MPE V to MPE XL:
Getting Started

900 Series HP 3000 Computer Systems

("P HEWLETT

PACKARD

HP Part No. 30367-90002
Printed in U.S.A. 19890901

E00989
DRAFT 2/11/100 10:35

Notice

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for
errors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company.

Copyright © 1988, 1988 by HEWLETT-PACKARD COMPANY

Printing History

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The date on the title page and back
cover of the manual changes only when a new edition is published. When

an edition is reprinted, all the prior updates to the edition are incorporated.
No information is incorporated into a reprinting unless it appears as a prior
update.

Preliminary Edition September 1987
First Edition November 1987
Second Edition July 1988

Third Edition September 1989

DRAFT
2/11/100 10:35

Preface

What Is This Book?

MPE V to MPE XL: Getting Started is a self-paced training tool designed to
familiarize experienced MPE users with the new features and commands of the
MPE XL operating system. It also covers some of the MPE features that have
been changed or deleted.

There is also a Mentor’s Guide in the back of this binder for the benefit of
users who wish the assistance of a mentor.

Who Should Use This Book?

MPFE V to MPE XL: Getting Started was written for experienced users of the
HP 3000 who are moving to a 900 Series HP 3000. It is interfaced for those
users who regularly use MPE commands to interface with the HP 3000.

If you are a user who only logs on to the HP 3000 to run applications, then you
do not need this training. (See Chapter 1 "Introduction" for an explanation of
appropriate lessons for the end user, if you are unsure about going through this
training.)

The basic groups of users for which this book has been written are
programmers, system managers, system operators, and end users. Not all users
will need to complete all of the chapters in order to use MPE XL successfully.
Chapter 1 "Introduction'" recommends the appropriate learning path for each
type of user mentioned.

MPE V to MPE XL: Getting Started is prerequisite training for the following
courses:

m Moving From MPE V to MPFE XL: System Operator (HP 31117)
n Moving From MPE V to MPE XL: System Manager (HP 31110)
n Moving From MPE V to MPE XL: Application Programmer (HP 31114)

iv DRAFT
2/11/100 10:35

How Should This Book Be Used?

Mentored Versus Unmentored

This book can be used independently or with the assistance of a mentor. The
Introduction on the Mentor’s Guide explains who might need a mentor and
what a mentor’s responsibilities would be.

Organization

The information in this training has been organized into chapters. Fach
chapter is broken into individual lessons. Each lesson has realistic examples
and activities that can be tried on the system. The activities in each lesson,
called "Exercises", consist of questions to answer and things to try on the
system in order to reinforce important concepts presented in the lesson. The
answers to the exercises are at the end of each chapter.

The Appendix provides you with reference charts that list the unsupported,
modified, and new commands, as well as the MPE utilities. These charts may
be used for quick, at-a-glance reference for any of the commands and utilities
mentioned in this course. The fold-out design is intended to allow you to refer
to the charts, without removing them, while doing the lessons.

Procedure

m Proceed through the book in sequential fashion, beginning with Chapter 1,
which describes the material that is most useful for each type of user. Decide
which chapters are most appropriate for you.

m Log on to your 900 Series HP 3000.

m After reading each lesson introduction and trying out the examples, do the
exercises in that lesson. (The correct answers to the exercises are found at
the end of the chapter.)

m Not all lessons in a chapter may be appropriate for you-feel free to skip any
lesson that you consider inappropriate according to the topic and/or the level

of difficulty.

DRAFT v
2/11/100 10:35

What Is Needed to Complete This Training?

You will need the following in order to complete the exercises in each lesson:

m Exclusive access to an account on a 900 Series HP 3000 (MPE XL Version
A.01.01 or later).

m A LABS group, on addition to a home group.

m Basic user capabilities, plus PH capability if you need to go through Chapter
7.

m Working knowledge of an editor, such as MPE’s EDIT/3000. If you wish
to use EDIT /3000 and do not know how, before starting this book refer to
Chapter2 of the HP 3000 Guide for the New User (32033-90009).

The subjects addressed in this training relate to subjects found in the following
manuals, which your system manager should have:

m MPFE XL Commands Reference Manual (32650-90003)

m [ntroduction to MPE XL for MPE V System Administrators (30367-90003)
m [ntroduction to MPE XL for MPE V Programmers (30367-90005)

m MPFE XL Volume Management Reference Manual (32650-90045)

System Utilities Reference Manual (32650-90081)

vi DRAFT
2/11/100 10:35

Introduction

What Has Changed?

MPE XL is very much like MPE V. You can continue to use most of the
MPE V features and commands in MPE XL. However, you may wish to take
advantage of the many new, exciting features of MPE XL.

Running programs and applications has become more flexible. New features
have been added that give users more power than ever before. You can now
do such things as change your prompt character to any character(s) you

want, by using system variables. Programmers will like the new expression
evaluation capabilities, too. If you create User Defined Commands (UDCs),
you will appreciate the enhancements and a new kind of User Command called
“Command Files”.

Many of the changes to MPE are documented in the Appendix at the end of
the book. Table 1 “Unsupported Commands” lists the MPE V commands that
are not supported in MPE XL. Table 2 “Modified Commands” documents
those MPE V commands that have been enhanced in MPE XL. The new
commands in MPE XL can be found in Table 3 “New Commands”. Table

4 “Utilities” documents new, modified, and unchanged MPE utilities. For
more detailed information about anything in the reference charts, refer to the
manuals listed in the Preface.

DRAFT Introduction 1-1
2/11/100 10:35

Which Lessons Do You Need?

Programmers

All chapters and Table 3 “New Commands” in the Appendix will be of interest
to programmers. The changes that affect programming are taught in-depth

in the classroom course Moving From MPE V to MPFE XL: Application
Programmer (HP 31114).

System Managers

Chapters 2-4 will be applicable to those of you who are system managers.
Depending upon your level of expertise, you may also wish to take advantage
of the information found in Chapter 5 “Variables”. All of the tables in the
Appendix will be of particular use. Study Table 4 “Utilities”; find the account
management commands in Table 2 “Modified Commands” and Table 3 “New
Commands”. The changes that affect system management are taught in-depth
in the classroom course Moving From MPE V to MPFE XL: System Manager
(HP 31110).

System Operators

If you are a system operator, concentrate on Chapters 2 and 3. Depending
on your experience with creating UDCs, you may also want to study the new
features of UDCs described in Chapter 4. The rest of the changes that affect
system operators are taught in-depth in the classroom course Moving From
MPE V to MPE XL: System Operator (HP 31117).

End Users

If you are an end user, concentrate on Chapters 2 and 3. Depending on
your experience with creating UDCs, you may also want to learn about the
new features of UDCs in Chapter 4. If you have had some experience using
variables, you may wish to study Chapter 5 as well.

1-2 Introduction DRAFT
2/11/100 10:35

What Is This Training About?

Chapter 2 teaches you some of the enhancements that were made to the
Command Interpreter. One such enhancement is a new feature called “implied
:RUN” that lets you run programs without typing the command :RUN.
Enhancements have also been made to allow you to reexecute commands
previously entered. The :REDO command has been modified and the new
commands :LISTREDO and :D0 add flexibility to the reexecution of commands.
Finally, the syntax of the new MPFE XL commands has been changed to
provide more flexibility.

In Chapter 3 you will learn about file manipulation. New commands are
introduced that will make printing files (on printers and on your screen),
copying files, and changing groups much easier.

Chapter 4 guides you through the enhancements made to user commands.
UDCs have been modified to make them easier to create and maintain. A new
type of User Command has been added—Command Files.

Chapter 5 introduces you to variables in MPE XL. You can now create and use
variables. You can make use of many system variables that are now available.
Some of the system variables are user modifiable, such as the variable that
defines the prompt character. All variables can be used in User Commands,
and the system variables can also be used in programs.

Chapter 6 teaches you about expression evaluation in MPE XL. The new
command :CALC allows online calculation of numeric and alpha expressions.

In Chapter 7 you learn about the Command Interpreter (CI) program. It is
now possible to run the CI from within other programs. This is handy for
programmers who want to test programs or for users who wish to test UDCs
while creating them.

DRAFT Introduction 1-3
2/11/100 10:35

2

Command Interpreter Enhancements

The MPE X1 operating system offers a variety of improvements to some of the
MPE V functions. Some of these enhancements provide you with convenient
shortcuts, but are not required for the successful use of MPE XL.

m Lessons 1 and 2 in Chapter 2 introduce a new feature called “implied : RUN”
that allows you to run programs without typing the:RUN command. These
lessons will be useful to all users.

m Lessons 3 through 7 teach some new commands that will make working
online much easier. The modified :REDO command and the new:D0 command
make reexecution of command lines more efficient; the new: LISTREDO
command allows you to list the command lines you have entered during your
session. These lessons will be useful for all users.

m Lesson 8 introduces the new, more flexible syntax for the new MPE XL
commands. If you are unfamiliar with the syntax rules for MPE V, you may
want to skip this lesson.

DRAFT Command Interpreter Enhancements 2-1
2/11/100 10:35

Lesson 1: Implied :RUN

MPE V/E MPE XL
e ittt + e ittt +
I I I Either |
I :RUN SORT.PUB.SYS | | :RUN SORT.PUB.SYS |
| | | or [
oo + | :SORT.PUB.SYS |

e ittt +

The MPE X1, operating system allows you to run a program without specifying
the :RUN command. This is called the implied :RUN feature.

Implied :RUN has not replaced the :RUN command—it is just a useful shortcut
for invoking programs.

Exercises

1. How would you run the QUERY program in MPE V/E and MPE XL?
(HINT: Like SORT, the QUERY program is in PUB.SYS)

a. MPE V/E:
b. MPE XL:

2. On your computer, run the QUERY program using the implied :RUN feature.
What did you enter to do this? (Exit the program by entering >exit.)

Note The answers to the exercises are at the end of Chapter 2.

2-2 Command Interpreter Enhancements DRAFT
2/11/100 10:35

Lesson 2: Implied :RUN Parameters

Programmers who are accustomed to specifying several parameters when using
the:RUN command will need to note the following;:

The only parameters of the :RUN command that can be used with implied :RUN
are ;INFO= and ;PARM=. Neither parameter is required, of course.

Examples of acceptable implied : RUN command lines are:

: TESTPROG; INFO="USER1"
: TESTPRG2 ; PARM=1
: TESTPRG3; INFO="USER1" ; PARM=2

: TESTPRG4

Additional Information

A more detailed discussion of these parameters is in the MPF XTI Commands
Reference Manual (32650-90003), Chapter 1.

