
LIB

User's Guide

/iX™

Version 4.00
May 1998

Quality • Innovation • Service

LIBRARIAN/iX User’s Guide
Version 4.00

Copyright © 1988 — 1995 by Operations Control Systems,Inc.
All Rights Reserved. Printed in the U S.A.

that this document is error-free.

Restricted Rights Legend

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writ ing. OCS does not warrant

This manual contains proprietary information that is protected by copyright N o p ar t of this
document may be copied, reproduced, or translated to another language without the prior

LIBRARIAN™ LIBRAIGAN/ i X , a n d OCS/LIBRARIAN'" are trademarks of Operations
Control Systems, Inc.

All other company and product names used in this publication are trademarks or registered
trademarks of their respective companies or organizations.

written consent of OCS.

Table of Contents

Audience

Preface
Purpose of This Manual

How This Manual is Organized

File Naming Conventions
Conventions

Related Documentation . ,
Client Services
Y our Comments...

Automated Move — to — Production

Chapter I; Introduction
Product Components and Concepts .
Master Library Management
Change Control .
Configuration Management

Audit Trails and Reporting .
LIBRARIAN/iX Plus Features

Delta Management
Merge .
Source Code Annotation .
LCOMPARE

Meeting Your Objectives with LIBRARI'AN Features

Chapter 2: GeNng Started

Background Process on UNIX Clients
Providing Your User ID and Password .
Changing Your Password and Lockword
Password Security Features
Switching to Another User ID

2 — 1
2 — 1
2 — 2
2 — 3
2 — 3
2 — 3

2W
2 — 5
2 — 5

2W
2-6
2-7
2 — 7
2 — 9

2 — 10

How to Run LIBRARIAN

1 — 1
1 — 2
1-2
1 — 3
1 — 3
1 — 3

1&
1-4
1 — 4
1 — 4
1 — 5
1 — 5

Menu Mode .
Cornrnand Mode
Shell Commands. , ,
Online Help .

PerformingSteps and Other File Activi t ies
Performing Steps in Menu Mode .
Step Dialog
Performing Steps from the Command Line
Common LIBRARIAN Commands .

T able of Contents i

Chapter 3: File Transactions
Overview of File Transactions
How to Refer to Files

Direct References
Filename
Logical Fileset
Listfile indirect File)
Files from the Last Transaction

Indirect References
Revision
Version and Version Count
Generation Count
Secondary Location .

Implied Reference by Project

Implied Reference by Step
Multiple File References

3 — 1
3 — 2
3 — 2
W2
3 — 3
3 — 3
3 — 3
3-3
3 — 3
3-4
3-4
3 — 5
&5

Macros

Memos

How to Refer to Destinations .

Exclusions Selection
Subset Selection

project,
Tag .
Modification Status
User Confirmation
Tracking Status

Edit Masks for UNIX Pathnames
Edit Masks for Group and Accounts .

How to Perform Steps
Step Parameters
Associating Files with Projects

Using Personal Lockwords

Other File Operations
Editing Files
Compressing Files
Other Commands

Operations on Untracked Files

3-6
3-E
3-Ei
3-Ei
3 — 7
3 — 7
3 — 7
3 — 7
3 — 7
3 — 8
3 — 9

3 — 10
3 — 12
3 — 14
3 — 15
3 — 15
3 — 15
3-16
3 — 16
3-16
3 — 17
3-17
3 — 18
3-19
3 — 20
3 — 21
3 — 22

Batch Transactions. . . .
BATCH Parameter
LIBRARDQU Commands in Jobstreams

How to Check Transaction Status
Reviewing File Information .

Chapter 4: Revisions
Managing Revisions
Identifying Revisions

Branching .
Forced Branching .
Preventing Branching

4 — 1
4 — 2
4 — 3
4 — 4
4-4
4-4New Files .

ii L IBRARIAN/IX User's Guide

4 — 5
4-5
4 — 6
4 — 6
4 — 7
4 — 8
4 — 9
4 — 9

4-10
4-11
4 — 12
4-13
4 — 15

How Revisions Are Stored
Delta Files vs. Generation Files
Location of Retained Files .
Managing Generation and Delta Files .

Merging Revisions
Merging Specific Revisions
Excluding Revisions from a Merge
Resolving Conflicts

Comparingand Printing Revisions
Annotated Listings .

Purging Delta Files
Viewing Revision Information

Revision Reports

Annotation .

What Are Listfi les?

What Are User Filesets?

Chapter 5: Printing, Scanning, and Comparing Files
Printing Files files,

Scanning and Replacing Text

Examples ..
Replacement Variables .

Comparing Files with LCOMPARE
Comparing Files with S/COMPARE

Chapter 6: User Filesets

Creating and Maintaining User Filesets
Public and Private User Filesets
Reviewing User Fileset Information
User Filesets in LIBRARIAN Commands .
Project Filesets

Example
Chapter 7: Ustfiles

Creating Listfi les with UvL43NT
Selection by Expiration Date
Selection by File Modif ication Date .
Selection by Simulating a LIBRARIAN Step

Maintaining Listfi les
Using Listfiles

Archiving Appl ications with Listfiles .

6 — 1
6 — 2
6 — 2
6 � 3
6 — 3
6 � 3
6-4

5 — 1
5 — 2
5 — 2
5 — 4
5-4
5 — 5
5 — 7

7 — 1
7 — 1
7 — 2
7 — 2
7 — 3
7 — 3
7M
7W
7 — 4

Indirect Store Lists

Chapter 8: Rebuilding Applications with MAKE
Why Use MAKE?
How hGQW Works

Defining the Dependency Tree

Creating Makefiles

8 — 1
8 — 2
8-5
8 — 5
8-5
8-E)

Conventions
Comments .

