the next executable line. Execution does not automatically
resume.

Note For purposes of this command, the main program is treated as a
procedure.

HP Symbolic Debugger Commands 4-77

Miscellaneous Commands

h (help)
�
h

help

�

Prints a command summary, called the Help �le which describes the
syntax and use of each command. This facility references the short
form of the command only, not the long form.

The more facility can be used to view the �le. When activated, all
command window output following a debugger command is presented
to you a window-full at a time, and you are prompted before
displaying successive windows.

Use one of the following commands to continue.

�SPACE BAR� Displays one more window-full.

�RETURN� Displays one more line.

q Quits scrolling and ignores the rest of the help
information.

To view help information in a continuous stream, use the sm
(suspend more) command to suspend the more feature. �CNTL�S may
be used to temporarily suspend scrolling when the more feature is
suspended. Use �CNTL�Q to continue scrolling.

q (quit)
�
q

quit

�

Quits the debugger and asks for con�rmation: enter y (yes) or
n (no). This command returns control to the operating system
and terminates the debugging session. All �les are closed and the
terminal is restored to a normal mode.

sm (suspend more)
�
sm

suspend more

�

Suspends the more feature and lets you view the output in a
continuous stream. �CNTL�S and �CNTL�Q can be used to temporarily
suspend scrolling.

Use this command when you do not want the debugger to pause
at the end of each window of output waiting for a continuation
command. This command is particularly useful for viewing a large
amount of output containing many breakpoints. To view the
command window output one window-full at a time, use the am
(activate more) command to activate the more feature.

4-78 HP Symbolic Debugger Commands

Miscellaneous Commands

tc (toggle case)
�
tc

toggle case

�

Toggles case sensitivity; determines whether or not searches or names
are case sensitive (Initially, they are case insensitive.) This command
a�ects �le and procedure names, variables, and search strings used
with the / or ? commands.

Note Case insensitive searches equate some non-letters with other
non-letters. For example, [and { are equal, as are @ and `.

do do
�
cmdid

��
,editstring

�
Re-executes the command identi�ed by cmdid after applying
editstring . The optional cmdid can be a positive or negative
number or a string that will be searched in the history stack. If no
parameters are speci�ed, do executes the most recently executed
command.

redo redo
�
cmdid

��
,editstring

�
Allows you to edit and re-execute the command identi�ed by cmdid .
The optional cmdid can be a positive or negative number or a
string that will be searched in the history stack. If no parameters
are speci�ed, redo allows you to edit the most recently executed
command.

listredo listredo
�
start

��
,end

�
Lists commands from the redo stack between start and end inclusive.
The optional start and end can be positive or negative numbers.

HP Symbolic Debugger Commands 4-79

A

Messages

This appendix lists messages that you may encounter while using
HP Symbolic Debugger. Self-explanatory messages and those which
relate to syntax errors, such as missing or extraneous characters in
commands, are not listed in this appendix.

To assist you in �nding the solution to a problem, several messages
may be displayed. Look up each message in this appendix to get
complete information about the action to take.

Messages are preceded by unique reference numbers that indicate
the error type. Messages, with their message reference numbers, are
listed in this order:

UE300-UE785 User Errors

DB1-DB11 Debugger Errors

Internal error messages, which are in the range of IE500 to IE825,
should not occur with normal debugger use. If they do occur, report
them to your HP representative.

Child process (program) errors result in signals which are
communicated to the debugger. If a program error occurs while
executing a procedure call from the command line, it is handled
like any other error (in other words, you can investigate the called
procedure). To recover from this, or to abort a procedure call from
the command line, press �CTRL�Y.

The following example message has a reference number of UE313 and
is listed below as it appears in this appendix:

UE313 MESSAGE Invalid breakpoint type "TEXT"

Messages A-1

A list of abbreviations that are used throughout this appendix and
their meanings follow. Note that in all explanations, commands are
given in long form, but the short form may also be used. See the
chapter \HP Symbolic Debugger Commands" for further details.

ABBREVIATION DEFINITION

CMD A debugger command.

FILE The name of a �le.

NAME The name of a data object.

NUM A number.

PROC A user program or procedure name.

TEXT A text string; arbitrary user input.

UEnnn User-created error.

DBnnn A debugger error.

A-2 Messages

User Errors (UE300 -
UE785)

User errors result from entering incorrect commands or from using
the commands incorrectly. User errors cause the command that you
entered to fail. You must correct the cause of the error and re-enter
the command.

UE300 MESSAGE Attempt to read on non-word boundary

CAUSE The debugger cannot read on a non-word
aligned address.

ACTION Do not try to read at a non-word boundary.
An incorrect reference to a data item has
probably been made. Note: Memory
accesses are done word-at-a-time, regardless
of how data is formatted in memory.

UE301 MESSAGE Attempt to write to odd address

CAUSE An attempt to write a value on a non-word
or half-word boundary was made.

ACTION Do not try to write to an odd address. Note:
Memory accesses are done word-at-a-time,
regardless of how data is formatted in
memory.

UE302 MESSAGE Address not found

CAUSE The address is part of a command and is
invalid. It is probably out of range.

ACTION Check the validity of the address and
re-enter the command.

UE303 MESSAGE Cannot read that location

CAUSE Access to the child process failed, possibly
caused by an invalid address.

ACTION Check the validity of the address and
re-enter the command.

UE304 MESSAGE No child process

CAUSE The debugger attempted an operation that
required a child process that does not exist
(was not running).

ACTION To start a child process, use any of the r
(run) or s (step) commands.

Messages A-3

UE305 MESSAGE No child process AND no corefile

CAUSE The debugger attempted an operation that
required a child process or a core �le.

ACTION Start a child process using any of the r
(run) or s (step) commands, or restart the
debugger on a valid core �le.

UE306 MESSAGE Attempt to write to non-word boundary.

CAUSE The debugger cannot write to a non-word
aligned address.

ACTION Do not try to write to a non-word boundary.
An incorrect reference to a data item has
probably been made. Note: Memory
accesses are done word-at-a-time, regardless
of how data is formatted in memory.

UE307 MESSAGE Cannot write that location

CAUSE Access to a child process failed; this may
have been caused by an invalid address.

ACTION Check the validity of the address and
re-enter the command.

UE308 MESSAGE Bad access to child process

CAUSE Failed to read data from or write data
to a child process. This may have been
caused by an invalid address (for example,
dereferencing an invalid pointer), or by
an attempt to place a breakpoint in an
unwritable child process code space. Other
possible causes:

The executable �le is already being
debugged in a di�erent debugging session.
The process you were debugging exec'ed a
di�erent process.

ACTION Check the validity of the data and re-enter
the command. You can also:

Kill the other debugging session.
If you need to debug the new process,
adopt it with the -P option.

A-4 Messages

UE310 MESSAGE Can't set breakpoint (invalid address)

CAUSE The address of the speci�ed breakpoint
command was invalid or unknown.

ACTION Re-enter the breakpoint command with a
correct address or location.

UE311 MESSAGE Stack isn't that deep

CAUSE The debugger tried to set a breakpoint or
view a procedure at an invalid depth. The
child process stack was not that deep.

ACTION Use the trace command to list the child
process stack. This will show you how deep
the stack is and what procedure is at each
depth on the stack.

UE312 MESSAGE No symbols for that procedure

CAUSE The debugger tried to set a breakpoint using
a stack depth, when the procedure at that
stack depth was non-debuggable.

ACTION Try setting a ba (breakpoint address)
using the name of the procedure; for
example, ba xxx.

UE313 MESSAGE Invalid breakpoint type "TEXT"

CAUSE TEXT was an invalid breakpoint type.

ACTION Refer to the \Breakpoint Commands"
section in Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see valid
breakpoint commands.

UE314 MESSAGE Invalid command list, must be enclosed

in {}

CAUSE The command list associated with a
breakpoint or an assertion must be enclosed
in fg.

ACTION Re-enter the breakpoint or assertion with
the correct syntax.

Messages A-5

UE315 MESSAGE Invalid line number on "breakpoint"

command

CAUSE The quantity given for a line number on a
breakpoint command was an invalid numeric
expression.

ACTION Re-enter the command with a valid
expression.

UE319 MESSAGE Invalid line number on "CMD" command

CAUSE The quantity given for a line number
on a b (breakpoint), v (view), or c
(continue) command, was an invalid
numeric expression.

ACTION Re-enter the command with a valid
expression.

UE321 MESSAGE Procedure "PROC" not found where

specified

CAUSE The nesting of procedure PROC was not
properly speci�ed.

ACTION Use the trace command to list the stack and
�nd where PROC is located.

UE323 MESSAGE No count given for "breakpoint CMD"

command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

A-6 Messages

UE324 MESSAGE No count given for "breakpoint" command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

UE325 MESSAGE No count given for "breakpoint address"

command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

UE326 MESSAGE No count given for "breakpoint

beginning" command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

Messages A-7

UE327 MESSAGE No count given for "breakpoint count"

command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

UE328 MESSAGE No count given for "breakpoint trace"

command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

UE329 MESSAGE No count given for "breakpoint uplevel"

command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

A-8 Messages

UE330 MESSAGE No count given for "breakpoint exit"

command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

UE331 MESSAGE No count given for "CMD" command

CAUSE The user failed to specify a breakpoint count
(after the \) for a breakpoint command.
Or, an attempt was made to use the bc
(breakpoint count) command on an
existing breakpoint.

ACTION Refer to the \Breakpoint Commands"
section in the Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for breakpoint commands.

UE332 MESSAGE Count must be positive or negative

CAUSE A count of zero was given for a b

(breakpoint) or bc (breakpoint count)
command.

ACTION Re-enter the command with a non-zero
count.

UE333 MESSAGE Must specify a macro name

CAUSE The def command was entered without
arguments.

ACTION Refer to the \Macro Facility Commands"
section in Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see the correct
syntax for the def command.

Messages A-9

UE335 MESSAGE Must specify which macro to delete

CAUSE The undef command was entered to delete
or unde�ne a macro without giving the
name of the macro to delete.

ACTION Use the lm (list macros) command to list
all de�ned macros.

UE336 MESSAGE Unknown name or command "NAME"

CAUSE An unrecognized string (NAME) was
encountered as a debugger command.

ACTION Refer to the HP Symbolic Debugger/iX
Quick Reference to see tables of valid
debugger commands.

UE337 MESSAGE Unknown command "CMD"

CAUSE An unrecognized string (CMD) was
encountered as a debugger command.

ACTION Refer to the HP Symbolic Debugger/iX
Quick Reference to see tables of valid
debugger commands.

UE339 MESSAGE Empty assertion not added

CAUSE The assertion command was given without
an associated command list.

ACTION Re-enter the command and include a
command-list within braces ({ }).

UE341 MESSAGE No breakpoint set at current location

CAUSE An attempt was made to activate, delete, or
suspend a breakpoint where no breakpoint
was de�ned.

ACTION Use the lb (list breakpoints) command
to see where breakpoints are set.

UE342 MESSAGE Address is required after "breakpoint

address"

CAUSE The ba (breakpoint address) command
must be followed by a code address.

ACTION Use a valid code address (symbolic or
numeric) with the command.

A-10 Messages

UE343 MESSAGE Address is required after "CMD"

CAUSE The breakpoint command must be followed
by a code address.

ACTION Use a valid code address (symbolic or
numeric) with the command.

UE344 MESSAGE Invalid depth given for "breakpoint

CMD" command

CAUSE An attempt was made to specify a depth
that is not a number greater than or equal
to 0.

ACTION Re-enter the appropriate command with a
valid depth.

UE345 MESSAGE Invalid depth given for "breakpoint
beginning" command

CAUSE An attempt was made to specify a depth
that is not a number greater than or equal
to 0.

ACTION Re-enter the appropriate command with a
valid depth.

UE346 MESSAGE Invalid depth given for "breakpoint

trace" command

CAUSE An attempt was made to specify a depth
that is not a number greater than or equal
to 0.

ACTION Re-enter the appropriate command with a
valid depth.

UE347 MESSAGE Invalid depth given for "breakpoint

uplevel" command

CAUSE An attempt was made to specify a depth
that is not a number greater than or equal
to 0.

ACTION Re-enter the appropriate command with a
valid depth.

Messages A-11

UE348 MESSAGE Invalid depth given for "breakpoint

exit" command

CAUSE An attempt was made to specify a depth
that is not a number greater than or equal
to 0.

ACTION Re-enter the appropriate command with a
valid depth.

UE349 MESSAGE Invalid depth given for "CMD" command

CAUSE An attempt was made to specify a depth
that is not a number greater than or equal
to 0.

ACTION Re-enter the appropriate command with a
valid depth.

UE350 MESSAGE Depth must be an integer

CAUSE An attempt was made to specify a stack
depth that is not a number.

ACTION Re-enter the command and specify an
integer depth.

UE355 MESSAGE Must specify which assertion to delete

CAUSE The number of the assertion to delete was
not speci�ed.

ACTION Use the la (list assertions) command to
�nd the number of the assertion to delete.

UE358 MESSAGE Invalid expression for depth on "View"

command

CAUSE The View command was given with an
expression for a depth that the debugger
cannot evaluate.

ACTION Use the t (trace) command to view the
stack for the proper procedure and depth.

A-12 Messages

UE359 MESSAGE Invalid expression for depth on "V"

command

CAUSE The V command was given with an
expression for a depth that the debugger
cannot evaluate.

ACTION Use the t (trace) command to view the
stack for the proper procedure and depth.

UE364 MESSAGE Missing "{"

CAUSE The i (if) command did not have a brace
({) following the conditional expression.
Or, the expression might have been entered
incorrectly.

ACTION Re-enter the expression, enclosing the
command-lists in braces.

UE368 MESSAGE Map is not supported

CAUSE Your version of the debugger does not
support the M (Map) command, because core
�les are unsupported.

ACTION Do not enter the M (Map) command.

UE369 MESSAGE Unknown name "NAME"

CAUSE An unrecognized string (procedure or
variable name) was encountered in an
expression.

ACTION Use the lp (list procedures), lg (list
globals), l (list), lc (list commons), or
ll (list labels) command to list all known
procedures, globals, locals, commons, or
labels.

UE372 MESSAGE Must specify which assertion to suspend

CAUSE The number of the assertion to suspend was
not speci�ed.

ACTION Use the la (list assertions) command to
�nd the number of the assertion to suspend.

Messages A-13

UE373 MESSAGE Invalid expression given for "suspend

assertion" command

CAUSE The sa (suspend assertion) command was
given with an expression that the debugger
cannot evaluate.

ACTION Use an expression which evaluates to a
number.

UE374 MESSAGE Invalid expression given for "sa"

command

CAUSE The sa (suspend assertion) command was
given with an expression that the debugger
cannot evaluate.

ACTION Use an expression which evaluates to a
number.

UE375 MESSAGE Bad magic number NUM

CAUSE The �le you are trying to debug is not a
valid executable �le.

ACTION Specify a valid executable �le for the
program to be debugged.

UE378 MESSAGE Invalid expression given for "step"

command

CAUSE A non-numeric expression was entered as
part of the s (step) command.

ACTION Re-enter the command with a correct
numeric expression.

UE379 MESSAGE Invalid expression given for "Step"

command

CAUSE A non-numeric expression was entered as
part of the S (Step) command.

ACTION Re-enter the command with a correct
numeric expression.

A-14 Messages

UE380 MESSAGE Invalid expression given for "CMD"

command

CAUSE A non-numeric expression was entered as
part of the s (step), S (Step), t (trace),
T (Trace), or sa (suspend assertion)
command.

ACTION Re-enter the command with a correct
numeric expression.

UE382 MESSAGE Invalid expression given for "trace"

command

CAUSE A non-numeric expression was entered as
part of the t (trace) command.