Exercises

3. Which of the following command lines are valid with the implied :RUN
feature?

:TEST; STDIN=*INFILE; STDLIST=RESULT
b. :TESTME ;DEBUG
c. :MYPROG;INFO0="Do this" ;PARM=3
d. :MYPROG;INFO="Do this';PRI=AM
e. :MYPROG;PARM=2;INF0="Do this"
4. True (T) or False (F):
a. _ Parameters cannot be used with the implied :RUN feature.

b. _ The ;INFO="" and ;PARM=" parameters of the :RUN command are
the only ones that can be used with implied :RUN.

DRAFT Command Interpreter Enhancements 2-3
2/11/100 10:35

c. _ The implied :RUN feature replaces the :RUN command.

2-4 Command Interpreter Enhancements DRAFT
2/11/100 10:35

Lesson 3: Using The Command History

Each time you enter a command, MPE XL saves that command in a list called
the command line history stack. The command history, along with the new
commands :LISTREDO and :DO0, and the modified :RED0 command, allow you
to keep track of and reexecute earlier commands without having to completely
retype them. By default, the command history keeps track of the last 20
commands entered. Fach command is added to the bottom of the list as it is
entered.

Exercise
5. The command line history stack is
a. a list of the system commands available to the user.
b. a list of the last 20 commands entered by a user in a session.

c. a list of all the commands entered by a user in a session.

Note The answers to the exercises are at the end of Chapter 2.

DRAFT Command Interpreter Enhancements 2-5
2/11/100 10:35

Lesson 4: :LISTREDO

You can use the new :LISTREDO command to see your command line history
stack on your terminal screen.

To see your command line history stack, enter listredo at the MPE prompt
(:). (Try it now.)
Notice that the :LISTREDO command appears at the bottom of the command

history display as the most recent command entered.

:HELLO USER.MYACCT

Command Entered History Stack Command Line #

tommmmmmm +
:LISTF -——=> | LISTF | 1
tommmmmmm Fommmmmmm
:SORT.PUB.SYS -——=> | SORT.PUB.SYS | 2
tommmmmmm Fommmmmmm
: SHOWME -——=> | SHOWME | 3
tommmmmmm Fommmmmmm
:RUN MYPROG -——=> | RUN MYPROG | 4
tommmmmmm Fommmmmmm
:EDITOR -——=> | EDITOR | 5
tommmmmmm Fommmmmmm
:LISTREDO -——=> | LISTREDO | 6
tommmmmmm Fommmmmmm

When the history stack has reached its maximum size, the “top” command on
the list is deleted as each new command entered is added to the bottom of the
list. Consecutive numbering of the commands continues until the session ends.

Exercises

6. Enter several simple commands, such as:LISTF and:SHOWME. After every
couple of commands, display the contents of your command line history
stack. Try entering a misspelled command. How is it recorded in the
history stack?

7. Given a maximum history stack size of 20, what range of numbers will be

displayed by :LISTREDQ if :LISTREDO is command number 457

DRAFT
10:35

2-6 Command Interpreter Enhancements
2/11/100

Lesson 5: :LISTREDO Parameters

You can use the :LISTREDO parameters to display the command line history
stack in three different ways.

The parameter ;ABS is the default and lists your command line history stack
by absolute number—the first command entered is 1, the second is 2, and so
on.

If you specify the parameter ;REL, the commands are listed in order relative to
the current command line. The list will use negative numbers: the command
most recently entered is shown as -1, the next most recent as -2, and so on.

Finally, you can display an unnumbered history stack with the parameter ;UNN.

;abs
Hommmmmm - +
| :LISTREDO;ABS |
| 1) listf |
| 2) showme |
| 3) run myprog |
| 4) editor | ;unn
| 5) sort.pub.sys | #---------------o- +
| 6) LISTREDO;ABS | | :LISTREDO;UNN |
Hommmmmm oo + | listf |
| showme |
;rel | run myprog |
Hommmmmm oo + | editor I
| :LISTREDO;REL | | sort.pub.sys |
|-6) listf | | LISTREDO;UNN |
|-5) showme | 4= +
|-4) run myprog |
|-3) editor |
|-2) sort.pub.sys |
|-1) LISTREDO;REL |
Hommmmmm - +
DRAFT Command Interpreter Enhancements 2-7

2/11/100 10:35

Exercise

8. Try listing your command line history stack with the ;REL, ;ABS, and
;UNN parameters.

2-8 Command Interpreter Enhancements DRAFT
2/11/100 10:35

Lesson 6: :DO and :REDO

You can reexecute any of the commands in your history stack by using the
familiar MPE V/E :REDO command or the new MPE XL :D0 command.

| :REDO 3 [RETURN] | | :DO 3 [RETURN] |
| [RETURN] | | I

The advantage of using :DO0 instead of :REDO is that :D0 immediately executes
the command after you press (Return). :REDO requires that you press (Return)
twice before the command reexecutes.

Same-Line Editing

Both :REDO and :D0 allow you to perform “same-line” editing before a
command is reexecuted. That is, the syntax of these commands allows you to
specify editorial changes on the same line as the command itself. :REDO also

allows next-line editing in MPE XL, as it did in MPE V/E.

Refer to the MPE XL Commands Reference Manual (32650-90003), :DO or
:REDO, for an explanation of using the “same-line” editing feature.

Both :DO and :REDO may be used with or without specifying a command line
number from the history stack listing. When a line number is not specified, the
command most recently issued is reexecuted.

:LISTREDO

1) listf

2) showme
3) showjob
4) listredo

:D0 or \ Command #4, LISTREDO
:REDO [/ would be reexecuted

:D0 2 or \ Command #2, SHOWME
:REDO 2 / would be reexecuted

DRAFT Command Interpreter Enhancements 2-9
2/11/100 10:35

Exercise

9. Display your command line history stack on your screen. Use :DO
and :REDO with and without specifying line numbers to reexecute any
command in your command history.

2-10 Command Interpreter Enhancements DRAFT
2/11/100 10:35

Lesson 7: Numbering with :DO and :REDO

:D0 and :REDO allow you to specify command line numbers from the history
stack using either absolute or relative numbers regardless of how the numbering
on your history stack is displayed.

:LISTREDO;REL

-4) showme

-3) showjob

-2) setcatalog
-1) LISTREDO; REL

DO -3 \
or --> :SHOWJOB would be reexecuted
Do 2 /
- +
Exercise

10. Display your command line history stack on your screen and specify
relative numbering. Use :D0 with an absolute line number to reexecute
any command in your history stack.

DRAFT Command Interpreter Enhancements 2-11
2/11/100 10:35

Lesson 8: MPE XL Syntax

In MPE XL, you can enter commands in your accustomed manner.
Long-standing rules for syntax still apply.

If you use complex command syntax in MPE V/E, note that the parameters
of the new commands in MPE XL have the option of being entered in a more
flexible manner. Parameters for new commands are no longer limited to being
only a keyword or only a positional parameter.

Note If you are not familiar with MPE syntax rules, you may wish to
skip this lesson.

Keyword Parameters

Commands—old as well as new—can be entered in MPE XL by using only
keyword specifications, in the same manner that you were accustomed to in

MPE V/E.
Example:
:file lprint;dev=lp;env=envfile.pub

The syntax definition of new commands in MPE XL, however, makes the
; keyword= specifications optional. Refer to Table 3 “New Commands” in the
Appendix for more examples of the new syntax definition.

Example:

Syntax: PRINT [FILE=] filename
[[OUT=] outfile]
[[START=]]
[GEND=] n]

Using only keyword specifications:
:print file=myfile;out=*printer;start=>5
Using the optional positional specifications:

:print myfile,*printer,5

2-12 Command Interpreter Enhancements DRAFT
2/11/100 10:35

Positional Parameters

If the keywords are omitted, the familiar rules regarding positional parameters
come into effect: commas separate parameters and hold the place of omitted

parameters; sequence becomes important.

Example:

:print myfile,,5
(N

DRAFT Command Interpreter Enhancements 2-13
2/11/100 10:35

Combining Keyword and Positional Parameters

And, as always, you can combine keyword and positional parameters. Once a
keyword has been specified, you must continue using keywords in the rest of
the command line.

Example:
Acceptable: :print myfile;out=#printer;end=10

Unacceptable: :print myfile;out=*printer,5,10

Note The new syntactical rule applies to the commands that are
new to the MPE XL system. By and large, “modified” and
“unchanged” commands are restricted to MPE V/E syntax
rules.

Additional Information

For more information about the syntax for new MPE XL commands, refer to
Chapter 1 of the MPE XL Commands Reference Manual (32650-90003).

Exercises

For each command line listed below, indicate if it is executable in MPE XL or
not, based on what you know about the new syntax. For each one that is not
executable in MPE XL, explain why.

HINT: :COPY, :PRINT, :LINK, :INPUT, and :LISTREDO are new commands.
:HELLO and :RUN are modified commands.

11. :COPY FROM=fred;TO=wilma;NO

12. :PRINT FILE=MYFILE,*PRINTER,5,8

13. :LINK filel;TO=newfile,rlfile2;SHOW
14. :INPUT myname;WAIT=30;PROMPT=x%%*

15. :HELLO barney.rubble, , ; TIME=60

16. :LISTREDO OUT=%1lp,-7,-3;UNN

17. :COPY FROM=fred,wilma

2-14 Command Interpreter Enhancements DRAFT
2/11/100 10:35

18. :RUN myprog, ,,; DEBUG
19. :PRINT beatles,*1lp;START=4;END=20

DRAFT Command Interpreter Enhancements 2-15
2/11/100 10:35

Answers to Exercises

1. a. :run query.pub.sys
b. :run query.pub.sys or:query.pub.sys

2. :query.pub.sys
3. cand e

4. a. F
b. T
c. F' (Both are available in MPE XL.)

5 b
6. :1istf

: showme

: listredo
5) LISTF

6) SHOWME
7) LISTREDO

(Etc.)

If you misspell a command, the misspelled command is added to the
history stackas is, in its misspelled state.

7. Commands 26-45 will be displayed.

8. :listredo;rel
:listredo;abs or:listredo
:listredo;unn

9. :listredo
:redo
:redo 2 (or any other line number)
:do
:do 3 (or any other line number)

2-16 Command Interpreter Enhancements DRAFT
2/11/100 10:35

10. :listredo;rel
-4) SORT.PUB.SYS
-3) LISTF
-2) SHOWJOB
-1) SHOWCATALOG

:do 2 LISTF will execute.
11. Executable.