Table of Contents

Generic Rules .

MYPROG Rule

User-Defined Variables

STREAM
S(3iEDULE.
Both STREAM and SCHEDULE
ACCOUNT
GROUP
ALTPATH
EXCLUDE .
COPYMEM .
Prompts

SystemVariables

The TOUCH Command

Automatic Search for Include Files

Rules
Example 1: The Basics

H ow MAM.: Interprets the ~ FILE

MOI3¹OBJ Rule
Example 2: A Comprehensive Illustration .
D urruny Targets. .

Iterative Command Processing ..
Job Card Placement
Edit Masks
Standard (Specific) Rules

Implicit Rules

Listfiles in Generic Rules
LISTF Variable Exclusions .
Special MAKE Variables

8-6
8-7
8-8
8-8
8-9
8 — 9

8-12
8 — 12
8 — 12
8 — 13
8 — 14
8-14
8 — 15
8 — 16
8 — 16
8-16
8 — 16
8 — 17
8 — 17
8 — 17
8 — 17
8-18
8-18
8 — 18
8-19
8 — 19
8-19
8 — 20
8-20
8 — 21

Executing ~

What Are Macros? .
Chapter 9: Macros

SampleMacro
Filelists and Parameters
M enus in Macros , . . . , ,
Conditional Expressions
Looping in Macros
Nesting Macros

Reusing Macro Parameters
The ALLOW Coznrnand
Procedure Files
AUTOXEQ Files

Appendix A: Applications in ProgressA
Identifying Secondary Files .
Recording Checkout .

Glossary

Index

9 — 1
9 — 2
9 — 2
9 — 3
9 — 4

9-6
9 — 7
9 — 7
9-8

A — 1
A — 2

iv i l BRARIAN/IX User's Guide

List of Figures

2-4
2 — 7
2-8
2 — 9

3-10
3 — 12
3 — 13
3 — 19
3 — 20
3-22
3 — 23
4 — 2
4-4
4-7
4 — 8
4 — 9

4 — 10
4 — 11
4 — 12
4 — 13
4 — 13
4 — 14
4-14
5 — 2
5 — 6
8 — 4
8 — 5
8 — 7
8-8

8 — Il
8 — ll

Figure 2 — 1. LIBRARIAN Main Menu
Figure 2 — 2. Step Dialog .
Figure 2 — 3. Revision Criteria Menu
Figure 2 — 4. Step Options Menu .
Figure 3 — 1. Step Authorizations Information .,
Figure 3-2. Sample UBRARIAN Operation
Figure 3 — 3, Step Information for the AP-OUT Step,
Figure 3-4 Using the BATCH Parameter
Figure 3 — 5. Using LIBRARIAN Commands in a Jobstream
F igure 3-6. VEINY Menu
Figure 3 — 7. Sample VERIFY Display
Figure 4 — 1. A Revision Tree .
Figure 4 — 2. Revision Tree for MYFILE
Figure 4 — 3, Merging Two Branches into the Trunk .
Figure 4 — 4. Merging a Specific Revision
Figure 4 — 5. Merging Two Branches with Exclusions
Figure 4 — 6. SampleConflict Notation
Figure 4 — 7 LCOMPARE Offline Printout
Figure 4-8. PRINT with ANNOTATE Parameter
Figure 4 — 9. VERIFY Menu
Figure 4 — 10. Master-Secondary Revision Data (VERIFY Format 16)
Figure 4 — 11, Revision History (VERIFY Format 17) .
Figure 4 — 12. Version Data (VEINY Format 3)
Figure 5 — 1. PRINT Offl ine Printout
Figure 5 — 2. LCOMPARE Display
Figure 8 — 1. Example of a MAEZ Operation .
Figure 8 — 2. Dependency Tree for MYPROG
Figure 8 — 3. Makefile for MYPROG Example
Figure 8-4. Makefile for MYPROG Example
Figure 8 — 5. Dependency Tree for the FINANCE Appl ication
Figure 8-6. Makefile for the FINANCE Application

T able of Contents v

vi L IBRARIAN/iX User's Guide

List of Tables

1 — 5
2 — 10
3-8

3 — 14
3 — 17
3 — 18
4 — 15

Table 1 — 1, LIBRARIAN Features Related to Objectives
Table 2 — 1. Common LIBRARIAN Commands
Table 3 — 1. Edit Mask Symbols and Descriptions
Table 3 — 2. Step Parameters

Table 3 — 3. File Commands
Table 3 — 4. X Commands for Untracked Files
Table 4 — 1. Revision Information in Standard Reports

T able of Contents v i i

viii L IBRARIAN/IX User's Guide

Preface

Purpose of This Manual
The L1BRARlAN/iX User's Guide describes how to use LIBRARIAN. It is
the companion piece to the LIBRARIAN/iX Reference Guide and
LIBRARIAN jiX Admiriistrator's Guide.

Audience
This manual is written for personnel who use LIBRARIAN on a daily
basis, such as programmers, operators, and managers. Knowledge of
basic operating system concepts and terminology is assumed. No
previous knowledge of' LIBRARIAN is required.

How This Manual is Organized

follows:
The LIBRAMAlV/iX Administrator's Guide chapters are organized as

Chapter 1

Chapter 2

Chapter 4

Chapter 5

Chapter 3

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

about files.

commands.

"Introduction": what LIBRARIAN does, and how it f its in
to the application development cycle.

"Getting Started": applying the Shortcut program to get
started using LIBRARIAN.

"File Transactions": how to move and copy fi les using
steps, perform other file activities, and review information

"Revisions": how to branch from one version and how to
merge two revisions.