ACTION Re-enter the command with a correct
numeric expression.

UE383 MESSAGE Invalid expression given for "Trace"

command

CAUSE A non-numeric expression was entered as
part of the T (Trace) command.

ACTION Re-enter the command with a correct
numeric expression.

UE384 MESSAGE Invalid window size

CAUSE The numeric expression given for the new
window size on the window command was
not a valid numeric expression or was
outside a range that is acceptable for you
screen size.

ACTION Re-enter the command with a valid numeric
expression within the range of 1 to the
number of lines on your screen minus 3.

UE387 MESSAGE Invalid expression for mode on "exit"

command

CAUSE The x (exit) command was given with an
expression for mode that the debugger could
not evaluate.

ACTION Replace the mode expression with a valid
numeric expression.

Messages A-15

UE388 MESSAGE Invalid expression for mode on "x"

command

CAUSE The x (exit) command was given with an
expression for mode that the debugger could
not evaluate.

ACTION Replace the mode expression with a valid
numeric expression.

UE390 MESSAGE Unknown name or command "CMD"

CAUSE Your command is not recognized by the
debugger.

ACTION Enter a valid debugger command.

UE391 MESSAGE No playback name specified

CAUSE The �le name is missing in a playback
command.

ACTION Re-enter the playback command with a valid
playback �le name.

UE392 MESSAGE Can't open FILE as playback file

CAUSE FILE does not exist or is unreadable.

ACTION Enter a valid �le name, or change the �le
permission if it exists already.

UE393 MESSAGE Can't open FILE as record file

CAUSE You don't have write permission in the
speci�ed directory, or a non-writable �le
with the same name already exists.

ACTION Enter a di�erent �le name, remove the old
�le, or change the write permission for the
directory.

UE394 MESSAGE Operand stack overflow

CAUSE An expression was too complicated for the
expression handler to parse. A combination
of more than 15 nested parentheses and/or
pending operators may be the cause.

ACTION Re-enter the expression, using less than 15
nested parentheses.

A-16 Messages

UE396 MESSAGE Data too big to put in the child process

CAUSE A string constant or other data was
larger than the total size of the bu�er in
xdbend.lib.sys.

ACTION Re-enter a smaller string constant or data
item, if applicable.

UE397 MESSAGE Can't store into a constant

CAUSE The left side of an assignment statement
was found to be a constant; it cannot be
modi�ed.

ACTION Use the \t display format for information on
the assigned variable.

UE399 MESSAGE String too long for assignment

CAUSE An attempt was made to assign a string over
1024 bytes to an HP FORTRAN 77 CHAR*,
HP Pascal string, or HP Pascal packed array
of char.

ACTION Use the \t display format for type
information of the string assigning to, and
re-enter the command with an appropriately
sized string.

UE400 MESSAGE Incompatible operands for string

assignment

CAUSE An attempt was made to assign to an HP
FORTRAN 77 CHAR*, HP Pascal string, or
HP Pascal packed array of char, something
other than an HP FORTRAN 77 CHAR*,
HP Pascal string, HP Pascal packed array
of char, a string constant, or a character
constant.

ACTION Re-enter the command with a proper
assignment.

UE402 MESSAGE Can't take the address of a constant

CAUSE The operand of a &, $addr, or addr operator
is marked as a constant type.

ACTION Use the \t display format to �nd the type of
the operand.

Messages A-17

UE403 MESSAGE Can't take the address of a register

CAUSE The operand of a &, $addr, or addr operator
is marked as a register type.

ACTION Use the \t display format to �nd the type of
the operand.

UE404 MESSAGE Prefix "++" not supported

CAUSE An attempt was made to use an
unsupported ++ pre�x operator.

ACTION Make sure there is a space between a + and
a unary + operator (for example 2+ +5). +=1
can be used to increment.

UE405 MESSAGE Prefix "--" not supported

CAUSE An attempt was made to use an
unsupported -- pre�x operator.

ACTION Make sure there is a space between a - and
a unary - operator (for example 2- -5). -=1
can be used to decrement.

UE406 MESSAGE Invalid combination of operator and

operands

CAUSE The debugger tried to perform a numeric
operation on one or more non-numeric
operands.

ACTION Re-enter the command with a valid
expression.

UE407 MESSAGE Unknown operator (NUM)

CAUSE An unsupported operator, with internal
value NUM, was pushed on the operator
stack.

ACTION Re-enter the command using an operator
known to the current language or reset
$lang to the language in which the operator
is valid.

A-18 Messages

UE408 MESSAGE Misformed expression

CAUSE An expression was entered incorrectly. The
debugger attempts to show you where the
error was detected in the command line.
The error token might be one token beyond
the actual error.

ACTION Re-enter the expression using operators and
operands known to the current language or
reset $lang to the language in which the
operator or operand is valid.

UE409 MESSAGE Two operators in a row

CAUSE The expression handler detected an
improper construct in an expression.

ACTION Re-enter the command with a valid
expression.

UE410 MESSAGE Postfix "++" not supported

CAUSE An attempt was made to use an
unsupported ++ post�x operator.

ACTION Make sure there is a space between a + and
a unary + operator (for example 2+ +5). +=1
can be used to increment.

UE411 MESSAGE Postfix "--" not supported

CAUSE An attempt was made to use an
unsupported -- post�x operator.

ACTION Make sure there is a space between a - and
a unary - operator (for example 2- -5). -=1
can be used to decrement.

UE412 MESSAGE FORTRAN variable not pure array

CAUSE An attempt was made to dereference an
array that had pointer or function quali�ers,
while the current language was set to
FORTRAN, which does not support them.

ACTION Try again with $lang set to a di�erent
language.

Messages A-19

UE413 MESSAGE Invalid real number

CAUSE The speci�ed numeric expression was not a
real number.

ACTION See the appropriate language reference
manual, or Table 4-3 in this manual, for the
format of real numbers.

UE414 MESSAGE Misformed global name

CAUSE A : or :: must be followed by a variable
name (string).

ACTION Refer to the \Entering Variable Names"
section in Chapter 4 of the HP Symbolic
Debugger/iX User's Guide to see how to
specify global variables.

UE415 MESSAGE Unknown global

CAUSE The variable speci�ed with :var was not a
recognized global variable name.

ACTION Use the lg (list globals) command to list
all known global variables.

UE416 MESSAGE Need a ":" after the number

CAUSE In specifying a variable, proc:depth:var
was entered incompletely (:var was
missing).

ACTION Refer to the l (list) command listing in
Chapter 4 of the HP Symbolic Debugger/iX
User's Guide to see a list of valid expression
for variables.

UE417 MESSAGE Invalid local name

CAUSE In specifying a variable, proc[:depth]:var
was entered incorrectly. The variable
var must be a valid variable name in the
speci�ed procedure, at the speci�ed depth.

A-20 Messages

UE418 MESSAGE Unknown local

CAUSE The variable speci�ed with
proc[:depth]:var was not a recognized local
variable of proc.

ACTION Use the l (list) command to list all known
local variables of the current proc, or use
the T (Trace) command to list the locals,
variables, and procedures on the stack.

UE419 MESSAGE Procedure "PROC" not found at stack

depth NUM

CAUSE In proc:depth, the procedure PROC was not
on the child process stack at depth NUM.
Either the stack was not that deep, or the
procedure at that depth was not PROC.

ACTION Use the t (trace) command to list the
stack.

UE420 MESSAGE Unknown language

CAUSE An attempt was made to modify the current
language by assigning an invalid language
designator to the special variable $lang.
The valid language designators are COBOL,
Pascal, FORTRAN, C and default.

ACTION Re-enter the command with COBOL, Pascal,
FORTRAN, C or default as the designator.

UE421 MESSAGE Local is not active

CAUSE A local variable name was recognized
but the procedure it belongs to was not
currently active on the child process stack.

ACTION Re-enter the command after its procedure
has been called.

UE422 MESSAGE Two operands in a row

CAUSE The expression handler detected an
improper construct in an expression.

ACTION Refer to the \Entering Expressions"
section in Chapter 4 of the HP Symbolic
Debugger/iX User's Guide.

Messages A-21

UE423 MESSAGE No source file for current address

CAUSE The given child process address did not map
to a known, debuggable source �le.

ACTION Use the lf (list files) command to
view the �les the debugger recognizes, and
re-enter the command with an appropriate
address expression.

UE424 MESSAGE No search pattern

CAUSE The search command (/, ?, n (next), or N
(Next)) was given without a search pattern
(in the case of n (next) and N (Next),
the previous search command / or ? was
provided without a pattern).

ACTION Refer to the individual command listings in
Chapter 4 of the HP Symbolic Debugger/iX
User's Guide for more information about
search commands.

UE425 MESSAGE No match for "TEXT"

CAUSE The search pattern (TEXT) for the /, ?, n,
(next) or N (Next) command was not found
in the current viewing �le. Note that the
pattern is a literal, not a regular expression.

ACTION Try another pattern or view another �le and
search for the pattern.

UE426 MESSAGE Invalid display format "TEXT"

CAUSE Given the data display format, or a portion
of it, the TEXT contained invalid syntax.

ACTION Refer to Table 4-3 in Chapter 4 of the HP
Symbolic Debugger/iX User's Guide to see
valid data viewing formats.

UE427 MESSAGE Format is missing "\"

CAUSE Because the command ends with a \, the
debugger expects a format.

ACTION Re-enter the command with a format or
without the ending \.

A-22 Messages

UE428 MESSAGE Length not allowed with "TEXT" format

CAUSE Given the data display format, the TEXT
did not allow the data length speci�cation
because it is irrelevant or implicit in the
format.

ACTION Refer to Table 4-3 in Chapter 4 of the HP
Symbolic Debugger/iX User's Guide to see
valid data viewing formats.

UE429 MESSAGE This does not appear to be a record or

union

CAUSE The debugger tried and failed to dump the
contents of a data object that was not a
record or union.

ACTION Use the \t display format for more
information.

UE430 MESSAGE This does not appear to be a struct or

union

CAUSE The debugger tried and failed to dump the
contents of a data object that was not a
struct or union.

ACTION Use the \t display format for more
information.

UE431 MESSAGE No count given for b command

CAUSE The debugger expected a breakpoint count
after the \.

ACTION Re-enter the command with a breakpoint
count, or with no \.

UE433 MESSAGE No current procedure

CAUSE The debugger tried to list locals for the
current viewing procedure when the
procedure was unde�ned.

ACTION Use the lp (list procedures) command to
list all the debuggable procedures.

Messages A-23

UE434 MESSAGE No such procedure "PROC"

CAUSE An attempt to list locals of a non-existent,
or non-debuggable procedure PROC was
made.

ACTION Use the lp (list procedures) command to
list all known debuggable procedures.

UE435 MESSAGE Unrecognized "l" command

CAUSE The l (list) command was given with
a second part that was neither a known
procedure name, nor a valid option.

ACTION Refer to the l (list) command listing in
Chapter 4 of the HP Symbolic Debugger/iX
User's Guide for more information.

UE438 MESSAGE Exiting command line procedure call

CAUSE The command line procedure call
environment terminated for an unusual
reason, such as encountering a breakpoint
during program execution, or an error was
reached before the procedure was called.

ACTION Check the procedure call for errors and
re-enter the command line procedure call.

UE439 MESSAGE Can't pass more than NUM arguments to

called procedure

CAUSE A large limit (NUM) exists on how many
parameters can be passed to a procedure
called from the command line.

ACTION Check the number of parameters for the
procedure you are attempting to call. If
the limit (NUM) is less than the number of
parameters in the procedure, that procedure
cannot be called from the command line.

UE440 MESSAGE Argument list too long

CAUSE Arguments to the run command exceeded
1024 bytes.

ACTION Re-enter the run command with fewer
arguments.

A-24 Messages

UE441 MESSAGE Can't goto a location in another

procedure

CAUSE The line number given to the g (goto)
command was not an executable source line
in the top procedure on the child process
stack. This is not always the same as the
current viewing procedure.

ACTION Re-enter the g (goto) command with a line
number within the procedure on the top of
the child process stack.

UE443 MESSAGE Signal actions are "i", "r", "s", "Q"

CAUSE An invalid signal action was given.

ACTION Re-enter the command with a valid action:
i (ignore), r (report), s (stop), or Q
(quietly change signal action).

UE444 MESSAGE Unknown name

CAUSE An unrecognized string (procedure or
variable name) was encountered in an
expression.

ACTION Use the lp (list procedures), lg (list
globals), l (list), lc (list commons), or
ll (list labels) command to list all known
procedures, globals, locals, commons, or
labels.

UE445 MESSAGE It appears that there's no debugging

information in FILE

CAUSE The program you are trying to debug
doesn't contain debug information.

ACTION Recompile the program with the appropriate
info-string debugging (e.g., info = -g), or
debug the program at the assembly language
level.

UE446 MESSAGE Misformed hex number

CAUSE 0x or 0X was given without digits following.

ACTION Re-enter the command with a valid
hexadecimal number.

Messages A-25

UE447 MESSAGE Misformed octal number

CAUSE An octal number starting with 0 contains an
8 or 9.

ACTION Re-enter the command with the correct
octal number.

UE448 MESSAGE Character constant is missing ending '

CAUSE Token parsed as a character constant is
missing a trailing single quotation mark
('). This applies to a single quotation
mark followed by a single character or an
equivalent backslash sequence.

ACTION Re-enter the command enclosing the
character constant in single quotation marks
(').

UE449 MESSAGE String constant is missing ending "

CAUSE Token parsed as a string constant was
missing a trailing double quotation mark
before the end of the command line.

ACTION Re-enter the string with a beginning and
ending double quotation marks.

UE450 MESSAGE Macros nested too deeply

CAUSE A user speci�ed macro has caused the
evaluation of over 20 macro de�nitions
during its evaluation. The debugger cannot
evaluate macros nested this deep. This error
can also be caused by a recursive macro
de�nition.

ACTION Rede�ne the macro using fewer than 20
macro de�nitions, or remove the recursive
de�nition.

UE451 MESSAGE Macros processing overflow

CAUSE While evaluating a user speci�ed macro, the
bu�er used to hold the resulting de�nition
for this macro was about to over
ow, and
the processing for this macro terminated
unsuccessfully.

ACTION Unde�ne the unnecessary macros and
rede�ne the macro.

A-26 Messages

UE452 MESSAGE Sorry, you can't access a naked field

CAUSE An attempt was made to refer to a �eld
by name without specifying the qualifying
structure (for example, union, record,
pointer, etc.).

ACTION Use the \t display format on the structure
object to examine its type information.

UE453 MESSAGE Too many subscripts

CAUSE An attempt was made to dereference an
array with more dimensions than it was
declared to have. However, HP C does allow
you to dereference pointers in this manner.

ACTION Use the \t display format for on the array
object to examine its type information.

UE455 MESSAGE Invalid field access: "NAME"

CAUSE An attempt was made to do a �eld
dereference of an object (NAME) that was
not a structure or union.

ACTION Use the \t display format to determine the
characteristics of the object (NAME).

UE456 MESSAGE No such field name "NAME" for that

record

CAUSE The record did not contain a �eld of that
NAME.

ACTION Use the \t display format for more
information.

UE457 MESSAGE No such field name "NAME" for that

struct

CAUSE The struct did not contain a �eld of that
NAME.

ACTION Use the \t display format for more
information.

Messages A-27

UE458 MESSAGE No such field name "NAME" for that union

CAUSE The union did not contain a �eld of that
NAME.

ACTION Use the \t display format for more
information.

UE459 MESSAGE Illegal cast

CAUSE The expression contains an illegal cast.

ACTION Re-enter the command with a valid
expression. When casting with a class,
structure, or union type, the keyword class,
struct, or union must be given.

UE461 MESSAGE No child process or corefile

CAUSE The debugger attempted an operation that
required an active child process or a core
�le.