12. Not executable on MPE XL. Positional parameter cannot be specified after
a keyword parameter.

PRINT;FILE=MYFILE,*PRINTER,5,8

13. Not executable on MPE XL. Positional parameter cannot be specified after
a keyword parameter.

LINK FILE1;TO=NEWFILE,RLFILEZ2;SHOW

14. Executable.

15. Not executable. Syntactical changes only apply to new commands. :HELLO
is a modified command.

16. Not executable. Positional parameters cannot be specified after a keyword
parameter.

LISTREDO 0UT=+*LP,-7,-3;UNN

17. Not executable. Positional parameters cannot be specified after a keyword
parameter.

COPY FROM=FRED,WILMA

18. Not executable. :RUN is not a new command.

19. Executable.

DRAFT Command Interpreter Enhancements 2-17
2/11/100 10:35

Working With Files

This chapter discusses three new commands. :PRINT and :COPY will make
printing and copying files easier for you than they were on MPE V/E. The new
command :CHGROUP provides an easier method for getting to other groups
within your account.

m Lessons 1 through 3 teach you the new :PRINT command. You will learn how
to print files on your terminal screen and on a printer. This new command
allows you to print either a whole file or a portion of a file. These lessons are
useful for all users.

m Lesson 4 introduces the new :CHGROUP command. It allows you to get to
another group without logging off and on again. This lesson is useful if your
job requires you to change groups.

m Lessons 5 through 7 teach you the new:COPY command. This command
provides an easy method for copying files, even from other groups and
accounts. These lessons are useful to all users.

DRAFT Working With Files 3-1
2/11/100 10:35

Lesson 1: :PRINT

The new command :PRINT prints the contents of a file on your terminal screen.

:print file=myfile

This file is called
MYFILE. It is only
three lines long.

Exercise
Create a ten-line file with your text editor and call it LUCY.
1. Display the contents of the file LUCY on your terminal screen.

Note For the rest of the exercises in this chapter, you will be using
the file you create in this exercise. DO NOT PURGE the file
LUCY?” before you finish Chapter 3.

3-2 Working With Files DRAFT
2/11/100 10:35

Lesson 2: Printing Portions of Files

If you want to display only a portion of a file on your terminal screen, you can
specify the lines you want with the ;START= and ;END= parameters.

To print lines 5 through 20 of the file MYFILE to the terminal screen:
:print file=myfile;start=5;end=20

or

:print myfile,,5,20

Refer to Table 3, “New Commands”, in the Appendix for the syntax of the new
:PRINT command.

Exercises
2. Display lines 2 through 9 of the file LUCY on your terminal screen.

3. Display line 10 of the file LUCY.
4. Display line 5 of the file LUCY.

DRAFT Working With Files 3-3
2/11/100 10:35

Lesson 3: Printing a File on a Line Printer

:PRINT MYFILE —— —

:FILE PRINTER;DEV=LP
:PRINT MYFILE,*PRINTER —>

The contents of a file may also be sent to a printer with the :PRINT command.
For example,

:file printer;dev=1p
and:print file=myfile;out=#*printer
or :print myfile,*printer

will print the file MYFILE to a printer as specified by the file equation.

Exercises

Given the file equation :FILE PRINTER;DEV=LP, fill in the blanks below with
the command lines you would use in each case; verify by trying the command
lines at your terminal (after entering an appropriate file equation).

5. Print the file LUCY to the printer.
Command:

3-4 Working With Files DRAFT
2/11/100 10:35

6. Print lines 6 through 9 of the file LUCY to the printer.
Command:

7. Enter the following command:
:print file=lucy;start=-3
What happened? Why?

DRAFT Working With Files 3-5
2/11/100 10:35

Lesson 4: :CHGROUP

MPE V/E MPE XL

The new command :CHGROUP gives you mobility to move from group to group
within your account. However, it does not allow you to change to a group in
another account.

Note The :CHGROUP command may only be useful to you if your
work requires you to change groups.

To change from your current group to the group PAYROLL within your account:
:chgroup payroll
To change from your current group to a group called SALES that is

password-protected:

:chgroup sales/password

To get into your home group, just enter :CHGROUP by itself. Entering the
command :CHGROUP without specifying a group name will always put you into
your home group. (Remember, you can use:SHOWME to find out what group you
are in.)

Changing from your current group...

to another group to another passworded group
e et + et ettt +
| :CHGROUP NEWGROUP | | :CHGROUP NEWGROUP/PASSWORD |
e et + et ettt +
3-6 Working With Files DRAFT

2/11/100 10:35

to your home group

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+

Exercise

8. Change groups within your account; then get into your home group.

DRAFT Working With Files 3-7
2/11/100 10:35

Lesson 5: :COPY

MPE V/E MPE XL
et e e e + et e e e +
I :DSCOPY | I :DSCOPY I
I :FCOPY I I :FCOPY I
I I | :COPY I
et e e e + et e e e +

The new command :COPY copies one file to another.

Assume that you have a file named MYFILE that you want to copy, and that
you want to name the copy MYCOPY.

:copy from=myfile;to=mycopy
or :copy myfile,mycopy

If a file named MYCOPY already exists, the prompt "PURGE OLD?" appears. A
YES answer overwrites the old file. A NO answer terminates the copy process,
leaving the original file MYCOPY intact.

Exercises

9. Use the file LUCY that you created earlier. Make a copy of the file LUCY
and call it RICKY.

10. Make editing changes to the file RICKY so that it now looks different. Save
it again as RICKY. Then :COPY the file RICKY to the file LUCY.

a. Answer NO to the prompt and look at the file LUCY. What
happened?

b. Try copying again. Answer YES to the prompt and look at the file
LUCY. What happened?

c. What command did you use to look at the file LUCY?

3-8 Working With Files DRAFT
2/11/100 10:35

Lesson 6: :COPY Parameters

When copying a source file to a target file you may specify one of three options:

m ;ASK asks "PURGE OLD targetfile.group. account?" if the target file
already exists. The ;ASK option is the default for sessions.

:copy from=x;to=y;ask or:copy x,y;ask

m ;YES purges old targetfile.group.account automatically, if one exists.
The ;YES option is the default for jobs.

:copy from=x;to=y;yes or :CoOpy X,y;yes
m ;NO terminates the copy process if a duplicate file name exists.

:copy from=x;to=y;no or :copy x,y;no

Exercises
11. Again make editing changes to the file RICKY that you created earlier.

Copy RICKY to LUCY so that the system will terminate the copy process
without giving you the prompt "PURGE OLD?".
Command:

12. Print the file LUCY to your screen to verify that the copy did not occur.
Command:

13. Copy RICKY to LUCY so that the system will perform the copy without
giving you the prompt "PURGE OLD?".
Command:

14. Print the file LUCY to your screen to verify that the copy occurred.
Command:

DRAFT Working With Files 3-9
2/11/100 10:35

Lesson 7: Copying From Other Groups & Accounts

Given proper file security, you can copy files from other groups within your
account, and even from other accounts, with the :COPY command.

To copy a file named INFORM from the PUB group of the MKTG account and give
it the name MKTGINFO in your own group and account:

:copy from=inform.pub.mktg;to=mktginfo
or:copy inform.pub.mktg, mktginfo
If you copy the file named INFORM from the PUB group of the MKTG account, but

do not give it a target file name, the file is copied into your current group with
the name INFORM.

Note You cannot use the:COPY command to copy a file to another
group unless you have account manager (AM) capability. You
cannot use:COPY to copy files to another account unless you
have system manager (SM) capability.

Exercises

15. Check to be sure you have a group in your account called LABS. While still
in your home group, copy LUCY into your LABS group. Get into your LABS
group and verify that the copy was successful.

16. While in the LABS group, create a file called RICARDO and copy RICARDO
back to your home group. Return to your home group and verify that the
copy was successful.

17. How did you get from your group to the LABS group and back again?

3-10 Working With Files DRAFT
2/11/100 10:35

Answers to Exercises

1

[\

10.

. :print file=lucy
or :print lucy

. :print file=lucy;start=2;end=9
or :print lucy,,2,9

. :print file=lucy;start=10;end=10
or :print lucy,,10,10
or :print file=lucy;start=-1 if the file is only 10 lines long.

. :print file=lucy;start=5;end=5
or :print lucy,,5,5

. :print file=lucy;out=*printer
or :print lucy,*printer

. :print file=lucy;end=9;start=6;out=*printer
or: print lucy,*printer,6,9
(Note: in the first solution, the order of the parameters is unimportant.)

:print file=lucy;start=-3
This command caused the last three lines of the file LUCY to print on the
screen. The minus (-) specified before the number 3 caused this.

. (example of a correct answer)
:chgroup newgroup
:chgroup

. :copy from=1lucy;to=ricky
or: copy lucy,ricky

a. :copy from=ricky;to=lucy

or :copy ricky,lucy

PURGE OLD? no

NO COPY WAS DONE (CIERR 9113)

b. :copy from=ricky;to=lucy
or: copy ricky,lucy
PURGE OLD? yes

What happened? The file RICKY overwrote the file LUCY.

DRAFT Working With Files 3-11
2/11/100 10:35

11.

12.
13.

14.
15.

16.

17.

¢. :print file=lucy or :print lucy

:copy from=ricky;to=lucy;no
or :copy ricky,lucy;no

NO COPY WAS DONE (CIERR 9113)
:print file=lucy or :print lucy

:copy from=ricky;to=lucy;yes
or :copy ricky,lucy;yes

:print file=lucy or :print lucy

:newgroup labs

:copy from=lucy.home;to=lucy.labs
:chgroup labs

:print file=lucy

or :newgroup labs
:copy lucy,lucy.labs
:chgroup labs

:print lucy

:copy from=ricardo;to=ricardo.home
:chgroup

:print file=ricardo

or

:copy ricardo,ricardo.home.account
:chgroup

:print ricardo

:chgroup labs
:chgroup

3-12 Working With Files DRAFT

2/11/100 10:35

4

User Commands

MPE XL provides you with a new type of User Command called Command
Files. Along with the familiar User Defined Commands (UDCs), Command
Files can be used to create, modify, and manipulate the MPE environment.

Lesson 1 introduces you to Command Files, the new User Command in MPE

XL.

Lesson 2 makes a comparative study of both UDC files and Command Files
and the benefits of having both available to you. If you are not familiar with
the creation of UDC files and execution of UDCs, you may choose to skip
Lesson 2 and continue with Lesson 3.

Lesson 3 steps you through the process the MPE XL system uses in its
attempt to execute whatever you type at the prompt. Lesson 4 introduces
you to the new :XEQ command.

Lesson 5 introduces you to enhanced features of the :SETCATALOG command
that allow easy UDC file manipulation. Lesson 6 discusses the new
RECURSION feature that allows one UDC to call upon any other UDC, making
UDC file maintenance more flexible. Those of you who are not familiar with
creating and maintaining UDC files may choose to skip these two lessons and
the following two lessons, 7 and 8.