"Printing, Sc mning, and Comparing Files": how to print,
view, and edit files, show the file differentiators, and scan
and replace strings of text.
"User Filesets": creating andmaintaininguser filesets
using F MAI NT commands.
"Listfiles" creating and using listfiles with LMA) NT

"Rebuilding Appl ications with MAICE": how to rebuild
applications with the MAKE facility.

"Macros". how to create and use rnacros and procedure

"Applications in Progress" how to implement
LIBRAIUAN for applications with work already in

files.

progress.

P reface i x

as well as the index to the guide
Glossary A Glossary of Terms is provided at the back of this guide

An index of LIBRARIAN topics at the end of this guide.Index

Conventions
We use the following conventions throughout this guide.

COMMANDS

KEYWORDS

All comm'wads appear in bold capital letters. If a
command can be abbreviated, the optional portion of the
comrr~d is endosed in brackets (I]). A blank space
must separate the command from the parameter list.

Keywords and parameters (shown in bold capital letters)
must be entered exactly as specified.

Words or characters in italics represent variables or

arguments that you must replace with an actual value In
the following example, you must replace fileset with the
name of the file you want to copy.

italics

> COPY fileset

Italics are also used to introduce new terminology or for

emphasis.
Enter punctuation exactly as shown. (Refer to specific
instructions for brackets and braces, below.)

Braces enclose required elements. When there are several
elements within braces, you must select one element In
the following example, you must select one of
PROCEDURES, PROJECTS, or STEPS.

>HELP PROCEDURES

punctuation

PROJECTS
STEPS

Brackets enclose optional elements. In the following
example, brackets around the letters UPDATE indicate
that you do not have to type the entire word.

>AUTO (LIPDATE)

x L IBRARIAN/IX User's Guide

If there are several elements, you can select any one or
none of them. In the following example you can select
BATCH, CONFlRM or MEMO, or none

>COMPRESS [filelist]

[; CONFIRM]
[; MEMO]

[; BATCH]

When brackets are used, you cannot enter a value in the
inner brackets unless you enter a value (wildcard or
literal) in the outer brackets.

An ellipsis indicates that the previous bracketed element
can be repeated or that elements have been omitted.

An ampersand indicates that the comm'md continues on
the next line.

The white flag symbol indicates that the text pertains to
LIBRARIAN running under the MPE operating system.

The gray flag symbol indicates that the text pertains to
LIBRARIAN running under the UNIX operating system

The striped flag symbolindicates that the feature being
described is only available with LIBRARIAN/iX — Plus.

This symbol identifies LIBRARIAN commands that have
no equivalent under the UMX operating system.

Fiie Naming Conventions
In specifying files, LIBRARIAN commands use the following wildcard

@ Zero or more alphabetic and/or numeric characters. Used

conventions:

alone, denotes all members of a set.

Zero or more alphabetic and/or numeric characters. Used
alone, denotes all members of a set.

Single numeric character.

? Singl e a lphabetic or numeric character.

In addition, a slash (/), a single period and slash (./), a double period
and slash (../), or a tilde and a slash (-/) immediately preceding a
filename indicate a UNIX fi le.

Preface xi

Related Documentation
Along with this manual, you can refer to the following documentation by

The LIBRARIAN/iX Reference Guide provides information on
LIBRAIUAN functions, including complete comu~ d s y n tax and

OCS.

reference material for all LIBRARIAN features.

The LIBRAIUANAX Administrator's Guide contains information on how
to setup and maintain LIBRARIAN.

Online help contains the contents of all LIBRARIAN manuals You
can access online help with the HELP command or pressing F1 (Help)
in menu mode.

Client Services
LIBRAjRIAN is supported by OCS Client Services, which is dedicated to
providing timely and accurate information and solutions. For fast,
accurate answers, we maintain a telephone hotline that includes
emergency after-hours service. You can count on OCS to isolate any
problems quickly and provide conscientious support and a fast response

Operations Control Systems hotline mr s :
Phone (415) 493-4122
FAX (415) 493-3393

Your Comments
We value your comments. As w'e write, revise, and evaluate our
documentation, your opinions are the most important input we receive.
Please use the Reader's Comment Form at the end of this guide to tell us
what you like and dislike about and of the OCS manuals.

xii L IBRARIAN/iX User's Guide

Introduction

Your organization relies on the applications managed by your develop­
ment team to stay in business. When an application fails in a production
environment, your company loses ti me, productivity, and money. That is
why controls to safeguard applications are so important. LIBRARIAN
protects applications through the entire development cycle, from coding
to production.

LIBJ4DGAN enforces a change control and testing discipline, and docu­
ments all changes to source code. LIBlVdGAN centralizes access to source
files to prevent simultaneous changes to the same code, synchronizes
source versions with their related executable programs, and ensures that
only authorized changes are incorporated into a production version.
LIBRARIAN also controls and automates the move-to — production pro­

This chapter describes the functions of LIBRARIAN w i thin the context of
the application development cycle. Topics discussed include:

� ProductComponents and Concepts

� Ma ster Library Management
� Ch a nge Control

� ConfigurationManagement
� Automated Move-to-Production

� Au d i t T rai ls and Reporting

� LI B RARIAN/iX Plus Features

� Mee t ing Your Objectives with LIBRARIAN Features

cess, even across networks.