ACTION Start a child process using any of the r
(run) or s (step) commands, or restart the
debugger on a valid core �le.

UE464 MESSAGE Operand stack overflow

CAUSE An expression was too complicated for the
expression handler to parse. A combination
of more than 15 nested parentheses and/or
pending operators may be the cause.

ACTION Re-enter the expression, using less than 15
nested parentheses.

UE465 MESSAGE Can't execute child program

CAUSE The debugger could not execute the object
�le given.

ACTION Check to see that the �le is executable and
writable by the user.

UE466 MESSAGE Window mode required for this command

CAUSE The debugger was probably invoked with the
-L option.

ACTION Verify that you are using an HP terminal
and rerun the debugger without the -L
option.

A-28 Messages

UE475 MESSAGE Count must be positive

CAUSE The count argument given to the c
(continue) command is negative or 0.

ACTION Re-enter the command with a positive count
(or none).

UE476 MESSAGE Too many characters in wide-character

constant

CAUSE More than one valid (possibly multi-byte)
character was entered.

ACTION Re-enter the expression with one character
constant.

UE477 MESSAGE Wide string constant too long;

truncating to NUM wide-characters

CAUSE Not enough bu�er space was available in
the user process to store the entire string
constant (maximum is 127).

ACTION Enter a shorter string constant.

UE479 MESSAGE Empty hex escape sequence

CAUSE An invalid ANSI C hexadecimal escape
sequence was entered.

ACTION Replace the invalid escape sequence with a
valid one of the form \xhh.

UE480 MESSAGE Long double function calls are not
supported

CAUSE There was an attempt to call from the
command line a function whose return type
is long double.

ACTION This is not supported.

UE481 MESSAGE Long double parameters are not

supported in command line function

calls

CAUSE There was an attempt to call from the
command line a function which expects a
long double parameter.

ACTION This is not supported.

Messages A-29

UE482 MESSAGE Unknown print-mode

CAUSE There was an attempt to assign an illegal
value to the $print debugger variable.

ACTION Assign one of these values: ASCII, native,
raw.

UE483 MESSAGE Misformed binary number

CAUSE A misformed binary number was found in an
expression.

ACTION Replace the misformed number with a valid
one. (0b or 0B followed by one or more 0's
or 1's)

UE484 MESSAGE Can't open "FILE" as state file

CAUSE The �le already exists and is not writable, or
the directory has the wrong permissions.

ACTION Remove the old �le, or make the directory
writable and executable.

UE486 MESSAGE Can't open "FILE" as restore file

CAUSE The �le doesn't exist or the directory is not
readable.

ACTION Enter a valid �le name or add read
permission to the directory.

UE488 MESSAGE No restore name specified

CAUSE No �le name was speci�ed with the -R
option.

ACTION Invoke the debugger with a restore �le name
or don't provide the -R option.

UE490 MESSAGE Wrong objectfile for this statefile

CAUSE The save �le speci�ed was not created with
the object �le you are trying to debug.

ACTION Specify a valid state �le, or if you must
use the one originally speci�ed, start the
debugger and use the �le as a playback �le.
Be sure to read the warnings related to state
�les before doing this.

A-30 Messages

UE605 MESSAGE Incompatible debug information

CAUSE The debugger was invoked on a �le linked on
a older version of the operating system.

ACTION Try relinking your program. If that
doesn't solve the problem, you will have to
recompile the program.

UE626 MESSAGE Attempt to read from ODD address

CAUSE An attempt to read from a non-word or
half-world boundary was made.

ACTION Do not try to read from an odd address.
Note: Memory accesses are done
word-at-a-time, regardless of how data is
formatted in memory.

UE632 MESSAGE Wide-character constant not allowed

($lang must be 'C')

CAUSE Attempt to use a wide character constant
while the language is not C.

ACTION Set $lang to C and re-enter the expression.

UE642 MESSAGE No child process AND no corefile

registers

CAUSE The debugger attempted an operation that
required an active child process or a core
�le.

ACTION Start a child process using any of the r
(run) or s (step) commands, or restart the
debugger on a valid core �le.

UE644 MESSAGE - registers bad in core file

CAUSE Unexpected register save area size. The core
�le might be corrupted.

ACTION Create a new core �le.

UE645 MESSAGE - exec area bad in core file

CAUSE Unexpected exec area size. The core �le
might be corrupted.

ACTION Create a new core �le.

Messages A-31

UE654 MESSAGE Breakpoint count ignored

CAUSE A count is meaningless for class, overload,
or instance breakpoints on multiple member
functions.

ACTION None required. The count was ignored but
the breakpoint was set.

UE655 MESSAGE This does not appear to be a struct or

union

CAUSE The S display format was speci�ed but the
type of the object to print is not a struct

or union.

ACTION If you want to do a formatted dump of an
address, cast the address to some struct or
union.

UE659 MESSAGE No functions

CAUSE There are no functions to list starting with
the provided pre�x.

ACTION Re-enter the command with a valid function
pre�x, or just use the lp (list procedure)
command with no pre�x to see a list of all
the functions.

UE661 MESSAGE Cannot view (no debug information for

file)

CAUSE A location was speci�ed as �le:procedure
and the �le is not in the debugger's list of
�les for which it has debugging information.

ACTION Re-enter the command with a valid �le
name.

UE662 MESSAGE Cannot set breakpoint (no debug

information for file)

CAUSE The breakpoint location was speci�ed as
�le:procedure and the �le is not in the
debugger's list of �les for which it has
debugging information.

ACTION Re-enter the command with a valid �le
name. Use the lf (list files) command to
list all valid source �les and the path name
you must use.

A-32 Messages

UE663 MESSAGE Invalid file on "breakpoint" command

CAUSE A �le speci�ed as part of a breakpoint
location is not known to the debugger.

ACTION Re-enter the command with a valid �le
name. Use the lf (list files) command to
list all valid source �les and the path name
you must use.

UE664 MESSAGE Invalid procedure on "breakpoint"

command

CAUSE A procedure speci�ed as part of a
breakpoint location is not known to the
debugger.

ACTION Re-enter the command with a valid
procedure name. Use the lp (list
procedures) command to see a list of all
valid procedures.

UE665 MESSAGE Invalid label on "breakpoint" command

CAUSE A label speci�ed as part of a breakpoint
location is not known to the debugger.

ACTION Re-enter the command with a valid label
name.

UE666 MESSAGE Invalid class on "breakpoint" command

CAUSE A class speci�ed as part of a breakpoint
location is not known to the debugger.

ACTION Re-enter the command with a valid class
name.

UE669 MESSAGE Invalid file on "continue" command

CAUSE A �le speci�ed as part of a continue location
is not known to the debugger.

ACTION Re-enter the command with a valid �le
name. Use the lf (list files) command to
list all valid source �les and the path name
you must use.

Messages A-33

UE670 MESSAGE Invalid procedure on "continue" command

CAUSE A procedure speci�ed as part of a continue
location is not known to the debugger.

ACTION Re-enter the command with a valid
procedure name. Use the lp (list
procedures) command to see a list of all
valid procedures.

UE671 MESSAGE Invalid line number on "continue"

command

CAUSE A line speci�ed as part of a continue
location is out of range for the associated
�le.

ACTION Re-enter the command with a valid line
number.

UE672 MESSAGE Invalid label on "continue" command

CAUSE A label speci�ed as part of a continue
location is not known to the debugger.

ACTION Re-enter the command with a valid label
name.

UE673 MESSAGE Invalid class on "continue" command

CAUSE A class speci�ed as part of a continue
location is not known to the debugger.

ACTION Re-enter the command with a valid class
name.

UE676 MESSAGE Invalid file on "Continue" command

CAUSE A �le speci�ed as part of a continue location
is not known to the debugger.

ACTION Re-enter the command with a valid �le
name. Use the lf (list files) command to
list all valid source �les and the path name
you must use.

A-34 Messages

UE677 MESSAGE Invalid procedure on "Continue" command

CAUSE A procedure speci�ed as part of a continue
location is not known to the debugger.

ACTION Re-enter the command with a valid
procedure name. Use the lp (list
procedures) command to see a list of all
valid procedures.

UE678 MESSAGE Invalid line number on "Continue"

command

CAUSE A line speci�ed as part of a continue
location is out of range for the associated
�le.

ACTION Re-enter the command with a valid line
number.

UE679 MESSAGE Invalid label on "Continue" command

CAUSE A label speci�ed as part of a continue
location is not known to the debugger.

ACTION Re-enter the command with a valid label
name.

UE683 MESSAGE Invalid file on "view" command

CAUSE A �le speci�ed as part of a view location is
not known to the debugger.

ACTION Re-enter the command with a valid �le
name. Use the lf (list files) command to
list all valid source �les and the path name
you must use.

UE684 MESSAGE Invalid procedure on "view" command

CAUSE A procedure speci�ed as part of a view
location is not known to the debugger.

ACTION Re-enter the command with a valid
procedure name. Use the lp (list
procedures) command to see a list of all
valid procedures.

Messages A-35

UE685 MESSAGE Invalid line number on "view" command

CAUSE A line speci�ed as part of a view location is
out of the range of the associated �le.

ACTION Re-enter the command with a valid line.

UE686 MESSAGE Invalid label on "view" command

CAUSE A label speci�ed as part of a view location is
not known to the debugger.

ACTION Re-enter the command with a valid label
name.

UE690 MESSAGE Invalid file on CMD command

CAUSE A �le speci�ed as part of a CMD location is
not known to the debugger.

ACTION Re-enter the command with a valid �le
name. Use the lf (list files) command to
list all valid source �les and the path name
you must use.

UE691 MESSAGE Invalid procedure on CMD command

CAUSE A procedure speci�ed as part of a CMD
location is not known to the debugger.

ACTION Re-enter the command with a valid
procedure name. Use the lp (list
procedures) command to see a list of all
valid procedures.

UE692 MESSAGE Invalid label on CMD command

CAUSE A label speci�ed as part of a CMD location
is not known to the debugger.

ACTION Re-enter the command with a valid label
name.

UE693 MESSAGE Invalid class on CMD command

CAUSE A class speci�ed as part of a CMD location
is not known to the debugger.

ACTION Re-enter the command with a valid class
name.

A-36 Messages

UE696 MESSAGE Must specify breakpoint to delete

CAUSE Although there is a breakpoint at the
current viewing location, a breakpoint
number must be given with the db (delete
breakpoint) command.

ACTION Use the lb (list breakpoints) command
to �nd the number of the breakpoint you
want to delete and re-enter the db (delete
breakpoint) command with the breakpoint
number.

UE697 MESSAGE Must specify function name

CAUSE The bpo (breakpoint overload) command
was invoked without a function name.

ACTION Re-enter the command with a function
name.

UE698 MESSAGE Function not found

CAUSE No function matching the function name
argument given to the bpo (breakpoint
overload) command was found.

ACTION Re-enter the command with a valid function
name. Use the lp (list procedures)
command to see a list of all valid
procedures.

UE709 MESSAGE Must specify breakpoint to suspend

CAUSE Although there is a breakpoint at the
current viewing location, a breakpoint
number must be given with the sb (suspend
breakpoint) command.

ACTION Use the lb (list breakpoints) command
to �nd the number of breakpoints you want
to suspend and re-enter the sb (suspend
breakpoint) command with the breakpoint
number.

Messages A-37

UE710 MESSAGE Must specify breakpoint to activate

CAUSE Although there is a breakpoint at the
current viewing location, a breakpoint
number must be given with the ab
(activate breakpoint) command.

ACTION Use the lb (list breakpoints) command
to �nd the number of breakpoints you want
to activate and re-enter the ab (activate
breakpoint) command with the breakpoint
number.

UE726 MESSAGE Line not found in body of procedure

CAUSE There was an attempt to get the address
of a line using the notation function#line
where line is not in the body of the
function.

ACTION Re-enter the expression with a valid
function/line number combination. Use
the lp (list procedures) command with
the procedure's name. The range of valid
line numbers will be displayed with the
procedure.

UE729 MESSAGE Invalid structure access

CAUSE There was an attempt to use a non-pointer
or a pointer to a class member as a pointer,
that is, p->i where p is not of type pointer.

ACTION Re-enter the expression with a valid pointer,
or use the address of p if you need it, that is,
&(p)->i

UE731 MESSAGE Cannot assign to function

CAUSE There was an attempt to assign a value to a
function.

ACTION This is not supported by the debugger.

UE732 MESSAGE Nil character constant

CAUSE There was an attempt to use '' as a
character.

ACTION Re-enter the expression with a valid
character constant. 'c', or '\value'

A-38 Messages

UE733 MESSAGE Invalid procedure given for "breakpoint

trace" command

CAUSE The debugger could not �nd a procedure
with the speci�ed name.

ACTION Use the lp (list procedures) command
to �nd what procedures are known to the
debugger, and re-enter the command with
the corrected name. Alternatively, if the
procedure you supplied was not compiled
with the debug
ag, you can still set a
breakpoint at its entry point by using the
'ba address ' command.

UE734 MESSAGE Invalid procedure given for "bt"

command

CAUSE The debugger could not �nd a procedure
with the speci�ed name.

ACTION Use the lp (list procedures) command
to �nd what procedures are known to the
debugger, and re-enter the command with
the corrected name. Alternatively, if the
procedure you supplied was not compiled
with the debug
ag, you can still set a
breakpoint at its entry point by using the
'ba address ' command.

UE756 MESSAGE No registers in core file -- registers

required

CAUSE The core �le has a format not recognized by
the debugger.

ACTION Obtain a new core �le on the same system
as the debugger you are running.

UE757 MESSAGE Modifier is not allowed before CMD

command

CAUSE In cdb, fdb, or pdb, a modi�er was entered
before a command that does not take a
modi�er.

ACTION Re-enter the command without a modi�er in
front of it.

Messages A-39

UE785 MESSAGE Address is required after "va"

CAUSE The va command was entered with no
parameter.

ACTION Re-enter the command with an address
argument.

A-40 Messages

Debugger Errors
(DB1-DB8) DB1 MESSAGE Assigning to NUM byte object from NUM

byte object; moved NUM bytes

CAUSE The object on the left side of an assignment
was not equal to the size of the right side of
the expression. The debugger copied a series
of bytes equal in size to the left side of the
assignment statement.

ACTION Re-enter the command, using expressions
of equal length, or else results based on
truncation will occur.

DB10 MESSAGE WARNING: TOO FEW PARAMETERS

CAUSE An attempt was made to call a debuggable
procedure from the command line with
a di�erent number of parameters than
speci�ed in the symbol table. The procedure
can still be called, but it may lead to odd
results which depend on the language and
the called procedure.

ACTION Use the V (View) command to view the
procedure to determine the correct number
of parameters.

DB11 MESSAGE WARNING: TOO MANY PARAMETERS

CAUSE An attempt was made to call a debuggable
procedure from the command line with
a di�erent number of parameters than
speci�ed in the symbol table. The procedure
can still be called, but it may lead to odd
results which depend on the language and
the called procedure.

ACTION Use the V (View) command to view the
procedure to determine the correct number
of parameters.

Messages A-41

B

HP C Language Operators

This appendix lists and describes operators for the HP C
programming language that the debugger expression evaluator
recognizes.

HP C Language
Operators

The following table lists the supported HP C operators. Operators
are listed in order of precedence, from highest to lowest. All
operators listed in the same box are of equal precedence.
Associativity of operators in the following table is from left to right,
unless otherwise stated.

For HP C, the operators && and jj are not short circuited as is
done by the HP C compiler; all portions of an expression involving
these operators are evaluated. Also, HP C pointer arithmetic in the
debugger is unsupported.

Full support of struct objects is provided.