Lesson 7 introduces new User Command OPTIONs. Lesson 8 introduces the
new MPE XL:0PTION command. These two lessons assume some prior
knowledge of programming and of creating and maintaining UDCs.

DRAFT User Commands 4-1
2/11/100 10:35

Lesson 1: Creating Command Files

A Command File is a simple ASCII or binary data file that contains MPE
commands, program file names, UDC names, and/or other Command File
names. It is created by the user in a text editor. A Command File is executed
like “implied :RUN”, by entering the file name.

At its simplest, a Command File can contain a single MPE command. For
example, instead of always having to enter the whole command : SHOWCATALOG,
you could create a Command File called SC that simply contained the one
word SHOWCATALOG. Then, every time you entered SC at the colon (:) prompt,
SHOWCATALOG would execute. Many MPE V users use UDCs for this purpose;
in MPE XL you can use either UDCs or Command Files.

Another example of a one-line Command File would be one that printed the
last three lines of a particular file to the terminal screen. It would look like the
following if you created it in :EDITOR:

1 PRINT FILE=myfile;START=-3
or

1 PRINT myfile,,-3

If this example were to be saved under the file name PR, you would simply type
PR at the MPE prompt to execute the file.

:PR

This is the file Myfile.
This is a very short file.
This is the last line of the file.

The example below shows the Command File that you have named SH. It
executes the Command File PR’ and then executes the MPE command
:SHOWTIME.

4-2 User Commands DRAFT
2/11/100 10:35

1 PR
2 showtime

To execute, you would enter:

:sh

This is the file Myfile.

It is a very short file.

This is the last line of the file.
WED, NOV18, 1987, 2:10 PM

Exercises

1. Choose two MPE commands and create one Command File that executes
both. Test the Command File.

2. Choose a third MPE command and create another Command File that
executes it. Test this Command File.

3. Create a Command File that executes both of the Command Files from
exercises 1 and 2. Test this Command File.

DRAFT User Commands 4-3
2/11/100 10:35

Lesson 2: Comparing User Commands

Note

For this lesson, it is important that you be reminded of the
distinction between the terms “UDC file” and “UDC”. A UDC
file is an MPE file that contains one or more UDCs separated
by asterisks. In order to use the UDCs, the file must first be
cataloged using the:SETCATALOG command.

A UDC is not an MPE file. It is contained within a file,

and it consists of one or more MPE commands and/or User
Commands. The UDC executes when its command header is
typed at the prompt, if the file in which it resides has been
cataloged. For more information on UDCs, refer to Chapter 3
of the MPE XL Commands Reference Manual (32650-90003).

For those of you who create your own UDC files, you will notice some
similarities between UDC files and Command Files. The following comparisons
will help you weigh the benefits of having both UDC files and Command Files
available in MPE XL.

Contents:

AUDC File: A Command File:
Contains command Contains NO com-
header and (some- mand header; can
times) option contain option
header. Consists of header (on first

one or more command line). Consists of
lists (1list = one or a single command
more executable com- 1list (list = one or

mands) .

Each list more executable

is called a UDC and commands) .
is separated from
the other UDCs in
the file by one or

more

4-4 User Commands DRAFT

2/11/100 10:35

Error in ENTITY parameter F0401 (File F0401)

Maintenance:
A UDC File:

The UDC file must
be cataloged,

via the :SETCATALOG
command .

Example
A UDC File:
:SETCATALOG myudc

: SHOWCATALOG
MYUDC .PUB.MERTZ
GREETING USER
PRINTIT USER
ST USER

Exercises

A Command File:

A Command File is not
cataloged. It can be
modified and

PURGEd easily.

4. True or false: A Command File may be cataloged, but does not have to

be.

5. True or false: When you enter a Command File name, everything in the

file is executed.

Characteristics:
A UDC:

Has the option of being
invoked when the user
logs on to the system
(OPTION logon).

DRAFT

2/11/100 10:35

A Command File:

LOGON option ignored.
However, it may be
called upon by a
logon UDC. (See
SHOWME below.)

User Commands 4-5

May contain one or more
executable commands.

A UDC must have a
command header; the UDC
is identified by its
command header.

May contain one or
more executable com-
mands.

A Command File has no
command header--it is
identified by its
file name.

Error in ENTITY parameter F0402 (File F0402)

4-6 User Commands

2/11/100

DRAFT
10:35

Execution:
A UDC:

Is invoked at the
prompt by its
command header.

Should be used for
frequently used,
stable command
lists.

Example
UDCs
:GREETING

:PRINTIT

:ST

DRAFT
2/11/100 10:35

A Command File:

Is invoked at the
prompt by its file
name.

Can be used to test
potential UDCs.
Should be used when
contents change
frequently.

Command File:

:SM

:PR

:TIME

User Commands 4-7

Note Parameters can be defined in UDCs and Command Files, using
a PARM statement defined in the User Command opening
line. Refer to Chapter 3 of the MPE XL Commands Reference
Manual (32650-90003).

Exercise

6. Lor each item below, put an X in the appropriate column(s) to show
whether the item is a characteristic of UDCs, Command Files, or both.

Error in ENTITY parameter F0403 (File F0403)

4-8 User Commands DRAFT
2/11/100 10:35

Lesson 3: Understanding Search Priorities

What if your Command File or program has the same name as a UDC or
system command? Which will execute? To answer this, it will be helpful for
you to understand how MPE XL interprets what is typed at the prompt.

In brief, MPE interprets everything entered at the prompt to be a “command”
and prioritizes its “search” for that “command” in the following order:

m UDCs first,

m MPE XL commands next,

m file names last (including Command Files and programs).
This hierarchy is called the Search Priority.

The detailed diagram on the next page illustrates the process of MPE XL’s
search for a “command” called : TRYIT.

DRAFT User Commands 4-9
2/11/100 10:35

Error in ENTITY parameter F0404 (File F0404)

This diagram is broken down in the next few pages to allow you to look at each
step of this process.

4-10 User Commands DRAFT
2/11/100 10:35

UDC Directory

The system first searches for TRYIT in the UDC Directory. User created UDCs
are searched first, Account UDCs next, and finally System UDCs. If TRYIT is a
UDC, the search ends and TRYIT is executed.

Error in ENTITY parameter F0405 (File F0405)

Exercise

7. Which UDC in each of the following pairs would execute?
a. The user UDC ST or the system UDC ST?
b. The system UDC LF or the account UDC LF?
c. The account UDC RE or the user UDC RE?

DRAFT User Commands 4-11
2/11/100 10:35

Command Directory

If TRYIT is not found in the UDC Directory, the search continues to see if
TRYIT is an MPE XL system command. If TRYIT is an MPE XL system
command, it executes.

Error in ENTITY parameter F0406 (File F0406)

Exercise

8. Which would execute, a UDC named LISTF or the MPE :LISTF
command?

4-12 User Commands DRAFT
2/11/100 10:35

File Directory

If TRYIT is not found in the Command Directory, the search continues on
to file names. If TRYIT were a qualified file name of a valid, executable file
(TRYIT.PUB.SYS or TRYIT.MYGROUP, for example), it would execute.

Error in ENTITY parameter F0407 (File F0407)

Exercise

9. If you entered the qualified program file name SORT.PUB.SYS, would the
system still begin its search in the UDC directory?

DRAFT User Commands 4-13
2/11/100 10:35

Search Path

Since TRYIT is not a qualified file name, the system follows a designated search
path looking for a matching name. Following the default search path, the
system first looks in your current group, next in your PUB group, and finally
in PUB.SYS. (The search path is user modifiable.)

Error in ENTITY parameter F0408 (File F0408)

If TRYIT is not found in the search path or is found to be a non-executable file,
the system issues an Error Message and returns you to the MPE prompt.

Error in ENTITY parameter F0409 (File F0409)

Exercise

10. Indicate in the space provided what would execute in each of the following
situations.

The :LISTF system command or a Command File named LISTF?
b. A Command File or a UDC with the same name?
c. A program file called PRINT or the MPE XL command :PRINT?

d. A Command File in your PUB group or a program file with the same
name in your current group?

4-14 User Commands DRAFT
2/11/100 10:35

Lesson 4: :XEQ Command

You should always try to keep file names from duplicating those of UDCs or
MPE XL commands. If you do encounter name duplications and do not wish
to rename your Command File/program, you can employ the new MPE XL
:XEQ command.

The :XEQ command ensures execution of valid Command Files/programs
despite name duplications. The :XEQ command plus the name of a program file
or Command File will cause that file to execute.

Suppose you had a UDC and a Command file with the same name, MYFILE.

:MYFILE
would execute the UDC.

:XEQ MYFILE

would ensure that your Command File MYFILE executed.

Exercise

11. Create a Command File that executes the :SHOWTIME command; save it as
"LISTREDQO". Execute this Command File.

DRAFT User Commands 4-15
2/11/100 10:35

Lesson 5: Adding and Deleting UDC Files

Long-time users of UDCs will be pleased to know that they can continue to
use UDCs in exactly the same manner as they always have. However, the
:SETCATALOG command has added the new options ; APPEND and ;DELETE to
make the task of maintaining UDC files much easier.

Let us look at how a task is done in MPE V/E and how that same task can be
done in MPE XL.

Assume that you have a UDC directory with the cataloged files UDC1, UDC2,
UDC3, and UDC4.

;DELETE
To delete UDC2 from the directory, keeping UDC1, UDC3, and UDC4 cataloged:
MPE V/E

:SETCATALOG udcl,udc3,udc4
MPE XL

:SETCATALOG udc2;DELETE
or

:SETCATALOG udcl,udc3,udc4

;APPEND

To add UDC2 back into the directory, where UDC1, UDC3, and UDC4 are
cataloged:

MPE V/E

:SETCATALOG udcl,udc2,udc3,udc4
MPE XL

4-16 User Commands DRAFT
2/11/100 10:35

:SETCATALOG udc2;APPEND

or

:SETCATALOG udcl,udc2,udc3,udc4

Note The appended file (UDC2) is added to the end of the UDC
directory in the command :SETCATALOG UDC2; APPEND.

Replacing Existing UDC Files
To replace existing UDC files in the directory with specified UDC files:
Same on MPE V/E and MPE XL

:SETCATALOG newudcl,newudc2,newudc3

Exercises

If the files TOKYO, LONDON, DALLAS, and LIMA were cataloged UDC files in a
UDC directory, how would you:

12. Delete LONDON, without affecting other cataloged files?

13. Add the UDC files MOSCOW, KENYA, and BRASILIA to the UDC directory
without affecting other cataloged files?

14. Replace existing UDC files in your UDC directory with the following files:
NEWYORK, BOSTON, BOMBAY, and ZURICH?

DRAFT User Commands 4-17
2/11/100 10:35

Lesson 6: RECURSION Option

Experienced users of UDC files will recall that in MPE V., a UDC can only call
another UDC if the second UDC comes after the first in the UDC directory.