Product Components and Concepts

LIBRARIAN offers a wide range of functionality in an easy — to — irnple­
ment, easy — to — learn, and easy — to — use format. All LIBRARIAN functions
can be accessed through on-screen, pulld ow n menus and contextmensi­
tive online help is always available. LIBRARIAN is also easy to set up us­
ing the Shortcut util ity described in Chapter 2, "Getting Started with Ba­
sic Rules" in the LIBRAlVAN/iX Administrator's Gute. As you become
familiar with LIBRARIAN functions and commands, you might prefer to
use the command — line interface. You can easily switch between the menu
and coma~ d — line interfaces to meet your needs and preferences.

introduction 1-1

LIBRARIAN consists of.

� the main LIBRAjRIAN program

a ma intenance screens to set up andmaintain rule de6nitions

� report programs

� ut i l i ty programs for file housekeeping and mass changes

� da t abases to store rules, file tracking information, and audit

� a MPJCE utility to rebuild applications and synchronize libraries

� de l ta and generation files containing file revisions

information

Master Library Management
Because LIBRARIAN is designed to automate and manage functions re­
lating to the application development cycle, the application provides an
organizational framework for f ile management activities The 61es you
manage with LIBRARIAN are called masterfiles. You include the master
files for an application in a master library and define how the files can be
accessed, copied, and/or replaced. Copies of master files in other loca­
tions are called secondaryfiles or secondaries. These copies can be develop­
ment or maintenance work in progress, or copies for reference only. With­
in a master library, you can create a hierarchy of 6lesets to meet your
particular file rnanagernent needs.

One distinct advantage LIBRARIAN offers is the ability to de6ne and
group collections of files (for example, the files related to an application)
and associated rules that govern your library organization, allowable file
movements, and user authorizations You can define different sets of
rules for each application to rnatch the needs of your environment. See
Chapter 3 "Master Library"and Chapter 6, "Projects", in the LIBRA&A N/
iX Administrator's Guide, and see Chapter 6, "User Filesets" in this rnanu­
al, for more information.

Change Control
LIBRARIAN prevents duplicate updates, accidental deletions, wrong ver›
sions, and lost programs. The standards and procedures you define are
automatically enforced because all file movements and authorized opera­
tions must be performed through LIBRARI'AN. LIBRARIAN automates
the entire file movement cycle, from the ti me files are checked out of the
library, through maintenance, development, and distribution activities.
All actions are logged to an audit trail database.

f-2 LIBRARIAN/iX User's Guide

Your file moveznent rules reflect your own established procedures and
define how and where copies of master files are xnade, how approvals are
noted, and how znaster files are replaced. You define these rules as steps
and routes. A step is a specific file moveznent and a route is a complete
cycle of individual file movements, including checkpoints and prerequi­
sites. Defining file znovexnent rules is discussed in Chapter 6 of the
LIBRARIAN/iX Administrator's Guide.

Configuration Management
LIBRARIAN allows you to define multiple baselines or versions for your
applications at strategic points in time. You can easily recreate an applica­
tion as it was at the time you created the baseline. LIBRAjRIAN manages
both revisions to individual files in an application and changes to the en­
tire set of files that make up versions of applications.

LIBRAEGAN also allows you to branch from the main developxnent path
to support cases where, for exaxnple, you need to fix or send out a patch
for a problexn with a previous file revision currently in production.
LIBRAIGAN wi l l al low you to force branching, for exaxnple, to support a
situation where you need to work on a file that is being worked on by
sozneone else, but do not want your changes to be reflected in the main
development path For more information on LIBRARIAN's configuration
management capabilities, please see Chapter 7, "Versions", in the
LIBRARIAN/iX Administrator's Guide and Chapter 4, "Revisions", in this
manual.

Automated Move-to-Production
LIBRARIAN controls and automates the move — to — production process,
even across networked, heterogeneous, and/or rexnote systems. Produc­
tion moves can be scheduled during off — hours to accommodate online
users, and can be configured with automatic recovery in case of an in­
complete update. Refer to Chapter 2, "Getting Started with Basic Rules"
in the LIBRARIAN/iX Administrator's Guide for xnore information.

Audit Trails and Reporting
LIBRARIAN el iminates the tedious manual task of documenting file
changes and activities. All changes to master library files and all file
m oveznents and activities are autoxnatically recorded in LIBER IA N 's
audit trail database. You can also include mexno text with transactions for
docuxnentation.

LIBRARIAN also offers reports and online inquiries to let you review the
rules you have defined, file status and history information, and the audit
trail records. This znanual, the LIBRARIAN/iX Administrator's Guide, and
the LIBRARIAN/iX Reference Guide each have chapters detailing LIBRARI­
AN's reporting functions.

introduction 1-3

LlBRARIAN/iX Plus Features
For teams that maintain extensive releases of software, maintain existing
versions of applications while developing new releases, or have several
developers working on the same source code simultaneously, OCS recorn­
rnends LIBRARIAN/iX Plus. The LIBRARIAN/iX Plus package includes
the standard LIBRARIAN features, plus:

a DeltaManagement
� Me rge

� An n o tated Source Listings

� L COMPARE

Delta Management
Deltamanagement cuts disk space overhead by keeping only the changes
to a source file rather than saving complete revisions. To accomplish this,
LIBRARIAN creates a special file that contains the original version of the
source file and a history of all changes made for each subsequent revision
to that file. Delta files provide the data necessary for annotation.

Merge
The MERGE option lets you combine source code changes from one or
more branches to the main development path. For more information on
branching, see Chapter 4, "Revisions" in this manuaL

In a case where modifications to one file may need to be split among sev­
eral programmers, a branch can be created for each programmer to work
on individual tasks. The MERGE option lets you combine these different
branches when the work is completed.
To protect your source code from conflicts that can occur when the same
code is modified simultaneously by more than one programmer, the
MERGE option highlights conflicting changes with comments indicating
items that should be resolved prior to the next development step.