HP C Language Operators B-1

HP C Language
Operators

Table B-1. Language Operators for HP C

Operator Operation

() parenthesis (group elements)

[] array member selection

-> member selection of pointer to
structure

. member selection of structure

! (order is right to left) unary logical negation

~ (order is right to left) unary logical one's complement

- (order is right to left) unary negation

* (order is right to left) unary indirection (pointer or address
dereferencing)

& (order is right to left) unary address of an object

sizeof (order is right to left) unary size of an object

* multiplication

/ division

% modulus - mod function

+ addition

- subtraction

<< bit-wise logical left shift; �ll with 0

>> bit-wise arithmetic right shift;
unsigned �ll with 0, else �ll with
sign bit

< relational less than

<= relational less than or equal to

> relational greater than

>= relational greater than or equal to

== relational equal to

!= relational not equal to

B-2 HP C Language Operators

Table B-1. Language Operators for HP C (continued)

Operator Operation

& bit-wise logical and

^ bit-wise logical exclusive or

j bit-wise logical inclusive or

&& logical and

jj logical or

=(order is right to left) assignment

op=(order is right to left) assignment operators of the form: e1
op= e2 which means (e1) = (e1) op
(e2). Op may be any one of the
mathematical or bit-wise operators
(*, /, %, +, <<, >>, &, ^, j)

Special operators:

$addr unary address of an object

$sizeof unary size of an object

$in unary suspended in named routine

HP C Language Operators B-3

C
HP FORTRAN 77 Language Operators
and VMS Record Support

This appendix lists and describes operators for the HP FORTRAN
77 programming language that the debugger expression evaluator
recognizes.

HP FORTRAN 77
Language Operators

The following table lists the supported HP FORTRAN 77 operators.
Operators are listed in order of precedence, from highest to lowest.
All operators listed in the same box are of equal precedence.
All operators of equal precedence evaluate left to right, except
assignment. Assignment is treated by the debugger as an operator.

Associativity of operators in the following table is from left to right,
unless otherwise stated.

Complex variables in HP FORTRAN 77 are not supported except
as a pair of two separate reals or doubles. Any HP C language
operators that do not clash with supported HP FORTRAN 77
operators can be used in HP FORTRAN 77 expressions, with the
corresponding C interpretation. The only exception to this is the
unary operator sizeof .

HP FORTRAN 77 Language Operators

and VMS Record Support

C-1

HP FORTRAN 77
Language Operators

Table C-1. Language Operators for HP FORTRAN 77

Operator Operation

() parentheses (grouping), array
member selection

* multiplication

/ division

+ addition

- subtraction or unary negation

.LT. relational less than

.LE. relational less than or equal to

.EQ. relational equal to

.GE. relational greater than or equal to

.NE. relational not equal to

.GT. relational greater than

.NOT. logical negation

.AND. logical and

.OR. logical or

.EQV. logical equivalence

.NEQV. logical nonequivalence

= (order is right to left) assignment

Special operators:

$addr unary address of an object

$sizeof unary size of an object

$in unary suspended in named routine

C-2 HP FORTRAN 77 Language Operators

and VMS Record Support

VMS FORTRAN Records HP Symbolic Debugger provides support for VMS FORTRAN
records. There are four associated types:

structures

records

unions

maps

A structure de�nes record �eld types such as in the following
example:

structure /date/

integer a

union

map

integer b

real c

character*8 d

integer e

union

map

logical f

integer g

end map

map

character*3 h

end map

map
real i

end map

end union

end map

end union

real j

integer f

end structure

A record corresponds to an instance of that record structure.

For example, given the previous structure, you can now de�ne a
record with that structure:

record /date/ rec1

HP FORTRAN 77 Language Operators

and VMS Record Support

C-3

In HP Symbolic Debugger, HP FORTRAN 77 records are treated as
HP FORTRAN 77 structures from the debugger. This means that if
you use the print command with the nt format to look at a record,
you will see the record's structure rather than the record de�nition,
record /date/ rec1.

For example, if you type:

>p rec1\t

you will get:

structure /date/

integer a

union

map

integer b

real c

character*8 d

integer e

union

map

logical f

integer g

end map

map

character*3 h

end map

map

real i

end map

end union

end map
end union

real j

integer f

end structure rec1

C-4 HP FORTRAN 77 Language Operators

and VMS Record Support

You can access any element within a record. Because maps and
unions are unnamed, they are ignored in naming subelements. For
example, �eld h in the previous example must be accessed as:

rec1.h

If there is any ambiguity among �eld names, the �rst one appearing
by a given name is chosen, just as it is in HP FORTRAN 77. For
example, �eld rec1.f in the example above is of type logical, not
integer.

When the value or type of any �eld in a record is displayed, its
individual format is identical to what it would be if it were not
within a record. For the records, unions, and maps themselves,
these keywords are used identically to the way they are used in HP
FORTRAN 77 except:

When printing the type of a structure, its name will follow the
entire structure instead of preceding it.

For example:

>p rec\t

gives you this:

structure

integer*4 i

end structure rec

When printing the value of a structure, its name and an equal sign
(=) precede its value.

For example:

>p rec

gives you this:

rec = structure

i = 3

end structure

HP FORTRAN 77 Language Operators

and VMS Record Support

C-5

D

HP Pascal Language Operators

This appendix lists and describes operators for the HP Pascal
programming language that the debugger expression evaluator
recognizes.

HP Pascal Language
Operators

The following table lists the supported HP Pascal operators.
Operators are listed in order of precedence, from highest to lowest.
All operators listed in the same box are of equal precedence.
All operators of equal precedence evaluate left to right, except
assignment. Assignment is treated by the debugger as an operator.

Associativity of operators in the following table is from left to right,
unless otherwise stated.

Any HP C language operators that do not clash with supported HP
Pascal operators can be used in HP Pascal expressions, with the
corresponding C interpretation.

There are two restrictions with the language operators for HP Pascal:

Variables quali�ed by the WITH statement in an HP Pascal
program must be fully quali�ed in HP Symbolic Debugger
expressions. The HP Pascal WITH construct is not recognized as a
debugger command.

The debugger does not support HP Pascal set constants and does
not support operations on sets.

HP Pascal Language Operators D-1

HP Pascal Language
Operators

Table D-1. Language Operators for HP Pascal

Operator Operation

() parenthesis, group elements

[] array member selection

. member selection of record

^ (order is right to left) pointer (address) dereferencing

NOT (order is right to left) unary logical negation

sizeof (order is right to left) unary size of an object

* multiplication

/ real division

DIV integer division with truncation

MOD modulus

+ addition

- subtraction

< relational less than

> relational greater than

<= relational less than or equal to

>= relational greater than or equal to

= relational equal to

< > relational not equal to

:= (order is right to left) assignment

AND logical and

OR logical or

Special operators:

$addr unary address of an object

$sizeof unary size of an object

$in unary suspended in named routine

D-2 HP Pascal Language Operators

E

HP COBOL II Language Operators

This appendix lists and describes operators for the HP COBOL
II programming language that the debugger expression evaluator
recognizes.

HP COBOL II
Language Operators

The following table lists the supported HP COBOL II operators.
Operators are listed in order of precedence, from highest to lowest.
All operators listed in the same box are of equal precedence.
All operators of equal precedence evaluate left to right, except
assignment.

Associativity of operators in the following table is from left to right,
unless otherwise stated.

Table E-1. Language Operators for HP COBOL II

Operator Operation

() parenthesis, group elements

* multiplication

/ division

+ addition

- subtraction

< relational less than

> relational greater than

<= relational less than or equal to

>= relational greater than or equal to

= relational equal to

< > relational not equal to

AND logical and

OR logical or

NOT unary logical negation

move assignment

HP COBOL II Language Operators E-1

Dereferencing
Operations

There are two supported HP COBOL II dereferencing operations,
�eld dereferencing (variable quali�cation) and array dereferencing .

Field Dereferencing

There are two operators that are supported for �eld dereferencing
(variable quali�cation):

.

of

The di�erence in these operators is the order in which the �elds
are listed. The . (dot) operator is used to specify a quali�ed path
from the parent �eld down; the of operator is used to specify the
path from the child �eld up. For example, in the pseudo-COBOL
structure:

01 fob

02 bar

03 stooge

04 curly

04 moe

04 larry

02 bat

03 marx

04 harpo

04 chico

04 groucho

the fully quali�ed path to print chico would be either of the two
commands listed below.

disp fob.bat.marx.chico

OR

disp chico of marx of bat of fob

It is not always necessary to fully qualify a �eld; the minimum list
of parent �elds that uniquely identify the �eld will su�ce. In other
words, if there is only one �eld named \chico" in all the variables
in the current subprogram, then disp chico is su�cient. Suppose,
however, you had the following structure.

01 fob

02 bar

03 marx

04 harpo

04 chico

04 groucho

02 bat

03 marx

04 harpo

04 chico

04 groucho

E-2 HP COBOL II Language Operators

With this structure, chico would not be unique, nor would
marx.chico. The minimum quali�cation necessary is either:

disp bat.chico

OR

disp chico of bat

If a name is fully quali�ed such as fob.bat.marx.chico, it must
always be unique.

Array Dereferencing

HP COBOL subscripts applied to a structure are always listed at the
end of the �eld list. For example, using this structure:

01 fob

02 bar

03 stooge

04 curly

04 moe

04 larry

02 bat

03 marx

04 harpo

04 chico

04 groucho

If fob and marx were tables, a valid expression might be:

fob.bat.marx.chico(3,7)

The debugger determines to which �elds the subscripts apply. The
more conventional form:

fob(3).bat.marx(7).chico

is NOT legal.

HP COBOL II Language Operators E-3

F

Special Variables Used by the Symbolic Debugger

This appendix covers special variables that are not normally directly
accessible.

Special Variables
Table F-1. Special Variables

Variable Description

$var Represents user-de�ned variables. They are of
type long integer and do not take on the type of
any expressions assigned to them.

Hardware Registers Represents the names of the registers, the
program counter and stack, data, argument and
return-value pointers.

$r0 . . . $r31 General Registers

$f0 . . . $f15 Floating Point Registers

$pc Program Counter

$sp Stack Pointer

$dp Data Pointer

$arg0 . . . $arg3 Argument Registers

$ret0 . . . $ret1 Return-value Registers

$result References the return value from the last
command line procedure call. $short and $long
are used as other ways of viewing $result .
Where possible, $result takes on the type of the
procedure.

$lang Allows you to view and modify the current
source language
ag for expression evaluations.
Valid values for $lang are C , FORTRAN ,
Pascal , COBOL, and default . When $lang is set
to \default", any language expression syntax is
always the same as the source language of the
procedure currently being viewed.

Special Variables Used by the Symbolic Debugger F-1

Table F-1. Special Variables (continued)

Variable Description

$line Displays the current source line number (the
next statement to be executed). It is
automatically set by a number of di�erent
commands.

$malloc Allows you to see the amount of memory (in
bytes) currently allocated by the debugger for
its own use. This does not re
ect memory use
of the program being debugged.

$step Allows you to see and change the number of
machine instructions the debugger steps
through while in a non-debuggable procedure,
before setting an uplevel breakpoint and
free-running to it. This situation occurs only
when the program is executing in single-step or
assertion mode.

F-2 Special Variables Used by the Symbolic Debugger

G

Limitations and Hints

This appendix lists some limitations of HP Symbolic Debugger and
gives some hints for debugger usage.

Limitations and
Hints

�CNTRL�Y should be a trap that performs like the hardware traps.
That is, if the child process is running, it should be forced to stop
with control transferred to the debugger. This allows in�nite loops
to be temporarily broken without aborting the debugger. However,
the MPE/iX operating system currently handles �CNTRL�Y as a
special case and unless the child explicitly requests its own handler,
the �CNTRL�Y trap will only be detected by the debugger when it
occurs during execution of the debugger's own code.

Do not modify any �le while the debugger has it open. If you do,
the debugger gets confused and might display garbage.

Some statements do not emit code where you would expect it. For
example, assume:

99: for (i=0; i<9; i++) {

100: xyz (i);
101: }

A breakpoint placed on line 99 will be hit only once in some cases.
The code for incrementing is placed at line 101. Each compiler is a
little di�erent; you must get used to what your particular compiler
does. A good way of �nding out is to use single stepping to see in
what order the source lines are executed.

Some compilers only issue source line symbols at the end of each
logical statement or physical line, whichever is greater . This means
that, if you are in the habit of saying a=0; b=1; on one line, there
is no way to put a breakpoint after the assignment to a but before
the assignment to b.

The debugger does not support identically-named procedures,
except in HP Pascal if the procedures are in di�erent scopes. The
debugger will always use the �rst procedure with the given name.

There is no support for HP Pascal packed arrays where the element
size is not a whole number of bytes. Any reference into such an
array might produce garbage or a bad access.

Assignments into objects greater than four bytes in size from
debugger special variables, result in errors or invalid results.

Limitations and Hints G-1

The debugger supports call-by-reference only for known parameters
of known (debuggable) procedures. If the object to pass lives in
the child process, you can fake such a call by passing &object , for
example, the address of the object.

Only the �rst number of a complex pair is passed as a parameter.
Functions which return complex numbers are not called correctly;
insu�cient stack space is allocated for the return area, which can
lead to overwriting the parameter values.

G-2 Limitations and Hints

H

Installed Files

This appendix lists the installed �les for the HP Symbolic Debugger.

Debugger
Installation

These are the �les needed to use the HP Symbolic Debugger on your
system.

xdbend.lib.sys

The �le xdbend.lib.sys must be linked at the end of the user
program to give the debugger private data space in the user
process.

xdb.pub.sys

The �le xdb.pub.sys is the HP Symbolic Debugger/iX executable
program �le with shared access.

pxdb.pub.sys

The �le pxdb.pub.sys (the preprocessor) processes the executable
�le the �rst time the debugger is invoked on it. It produces
quick-lookup tables to increase the performance of the debugger
and removes duplicate global de�nitions.

xdbhelp.pub.sys

The �le xdbhelp.pub.sys contains the text of the Help facility, which
is a summary of HP Symbolic Debugger commands.

xdbcat.lib.sys

The �le xdbcat.lib.sys contains the message catalog.

Installed Files H-1

I

HP Symbolic Debugger Commands

This section describes command syntax and gives a description of all
the HP Symbolic Debugger commands.

Enter the following command to start the debugger:

run xdb.pub.sys

2
6666664
;info="

2
6666664

-d group
�
.acct

�
-r �le

-p �le

-L

-S num

object�le

3
7777775
�
. . .

�
"

3
7777775

The HP Symbolic Debugger options are described below:

HP Symbolic Debugger Commands I-1

-d group.[acct] This option names an alternate group and (optional)
account containing the source �les used to create the
object�le. Group and accounts are searched in the
order that you list them. The current group and
account is used if the �le is not found in the group
and account that you enter here. You can enter more
than one -d option.

-p �le This option names a playback �le created in a
previous debugger session (see the -r option) or one
that you created yourself.

-r �le This option names the �le to which all debugger
commands that you enter are recorded. You can use
this �le as a playback �le in subsequent debug sessions
(see the -p parameter). Recording begins as soon as
you start the debugger. Any previous contents of the
�le are overwritten (no appending takes place).

-L This option allows you to use the debugger in line
mode when you do not have a terminal that supports
memory lock.

-S num This option sets the string-cache size to the number of
bytes speci�ed. The string cache holds data read from
the object�le. The default is 1024 bytes (1kb).
Increasing the string cache size can improve debugger
performance for large programs.

object�le This argument names the �le that contains the
executable code for the program. If you do not enter
this option, you will be prompted for the object�le. If
this is the �rst time you are running the debugger,
object�le will be preprocessed to allow faster debugger
startups in subsequent sessions.