The new MPE XL, RECURSION option allows the flexibility of having one UDC
call upon another that may be cataloged before it. With the RECURSION option,
the search for a UDC starts with the first UDC in the first UDC file cataloged

on the system.

Consider how cataloging is done in MPE V and how flexible it is in MPE XL.
In both of the following examples, the UDC GETB, in the UDC file UDCFILE3,
calls upon the UDC B in the file UDCFILE1.

Error in ENTITY parameter F0410 (File F0410)

4-18 User Commands DRAFT
2/11/100 10:35

Note where UDCFILE3 must be cataloged in MPE V. In MPE XL, UDCFILE3
may be cataloged either before or after the UDC B as long as OPTION
RECURSION has been invoked.

The following example shows a UDC file in which a UDC calls upon another
UDC that precedes it.

Error in ENTITY parameter F0411 (File F0411)

Execution of the UDC “ED” would result in the following:
:ED

FILENAME
APPLE BEATLES DIANA EMILY NORM ...
HP32201A.07.17 EDIT/3000 WED,MAR 9,1988,10:16AM

(C) HEWLETT-PACKARD CO. 1985
/

Note The RECURSION option is only effective for the UDC in which it
is specified. Other UDCs in the file are not affected.

Note also that recursion is an unchangeable characteristic of
Command Files; RECURSION and NORECURSION are simply
ignored in Command Files.

OPTION NORECURSION is the default and is consistent with MPE V/E. When
invoked it allows a UDC to call other UDCs only if they follow the calling UDC
in the catalog.

DRAFT User Commands 4-19
2/11/100 10:35

Exercise

15. Study the following MPE XL UDC file. Indicate how you would change
this file to have the UDC SO” call upon and execute the UDC ST

without changing the order in which they now appear:

ST
showtime
*x

SM
showme
*x

S0
showout
*x

Additional Information

Because recursion allows two UDCs to call each other and enables a UDC to
call itself, limitations have been put in place to prevent “endless loops” (for
example, two commands calling each other over and over again without end).

Example

A UDC called GETA

GETA

Option Recursion
SHOWTIME

GETA

kK

The maximum number of times that GETA can call itself is 30 times. When
that maximum is reached, the system interrupts the process with an error
message. This safeguard may be helpful to you in “debugging” your User
Commands.

4-20 User Commands DRAFT
2/11/100 10:35

Lesson 7: PROGRAM Option

The new MPE XL option PROGRAM/NOPROGRAM allows you to specify when a
User Command may or may not be executed from within a program. 0PTION
PROGRAM is the default.

Note Programs and subsystems that use the new MPE XL intrinsic
HPCICOMMAND execute UDCs that have OPTION PROGRAM
specified. Programs and subsystems that use the old COMMAND
intrinsic, however, will not allow programmatic execution of
UDCs even when OPTION PROGRAM has been specified.

The new PROGRAM option (the default condition) will allow you to execute the
following User Command:

TIME

SHOWTIME
*ok

from within an application program such as VOLUTIL (which is MPE XL’s
replacement for the MPE V/E command :VINIT):

volutil: :TIME
MON, MAR 9 1987, 11:07 AM

The use of OPTION NOPROGRAM:

TIME
OPTION NOPROGRAM

SHOWTIME
*ok

will suppress the User Command search when the User Command is executed
from within a program:

volutil: :TIME
UNKNOWN COMMAND NAME. (CIERROR 975)

DRAFT User Commands 4-21
2/11/100 10:35

Exercises

16. Study the following UDC and indicate how you would change this file so
that the UDC LF would not be executable from within a program.

LF
LISTF
*okok

17. Assume that you have a Command File, called LPRINT. Could you execute
LPRINT from within a program, if the program used the HPCICOMMAND
intrinsic? If it used the COMMAND intrinsic?

4-22 User Commands DRAFT
2/11/100 10:35

Lesson 8: :OPTION Command

:0PTION is an MPE XL command and can be used in any User Command—
both UDCs and Command Files.

The new :0PTION command allows RECURSION/ NORECURSION and LIST/NOLIST
to be specified anywhere in the body of a User Command. All other options
can only be set in the option header. Options remain in effect until the User
Command has finished executing or, in the case of RECURSION/NORECURSION
and LIST/NOLIST, until they are overridden by the :0PTION command in the
body of the User Command.

In the following example, the header OPTION LIST is “activated” in the UDC
DOIT1 and “deactivated” later in the UDC body with the :0PTION command.
Also note where OPTION RECURSION appears in UDC DOIT3.

Example:

DOIT1

OPTION LIST
showtime
OPTION NOLIST
listf

*x

DOIT2

showme

*x

DOIT3

listf

OPTION RECURSION
doit2

*x

DRAFT User Commands 4-23
2/11/100 10:35

Exercises
18. Create a single UDC that does the following in the order given:

a. Executes the :SHOWTIME command without listing the :SHOWTIME
command to the screen.

b. Executes the :LISTF command without listing the LISTF command
to the screen.

c. Lists to the screen and executes the :SHOWME command.
19. What is wrong with the following Command File?

OPTION NOLIST

FILE OUT;DEV=LP

PRINT MYFILE, 0UT=x0UT
OPTION LIST, NOHELP
LISTF MYFILE,2

4-24 User Commands DRAFT
2/11/100 10:35

Answers to Exercises

1. Example
Command File: MYFILE1

showme
showtime

:myfilel
2. Example

Command File: MYFILE2

listf

:myfile2

3. Command File: MYFILE3

MYFILE1
MYFILEZ2

:myfile3
4. False. Before it could be cataloged, a command header would have to be

added.
5. True

Error in ENTITY parameter F0412 (File F0412)

7. a. User UDC ST

DRAFT User Commands 4-25
2/11/100 10:35

b. Account UDC LF
c. User UDC RE
8. A UDC named LISTF
9. Yes, it would.
10. a.:LISTF system command.
b. The UDC.
c¢. The MPE XL command :PRINT.
d. The program file in your current group.

11. /a
1 showtime

2 //
/k listredo

:XEQ LISTREDO
MON, FEB 8, 1988, 4:27 PM
12. :SETCATALOG LONDON;DELETE
13. :SETCATALOG MOSCOW, KENYA, BRASILIA; APPEND
14 :SETCATALOG NEWYORK, BOSTON, BOMBAY, ZURICH
15.

S0

OPTION RECURSION
showout

ST

*x

16.

LF

OPTION NOPROGRAM
LISTF

*ok

4-26 User Commands DRAFT
2/11/100 10:35

17. The HPCICOMMAND intrinsic allows Command Files and UDCs to be
executed from within a program, as long as the User Command has
not specified OPTION NOPROGRAM. If the program has used the COMMAND
intrinsic, however, User Commands cannot be executed while the user is
running the program, even if they have 0PTION PROGRAM specified.

18.

SHOW

OPTION NOLIST
SHOWTIME
LISTF

OPTION LIST
SHOWME

*ok

19. The use of the:0PTION command within the body of a User Command is
limited to RECURSION/ NORECURSION and LIST/NOLIST. All other options
may only be specified in the OPTION header. Therefore, NOHELP should not
have been specified in the body of the Command File.

DRAFT User Commands 4-27
2/11/100 10:35

<

Variables

A new feature of MPE XL is the availability of two kinds of variables. Now,
user created variables are accessible, and can be given names and values.
Predefined system variables also are available. Together they extend the
“programming-like” capabilities of the Command Interpreter.

User created variables are new tools for both interactive and programmatic
use. They are similar to MPE V Job Control Words (JCWs), but more
versatile. The lessons on user created variables introduce the new commands
:SETVAR, :SHOWVAR, and :DELETEVAR.

m Lesson 1: Names for user created variables
m Lesson 2: Creating and displaying variables
m Lesson 3: Deleting a variable

System variables give the user greater access to global items. Some are user
modifiable. The lessons on system variables describe the new commands
:SETVAR and :SHOWVAR.

m Lesson 4: System variables
m Lesson 5: User modifiable system variables
m Lesson 6: Modifying and restoring system values

Two new commands :ECHO and :INPUT, offer the user some helpful options for
both kinds of variables.

m Lesson 7: The:ECHO command
m Lesson 8: Using:INPUT to change your prompt

Aspects of Dereferencing and some simple variable applications furnish the
user with more choices in MPE XL.

m Lesson 9: Dereferencing variables

DRAFT Variables 5-1
2/11/100 10:35

m Lesson 10: Dereferencing with : ECHO
m Lesson 11: Recursive dereferencing

m Lesson 12: Changing your search path

5-2 \Variables DRAFT
2/11/100 10:35

Lesson 1: User Created Variable Names

The first step in creating a user variable is to select a name for it. This name
can be as simple as the letter X, or many lines long. It must follow these
simple rules:

m It must start with either an alphabetic or an underbar character.
m The rest must be alphanumeric or underbar characters; nothing else.
m [t can be from 1 to 255 characters long.

m [t can have no spaces.

ACCEPTABLE | UNACCEPTABLER

PACIFIC_TIME| #Q%_$&
A MAXH#
_007 123

NUM _array error flag
employee4 4employee

A6_B12_X A6_B12+X

Exercise
1. Which of the following are acceptable names for user created variables?
a. $DOLLARS
b. FRED FLINTSTONE
c. 4FSNIE1
d. .BED ROCK
e. 7
INSPECTOR!

=

DRAFT Variables 5-3
2/11/100 10:35

g. JAMES BOND

h. RINGO*

i. The_quick_red_fox_jumped_over_the_lazy_b
i 1Q#$%&H()

k. LOG&LOG

5-4 Variables DRAFT
2/11/100 10:35

Lesson 2: Creating and Displaying Variables

User created variables must be given values. Use:SETVAR to create and modify
them. Use:SHOWVAR to display them.

They are similar to JCWSs, but are more flexible and extensive. MPE XL
variables can be used interactively, in sessions, in jobs, or in programs. JCWs
and variables can be used in both UDCs and Command Files.

User created variables can contain 32-bit integers, string values, Boolean values,
expressions, or the names of other variables. Any process in a job or session
can read, change, or delete user created variables. They end with the session.

:SETVAR

:SETVAR is used to create variables and to assign values. Using it, create a
variable £ to equal the value Fred,

a variable _e” to equal the value eTHEL”, a variable k’” to equal the integer
10247 and a variable j”’ to equal the decimal 10.24”, as follows:

:setvar f,’Fred’
:setvar _e,’eTHEL’
:setvar k,1024
:setvar j, ’10.24°

:SHOWVAR
To show that these variables were set, use:SHOWVAR:

:showvar f,k,_e,]j

F = Fred
K = 1024
_E = eTHEL
J =10.24

Entering: showvar alone displays a list of all user created variables defined
during a session, and their values. The variables are shown in the order of their
creation.