Another case where the MERGE function is needed is for patches to pro­
duction releases. You can create a patch to fix the current production re­
lease of an application, and then MERGE these changes into the current
development path for the application.

Source Code Annotation
Source Code Annotation creates a listing of source code showing lines
that were inserted and deleted for each revision to the file, including date,
time, user, and project information. ANNOTATE is an option of the
LIBRARIAN PRINT and COPY commands and requires the use of the del­
ta storage option.

l-4 LIBRARIAN/IX User's Guide

LCOMPARE
The LCOMPARE command provides a quick and easy way to identify
what has changed between two different copies, versions, or revisions of
files, This can help eliminate common problemssuch as duplicate up­
dates and accidental deletions and is a useful tool in the development,
maintenance, and testing cycles.

Meeting Your Objectives with LIBRARIAN Features
LIBRARIAN provides a robust set of features that allow you to achieve a
wide range of file management objectives. The following table matches
typical file management objectives to the corresponding LIBRARIAN fea›
ture.

Table 1-1. LIBRARIAN Features Related to Objectives

Rle Management Objective

1. Improve efliciency and

changes

convenience

2. C o ntrol copies of source,
object. jobstreams, etc.

5. Prevent overlapping

6. Synchronize source/object

based on applicahon

ol' service r'equest

7. Enforce separation of duties

8. Require independent testing

9. Restrict access to master files

3. Require approval of changes

Require testing of changes

Corresponding UBRARIAN Features

UBRARIAN provides mass file movements, customized file
movement commands, file push movements across accounts and
system boundaries, complete audit trail. and automated
maintenance.
Define files in a master library,

Define CHECKIN step requiring an approval prestep. Authorize
specific users to perform the APPROVE step.

Define rules requiring a step to document testing before allowing
chec kin.

Assign serial access control to files.

Use MAKE to compile changed source automatically, use VERIFY
option on checkin and file distribution.

Authorize different users to perform specific steps.

Authorize specific users to perform testing.

Authorize programmers only for steps within specific applications.

Require project codes for all steps in the route; authorize
programmers for specific projects.

Use retention feature on checkin.

10, Associate work with project

11, Maintain backup copies of
old versions

Use UBRARIAN to distribute software; audit trail tracks versions.12. Control versions on remote
systems

13. Provide audit trails UBRARIAN autornaiicaily maintains an audit trail of all file
movements.

Use SICOMPARE to compare file versions and display differences.

Use Forward Versioning and separate maintenance and
development routes.

14. Review specific file changes

15. Maintain current release
while developing next
release

16. Maintain concurrent revisions
of individual programs

Use the revision control facility.

Use LIBRARIAN version stamping facilities.17. Tracking versions

Introduction 1-5

1-6 LIBRARIAN/IX User's Guide

Getting Started

This chapter describes the basics of how to use LIBR/AGAN. The
following topics are covered in this chapter

� How to Run LIBRARIAN

a Provid ing Your User ID and Password

� Ch a nging Your Password and Lockword

� Sw i t ching to Another Vser ID

� Menu Mode

� Command Mode

� Shell Commands
� On l ine Help

� Pe r forming Steps and Other File Activit ies

Mow to Run LIBRARIAN

To run LIBRARIAN from MPE, type:

:LIB

To run LIBR/QUAN from UNIX, type

HP-UX[1] ocslib if path set,
otherwise

HP-UX[1] $OCSUBDIR/ocslib

where $OCSUBDIR is the name of the directory where the LIBRARIAN
client software is installed.

Background Process on UNIX C[ients
UNIX users can run a background process to issue LIBRAIUAN
commands from a ~ she l l prompt or within a script.

Since the background process maintains its connection to the server,
LIBRARIAN is ready to accept requests at any time without the overhead
of reconnecting. This capability greatly improves performance.

Getting Started 2- 1

One use of the background feature is to check out files from MAKE fi les.

Start a background process by entering the following:

$ocslib — bg

To issue LIBRARIAN commands to the background process, use the
followmg syntax:

$ocslib — fg command

where coaunand can be any of the LIBRARIAN coma~ d s , except screens
and utilit ies. For security reasons, all requests must be made from the
same terminal (or terminal window),

To terminate the background process, enter the exit comas , as shown
below:

$ocslib — fg exit

If your command includes delimiters or special characters that the shell
might interpret, you must use a pre6x of "K" with these characters, or
enclose the entire command portion in quotations.

Note The background process inherits its environment from the process you
started from, including the working directory and environment
variables. However, you can change the current directory for the
background process, as shown below:

$ocslib — fg cd directory name

Providing Your User iD and Password
Before you can perform any LIBRARIAN functions, you must identify
yourself with your LIBRARIAN user ID and personal password by
responding to the prompts. Your response to the password prompt will
not be displayed as you type it.

You will be prompted to assign a password the first t ime you use
LIBRARIAN. You can change your own password at any time using the
PASSWORD parameter of the LIBRARIAN USER command, or from the

If you do not have a user ID, contact your LIBRARIAN Manager. The
LIBRAIUAN Manager also assigns any special user capabilities and
specific LIBRARIAN step authorizations. As a general user, you can
access and update your own user data on the Users (US) screen,

User menu as discussed below.

2-2 L IBRARIAN/iX User's Guide

lf your UNlX login user ID matches a LIBRARIAN user definition, then
you can press RETURN to accept the default user at the user ID prompt.
In this case, a password is not required.

Note All LIBRARIAN user IDs and passw'ords are case-sensitive.