I-2 HP Symbolic Debugger Commands

Window Mode Commands

Window Mode
Commands

Table I-1. Window Mode Commands

Cmd Syntax Description

fr �
fr

floating point registers

�Displays the PA-RISC
oating point
registers in the register window when
the debugger is in disassembly mode.
Each register appears as a two word
pair (two sets of eight hexadecimal
digits).

gr �
gr

general registers

� Displays the PA-RISC general
registers in the register window when
the debugger is in disassembly mode.

sr �
sr

special registers

� Displays the PA-RISC special registers
(space and control) when the debugger
is in disassembly mode.

td �
td

toggle disassembly

� Toggles the source window between
disassembly mode and source mode.

ts �
ts

toggle screen

� Toggles the source window between all
source or all assembly and split screen
mode.

u �
u

update

� Updates the source and location
windows to show the current location
of the user program.

U �
U

Update

� Clears the screen of data and redraws
the screen.

w �
w

window

�
number

If your terminal supports windowing,
this command changes the size of the
source window to the number of lines
that you specify. Enter a number from
1 to 21.

HP Symbolic Debugger Commands I-3

File Viewing
Commands

Table I-2. File Viewing Commands

Cmd Syntax Description

+

+
�
number

� Moves forward in the current �le the
speci�ed number of lines (or the
speci�ed number of instructions in
disassembly mode). If you do not enter
a number, the next line (or
instruction) becomes the current line
(or instruction).

-

-
�
number

� Moves the speci�ed number of lines (or
the speci�ed number of instructions in
disassembly mode) backward in the
current �le and updates the windows.
The default is one line (or instruction)
before the current line (or instruction).

/

/
�
string

� Searches forward in the �le for the
speci�ed string. Searches wrap around
the end of the �le. If you do not enter
a string, the last one that you entered
is used again. The string must be
literal; wild cards are not supported.

?

?
�
string

� Searches backward in the current �le
for a speci�c pattern. Searches wrap
around the beginning of the �le. If you
do not enter a string, the last search
string is used again. The string must
be literal; wild cards are not
supported.

D �
D

Directory

�
"dir"

Adds the directory that you specify to
the list of directory search paths for
source �les.

ld �
ld

list directories

�Lists all the alternate directories that
are searched when the debugger tries
to locate the source �les.

lf �
lf

list files

�
�
string

�
Lists all source �les containing
executable statements that were
compiled to build the executable �le.
If a string is speci�ed, only those �les
beginning with the string are listed.

L �
L

Location

� Displays in the command window the
current �le, procedure, line number
and the source text for the current
point of execution.

n �
n

next

� Repeats the previous search (/ or ?)
command.

N �
N

Next

� Repeats the previous search (/ or ?)
command, searching in the opposite
direction.

I-4 HP Symbolic Debugger Commands

File Viewing Commands

Table I-2. File Viewing Commands (continued)

Cmd Syntax Description

v �
v

view

��
location

� Displays one source window forward
from the current source window. One
line from the previous window is
preserved for context. If your terminal
does not support windowing, only the
new source line is displayed. Using the
location option causes the speci�ed
location to become the current
location, and the source at the
speci�ed location is then displayed in
the source window.

V �
V

View

��
depth

� Displays the text for the procedure at
the depth on the program stack that
you specify. If you do not enter a
depth, the current active procedure is
used.

va �
va

view address

�

address

Displays in the source window
assembly code at the speci�ed address.
A speci�ed address can be an absolute
address or symbolic code label with an
optional o�set (for example, start +
0x20).

HP Symbolic Debugger Commands I-5

Data Viewing and
Modification
Commands

Table I-3. Data Viewing and Modification Commands

Cmd Syntax Description

disp �
disp

display

�
var

Used only with HP COBOL II
programs to print COBOL variables.
Simple items, �elds, and array
elements can be displayed. Items
displayed can be of type \edited" or
\non-edited".

l �
l

list

�
�
proc

�
:depth

� �
Lists all parameters and local
variables of the current procedure.
You can optionally specify any
active procedure and its depth on
the stack.

lc �
lc

list common

�
�
string

�
Used when debugging an HP
FORTRAN 77 program, this
command displays HP FORTRAN
77 common blocks and their
associated variables. If a string is
speci�ed, only those common blocks
whose names begin with that string
are printed; otherwise, all common
blocks within the current
subroutine/function are printed.

lg �
lg

list globals

�
�
string

�
Lists all global variables and their
values. If a string is speci�ed, only
those global variables whose names
begin with this string are listed.

ll �
ll

list labels

�
�
string

�
Lists all labels and program entry
points known to the linker. If a
string is speci�ed, only those
symbolic addresses with this pre�x
are used.

lm �
lm

list macros

�
�
string

�
Displays all user-de�ned macros and
their de�nitions. If a string is
speci�ed, only those macros whose
names begin with this string are
listed.

lp �
lp

list procedures

�
�
string

�
Lists all procedure names and their
aliases as well as their locations in
memory. If a string is speci�ed, only
those procedures whose names begin
with this string are listed.

lr �
lr

list registers

�
�
string

�
Lists all registers and their contents.
If a string is speci�ed, only those
registers beginning with this string
are listed.

ls �
ls

� Lists all special variables and their
values. Registers are not listed. If a

I-6 HP Symbolic Debugger Commands

Data Viewing and Modification Commands

Table I-3.

Data Viewing and Modification Commands (continued)

Cmd Syntax Description

mov �
mov

move

�
expr1 to expr2

Used only with HP COBOL II
programs to modify variables. The
�rst expression is the source; the
second is the destination. The
source and destination cannot be an
edited �eld. The source can be any
non-edited COBOL �eld, a string
literal, a number, or a named
constant (such as SPACES or
BLANKS). The destination can be
any non-edited COBOL �eld.

p �
p

print

�
8<
:

expr
�
?format

�
�
+

-

�� �
\
�
format

�
9=
;

Displays program data in the
formats shown in tables 1-5 and 1-6
of chapter 1, \Reference Tables". A
format has the syntax:

�
count

��
formchar

	�
size

�
Formchar , which is required, is the
actual format in which you choose
to display the data. Count is the
number of times to apply the
format. Size is the number of bytes
that are formatted for each data
item, and overrides the default size
for the given format. p+ prints the
next element. p- prints the previous
element. Use the nformat option to
display the value of the expression
in a speci�c format. Use the ?format
option to print the address of the
evaluated expression in the selected
format. The p (print) command is
also used to modify the value of a
variable when expr contains an
assignment operator.

HP Symbolic Debugger Commands I-7

Stack Viewing
Commands

Table I-4. Stack Viewing Commands

Cmd Syntax Description

t �
t

trace

��
depth

� Prints a stack trace. You can
optionally specify a depth. The
default depth is 20 levels. If an
optional depth is supplied, only the
procedures up to this depth in the
stack are displayed.

T �
T

Trace

��
depth

� Prints a stack trace. You can
optionally specify a depth. The
default depth is 20 levels. If an
optional depth is supplied, only the
procedures up to this depth in the
stack are displayed. Displays
everything the t (trace) command
displays, plus all local variables and
their values in nn format.

I-8 HP Symbolic Debugger Commands

Status Viewing Command

Status Viewing
Command

Table I-5. Status Viewing Command

Cmd Syntax Description

I �
I

Inquire

� Prints the current state of the
debugger. The output contains
information such as the version
number of the debugger, program
name, number of source �les and
procedures, process id of the child
process, number of breakpoints,
record and playback information,
etc.

HP Symbolic Debugger Commands I-9

Job Control
Commands

Table I-6. Job Control Commands

Cmd Syntax Description

c �
c

continue

��
location

� Resumes execution after a
breakpoint or a signal has been
encountered, ignoring the signal, if
any. If a location is speci�ed, a
temporary breakpoint is set at that
location.

C �
C

Continue

��
location

� Resumes execution after a
breakpoint or a signal has been
encountered, allowing the signal, if
any, to be received by the child
process. If a location is speci�ed, a
temporary breakpoint is set at that
location. This works the same as the
c (continue) command on MPE/iX.

k �
k

kill

� Terminates the current child
process, if any.

r �
r

run

�
�
;info='info string'

�
Lets you run a program as a new
child process with an optional info
string . If you do not enter an info
string , the debugger uses those
supplied with the last r(run)
command (if any). info string may
contain a \<" and/or a \>" for
redirecting standard input and
standard output ($STDIN) and
($STDOUT).

R �
R

Run

� Lets you run a program as a new
child process with no argument list.
If a child process already exists, the
debugger asks if you want to
terminate the child process �rst.
The environment for the child
process is the same as that for the
debugger.

s �
s

step

��
number

� Single steps through a program,
executing one source statement or
machine instruction at a time before
pausing and prompting for another
command. In source mode, one
source statement is executed; in
disassembly mode, one machine
instruction is executed. If a
procedure call is encountered, the
procedure is single stepped in the
same manner (\stepped into"). To
execute more than one statement or
instruction, enter that number as
the number parameter.

I-10 HP Symbolic Debugger Commands

Job Control Commands

Table I-6. Job Control Commands (continued)

Cmd Syntax Description

S �
S

Step

��
number

� Single steps through a program. In
source mode, one source statement
(or one step of a multiple step
statement in HP Pascal or HP C) is
executed; in disassembly mode, one
machine instruction is executed
(several machine instructions might
be equivalent to one source
statement). If a procedure call is
encountered, it is not \stepped
into". Instead, execution steps to
the statement following the call. To
execute more than one statement or
instruction, enter that number as
the number parameter.

HP Symbolic Debugger Commands I-11

Breakpoint
Commands

Overall Breakpoint
Commands

Table I-7. Overall Breakpoint Commands

Cmd Syntax Description

lb �
lb

list breakpoints

� Displays all breakpoints in the
program, both active and suspended,
and the overall breakpoint state.

tb �
tb

toggle breakpoints

� Toggles the overall breakpoint state
from active to suspended or vice
versa. The state of the individual
breakpoints remains unchanged.

I-12 HP Symbolic Debugger Commands

Breakpoint Commands

Breakpoint Creation
Commands

Table I-8. Breakpoint Creation Commands

Cmd Syntax Description

b �
b

breakpoint

��
location

��
\count

�
�
command-list

�
Sets a breakpoint
at the location
that you specify. If
you do not enter a
location, the
current line in the
source window is
used. The
breakpoint is
executed on each
occurrence (count)
that you specify.
You can enter a
list of commands
to be executed at
the breakpoint by
entering the
command list.

ba �
ba

breakpoint address

�
address

�
\count

�
�
command-list

�
Sets a breakpoint
at the speci�ed
address. Note that
the address can be
speci�ed by giving
the name of a
procedure or an
expression
containing a name.
The breakpoint is
executed on each
occurrence (count)
that you specify.
You can enter a
list of commands
to be executed at
the breakpoint by
entering the
command list.

bb �
bb

breakpoint beginning

��
depth

�
�
\count

��
command-list

�
Sets a breakpoint
at the �rst
executable
statement of the
procedure at the
speci�ed depth on
the program stack.
If you do not enter
a depth, the
procedure shown
in the source
window is used.
The breakpoint is
executed on each
occurrence (count)
that you specify.

HP Symbolic Debugger Commands I-13

Breakpoint Commands

Table I-8. Breakpoint Creation Commands (continued)

Cmd Syntax Description

bt �
bt

breakpoint trace

��
proc

depth

��
\count

�
�
command-list

�
Sets a trace
breakpoint at the
current or named
procedure or at
the procedure that
is at the speci�ed
depth on the
program stack. A
breakpoint is set
at the entry and
exit point of the
procedure. If you
include a
command list, it is
executed at the
beginning of the
procedure or
subprogram. The
following
command list will
be executed at the
end of the
procedure or
subprogram.�

Q;p $ret0\d;c
	

If you omit a
command list, the
following two
command lists are
executed at the
beginning and end
of the procedure or
subprogram,
respectively.

�
Q; t 2; c

	
�
Q;p $ret0\d;c

	

I-14 HP Symbolic Debugger Commands

Breakpoint Commands

Table I-8. Breakpoint Creation Commands (continued)

Cmd Syntax Description

bu �
bu

breakpoint uplevel

��
depth

��
\count

�
�
command-list

�
Sets an uplevel
breakpoint to
occur immediately
on return from the
procedure at the
speci�ed depth on
the program stack.
If you do not enter
a depth, the
procedure shown
in the source
window is used.
The breakpoint is
executed on each
occurrence (count)
that you specify.
You can enter a
list of commands
to be executed at
the breakpoint by
entering the
command list.

bx �
bx

breakpoint exit

��
depth

��
\count

�
�
command-list

�
Sets an exit
breakpoint at the
epilogue code of
the procedure at
the speci�ed depth
on the program
stack. If you do
not enter a depth,
the procedure
shown in the
source window is
used. The
breakpoint is
executed on each
occurrence (count)
that you specify.
You can enter a
list of commands
to be executed at
the breakpoint by
entering the
command list.

HP Symbolic Debugger Commands I-15

Breakpoint Commands

Breakpoint Status
Commands

Table I-9. Breakpoint Status Commands

Cmd Syntax Description

ab �
ab

activate breakpoint

�
�
number

*

�
Activates the breakpoint having
the number (ID) that you specify.
If you do not enter a number, the
breakpoint at the current line is
activated. Use the asterisk (*) to
activate all breakpoints, including
all-procedure breakpoints.

bc �
bc

breakpoint count

�

number expr

Sets the count of the speci�ed
breakpoint number to the integer
value of the evaluated expression
that you enter.

db �
db

delete breakpoint

�
�
number

*

�
Deletes the breakpoint having the
number (ID) that you specify. If
you do not enter a number, the
breakpoint at the current line is
deleted. Use the asterisk (*) to
delete all breakpoints including
all-procedure breakpoints.

sb �
sb

suspend breakpoint

�
�
number

*

�
Suspends (deactivates) the
breakpoint having the number
(ID) that you specify. If you do
not enter a number, the breakpoint
at the current line is suspended.
Use the asterisk (*) to suspend all
breakpoints, including
all-procedure breakpoints. This
also causes the overall breakpoint
state to become suspended.

I-16 HP Symbolic Debugger Commands

Breakpoint Commands

All-Procedures
Breakpoint Commands

Table I-10. All-Procedures Breakpoint Commands

Cmd Syntax Description

bp �
bp

breakpoint procedure

�
�
command-list

�
Sets permanent procedure
breakpoints at the �rst executable
statement of every procedure for
which debugger information is
available. The breakpoint is
encountered each time the
procedure is entered. When any
entry procedure breakpoint is
encountered, the command list is
executed.

bpt

bpt
�
command-list

� Sets permanent procedure trace
breakpoints at the �rst and last
executable statement of every
procedure for which debugger
information is available. The
breakpoints are encountered each
time the procedure is entered. The
commands, if any, are associated
with the entry breakpoint. If no
command list is speci�ed, the entry
command list defaults to:

{Q;t 2;c}

The exit command list is:

{Q;p $ret\d;c}

bpx

bpx
�
command-list

� Sets permanent procedure exit
breakpoints after the last
executable statement of every
procedure for which debugger
information is available. The
breakpoint is encountered each time
the procedure is exited. When any
procedure exit breakpoint is
encountered, the command list is
executed.

dp �
dp

delete procedure

� Deletes all procedure breakpoints
set with the bp (breakpoint
procedure) command. All
breakpoints set by commands other
than the bp command will remain
in e�ect.

Dpt

Dpt

Deletes all procedure trace
breakpoints at the �rst and last
executable statement of every
procedure. All breakpoints set by
commands other than the bpt
command will remain in e�ect.