DRAFT Variables 5-5
2/11/100 10:35

Exercises

2. Set the variable PI to equal the value 3.14159, and the variable BOND to
equal the value 007.

3. Display the values of PT and BOND.

5-6 Variables DRAFT
2/11/100 10:35

Lesson 3: Deleting a Variable

The new :DELETEVAR command is used to purge user created variables from the
system.

Remove the variables £, _e, and k from the system with :DELETEVAR, as shown
below. Use:SHOWVAR to verify that they were deleted.

:deletevar f,_e,k
:showvar £

VARIABLE NOT FOUND IN TABLE. (CIERR 8106)

To delete all user created variables, enter : DELETEVAR followed by the wildcard
character @.

Exercises

4. Delete the variable PI created in Exercise 2. Verify that it is gone.

5. Display all variables created in this session that are still in place. Delete
them. Show that they are gone.

DRAFT Variables 5-7
2/11/100 10:35

Lesson 4: System Variables

There are a great many predefined system variables. Most of them are
read-only. To see the variable table (a list of all of the variables on your
system) with their current values, use :SHOWVAR plus the wildcard character @:

:showvar @

CIERROR = O
HPACCOUNT = SYS
HPAUTOCONT = FALSE

HPWAITJOBS = 0O
HPYEAR = 88
JCW = O

The values on your system may not be the ones shown in the example. Any
user defined variables added during the current session appear at the bottom of
the list.

You will find additional information on system variables and their uses in
Appendix A of the MPE XL Commands Reference Manual (32650-90003).

Exercise

6. Where will you find definitions of system variables?

5-8 Variables DRAFT
2/11/100 10:35

Lesson 5: User Modifiable System Variables

These are the system variables you can modify. The modifications you make
will be unique to your session. They will disappear at the end of the session
and be replaced by default values in your next session.

DRAFT Variables 5-9
2/11/100 10:35

Variable Definition Default
CIERROR last CI error # 0 (zero)
HPAUTOCONT en-/disable FALSE
:CONTINUE

HPCMDTRACE en-/disable cmd FALSE
tracing

HPCMEVENTLOG |shows # of CM 0(zero)
events

HPERRDUMP # of levels to dump |0 (zero)

HPMSGFENCE Cl message level 0 (zero)
fence

HPPATH system search path |!hpgroup ,pub

,pub.sys

HPPROMPT CI prompt string : (colon)

HPREDOSIZE CI redo stack max |20
#

HPRESULT last value none
from: CALC

HPSYSNAME computer system none
name

HPTIMEQUT # of min. for CI 0 (zero)
reads

Jcw Job Control Word |0 (zero)

5-10 Variables

2/11/100

DRAFT
10:35

Exercises
7. True (T) or False (F):

A. HPWAITJOBS’’ is a user modifiable system variable. #*b.¢¢ HPCMEVENTLOG 1s
a user modifiable system variable.

C. HPCPUNAME’’ is a user modifiable system variable.

8. What system variable would you look at to find out what your current
user capabilities are? How?

DRAFT Variables 5-11
2/11/100 10:35

Lesson 6: Modifying and Restoring System Values

The new :SETVAR command is used to change the value of a user modifiable
system variable. An example is to change the size of the command line history
stack from its default of 20 to 15 using the variable HPREDOSIZE.

:setvar hpredosize,15

To give a name to your system, or to change the one it already has, use the
variable HPSYSNAME.

:setvar hpsysname, ’harmony’

To verify the changes, enter:

:showvar hpredosize,hpsysname
HPREDOSIZE = 15
HPSYSNAME = harmony

To change the value of HPREDOSIZE back to the default, 20, either log off and
back on again, or use:

:setvar hpredosize,20

To verify the change, enter:

:showvar hpredosize
HPREDOSIZE = 20

Note You cannot use :DELETEVAR on a system variable. If you try,
you will get an error message, because system variables cannot
be removed.

5-12 Variables DRAFT
2/11/100 10:35

Exercises
9. How do you change the prompt from a colon (:) to Yes? ?

10. How do you verify that the variable value has changed?

DRAFT Variables 5-13
2/11/100 10:35

Lesson 7: The :ECHO Command

The new :ECHO command repeats, or echoes, whatever string of characters
follows it. The character string is displayed on the screen with no further
result, even if it is a command name. For example:

:echo ShowTime (25)
ShowTime (25)

The only result is the appearance of the character string ShowTime (25).
Uppercase and lowercase letters, digits, and symbols appear as they were
entered. (MPE XL has not responded to ShowTime as a command.)

Exercise

11. If you insert a colon in front of ShowTime (25) in the example, what
response appears on your screen?

5-14 Variables
2/11/100

DRAFT
10:35

Lesson 8: Using :INPUT to Change Your Prompt

The new:INPUT command can create a user variable. It also allows you to
interactively assign a value to any user created variable or user modifiable
system variable. It has two optional parameters: a prompt string, and a timed
delay.

Example:

If you want to be able to interactively change the system prompt from its
default colon (:) to some other character(s), you could use the following
command line in a UDC, or in a Command File called CHPROMPT:

input hpprompt,"Enter New Prompt: '";walt=15
Executing such a UDC or Command File (CHPROMPT) would look like this:

:chprompt
Enter New Prompt:

The Command File causes the prompt string Enter New Prompt: to appear
for up to 15 seconds, giving the user time to respond. If the user supplies this
response to the waiting system:

Enter New Prompt: Hi There ...
Hi There...

Hi There ... is then assigned to the variable HPPROMPT. The prompt on the
screen changes immediately. :SHOWVAR HPPROMPT will also confirm the new
value.

The system returns to a colon prompt (:) every time you start a new session.

DRAFT Variables 5-15
2/11/100 10:35

Exercises

12. What happens in the case of the example given for the :INPUT command if
you don’t respond within 15 seconds?

13. How would you use:INPUT simply to change HPPROMPT from the default
colon (:) to three dots (...) without either a prompt string or timed
delay? (Hint: The three dots are not entered on the :INPUT command
line. They are entered after the : INPUT command line has been executed.)

5-16 Variables DRAFT
2/11/100 10:35

Lesson 9: Dereferencing Variables

Dereferencing replaces the variable name with its value. An exclamation
point placed in front of the variable name tells the system to dereference that
variable.

For example:

:setvar x,’BLUE’
:showvar x

X = BLUE

:setvar y,’!'X is best.’
:showvar y

Y = BLUE is best.

The:SETVAR command assigns the string value !X is best. for the variable
y in the previous example. The exclamation point in !X is best. tells the
system to substitute BLUE (the variable value) for X (the variable name). This
process is dereferencing.

Changing the value of variable x will have no effect on the value of y, as shown
below:

:showvar x,y

X BLUE

Y BLUE is best.
:setvar x,’RED’

:showvar x,y
X = RED
Y = BLUE is best.

Exercises
14. What do you call the resolving of !X is best. to Y = BLUE is best.?

15. At the end of the second example on the previous page, how would you
use dereferencing to make Y = Your eyes are RED?

DRAFT Variables 5-17
2/11/100 10:35

Lesson 10: Dereferencing With :ECHO

The new :ECHO command, and an exclamation point immediately followed by a
variable name, will also extract the value of a variable.

For example, a variable named e_m is created that has a value of Ethel Mertz.
It can be dereferenced with :ECHO by starting the command line with an
exclamation point, like this:

:setvar e_m,’Ethel Mertz’
:echo le_m
Ethel Mertz

The value is displayed.

System variables can also be dereferenced with :ECHO. For instance, you can
find out what time you started your current session by entering:

:echo 'hpintrotime
10:07 AM (or your actual start time)

To find out what kind of computer you are working with, enter:

:echo 'hpcpuname
SERIES 950 (or whatever your system is)

Exercises

16. Re-create variable X equal to 1024. How do you dereference it in an:ECHO
statement?

17. How do you dereference in order to see 1024 ... Ethel Mertz on your
screen?

5-18 Variables DRAFT

2/11/100 10:35

Lesson 11: Recursive Dereferencing

If you want to assign the value of one variable (M1) to another variable (M2),
but want the value of M2 to change dynamically as the value of M1 changes, you
must use two exclamation points in the:SETVAR command:

:setvar M1, ’Message’
:setvar M2, ’!'!'M1°

See what happens when you check the value of M2 with :SHOWVAR and :ECHO:

:showvar M2

M2 = 'M1
:echo 'M2
Message

In the example above, every time the value of M1 changes, the value of
M2, which is 'M1, will also change. This phenomenon is called recursive
dereferencing.

A practical example of recursive dereferencing would be to add some status
information to your MPE prompt. Assume that you want, as a constant
reminder, your current group name followed by the current history stack
number. You can accomplish this by using the two appropriate system
variables HPGROUP and HPCMDNUM. If you then checked with :LISTREDO, your
screen might look like the following:

:setvar hpprompt,’!'hpgroup/!'hpcmdnum:’
PUB/2:1listredo
1) setvar hpprompt,’!'hpgroup/!'hpcmdnum:’
2) listredo
PUB/3:

Notice that the command number changed from 2 to 3. To check further,
use:CHGROUP to change from PUB to LABS, or any other group in your account.
You should see:

DRAFT Variables 5-19
2/11/100 10:35

PUB/3:chgroup labs
LABS/4:

This indicates that you succeeded in changing groups and that the command
history continues to grow, which means that it is independent of your location.

Exercises
18. Recursive dereferencing must be done using which of these commands?

ECHO : SETVAR

19. Recursive dereferencing characteristically uses how many exclamation
points?

20. How would you change this command line in order to
include the account name after the group name? setvar
hpprompt,’ ! thpgroup/! 'hpcmdnum:’

21. How would the resulting prompt look in the PUB group of a SALES
account?

5-20 Variables DRAFT
2/11/100 10:35

Lesson 12: Changing Your Search Path

Another application for recursive dereferencing (when two exclamation points:
11 are used) would be to simplify file execution by changing your search path.

You can execute any command file, or have read access to any working file on
the system, without qualifying it and without having to change groups. Just
get :RELEASE permission, observe security, and include the proper location in
your HPPATH.

The default value is:

HPPATH = !'hpgroup,pub,pub.sys

Consider an example in your own account. Suppose you are in the RECORDS
group. There is a Command File that you created named DOIT located in
the MIS group of your account. To execute this file frequently and most
conveniently, add the MIS group to your search path.