Changing Your Password and Lockword
If you want to change your password or personal lockw ord (MPE), use
the PASSWORD and/or LOCKWORD options of the USERcommand or
select Passwords from the User menu. The following example shows how
FRANK would change his password with the USERcommand:

> USER FRANK; PASSWORD
New password?
Please verify new password by typing it again

User data successfully updated
New Password?

If you want to remove your password or personal lockword, do not
supply a new value. For example, remove the password for user name
FRANK by typing:

) USER FRANK;PASSWORD =

Password Security Features
The LIBRARIAN Admin istrator can configure the following password
security features:

� Ag ing (Days valid)

� Iv t inimum length

� Max i mum t r ies

� Di s able user after rnaximurn tries?

For more information, see the section "Setting Password Security" in the
LIBRAlGAN Administrator 's Guide.

Switching to Another User ID
If you have more than one LIBRARIAN user ID assigned to you, you can
switch your active user ID at any time by issuing the USER command or
selecting Identi f ication from the User menu. Issuing this command
without parameters displays how you are currently signed on to
LIBRA1 DAN.

Getting Started 2- 3

Menu Mode

LIBRARIAN operates in menu mode by default. This mode allows you
to execute commands and select options from a set of menus, The main
menu consists of a horizontal menu bar that appears at the top of the
screen under the OCS/LIBRARlIAN title bar. The title bar shows whether
you are running LIBRARIAN under MPE/iX or UNIX. (see Figure 2-1).
To bypass the menus, see the section entitled "Command Mode" in the
following section:

OCS/LIBRABINI f a r NP E / I R

Bel p ~ t t j n t

Figure 2-1. UBRARIAN Main Menu

The title bar and main menu are displayed at the top of the screen while
LIBRARIAN is running in menu mode. LIBIVBUAN also provides a
command line alternative discussed below. Function keys are defined as
follows:

a FI — Help Gives context-sensitive help on the
current menu option or dialog item.

a F2 — Command Mode/
Menu Mode

a F3

� F4 — Print

� F5 — Refresh

� F6 — MPE/Shell

Toggles between the two modes.

Not used.

Sends the current window to the printer.

Redraws the display

Exitstemporarilyto the MPE/iX or
UNIX shell.

Not used.

Exits LIBRAIGAN You can also select
Exit from the Main menu bar or from
the File menu.

� F7

� Fs — Close

2-4 L IBRARIAN/iX User's Guide

Use the menus to issue the comn~ d s described in detail in the
LIBRA/VAN/iX Reference Guide.

Access and operate the menus as follows:

1. Use the right and left arrow keys to highlight the appropriate main
menu option, or type the first letter of the menu option followed by
RETURN.

2. Press RETURN.

3. Use the up and down arrow keys to highlight the desired pull-down
menu item.

4. Press RETURN to select the item

5 I f app l icable, enter the appropriate information in the dialog window
and press Go (F7) or Cancel (F8).

Use the F8 function key to return to the main menu.

Warning The Esc key should not be used in menu mode! This key signals that an
escape sequence follows, and can cause unexpected behavior when you
press additional keys.

Command Mode
As an alternative to menu mode and for batch mode operation, a
command line interface is also provided. When you switch to command
mode from menu mode, the screen clears and the) prompt is displayed.

You can switch between menu and command modes by pressing the F2
function key. You can also put the comn~ d ME NU OFF in an AUTOXEQ
macro 6le to bypass the menus automatically when you run LIBRARIAN.
Macros are discussed in Chapter 9, "Macros", in this manual.

Shell Commands
In addition to LIBRARIAN corrun-n.ds, you can run any of the following
f rom LIBRARIAN:

� MPE o r UNIX commands

� UMX scripts

a MP E U DC s

� MP E user programs

Getting Statted 2- 5

There are two ways to run any of the above, without exiting LIBRARIAN.

1 Type a colon (:) at the LIBRARIAN prompt), and then press
RETURN to break to the MPE/UM X shell, or press F6.

For MPE, you can only issue commands that are available in BREAK
mode. Type RESUME to return to LIBRAIQAN from MPE

Type exit to return to LIBRARIAN from the UNIX shell.

2. Issue a UNIX or MPE command preceded by a colon (:) at the
LIBRARIAN prompt) . The colon is optional if it wil l not be confused

You can configure the LIBRARIAN prompt by setting a system variable
called LIBPROMPT prior to rulingLIBI~ & J to t h e str ing you want
to use as a prompt. For example;

with a LIBRARIAN command.

:SETVAR UBPROMPT "UB>"

:export UBPROMPT = "UB>

You can put the SETVAR statement in the LIBRARIAN UDC f i le for the
LIB and LIBSERV corrui~ds on the MPE! iX server. Then, each time you
run LIBRARIAN, the prompt is setautomatically.

PUNIX

Online Help
Comprehensive online help is available for all LIBRARIAN commands
and their parameters. Use the F1 function key or the HELP command

You can also select Help from the main menu bar to open the help index
for help on a variety of topics, review the glossary, or get information
about the current version of LIBRARIAN that you are running.

Performing Steps and Other File Activities
Once your LIBRARIAN Administrator has defined file movement rules to
LIBRARIAN using Shortcut, you are ready to use LIBRARIAN to manage
software files and control changes.

Each step moves or copies files based on rules defined in the database by
the LIBRARIAN Manager, Application Manager or Rule Administrator.
Each step definition, such as for checkout, identif ies which fi les are valid,
the destination location, any prerequisites, special operational rules, and
default parameters.

2-6 I IBRARIAN/IX User's Guide

Performing Steps in Menu Mode
If you use the menus, select Steps from the File menu. This menu
includes only the steps you are authorized to perform.