Dpx

Dpx

Deletes all procedure exit
breakpoints at the last executable
statement of every procedure. All
breakpoints set by commands other

HP Symbolic Debugger Commands I-17

Breakpoint Commands

Global Breakpoint
Commands

Table I-11. Global Breakpoint Commands

Cmd Syntax Description

abc

abc command-list
De�nes a global breakpoint
command list which will be executed
whenever any user de�ned
breakpoint is encountered. These
include normal, procedure,
procedure trace, and procedure exit
breakpoints.

dbc

dbc

Deletes the global breakpoint
command list.

I-18 HP Symbolic Debugger Commands

Breakpoint Commands

All-Paragraph
Breakpoint Commands

Table I-12. Paragraph Breakpoint Commands

Cmd Syntax Description

bpg �
bpg

breakpoint paragraph

�
�
command-list

�
Sets permanent paragraph
breakpoints at the �rst
executable statement of every
HP COBOL II paragraph and
section for which debugger
information is available. The
breakpoint is encountered each
time the paragraph or section
is entered. When any entry
paragraph breakpoint is
encountered, the command list
is executed.

dpg �
dpg

delete paragraph

� Deletes all paragraph
breakpoints set with the bpg
(breakpoint paragraph) or tpg
(trace paragraph) commands.
Breakpoints set with other
commands will remain in
e�ect.

tpg �
tpg

trace paragraph

�
�
command-list

�
Sets permanent paragraph trace
breakpoints at the �rst
executable statement of every
HP COBOL II paragraph and
section for which debugger
information is available. The
breakpoints are encountered
each time the paragraph or
section is entered. The
command list, if any, is
associated with the entry
breakpoint. If no command list
is speci�ed, the entry
command list defaults to:

{Q;t 2;c}

HP Symbolic Debugger Commands I-19

Breakpoint Commands

Auxiliary Breakpoint
Commands

Table I-13. Auxiliary Breakpoint Commands

Cmd Syntax Description

"any
string" "any string"

The string
command
displays any
string that is
enclosed in
quotation marks.

i �
i

if

�
expr command-list�

command-list
�

The i (if)
command lets
you conditionally
execute
commands in a
command list. If
the expression
evaluates to a
non-zero value,
the �rst group of
commands is
executed. If the
expression
evaluates to zero,
the second
command list, if
it exists, is
executed.

Q �
Q

Quiet

� The Q(Quiet)
command
suppresses the
\breakpoint at
address . . . "
debugger
messages that are
normally
displayed when a
breakpoint is
encountered. The
Q (Quiet)
command must
be the �rst
command in a
command list;
otherwise, it is
ignored.

I-20 HP Symbolic Debugger Commands

Assertion Control Commands

Assertion Control
Commands

Table I-14. Assertion Control Commands

Cmd Syntax Description

a �
a

assert

�
command-list

Creates an assertion consisting of
the command list that you enter.
You can enclose the command list
in braces to separate it from other
commands on the same line.

aa �
aa

activate assertion

�
�
number

*

�
Activates the assertion having the
number (ID) that you enter. Using
the * option causes all assertions
to be activated. Overall assertion
mode is activated if the last
suspended assertion is activated.

da �
da

delete assertion

�
�
number

*

�
Deletes the assertion having the
number (ID) that you enter. Using
the * option causes all assertions
to be deleted.

la �
la

list assertions

� Lists the number, the state (active
or suspended) and the command
list for each assertion, as well as
the overall assertion state (active
or suspended).

sa �
sa

suspend assertion

�
�
number

*

�
Suspends the assertion having the
number that you enter. Using the
* option causes all assertions to be
suspended. Overall assertion mode
is suspended if the last active
assertion is suspended.

ta �
ta

toggle assertions

� Toggles the overall assertion state
between active and suspended.

x �
x

exit

��
expr

� Causes program execution to stop
as if a breakpoint has been
reached. If the expression (expr) is
not given or it evaluates to zero,
the debugger returns to command
mode, ignoring any remaining
commands in the assertion
command list. If expr evaluates to
non-zero, any remaining commands
in the command list are executed.

HP Symbolic Debugger Commands I-21

Assertion Control Commands

I-22 HP Symbolic Debugger Commands

Datatrace Control Commands

Datatrace Control
Commands

Table I-15. Datatrace Control Commands

Cmd Syntax Description

ndt �
ndt

datatrace

�
item� �

command-list
	�

silent
� �

Creates a datatrace for the
speci�ed variable (item).
You can enclose the
command list in braces to
separate it from other
commands on the same
line.

adt �
adt

activate datatrace

�
�
number

*

�
Activates the datatrace
having the number (ID)
that you enter. Using the *
option causes all datatraces
to be activated. Overall
datatrace mode is activated
if the last suspended data
trace is activated.

ddt �
ddt

delete datatrace

��
number

*

� Deletes the datatrace
having the number (ID)
that you enter. Using the *
option causes all datatraces
to be deleted.

ldt �
ldt

list datatraces

� Lists the number, the state
(active or suspended) and
the command list for each
datatrace, as well as the
overall datatrace state
(active or suspended).

sdt �
sdt

suspend datatrace

��
number

*

� Suspends the datatrace
having the number that
you enter. Using the *
option causes all datatraces
to be suspended. Overall
datatrace mode is
suspended if the last active
datatrace is suspended.

tdt �
tdt

toggle datatraces

� Toggles the overall
datatrace state between
active and suspended.

x �
x

exit

��
expr

� Causes program execution
to stop as if a breakpoint
has been reached. If the
expression (expr) is not
given or it evaluates to
zero, the debugger returns
to command mode,
ignoring any remaining
commands in the datatrace
command list. If expr
evaluates to non-zero, any
remaining commands in the
command list are executed.

HP Symbolic Debugger Commands I-23

Datatrace Control Commands

Record and
Playback
Commands

Table I-16. Record and Playback Commands

Cmd Description

>�le Sets or changes the record �le to �le, turns recording
on, rewrites the �le from the beginning, and only
records commands. If �le exists, you are asked if you
want to overwrite.

>>�le Sets or changes the record �le to �le, turns recording
on, and only records commands. All recording is
appended to the existing �le; otherwise, a new �le is
created.

> Displays the recording state and the current recording
�le. Can also use \>>".

<�le Starts playback from the �le.

<<�le Starts playback from the �le using the \line-at-a-time"
feature. Each command line from the playback �le is
shown before it is executed, and the debugger provides
a list of the following commands for you to take some
action:

command (<cr>,S, <num>, C, Q, or ?):

You can use any of the above options as described:

<cr> execute one command line

S skip one command line

<num> execute number of command lines

C continue through all playback

Q quit playback mode

? gives this explanation of the

above commands

tr Toggles recording; toggles the state of the record
mechanism between active and suspended.

>t Turns recording on. (active)

>f Turns recording o�. (suspended)

>c Closes the record �le.

I-24 HP Symbolic Debugger Commands

Record and Playback Commands

Table I-17. Commands Used to Record Debugger Output

Cmd Description

>@�le Sets or changes the record-all �le to �le, rewrites from
the beginning, and turns recording on. If �le exists, you
are asked if you want to overwrite. Captures all input
to and output from the debugger command window,
except user program output.

>>@�le Sets or changes the record-all �le to �le, and turns
recording on. Appends record-all output to the existing
�le. Captures all input to and output from the
debugger command window.

>@ Displays the current record-all state and �le. Can also
use \>>@".

tr @ Toggles the state of the record-all mechanism between
active and suspended.

>@t Turns record-all on.

>@f Turns record-all o�.

>@c Closes the record-all �le.

HP Symbolic Debugger Commands I-25

Record and Playback Commands

Macro Facility
Commands

Table I-18. Macro Facility Commands

Cmd Syntax Description

def
def name
replacement-text

De�nes a macro substitution
(user-de�ned command) for HP
Symbolic Debugger commands.
Name can be any string of
letters or digits, beginning with
a letter. Replacement-text can
be any string of letters, blanks,
tabs or other printing
characters. The string must be
contained on one line.

tm �
tm

toggle macros

� Toggles the state of the macro
mechanism between active and
suspended.

undef

undef

�
name

*

� Removes macro de�ned as
name. Using the * option causes
all macros to become unde�ned.

I-26 HP Symbolic Debugger Commands

Macro Facility Commands

HP Symbolic Debugger Commands I-27

Miscellaneous
Commands

Table I-19. Miscellaneous Commands

Cmd Syntax Description

!

!
�
MPE command

� Escapes out of the debugger into
the operating system. If a
command is speci�ed, it is
automatically executed.
Otherwise, a session is invoked
and must be explicitly ended
before the debugger can resume.
When you execute the !
command interactively, return to
the debugger by hitting the
�RETURN� key. When you use
this command in an assertion or
breakpoint command list,
control returns to the debugger
automatically. If you use the
escape without giving a list of
commands, you can return to
the debugger by typing exit at
the colon prompt.

:

:
�
MPE command

� Escapes out of the debugger into
the operating system. If a
command is speci�ed, it is
automatically executed.
Otherwise, a session is invoked
and must be explicitly ended
before the debugger can resume.
When you execute the :
command interactively, return to
the debugger by hitting the
�RETURN� key. When you use
this command in an assertion or
breakpoint command list,
control returns to the debugger
automatically. If you use the
escape without giving a list of
commands, you can return to
the debugger by typing exit at
the colon prompt.

#

#
�
text

� Causes the text to be interpreted
as a comment. The number
symbol (#) must be the �rst
nonblank character on the line.

�RETURN�
�RETURN�

Repeats the previous command.
You can use this command with
the following commands:

+

-

p (print)

v (view)

I-28 HP Symbolic Debugger Commands

Miscellaneous Commands

Table I-19. Miscellaneous Commands (continued)

Cmd Syntax Description

~

~

Repeats the previous command.
You must use the �RETURN� key
after typing the ~ . You can use
this command with the following
commands:

+

-

p (print)

v (view)

s (step)

S (Step)

am �
am

activate more

� Activates (enables) the more
feature.

debug

debug

Transfers control to the MPE
NMdebugger by causing the
child process to call the
\DEBUG" entry point. When
you exit, control returns to the
HP Symbolic Debugger.

f �
f

format

�
�
"printf-style-format"

�
Sets the printing format used by
the debugger to print an address.
Only the �rst 19 literal and
formatting characters are used.
(See the section on printf in the
HP C/XL Library Reference
Manual for a discussion of valid
formats). Using the f (format)
command without an argument
will reset the format to the
default format: 8 hexadecimal
digits, preceded by \0x".

g �
g

goto

��
line

#label

� Moves the current point of
execution suspension to the
speci�ed line or label. The
speci�ed line or label must be
within the same procedure (or
HP COBOL II paragraph)
where execution is currently
suspended (at depth zero on the
stack). The program counter
will change so that the given line
number or the line that #label
appears on becomes the next
executable line. Execution does
not automatically resume.

HP Symbolic Debugger Commands I-29

Miscellaneous Commands

Table I-19. Miscellaneous Commands (continued)

Cmd Syntax Description

h �
h

help

��
command

� Prints a command summary,
called the Help �le which
describes the syntax and use of
each command. This facility
references the short form of the
command only, not the long
form. The more facility can be
used to view the �le.

q �
q

quit

� Quits the debugger and asks for
con�rmation: enter y (yes) or n
(no).

sm �
sm

suspend more

� Suspends the more feature and
lets you view the output in a
continuous stream.

tc �
tc

toggle case

� Toggles case sensitivity;
determines whether or not
searches or names are case
sensitive.

do �
do
	�

cmdid
��

,editstring
� Re-execute the command

identi�ed by cmdid after
applying editstring . The
optional cmdid can be a positive
or negative number or a string
that will be searched in the
history stack.

redo �
redo

	�
cmdid

�
�
,editstring

�
Allows you to edit and
re-execute the command
identi�ed by cmdid . The
optional cmdid can be a positive
or negative number or a string
that will be searched in the
history stack.

listredo �
listredo

	�
start

��
,end

� Lists commands from the redo
stack between start and end
inclusive. The optional start and
end can be positive or negative
numbers.

I-30 HP Symbolic Debugger Commands

J
Registers Displayed by HP Symbolic Debugger
in Disassembly Mode

This appendix lists the registers displayed by HP Symbolic Debugger
in disassembly mode.

Register Names The actual register names used by the debugger as special variables
are:

$r0..$r31 General registers

$f0..$f15 Floating-point (double-word) registers

$pc Program counter

$sp

$dp

$arg0..$arg3

$ret0..$ret1

Registers Displayed by HP Symbolic Debugger

in Disassembly Mode

J-1

Registers Displayed
by HP Symbolic
Debugger
in Disassembly
Mode

The registers (or register �elds) displayed by the debugger in
disassembly mode are listed below. The �rst section lists the registers
displayed in the General Register and Floating-Point Register
Window . The second section lists the registers (or register �elds)
displayed in the Special Register Window .

Registers Displayed in
the General and

Floating-Point Register
Window

r0..r31 General registers

f0..f15 Floating-point (double-word) registers

pc (8x8) IASQ-head,IAOQ-head

priv Privilege level, IAOQ[30..31]

psw Process status word

sar Shift amount register, CR11[27..31]

Registers Displayed in
the Special Register

Window

tr0..7 Temporary Registers, CR24..CR31

sr0..7 Space Registers

pid1..4 Protection Id's, CR8,9,12,13

ccr Coprocessor con�guration register, CR10

sar Shift amount register, CR11

eiem External interrupt enable mask, CR15

itmr Internal Timer, CR16

isr Interrupt Space Register, CR20

iva Interrupt vector address, CR14

rctr Recovery counter, CR0

eirr External interrupt request register, CR23

ior Interrupt o�set register, CR21

iir Interrupt instruction register, CR19

pch (4x8) IASQ-head,IAOQ-head

pct (4x8) IASQ-tail,IAOQ-tail

priv Privilege level, IAOQ[30..31]

psw Process status word

J-2 Registers Displayed by HP Symbolic Debugger

in Disassembly Mode

Glossary

address
Virtual memory address used to reference program code or data.
When used to designate an address with the ba (breakpoint
address) command, it can be either one of the following:

Strictly a numeric value (such as 0x00001358)

A symbolic address with or without an o�set (such as
main+0x1c).

assertion
A list of commands performed before the debugger executes a
program statement. Useful for tracking unexpected changes in
program data (undesired side e�ects).

breakpoint
A software \trigger" inserted into the user program, that, when
encountered during execution, pauses the program and transfers
back to the debugger. A breakpoint is always associated with a
particular address, which is either speci�ed explicitly or implied
by its association with a line number, procedure entry or exit
point.

Breakpoints can have the following associated with them:

Command list- list of commands executed when the breakpoint
is triggered

count- how many times the breakpoint must be encountered
before it is triggered.

lifespan- \temporary" or \permanent" status (this
information is actually determined by whether count is
less than or greater than zero, respectively). A temporary
breakpoint is removed when it is triggered; a permanent
breakpoint is not.

child process
A subordinate process that is initiated and closely controlled by
the debugger (parent). This process is a running instance of the
program being debugged.

command
Commands tell the HP Symbolic Debugger which functions to
perform, and can be spelled out or abbreviated. The abbreviation
for most commands is the �rst character of each word in the

Glossary-1

command name. Commands are separated with a semicolon
within a command list. For more information, see chapter 4 HP
Symbolic Debugger Commands .

command list
A sequence of one or more debugger commands separated by
a semicolon (;). Some commands expect command-lists as
arguments. Braces (fg) must sometimes be used to enclose
command-lists. For more information, see the individual
command listings in chapter 4 HP Symbolic Debugger Commands .