:setvar hppath,’!'hpgroup,mis,pub,pub.sys’
or

:setvar hppath, ’'hppath,mis’

Notice the two exclamation points in front of HPGROUP.

Exercises
22. How do you verify your search path with :ECHO?

23. What “permission” is needed to access the files in other groups in your
account?

DRAFT Variables 5-21
2/11/100 10:35

Answers to Exercises

=

10.

11.
12.

13.

14.
15.
16.
17.
18.
19.
20.

1
2
3
4.
5
6

Selections b, e, g, and i are all acceptable names.
:setvar pi,’3.14159’, and:setvar bond, 007’
:showvar pi,bond or just:showvar

:deletevar pi, then:showvar pi

:showvar,:deletevar @, and:showvar

. In Appendix A of the MPE XL Commands Reference Manual

(32650-90003)
a. I b. T c. F

. HPUSERCAPF Enter:showvar hpusercapf

:setvar hpprompt,’Yes?’

The new prompt appears on your screen as soon as you enter the command
string.

:ShowTime (25) (not the time and date).

It displays the first line of the Command File, plus the error message:
THE INPUT TIMED READ HAS EXPIRED. (CIWARN 9003), and reverts to the
previous prompt.

Enter:input hpprompt. Press return, then enter ... (three periods
entered into the empty space).

It is called dereferencing.

Enter:setvar y,’Your eyes are !x’

Enter:echo 'k

Enter:echo 'k ... le_m

The SETVAR command.

2 (or a pair)

Put . !!'hpaccount between hpgroup and /, as follows:

! thpgroup. ! thpaccount/! 'hpcmdnum:’

5-22 Variables DRAFT

2/11/100 10:35

21. PUB.SALES/2:
22. Enter:echo !'hppath
23. The file must be released.

DRAFT Variables 5-23
2/11/100 10:35

Expression Evaluation

MPE XL provides you with an online calculator. This powerful expression
evaluator evaluates whole numbers, strings, TRUE/FALSE (Boolean)
expressions, and supports a rich set of functions. A full list of the expression
evaluator functions can be found in the MPE XL Commands Reference Manual

(32650-90003).

m Lessons 1, 2, 3, and 4 discuss the four MPE XL commands that permit
implicit expression evaluation: :CALC, :SETVAR, :IF, and :WHILE. Lessons 3
and 4 require knowledge of programming,.

m Lesson 5 introduces you to the MPE XL syntax that allows for expression
evaluation and value substitution to occur at the user’s discretion.

DRAFT Expression Evaluation 6-1
2/11/100 10:35

Lesson 1:
:CALC

Error in ENTITY parameter F0601 (File F0601)

The new MPE XL command :CALC lets you use the operating system as an
online calculator. :CALC evaluates an expression and stores the result in the
system variable HPRESULT.

The answer to any mathematical problem is displayed as a decimal numeral
first, as a hexadecimal numeral second, and as an octal numeral last.

Note Release 1.1 of MPE XL only recognizes whole numbers.
:CALC 1.5+2

ILLEGAL CHARACTER FOUND, EXPECTED A NUMBER.
(CIERR 9810)

6-2 Expression Evaluation DRAFT
2/11/100 10:35

Examples:
m Whole Number Evaluations

:CALC 1+4
5, $5, 5

:CALC 10-4
6, $6, 6

:CALC 5%12
60, $3C, 474

:CALC 100/2
50, $32, 62

:SHOWVAR hpresult
HPRESULT = 50

m String Fvaluation

:CALC ’abc’+’def’
abcdef

:SHOWVAR hpresult

HPRESULT = abcdef

m Boolean Evaluation

:CALC 4=5

FALSE

:SHOWVAR hpresult
HPRESULT = FALSE

Note Mixed expressions (for example, whole numbers and strings)
are not accepted; an error will result.

:CALC ’a’ + 2

TLLEGAL CHARACTER FOUND, EXPECTED A STRING

DRAFT Expression Evaluation 6-3
2/11/100 10:35

(CIERR 9815)

Exercises

1. Use the :CALC command to do the following:
a. Add 3 and 4.
b. Evaluate the “truth” of 3=3.

¢. Subtract “abce” from “abcdefg”.

Lesson 2:
:SETVAR

:SETVAR also allows for evaluation of expressions:

Examples
m Whole Number Evaluation

:SETVAR a, &
:SETVAR b, 4
:SETVAR ¢, atb
:SHOWVAR ¢
c=09

m String Fvaluation

:SETVAR E, "Hi there,"
:SETVAR F, E + " friend."
:SHOWVAR F

F = Hi there, friend.

m Boolean Evaluation

:SETVAR a, 5
:SETVAR b, 4
:SETVAR ¢, a>b
:SHOWVAR c

6-4 Expression Evaluation DRAFT
2/11/100 10:35

C = TRUE

Exercises
2. Assign the value “John” to the variable “name”. Assign the value “Doe”
to the variable “lastname”.

Link together (concatenate) “name” and “lastname”, leaving a space ” ”

between the two so that “John Doe” appears on the screen.

3. Calculate name=lastname.

DRAFT Expression Evaluation 6-5
2/11/100 10:35

Lesson 3:
:IF

The :IF (... ENDIF) command has been modified in MPE XL to allow for
expression evaluation.

Consider the following Command File:

IF LFT (HPDATEF,3) = "MON" THEN
ECHO Reminder--Staff Meeting at 11:00
ELSE
IF LFT (HPDATEF,3) = "THU" THEN
ECHO Reminder--Weekly Dept. Meeting at 9:30
ELSE
ECHO Have a nice day!
ENDIF
ENDIF

In the example above, if it is Monday (the first three letters of HPDATEF =
MON), “Reminder ... Staff Meeting at 11:00” will echo to the screen; if it is
Thursday (the first three letters of HPDATEF = THU), the reminder of the 9:30
meeting will appear; and if it is any other day of the week, “Have a nice day!”
is printed on the screen.

Exercise

4. Using the :IF command, write a logon UDC that will remind you to do
something every other day. HINT: use (!hpday MOD 2).

6-6 Expression Evaluation DRAFT
2/11/100 10:35

Lesson 4:
:WHILE

The new :WHILE (... ENDWHILE) command allows for expression evaluation,
which adds a looping capability that can be used to control the sequence of
command execution.

Examples

SETVAR filenum, 3
WHILE (filenum >= 0)
PURGE myfile!filenum
SETVAR filenum, filenum - 1
ENDWHILE

The above example will purge all occurrences of the file MYFILE# starting with
MYFILE3 until the FILENUM value of -1 is met (for example, myfile3, myfile2,
myfilel, myfileO).

Exercises

5. Using the :WHILE command, write a Command File that will count to 10
and then end when the set limit has been reached.

6. Write a Command File that counts to 50 by twos.

DRAFT Expression Evaluation 6-7
2/11/100 10:35

Lesson 5: Expression Substitution

Expressions are evaluated—and variables are dereferenced—implicitly in the
commands :CALC, :IF, :WHILE, and :SETVAR (if :SETVAR is defining a numeric
variable). Expression evaluation and variable dereferencing are not done
implicitly in other MPE commands, but they can be done explicitly.

You have already seen examples of implicit and explicit dereferencing;:
Implicit Dereferencing (no !)

:SETVAR X,4
:SETVAR Y,X («-=--- numeric variable)

in which the value of X is assigned to the variable Y without the use of ! to
dereference the X. (Note that if you did use a ! to dereference the X, the system
would accept that syntax, too.)

Explicit Dereferencing (using !)

:ECHO !'X
:PRINT MYFILE!'X

in which ! is used to dereference the variable X in echoing "4" to the screen
and in printing the contents of MYFILE4 to the screen.

If you wanted to evaluate an expression in a command other than :CALC,
:SETVAR, :IF, and :WHILE, you would use this syntax: ! [expression].

Examples

:SETVAR a, 3 + 1
:ECHO a+2=![a+2]
A+2=6

In this example, note that the first expression in the “ECHQO” line is not
evaluated. The :ECHO command itself does not allow for evaluation of
expressions. However, when ! [a+2] is encountered in the same command line,
it is evaluated and its value is substituted therein.

6-8 Expression Evaluation DRAFT
2/11/100 10:35

Exercises

7. Use each of the following commands to evaluate 3+2:
:SETVAR, :CALC, and :ECHO.

8. Use :ECHO to evaluate the following, where X=24, Y=362, and Z=1000:
(X+Y+7Z-252)*4

9. Write a Command File that prompts the user for his/her favorite year,
and that uses the input in displaying the following (completed) sentence
on the screen:

Had you been born in the year years old in

the year 2010!

(HINT: :INPUT cannot accept numeric data, but the input can be
converted to numeric data using :SETVAR. However, you have to use
explicit dereferencing!)

DRAFT Expression Evaluation 6-9
2/11/100 10:35

Answers to Exercises

la. :CALC 3+4
7, 87, W

:CALC 3=3
TRUE

:CALC ’abcdefg’ - ’abc’
DEFG

:SETVAR name, "John"
:SETVAR lastname, ''Doe"
:SETVAR C,name+" "+lastname
:SHOWVAR C

John Doe

:CALC name=lastname
FALSE

IF (hpday mod 2)=0 THEN
ECHO Do this.

ELSE

ECHO Do that.

ENDIF

SETVAR counter, 1

WHILE counter<11

ECHO !counter

SETVAR counter,counter +1
ENDWHILE

6-10 Expression Evaluation DRAFT
2/11/100 10:35

SETVAR counter, 2
WHILE counter<51

ECHO !'counter

SETVAR counter,counter+2
ENDWHILE

DRAFT Expression Evaluation 6-11
2/11/100 10:35

:SETVAR a, 3+2
:SHOWVAR a
A=5

:CALC 3+2

5, $5, %5
:ECHO ! [3+2]

5

:SETVAR X, 24

:SETVAR Y, 362

:SETVAR Z, 1000

:ECHO '[(X + Y + Z - 252) % 4
4536

INPUT YEAR,'"What is your favorite year? "
SETVAR NYEAR, !YEAR

ECHO Had you been born in the year !nyear,
ECHO you would be ![2010-nyear] years old
ECHO in the year 2010!

6-12 Expression Evaluation DRAFT
2/11/100 10:35

7

The Command Interpreter Program

Have you ever been in the middle of an application and wished there were a
quick way to access the MPE prompt and MPE commands without first exiting
your application?

The Command Interpreter is a program that interprets MPE commands and
executes them. MPE X1, users can now access the Command Interpreter as a
program. The CI program resides in PUB.SYS and can be run from within
itself (at the MPE prompt) or from within some application programs.

m Lesson 1 introduces the CI.PUB.SYS program and how it may be accessed (at
the MPE prompt) and exited.

m Lesson 2 describes how more than one level of the Command Interpreter can
be accessed and what special capability is needed to run programs from those
levels.