File The File menu displays a list of operations

Steps D i splays a list of steps you are au­

related to files.

thorized to perform.UXWEW
Ux-oal
LIXED EADY
UXE3A
LIXAN

� �

Step Dialog
When you select a step from the Steps menu, the dialog box shown in
Figure 2 — 2 appears.

ocs/LIBRARIAN for tlPE/iH

I I

st

Qgm
Steps ~

IH4HJT

I �

To

� � �

g Revision Cri teria gj Option Renu

Rotp Reorsinn Option: '.A.tnt Refresh ’ . Sn . :;Canby'I

Figure 2-2, Step Dialog

In this dialog, you can enter source and destination file(s) Note that
these fields scroll to the left if you type past the end of the field.

Getting Started 2- 7

Enter the names of the files you want the step to process in the From field
as described in "How to Refer to Files" in the next chapter. If you do not
use absolute pathnarnes (fully qualified filenames), LIBRARIAN uses the
step definition to determine the location of files. For other LIBEVQGAN
commands, LIBRARIAN uses your current working directory to locate

The To field is optional, LIBRARIAN uses the step definition to
determine where to create files. You can only override this location if
wildcards were used in defining the destination location for the step. If
you leave this field blank for non — step operations, LIBRAjRIAN creates
files in your current working directory.

You can apply revision criteria to the files listed by pressing F2. The
Revision Criteria menu appears as shown in Figure 2-3:

files.

OCS/LIBRORImt for tPE/i it

Fi le

st
� � Step o ~

IN~

I �

iaiaa aa tana › i
SEEK~i
Ttw
OCOUNT
VERSION
vcoUKI Opt ion Iteno

Netp ’
. : A.Ink Bah esb:, ’ ’ :, Oooeyt' .Cancel:

Figure 2-3. Revision Criteria Menu

When you select an option from this menu, a field appears allowing you
to specify a value Press F8 (Cancel) to leave this menu without accepting
the options you selected, or press F7 (Apply) to leave this menu, applying
the options you selected.

You can select step options and override default parameters by pressing
F3 (Option Menu) in the dialog box. A menu of the most common
options appears as shown in Figure 2-4.

2-8 L i BRARIAN/iX User's Guide

OCS/LIBRARIAN fet NPE/iH

File

st
e s Step s ~

INENT

tiens
Cstep defeul t>

I

I � I NPROORESS
KEI10

ttASIER
VERIFY

KE~

<step default�>
Opt ion llenu

<ste defeult>

Hefrssh : Aceejt, ’. Cancel 'H C]H H
Figure 2-4. Step Options Menu

Other options are available by selecting More... f rom this menu. When
you are finished selecting options and/or setting parameter values, press
F7 to accept the values or F8 to cancel You wil l return to the main step
dialog box.

After specifying files, revision criteria and/or options, press FT (Go) to
proceed with the transaction, or press F8 (Cancel) to return to the
previous menu.

Performing Steps from the Command Line

For example, to performthe AP-OUT step you could type:
Perform a step from the cornri~ d l i ne by using the PERFORM corrunand.

>PERFORM AP-OUT

simplytype:
You do not need to include PERFORM in the cornrrmnd. Instead, you can

>AP-OUT

If the step name used in this cornrr~ d i s part of more than one route or
application, LIBRARIAN displays a menu of steps, and you select the
desired step from the menu.

If you know that there is more than one step with the same name and you
want to identify the step uniquely when typing the command, use the full
step name (step, route, and application). For example,the sample
command above could also have been entered as:

>AP-OUT,APDEVEL.FIN

Getting Started 2- 9

When you use the step name without parameters, LIBRAIGAN

automaticallyattempts to authorize all of the files identified in the step
definition. In most cases you specify that the step should be performed
for a subset of 6les. The next chapter describes how to specify subsets of
files and additional parameters.

Common LIBRARIAN Commands
Table 2 — 1 lists some commonly used commands. These commands are
also available from the menus. If you prefer to enter commands, use F2
to switch between menu mode and command mode.

Note xxxx refers to the application name defined in Shortcut, up to four
characters long. The > symbol is the standard LIBRARIAN prompt .

7able 2-1 Common LIBRARIAN Commands

Command Purpose

)HELP STEPS

>xxxx-OUT filename

>xxxx-OK filename

>xxxx-FAIL filename

>xxxx-TEST filename

>xxxx-NEW filename

Displays information on which steps you can perform.

Check out file(s) from the master library to development loca­
tion. A violation occurs if the checkout would replace another
tracked file. A conditional read-mode checkout allowed if
another user has checked out the file to another location.

Introduce new file(s) to an application. A "new" file is a new
program or source file you have created, or a newly compiled
object file not checked out. Introduce new files in the same
group they will occupy in the master library.

(Optional) Approve files to be moved out of development,
either to a test location or back to the library.

(Optional) Move file(s) from development to a test location.
Generally source and object are moved together to test. Move
does not leave a copy in development.

(Optional) Move file(s) back to development fiom test loca­
tion. Generally both source and object are returned to devel­
opment if executable code fails testing.

(Optional) Approve file(s) to be checked in from the test loca­
tion to the master library. Must be done before the checkin.

>xxxx-TESTOK filename

2-10 L IBRARIAN/IX User's Guide

Table 2-1 Common LIBRARIAN Cornrnands (conitnued)

Command Purpose

>xxxx-IN filename

>PLIRGE filename

>xxxx-READ filename

Check in file(s) from test or development. Automatically re­
tains (archives on disk) the old master file and compresses it.
Copy file(s) from the master library to the development loca­
tion in read mode Read copies cannot be checked back in to
the library. To done a file, use this command with the OR›
PHAN option, rename the file, and use XXXX � hlEW to introduce
i t to LIBI~ IAN .