Glossary-2

current location
The \point-of-interest" in the source as displayed in the source
window. Many commands take this as a default location. The
current location is not necessarily the current point of program
suspension (where the program is currently paused.)

datatrace
A list of commands performed when the value of the speci�ed
variable changes. Useful for tracking unexpected changes in
program data (undesired side e�ects).

debugger information
Name, type, source �le, and source-line-to-address mapping
information generated by the compiler for use by the debugger.
This information can signi�cantly increase the size of an
executable �le. All debugger information is preprocessed (and
reduced in size) the �rst time the program is debugged. This
might increase initial startup time, which will thereafter be
signi�cantly shorter.

depth
Number of levels back in the current procedure call chain (stack).
Depth 0 is where execution is suspended. If procedure A calls B ,
procedure B calls C , and C is where the program is suspended,
then B is at depth 1 and A is at depth 2. The trace (t) or Trace
(T) commands displays the procedures and their depths on the
stack.

exception
Either a hardware or software generated condition that causes the
program to be asynchronously suspended or halted. Examples of
these might be:

user-generated (keyboard) interrupt

oating-point over
ow

segmentation violation (invalid addressing operation)

bus error (invalid memory access)

expression
A valid combination of data object names, language operators,
and constant numeric values. Every expression is evaluated and
reduced to a single value.

�le
The name of a �le.

format
Used with the debugger commands p (print) or disp (display)
to describe how data will be accessed and displayed. A format
consists of:

an optional repetition count

Glossary-3

a formatting character

an optional object size

Glossary-4

The access and display operation is performed once for each
repetition (default 1). The number of bytes in each object is
determined by the given object size (default depends on the
formatting character). The formatting character determines how
each object is interpreted and printed. For example, to print four
sequential 16-bit integers in octal, use the format 4o2 or 4os.

line mode
Debugger user interface that does not use any special terminal
functions. This must be used for terminals that do not support
memory lock.

location
A unique position in the user program. It can be speci�ed as a
�le name, procedure name, source line number, or combination
of these. An address (see above) can also be used to specify a
location for certain commands.

machine instruction
Presented to the user when debugging in disassembly mode.
Actual instruction mnemonics and syntax are described in the HP
Precision Architecture and Instruction Reference Manual .

macro
Simple form of command aliasing using text substitution. A
macro can be used as a shorthand for one or more commands.

memory lock
A terminal feature that allows some upper portion of the terminal
screen to remain constant while the remainder of the screen
is scrolled. This feature is required by the debugger for its
window-oriented interface. If memory lock is unavailable, the
line-oriented interface (line mode) is used.

procedure
A procedure, function, subroutine, paragraph, or module name.
Also a user program name.

registers
Precision Architecture hardware registers. These are directly
accessible by the debugger through symbolic names (e.g. $pc).
Many registers have special meaning; some cannot be modi�ed
by the debugger user. See the HP Precision Architecture and
Instruction Reference Manual for a discussion on the use of
each register. Actual modi�cation of hardware registers should
not normally be necessary while debugging. Correct program
execution depends highly on registers and their contents.

sharable code
Executable code that can be mapped into the address space of
more than one process. No process should attempt to modify
shared code while it is actually being shared by two or more
processes. The debugger modi�es the code in order to insert

Glossary-5

breakpoints, requiring that multiple debugging sessions cannot
occur with the same executable �le. Private copies must be made
�rst.

source
Source text (�les) used to compile the user program. These
can be in any of the programming languages supported by the
debugger.

source line
A single line of text in a source �le, denoted by a line number.
A source line might or might not contain actual executable
statements. Conversely, more than one statement can occur on a
single line.

special variables
Named variable (pre�xed by S) local to the debugger. Many
special variables are prede�ned by the debugger to have a unique
meaning. For example, $line is always the current line number,
and $dp is the data-pointer register (HP-PA general register 27).

User-de�ned special variables are also available. They are created
when �rst referenced, and allow you to store and reference
numeric variables independent of the program being debugged.

stack
Linear data structure maintained by the user program for
management of local data and
ow of control during procedure
calls. Each sequential region on the stack embodies information
about a particular procedure. The preceding region (frame)
describes its caller. At any point during execution, a stack trace
(generated by the T (Trace) command) will display information
contained in each stack frame; in particular, the values of all local
variables.

string
Quoted sequence of arbitrary characters. Quotes can be single
(') or double (") depending on the current language ($lang).
Character escapes allow inclusion of control or other non-printing
characters.

variable
A variable name.

window
Region of the terminal screen limited to displaying speci�c
information. The debugger has at least three: the source,
location, and command windows.

Glossary-6

Index

Special characters !, 4-74
#, 4-74, 4-75
+, 3-12, 4-16
-, 3-12, 4-16
., 3-24
/, 3-19
:, 4-74, 4-75
<, 4-36
>, 4-36, 4-69
>@, 4-70
?, 3-19, 4-16, 4-17
~, 4-74, 4-76

A a, 3-29, 4-60
aa, 4-60, 4-62
ab, 4-38, 4-52
abc, 4-38, 4-56
activate assertion, 4-60, 4-62
activate breakpoint, 4-38, 4-52
activate datatrace, 4-64, 4-66
activate more, 3-13, 4-74, 4-76
address, Glossary-1
adt, 4-64, 4-66
All-Paragraph breakpoint commands, 4-38, 4-57{58
bpg, 4-38, 4-57
breakpoint paragraph, 4-38, 4-57
delete paragraph, 4-38, 4-57
dpg, 4-38, 4-57
tpg, 4-38
trace paragraph, 4-38

All-Procedures breakpoint commands, 4-38, 4-53{55
bp, 4-38, 4-53
bpt, 4-38, 4-54
bpx, 4-38, 4-55
breakpoint procedure, 4-38, 4-53
delete procedure, 4-38, 4-55
dp, 4-38, 4-55
dpt, 4-38, 4-55
dpx, 4-38, 4-55

altering execution sequence, 3-31
am, 3-13, 4-74, 4-76
\any string", 4-38, 4-59
assert, 4-60
assertion, 3-29, Glossary-1
Assertion control commands, 4-60{63

Index-1

a, 4-60
aa, 4-60, 4-62
activate assertion, 4-60, 4-62
assert, 4-60
da, 4-60, 4-62
delete assertion, 4-60, 4-62
examples of, 4-60
exit, 4-60, 4-63
la, 4-60, 4-62
list assertions, 4-60, 4-62
sa, 4-60, 4-63
suspend assertion, 4-60, 4-63
ta, 4-60, 4-63
toggle assertions, 4-60, 4-63
use of assertions, 4-60
x, 4-60, 4-63

assertions, 1-1, 3-29
Auxiliary assertion commands, 4-59
\any string", 4-38, 4-59
i, 4-38, 4-59
if, 4-38, 4-59
Q, 4-38, 4-59
Quiet, 4-38, 4-59

Auxiliary breakpoint commands, 4-38, 4-59
\any string", 4-38, 4-59
i, 4-38, 4-59
if, 4-38, 4-59
Q, 4-38, 4-59
Quiet, 4-38, 4-59

B b, 3-20, 4-38, 4-48
ba, 4-38, 4-48
bb, 4-38, 4-49
bc, 4-38, 4-52
bp, 3-20, 4-38, 4-53
bpg, 3-22, 4-38, 4-57
bpt, 3-22, 4-38, 4-54
bpx, 3-22, 4-38, 4-55
braces, use of, 4-60, 4-64
breakpoint, 3-20, 4-38, 4-48, Glossary-1
breakpoint address, 4-38, 4-48
breakpoint beginning, 4-38, 4-49
Breakpoint commands, 4-38{59
All-Paragraph breakpoint commands, 4-38, 4-57{58
All-Procedures breakpoint commands, 4-38, 4-53{55
Auxiliary assertion commands, 4-59
Auxiliary breakpoint commands, 4-38, 4-59
Creation breakpoint commands, 4-38, 4-48, 4-49, 4-51
Global breakpoint commands, 4-38, 4-56
Overall breakpoint commands, 4-38, 4-46{47
Status breakpoint commands, 4-38, 4-52

breakpoint count, 4-38, 4-52
breakpoint exit, 4-38, 4-51
breakpoint paragraph, 3-22, 4-38, 4-57

Index-2

breakpoint procedure, 3-20, 4-38, 4-53
breakpoints, 3-20
command list, 4-41
count, 4-39
description, 4-38{45
location, 4-39
permanent, 4-39
resuming execution after, 3-22
setting, 3-20
temporary, 4-39
types of, 4-38{45
use of, 4-38{45

breakpoint trace, 4-38, 4-49
breakpoint uplevel, 4-38, 4-51
bt, 4-38, 4-49
bu, 4-38, 4-51
bx, 4-38, 4-51

C >@c, 4-70
>c, 4-69
c, 3-22, 4-35
C, 4-35
capturing a debugger session, 3-28
carriage return, 4-16
carriage return, use of, 4-74
case sensitive, 4-78
case sensitivity search, 4-78
change machine instructions, 4-5
changing execution sequence, 3-31
character
long and short form, 4-3
semicolon, 4-3

character and string constant rule, 4-7
child process, 3-4, 4-7, Glossary-1
clear screen (redraw), 4-15
cobxdb, 3-3
colon, 4-74, 4-75
command, Glossary-1
command arguments, 4-1
command list, 4-1
location, 4-1
syntax, 4-1

Command history, 1-5
command line, 4-11
command list, Glossary-1
commands
xdb, 3-28

command summary, 4-77
command window, 3-7, 3-13, 4-18
comment, 4-74
compiler
symbolic debugger options, 3-2

compiling a program
symbolic debugger information, 3-2

Index-3

compiling HP COBOL II programs, 3-3
continue, 3-22, 4-35
Continue, 4-35
convention
character, 4-3
command, 4-1
syntax, 4-1
uppercase and lowercase, 4-1

Creation breakpoint commands, 4-38, 4-48{51
b, 4-38, 4-48
ba, 4-38, 4-48
bb, 4-38, 4-49
breakpoint, 4-38, 4-48
breakpoint address, 4-38, 4-48
breakpoint beginning, 4-38, 4-49
breakpoint exit, 4-38, 4-51
breakpoint trace, 4-38, 4-49
breakpoint uplevel, 4-38, 4-51
bt, 4-38, 4-49
bu, 4-38, 4-51
bx, 4-38, 4-51

current �le, 4-18
current line, 4-18
current location, Glossary-3

D D, 4-16, 4-17
da, 4-60, 4-62
Data modi�cation commands
mov, 4-21, 4-25
move, 4-21, 4-25
p, 4-21, 4-26{30
print, 4-21, 4-26{30

data trace, Glossary-3
datatrace, 4-64
Datatrace control commands, 4-64{67
activate datatrace, 4-64, 4-66
adt, 4-64, 4-66
datatrace, 4-64
ddt, 4-64, 4-66
delete datatrace, 4-64, 4-66
examples of, 4-64
exit, 4-64, 4-67
ldt, 4-64, 4-66
list datatraces, 4-64, 4-66
ndt, 4-64
sdt, 4-64, 4-67
suspend datatrace, 4-64, 4-67
tdt, 4-64, 4-67
toggle datatraces, 4-64, 4-67
use of datatraces, 4-64
x, 4-64, 4-67

Data viewing and modi�cation commands, 4-21{30
Data viewing commands
disp, 4-21

Index-4

display, 4-21
l, 4-21, 4-22
lc, 4-21, 4-23
lg, 4-21, 4-23
list, 4-21, 4-22
list common, 4-21, 4-23
list globals, 4-21, 4-23
list labels, 4-21, 4-23
list macros, 4-21, 4-23
list procedures, 4-21, 4-24
list registers, 4-21, 4-24
list specials, 4-21, 4-25
ll, 4-21, 4-23
lm, 4-21, 4-23
lp, 4-21, 4-24
lr, 4-21, 4-24
ls, 4-21, 4-25
p, 4-21, 4-26{30
print, 4-21, 4-26{30
short and long form, 4-26

db, 3-23, 4-38, 4-52
dbc, 4-38, 4-56
ddt, 4-64, 4-66
debug, 4-74, 4-76
debugger information, Glossary-3
>debugger prompt, 3-7
debugger terms and de�nitions, Glossary-1{5
def, 3-30, 4-71
de�ne macro, 4-71
replacement text, 4-71

delete assertion, 4-60, 4-62
delete breakpoint, 4-38, 4-52
delete breakpoints, 3-23
delete datatrace, 4-64, 4-66
delete paragraph, 4-38, 4-57
delete procedure, 4-38, 4-55
deleting all-procedure breakpoints, 3-23
deleting breakpoints, 3-23
depth, Glossary-3
dereferencing operations, E-2
Directory, 4-16, 4-17
directory search, 4-17
disassembly mode, 3-2, 3-15, 3-17, 4-14, 4-37
registers, J-1

disp, 3-24, 4-21
display, 3-24, 4-21
displaying breakpoints, 3-22
displaying data, 3-24
do, 4-74, 4-79
dp, 3-23, 4-38, 4-55
dpg, 4-38, 4-57
dpt, 4-38, 4-55
dpx, 4-38, 4-55

Index-5

E echo comment, 4-74
end a debugger session, 4-77
error messages
debugger, A-41
user, A-1

Error messages
User, A-3

escape, 4-74
exception, Glossary-3
exclamation point, 4-74
executable program �le, 1-3
executing a program, 3-4
executing commands at each source line, 3-29
exit, 4-60, 4-63, 4-64, 4-67
expr, Glossary-3
expression, Glossary-3
expression conventions, 4-7{11

F >@f, 4-70
>f, 4-69
f, 4-74, 4-77
Figure 1-1. Creating an Executable Program File, 1-3
Figure 2-1. The Debugger Session Scenario, 2-2
Figure 2-2. HP COBOL II Main Source File, DEMOCBMS, 2-6
Figure 2-3. HP COBOL II Subroutine Source File, DEMOCBSS, 2-7
Figure 2-4. HP FORTRAN 77 Main Source File, DEMOFS, 2-8
Figure 2-5. HP Pascal Main Source File, DEMOPS, 2-9{10
Figure 2-6. HP C Main Source File, DEMOCS, 2-11{12
Figure 3-1. The HP Symbolic Debugger Screen (Source Mode), 3-6
Figure 3-2. The Symbolic Debugger Screen (Disassembly Mode), 3-15
Figure 3-3. The Symbolic Debugger Screen (Source and Disassembly Mode),

3-17
Figure 4-1. Stack Depth, 4-31
Figure 4-2. Listing a Breakpoint, 4-46
<<�le, 4-69
?, 4-69
C, 4-69
<cr>, 4-69
<num>, 4-69
Q, 4-69
S, 4-69

<�le, 4-69
>>@�le, 4-70
>>�le, 4-69
>@�le, 4-70
>�le, 4-69
�le, Glossary-3
File viewing commands, 4-16{20
+, 4-16
-, 4-16
/, 4-16
?, 4-16, 4-17
D, 4-16, 4-17
Directory, 4-16, 4-17

Index-6

L, 4-16, 4-18
ld, 4-16, 4-17
lf, 4-16, 4-17
list directories, 4-16, 4-17
list �les, 4-16, 4-17
Location, 4-16, 4-18
minus sign, 4-16
n, 4-18
N, 4-18
next, 4-18
Next, 4-18
plus sign, 4-16
question mark, 4-16, 4-17
slash symbol, 4-16
v, 4-16, 4-19
V, 4-16, 4-19
va, 4-16, 4-20
view, 4-16, 4-19
View, 4-16, 4-19
view address, 4-16, 4-20

�nding a pattern, 4-16

oating point registers, 4-13
format, 4-74, 4-77, Glossary-3
FORTRAN records
de�nition, C-3

FORTRAN structures
de�nition, C-3
printing the type, C-5
printing the value, C-5

fr, 4-13

G g, 3-31, 4-74, 4-77
general registers, 4-13, 4-14
Global breakpoint commands, 4-38, 4-56
abc, 4-38, 4-56
dbc, 4-38, 4-56

goto, 3-31, 4-74, 4-77
go to an address, 4-77
gr, 4-13, 4-14

H h, 3-32, 4-74, 4-78
help, 3-32, 4-74, 4-78
HP C, 1-2
language operators, B-1

HP COBOL II, 1-2
array dereferencing, E-3
language operators, E-1
variable quali�cation, E-2