DRAFT The Command Interpreter Program 7-1
2/11/100 10:35

Lesson 1:
Running CI.PUB.SYS

Running CI.PUB.SYS gets you out of the “root” level of the Command
Interpreter and enters you into a “nested” level. The system variable
HPCIDEPTH keeps track of your current CI level.

ROOT Level CI NESTED Level CI
e et L L e e + o +
| :SHOWVAR HPCIDEPTH | | :SHOWVAR HPCIDEPTH |
I I I I
| HPCIDEPTH = 1 |---->| HPCIDEPTH = 2 |
I I I I
| :CI.PUB.SYS I I I
e et L L e e + o +

:EXIT and :BYE

The new :EXIT command and the familiar :BYE command allow you to exit
any level of the CI. :EXIT backs you out of nested levels, one level at a time. If
:EXIT is used from the root level, the session ends.

The :BYE command, used from any level, directly ends the session.

The (Break) key, as always, exits you temporarily from the program. From a
nested level, it returns you temporarily to the root level.

:RESUME returns control to the appropriate CI level.

Error in ENTITY parameter F0701 (File F0701)

Running CI.PUB.SYS and using the:EXIT command:
Examples

:CI.PUB.SYS or :CI
MPE XL CI X.02.07 Copyright Hewlett-Packard

7-2 The Command Interpreter Program DRAFT
2/11/100 10:35

>k 3k ok ok ok ok >k 3k ok ok ok ok >k 3k ok ok ok >k ok 3k ok ok >k >k ok ok ok ok >k >k ok ok k ok %

*

*

* WELCOME TO YOUR MPE XL SYSTEM x*

*

*

>k 3k ok ok ok ok >k 3k ok ok ok ok >k 3k ok ok ok >k ok 3k ok ok >k >k ok ok ok ok >k >k ok ok k ok %

:SHOWVAR hpcidepth
HPCIDEPTH = 2

:EXIT

:SHOWVAR hpcidepth

HPCIDEPTH =

:EXIT
CPU=3. CONNECT=1. WED,MAR 9,

DRAFT
2/11/100

or

10:35

1988, 11:05 AM

The Command Interpreter Program 7-3

Running CI.PUB.SYS and using the:BYE command:
Examples

:CI.PUB.SYS or :CI
MPE XL CI X.02.07 Copyright Hewlett-Packard

>k 3k ok ok ok ok >k 3k ok ok ok ok >k 3k ok ok ok >k ok 3k ok ok >k >k ok ok ok ok >k >k ok ok k ok %

* *
* WELCOME TO YOUR MPE XL SYSTEM x*
* *

>k 3k ok ok ok ok >k 3k ok ok ok ok >k 3k ok ok ok >k ok 3k ok ok >k >k ok ok ok ok >k >k ok ok k ok %

:SHOWVAR hpcidepth
HPCIDEPTH = 2

:BYE
CPU=3. CONNECT-1. WED,MAR 9, 1988, 11:30 AM

Running CI.PUB.SYS and using the (Break) key and : RESUME command:
Examples

:CI.PUB.SYS or :CI
MPE XL CI X.02.07 Copyright Hewlett-Packard

>k 3k ok ok ok ok >k 3k ok ok ok ok >k 3k ok ok ok >k ok 3k ok ok >k >k ok ok ok ok >k >k ok ok k ok %

* *
* WELCOME TO YOUR MPE XL SYSTEM x*
* *

>k 3k ok ok ok ok >k 3k ok ok ok ok >k 3k ok ok ok >k ok 3k ok ok >k >k ok ok ok ok >k >k ok ok k ok %

:SHOWVAR hpcidepth
HPCIDEPTH = 1

7-4 The Command Interpreter Program DRAFT
2/11/100 10:35

:resume
READ pending

:SHOWVAR hpcidepth
HPCIDEPTH = 2

DRAFT The Command Interpreter Program 7-5
2/11/100 10:35

Exercises
1. At the MPE prompt, run the CI program.

2. Verify that you were successful.

3. Explain the difference between ending your session using:EXIT and
using : BYE.

4. Choose either method to exit your session.

7-6 The Command Interpreter Program DRAFT
2/11/100 10:35

Lesson 2: Accessing Multi-Nested Levels

The program CI.PUB.SYS does not have Process Handling (PH) capability, the
ability to access nested levels. Therefore, the ability to run CI.PUB.SYS from
levels other than the root level of the Command Interpreter is dependent upon
either the user or the application program having PH capability.

Users with PH capability can run CI.PUB.SYS or any other program from all
levels of the CI, root or nested. PH capability enables users to access multiple
nested levels of the CI.

Error in ENTITY parameter F0702 (File F0702)

Users with PH capability can run any
program, including CLPUB.SYS,from
the ROOT or NESTED levels.

A good example of the convenience of this feature is the ability to access
another level of the CI while in the middle of developing a program.
Programmers can save the code they have just written. Then, without having
to exit their editor environment, they can run CL.LPUB.SYS”’; from this
next-level CI they can compile and test their program. Finally, they can :EXIT
that CI level, return to the earlier level, and continue working on the program
code without having to redefine their environment.

DRAFT The Command Interpreter Program 7-7
2/11/100 10:35

Examples

:editor

/a

1 (User writes program code)
/k p%oé .
/:ruﬁ éi:pub.sys
: (Nejste.d é[level--user compiles/runs PROG)

rexit (User returns to root C1)

/

With the exception of :SETCATALOG and :CHGROUP, which can only be executed
from the root level, MPE commands are functional in nested levels.

A new command line history stack is created for each new nested level. As
you :EXIT a level, the history stack for that level is permanently erased, and the
history stack for the previous level is restored.

All user created variables and most user defined system variables remain
constant across all nested levels. Exceptions include HPREDOSIZE, HPCONTINUE,
HPUSERCMDEPTH, HPAUTOCONT, HPCMDTRACE, and HPMSGFENCE.

Note User PH capability is needed to complete the following
exercises.
7-8 The Command Interpreter Program DRAFT

2/11/100 10:35

Exercises

You might want to change the prompt to reflect the HPCIDEPTH level before
doing the following exercises.

5. Get to nested level 4.

6. Try to reset your UDC catalog.
Explain what happened.

7. Assign a value to the variable A; display it.

8. Back out of level 4 to nested level 3.

9. Display the value given to variable A on your screen.

Explain what happened.

10. Display your history stack to the screen. What commands are listed?

11. Back out of level 3 to nested level 2.

12. Display your history stack to your screen. How many commands are
listed? Explain the discrepancy between this history stack and the one
from Step 10.

13. Back out of level 2 to the root level.

14. Reset your UDC catalog. Explain what happened.

DRAFT The Command Interpreter Program 7-9

2/11/100 10:35

15. Use an editor to write a short program; save it. From within the editor,
run CI.PUB.SYS. Compile/run your program; then:EXIT back to the
editor at the root level.

7-10 The Command Interpreter Program DRAFT
2/11/100 10:35

Answers to Exercises

1. :CI Return)

2. :SHOWVAR hpcidepth

3. FEach time you enter :EXIT, you return to the previous CI level, until you
reach the root level, at which point the :EXIT command ends your session.
:BYE ends your session regardless of what level of the CI you are in.

4. :EXIT or :BYE

5. :CI Return)i CI LReturnJi CI LReturnJ

6. :SETCATALOG can only be executed from the root level of the Command
Interpreter. You would get an Error Message: THIS COMMAND CAN ONLY BE
EXECUTED FROM THE CI. (CIERR 9063).

7. SETVAR a, 3
: SHOWVAR a

8. :EXIT

9. :SHOWVAR a
The value of A remains constant in all levels of the CI.

10. The history stack should reflect the commands you entered when you were
at that level. The history stack is reset when you enter the next level of
the CI. The history stack is restored as you exit back to previous levels of
the CIL.

11. :EXIT

12. The history stack is restored as you return to previous levels of the CI.

13. :EXIT

14. UDC catalog can now be reset. You are in the ROOT level of the CI.

15. reditor

/a
1 (User writes program code)
/k prog
DRAFT The Command Interpreter Program 7-11

2/11/100 10:35

/:run ci.pub.sys
: (Nested CI level--user compiles/runs PROG)

rexit (User returns to root C1)

/
7-12 The Command Interpreter Program DRAFT

2/11/100 10:35

	Top of Document
	Preface
	Introduction
	What Has Changed?
	Which Lessons Do You Need?
	What Is This Training About?

	Command Interpreter Enhancements
	Lesson 1: Implied :RUN
	Lesson 2: Implied :RUN Parameters
	Lesson 3: Using The Command History
	Lesson 4: :LISTREDO
	Lesson 5: :LISTREDO Parameters
	Lesson 6: :DO and :REDO
	Lesson 7: Numbering with :DO and :REDO
	Lesson 8: MPE XL Syntax
	Combining Keyword and Positional Parameters
	Answers to Exercises

	Working With Files
	Lesson 1: :PRINT
	Lesson 2: Printing Portions of Files
	Lesson 3: Printing a File on a Line Printer
	Lesson 4: :CHGROUP
	Lesson 5: :COPY
	Lesson 6: :COPY Parameters
	Lesson 7: Copying From Other Groups & Accounts
	Answers to Exercises

	User Commands
	Lesson 1: Creating Command Files
	Lesson 2: Comparing User Commands
	Lesson 3: Understanding Search Priorities
	Lesson 4: :XEQ Command
	Lesson 5: Adding and Deleting UDC Files
	Lesson 6: RECURSION Option
	Lesson 7: PROGRAM Option
	Lesson 8: :OPTION Command
	Answers to Exercises

	Variables
	Lesson 1: User Created Variable Names
	Lesson 2: Creating and Displaying Variables
	Lesson 3: Deleting a Variable
	Lesson 4: System Variables
	Lesson 5: User Modifiable System Variables
	Lesson 6: Modifying and Restoring System Values
	Lesson 7: The :ECHO Command
	Lesson 8: Using :INPUT to Change Your Prompt
	Lesson 9: Dereferencing Variables
	Lesson 10: Dereferencing With :ECHO
	Lesson 11: Recursive Dereferencing
	Lesson 12: Changing Your Search Path
	Answers to Exercises

	Expression Evaluation
	Lesson 1: :CALC
	Lesson 2: :SETVAR
	Lesson 3: :IF
	Lesson 4: :WHILE
	Lesson 5: Expression Substitution
	Answers to Exercises

	The Command Interpreter Program
	Lesson 1: Running CI.PUB.SYS
	Lesson 2: Accessing Multi-Nested Levels
	Answers to Exercises