HP FORTRAN 77, 1-2
language operators, C-1

HP Pascal, 1-2
language operators, D-1

HP Symbolic Debugger, 1-1
terminal support, 1-4

Index-7

user requirements, 1-2

I i, 4-38, 4-59
I, 4-34
if, 4-38, 4-59
Inquire, 4-34
installation �les, H-1
installation of the debugger, H-1
installation of the debugger �les, H-1
installing the HP Symbolic Debugger, H-1

J Job control commands, 4-35{37
c, 4-35
C, 4-35
continue, 4-35
Continue, 4-35
k, 4-35
kill, 4-35
r, 4-35, 4-36
R, 4-35, 4-36
run, 4-35, 4-36
Run, 4-35, 4-36
s, 4-35, 4-36
S, 4-35, 4-37
step, 4-35, 4-36
Step, 4-35, 4-37

K k, 3-10, 4-35
kill, 3-10, 4-35

L l, 4-21, 4-22
L, 4-16, 4-18
la, 4-60, 4-62
language
expression, 4-7
procedure, 4-11
variable name, 4-3

language operators
explanation, B-1, C-1, D-1
HP C, B-2
HP C language operators, B-1
HP COBOL II language operators, E-1
HP FORTRAN 77, C-2
HP FORTRAN 77 language operators, C-1
HP Pascal, D-2
HP Pascal language operators, D-1
restrictions for HP C, B-1
restrictions for HP Pascal, D-1

lb, 3-22, 4-38, 4-46
lc, 4-21, 4-23
ld, 4-16, 4-17
ldt, 4-64, 4-66
lf, 4-16, 4-17

Index-8

lg, 4-21, 4-23
limitations and hints, G-1
linking a program
symbolic debugger information, 3-2

list, 4-21, 4-22
list assertions, 4-60, 4-62
list breakpoints, 3-22, 4-38, 4-46
list common, 4-21, 4-23
list datatraces, 4-64, 4-66
list directories, 4-16, 4-17
list �les, 4-16, 4-17
list globals, 4-21, 4-23
listing �les, 3-3
list label command, 4-11
list labels, 4-21, 4-23
list macros, 4-21, 4-23
list procedures, 4-21, 4-24
listredo, 4-74, 4-79
list registers, 4-5, 4-21, 4-24
list specials, 4-3, 4-21, 4-25
ll, 4-21, 4-23
lm, 4-21, 4-23
location, Glossary-5
Location, 4-16, 4-18
location window (line), 3-7
lp, 4-21, 4-24
lr, 4-21, 4-24
ls, 4-21, 4-25

M machine instruction, Glossary-5
macro, Glossary-5
Macro facility
def, 4-71
tm, 4-73
toggle macros, 4-73
undef, 4-73
undef macros, 4-71

Macro facility commands, 4-71{73
macros, 3-30
memory
display amount, 4-5

memory lock, Glossary-5
memory locking, 3-6
minus sign, 4-16
Miscellaneous commands
!, 4-74
#, 4-74, 4-75
:, 4-74, 4-75
~, 4-74, 4-76
activate more, 4-74, 4-76
am, 4-74, 4-76
colon, 4-74, 4-75
comment, 4-74
debug, 4-74, 4-76

Index-9

do, 4-74, 4-79
escape, 4-74
exclamation point, 4-74
f, 4-74, 4-77
format, 4-74, 4-77
g, 4-74, 4-77
goto, 4-74, 4-77
h, 4-74, 4-78
help, 4-74, 4-78
listredo, 4-74, 4-79
number sign, 4-74, 4-75
q, 4-74, 4-78
quit, 4-74, 4-78
redo, 4-74, 4-79
�RETURN�, 4-74, 4-75
sm, 4-74, 4-78
suspend more, 4-74, 4-78
tilde, 4-74, 4-76
toggle case, 4-74, 4-79

Miscellaneous Commands, 4-74{79
modifying data, 3-26
more, 3-13
mov, 3-26, 4-21, 4-25
move, 3-26, 4-21, 4-25
move lines backward, 4-16
move lines forward, 4-16

N n, 3-19, 4-18
N, 3-19, 4-18
ndt, 4-64
next, 3-19, 4-18
Next, 3-19, 4-18
number sign, 4-74, 4-75

O Overall breakpoint commands, 4-38, 4-46{47
lb, 4-38, 4-46
list breakpoints, 4-38, 4-46
tb, 4-38, 4-47
toggle breakpoints, 4-38, 4-47

P p, 3-24, 3-26, 4-21, 4-26{30
Paragraph breakpoint commands
tpg, 4-58
trace paragraph, 4-58

parent process, 3-4
pausing during execution, 3-20
plus sign, 4-16
print, 3-24, 3-26, 4-21, 4-26{30
print command summary, 4-77
printing format, 4-77
proc, Glossary-5
procedure, 4-18, Glossary-5
procedure call, 4-11
procedure call abortion, 4-11

Index-10

procedure call conventions, 4-11
program arguments, 4-36

Q q, 3-11, 4-74, 4-78
Q, 4-38, 4-59
question mark, 4-16, 4-17
Quiet, 4-38, 4-59
quit, 3-11, 4-74, 4-78
quit the debugger, 4-77

R r, 3-9, 4-35, 4-36
R, 3-9, 4-35, 4-36
Record and playback
description, 4-68

Record and playback commands, 4-68{70
>, 4-69
>@, 4-70
>@c, 4-70
>c, 4-69
>@f, 4-70
>f, 4-69
<<�le, 4-69
<�le, 4-69
>>@�le, 4-70
>>�le, 4-69
>@�le, 4-70
>�le, 4-69
limitations, 4-68
>@t, 4-70
>t, 4-69
tr, 4-69
tr @, 4-70

Record and playback �les
comment command, 4-74

recursive macros, 4-71
redirecting standard input, 4-36
redirecting standard output, 4-36
redo, 4-74, 4-79
refresh screen, 4-15
registers, J-1, Glossary-5
repeat a command, 4-74
repeat command, 4-16
rerunning a debugger session, 3-28
$result
$long, 4-5
$short, 4-5

�RETURN�, 4-74, 4-75
r (run) command, 3-9
run, 3-9, 4-35, 4-36
Run, 3-9, 4-35, 4-36
running HP Symbolic Debugger, 3-4
run-time stack, 3-12, 3-27

Index-11

S s, 3-9, 3-18, 4-35, 4-36
S, 3-9, 3-18, 4-35, 4-37
sa, 4-60, 4-63
sample debugger session, 2-1
sample program
HP C, 2-11
HP COBOL II, 2-6, 2-7
HP FORTRAN 77, 2-8
HP Pascal, 2-9

sb, 4-38, 4-52
sdt, 4-64, 4-67
search backward, 4-16, 4-17
searches, case sensitive, 4-78
search forward, 4-16
searching a program, 3-19
setting all-procedure breakpoints, 3-22
sharable code, Glossary-5
sm, 3-13, 4-74, 4-78
source, Glossary-5
source language,view and modify, 4-5
source line, Glossary-5
source mode, 3-6, 3-17
source window, 3-7, 3-12, 4-18
size, 3-14

special registers, 4-13, 4-14
display, 4-13

special variables, Glossary-5
Argument pointers, 4-5
Data pointer, 4-5
de�nition, 4-3
General registers, 4-5
$lang, 4-5
$line, 4-5
$malloc, 4-5
Program counter, 4-5
Register and pointer variables, 4-5
$result, 4-5
Return-value pointers, 4-5
Stack pointer, 4-5
$step, 4-5
syntax, 4-3
$var, 4-5

split-screen mode, 4-15
sr, 4-13, 4-14
stack, Glossary-5
run-time, 3-12, 3-27

stack viewing, 4-31
Stack viewing commands, 4-31{33
t, 4-31, 4-32
T, 4-31, 4-33
trace, 4-31, 4-32
Trace, 4-31, 4-33

Status breakpoint commands, 4-38, 4-52
ab, 4-38, 4-52
activate breakpoint, 4-38, 4-52

Index-12

bc, 4-38, 4-52
breakpoint count, 4-38, 4-52
db, 4-38, 4-52
delete breakpoint, 4-38, 4-52
sb, 4-38, 4-52
suspend breakpoint, 4-38, 4-52

Status viewing commands
I, 4-34
Inquire, 4-34

$STDIN, 4-36
$STDOUT, 4-36
step, 3-9, 3-18, 4-35, 4-36
Step, 3-9, 3-18, 4-35, 4-37
stepping through a program, 3-18
stopping execution (temporarily), 3-20
string, Glossary-5
suspend assertion, 4-60, 4-63
suspend breakpoint, 4-38, 4-52
suspend datatrace, 4-64, 4-67
suspend more, 3-13, 4-74, 4-78
symbolic debugger
use of, 3-1

T >@t, 4-70
>t, 4-69
t, 3-27, 4-31, 4-32
T, 4-31, 4-33
ta, 4-60, 4-63
Table 4-1. Escape Sequences, 4-7
Table 4-3. Data Viewing Formats, 4-28
Table 4-4. Shorthand Notation for Size, 4-28
Table 4-5. Record and Playback Commands, 4-69
Table 4-6. Commands Used to Record Debugger Output, 4-70
Table C-1. Language Operators for HP FORTRAN 77, C-2
Table D-1. Language Operators for HP Pascal, D-2
tb, 4-38, 4-47
tc, 3-19
td, 3-15, 4-14
tdt, 4-64, 4-67
terminals (without memory locking), 3-6
terminate child process, 4-35
tilde, 4-74, 4-76
tm, 4-73
toggle assertions, 4-60, 4-63
toggle breakpoints, 4-38, 4-47
toggle case, 3-19, 4-74, 4-79
toggle datatraces, 4-64, 4-67
toggle disassembly, 3-15, 4-14
toggle macros, 4-73
toggle screen, 3-17, 4-15
tpg, 3-22, 4-38, 4-58
tr, 4-69
tr @, 4-70
trace, 3-27, 4-31, 4-32

Index-13

Trace, 4-31, 4-33
trace paragraph, 3-22, 4-38, 4-58
tracing function and procedure calls, 3-27
ts, 3-17, 4-15

U u, 4-15
U, 4-15
undef, 4-71, 4-73
update, 4-15
Update, 4-15
uplevel breakpoint, 4-5
use of carriage return, 4-16
use of symbolic debugger, 3-1
user-de�ned macro, 4-71

V v, 3-12, 4-16, 4-19
V, 3-12, 4-16, 4-19
va, 4-16, 4-20
var, Glossary-5
variable, Glossary-5
variable name
size, 4-3

view, 3-12, 4-16, 4-19
View, 3-12, 4-16, 4-19
view address, 4-16, 4-20
view debugger state
I, 4-34
Inquire, 4-34
lc, 4-23
lg, 4-23
list common, 4-23
list global, 4-23
list label, 4-23
list macros, 4-23
list procedures, 4-24
list registers, 4-24
list specials, 4-25
ll, 4-23
lm, 4-23
lp, 4-24
lr, 4-24
ls, 4-25

viewing directories
ld, 4-17
list directories, 4-17

viewing �les
L, 4-18
lf, 4-17
list �les, 4-17
Location, 4-18
move lines backward, 4-16
move lines forward, 4-16
n, 4-18
N, 4-18

Index-14

next, 4-18
Next, 4-18
search backward, 4-16, 4-17
search forward, 4-16
v, 4-19
va, 4-20
view, 4-19
view address, 4-20

view stack, 4-31
view stack commands, 4-31
view stack, Figure 4-1, 4-31
VMS FORTRAN record support, C-1, C-3, C-3
VMS FORTRAN record types
maps, C-3
records, C-3
structures, C-3
unions, C-3

W w, 3-14, 4-15
window, 3-14, 4-15, Glossary-5
window mode commands, 4-13{15

oating point registers, 4-13
fr, 4-13
general registers, 4-13, 4-14
gr, 4-13, 4-14
special registers, 4-13, 4-14
sr, 4-13, 4-14
td, 4-13, 4-14
toggle disassembly, 4-13, 4-14
toggle screen, 4-13, 4-15
ts, 4-13, 4-15
u, 4-13, 4-15
U, 4-13, 4-15
update, 4-13, 4-15
Update, 4-13, 4-15
w, 4-13
window, 4-13

Window mode commands
w, 4-15
window, 4-15

windows, 3-6
command, 3-7, 3-13
location, 3-7
source, 3-6, 3-7, 3-12, 3-14

Index-15

X x, 4-60, 4-63, 4-64, 4-67
xdb command, 3-4, 3-28
xdbend.lib.sys �le, 3-2
xdb options
directory option, 3-4
line mode option, 3-4
object�le, 3-4
playback �le, 3-4
record �le, 3-4
string cache size option, 3-4

version number option, 3-4

Index-16

	Top of Document
	Preface
	Contents
	Introducing HP Symbolic Debugger/iX
	Who Can Use HP Symbolic Debuger
	Creating a Program with Debugger Information
	Terminal Support
	Command History
	Where To Go from Here

	Getting Started
	The Debugger Session Scenario
	Running the Sample Session
	Where To Go from Here
	Sample Program Listings

	Using the HP Symbolic Debugger
	Preparing the Program
	Starting the HP Symbolic Debugger
	Starting the Program
	Ending the Program
	Ending the HP Symbolic Debugger
	Displaying Lines in the Program
	Controlling the Command Window Display
	Changing the Source Window Size
	Displaying Assembly Code
	Displaying Source and Assembly Code
	Stepping through the Program
	Searching for a String in the Current File
	Pausing during Execution
	Displaying Data
	Modifying Data
	Tracing Function and Procedure Calls
	Capturing and Rerunning a Debugger Session
	 Executing Commands at each Source Line
	Using Macros
	Altering the Execution Sequence
	Getting Help

	HP Symbolic Debugger Commands
	Entering Commands
	Window Mode Commands
	File Viewing Commands
	Data Viewing and Modification Commands
	Stack Viewing Commands
	Status Viewing Command
	Job Control Commands
	Breakpoint Commands
	Overall Breakpoint Commands
	Breakpoint Creation Commands
	Breakpoint Status Commands
	All-Procedures Breakpoint Commands
	Global Breakpoint Commands
	All-Paragraph Breakpoint Commands
	Auxiliary Breakpoint Commands
	Assertion Control Commands
	Datatrace Control Commands
	Record and Playback Commands
	Record and Playback Commands
	Macro Facility Commands
	Miscellaneous Commands
	Messages
	User Errors (UE300 - UE785)
	Debugger Errors (DB1-DB8)

	HP C Language Operators
	HP C Language Operators

	HP FORTRAN 77 Language Operators and VMS Record Support
	HP FORTRAN 77 Language Operators

	HP Pascal Language Operators
	HP Pascal Language Operators

	HP COBOL II Language Operators
	HP COBOL II Language Operators

	Special Variables Used by the Symbolic Debugger
	Special Variables

	Limitations and Hints
	Limitations and Hints

	Installed Files
	Debugger Installation

	HP Symbolic Debugger Commands
	Window Mode Commands
	File Viewing Commands
	Data Viewing and Modification Commands
	Stack Viewing Commands
	Status Viewing Command
	Job Control Commands
	Breakpoint Commands
	Assertion Control Commands
	Datatrace Control Commands
	Record and Playback Commands
	Macro Facility Commands
	Miscellaneous Commands

	Registers Displayed by HP Symbolic Debugger in Disassembly Mode
	Register Names
	Registers Displayed by HP Symbolic Debugger in Disassembly Mode

	Glossary
	Index