Delete a file that was checked out and is no longer needed.
This corrunand can also be used to remove your current copy
in order to replace it with a fresh copy from the master library.

Request information about a file or files, User is presented
with a menu of formats showing available information rang­
ing from file code and modification date to the file's LIBRARI­
AN owner or step history.

>VERIFY filename

For details on command syntax and usage, refer to Chapter 1,
"Commands", in the L1BRARIAN/iX Reference Guide. Extensive online
help is always available. To get help, use the HELP command or press F1.

Getting Started 2- 11

2- I 2 L IBRARIAN/IX User's Guide

File Transactions

You can perform all activities related to file movement using
LIBRARIAN. In fact, your systemadministrator may have set up file
system security in a way that only allows access to files through
LIBRARIAN. LIBRAIUAN authorizes files and performs single system or
networked file operations based on rules stored in the rules database, and
logs all transactions to an audit database.

This chapter describes how to move and copy files using steps, perform
other file activities, and review information about files. Topics discussed
in this chapter indude:

� Ov e rv iew of File Transactions

� Ho w to Refer to Files

a Ho w to Refer to Destinations

� Ho w to Perform Steps

� Me mos

� Us i ng Personal Lockwords

� Ma cr os

� Ot h er File Operations

a Batch Transactions

� Ho w to Check Transaction Status

a Reviewing File Information

Overview of File Transactions
You can perform all of your 6le movements from a single LIBRARIAN
session. There is no need to log on to different accounts or directories to
copy or move files. LIBRARIAN automatically pushes authorized files to
the correct destination, across account and system boundaries.
Most file operations are done by executing steps defined by the
LIBRAMAN Manager or Application Manager. You can perform these
steps on the command line or select a step from the Steps menu which
you can access from the File menu.

Each step defirution identifies the part of the library (master fileset) to
which the step applies, as well as the general location of valid fi les for the
step. LIBRARY &I wil l only authorize files that are both members of the
step's fileset and within the scope of the source location defined for the
step,

File Transactions 3 -1

There aremany other LIBRARIAN operations available for files that
LIBRARIAN is tracking. These operations also appear on the File menu

In addition, the LIBRARIAN X comr1mnds allow you to operate on files
that LIBRARIAN is not tracking. If you have X capability, file system
security is ignored; otherwise, file system security is enforced.

and on the Tools menu.

How to Refer fo Files
There are several ways you can refer to files when you perform steps or
other LIBRARIAN commands. This section describes each of these
methods.

Direct References
Filename
You can directly refer to files by name and location. The syntax for MPE

[system:] file [group [.acct]]

where file, group, and acct identify the MPE filename You can use
wildcards consistent with MPE LISTF conventions. The syntax for UNlX

1S:

Is:

[system:] /[path.../] file

where file identifies filename, including path preceding the filename Use
wildcards consistent with UNIX conventions (see "Filena.ming
Conventions" in the Preface of this guide).

For both MPE and UMX, system is the name of the system where the file
is located. Your current login values are used for omitted elements, except
when performing steps, in which case configured values are used.

By default, LIBRARIAN treats all path references recursively; That is, all
f iles in subdirectories of any directory specified are induded when
LIBRARIAN authorizes files. Recursion can be disabled by adding a
suffix of a plus sign followed by a zero (+0) to the file reference.

For example, /usr/deveI/d*+0 finds all files starting with the letter "d" in
the devel directory without including fi les that are in subdirectories
starting with the letter "d."

You can also control the number of levels of recursion, by adding a suffix
of "+n", where "n" is the maximum number of directory levels to
traverse.

3-2 L IBRARIAN/iX User's Guide

Logical Fileset
You can directly refer to files in a logica1 fileset by specifying the fileset
name preceded by a percent sign (%). A logical fileset can be a master
fileset, user fileset, or project fileset, The syntax is:

Xfileset

Listfile (indirect File)
A listfile is a file that contains a list of filenames, You can use listfiles as a
way to refer to files in all LIBRARIAN commands. Create listfiles using
the LMAINT module of LIBRARIAN or with the editor of your choice.
You can directly refer to files in a listfile by spe~ g th e l istfiIe name
preceded by an exclamation point (!) or a caret (~). The syntax is:

Note

(!VIP E) or " (UNI)Q

! filename

Files from the Last Transaction
You can directly refer to files from the last logged transaction by
specifying a star (') or double — star ("). Destination files associated with,
or the files processed in the last logged transaction, are authorized. The
syntax is:

The single or double asterisk refers to the destination files successfully
processed in the last transaction (or frozen with the SET ’ comnmnd).

To use this feature, transaction logging must be enabled on the System
Profile (SP) screen.

Indirect References

to specify indirect criteria.

Revision
You can indirectly ref'er to revisions of master files by specifying the
master file(s) and a revision ID. The syntax is:

[system:] file [.group [acct]]

[system:] /[path.../] file

%fileset

The revision ID is in the format VERSION:VCOUNT [.BFIANCH.LEAF...].

You can authorize all revisions of a master file when using the SET and
PUAGE comm mds To do this, use the AEVISION parameter with the
value of ALL For example,

In a menu mode file dialog, press the F2 function key (Revision Criteria)

;REV [I SION]= revision-id I ALL

PURGE MYFILE. PUB.LIBRARY;REVISION=ALL

purges all revisions of the files associated with the master file,
MYFILE PUB.LIBRARY.

F ile Transactions 3 - 3

Version and Version Count
You can indirectly refer to versions of master files by specifying the
master file(s) and a version and version count. The syntax is:

versi onid OF

[system:] file [.group [.acct J]

[system:]! [path.../] file

~ldileset
[;VCOUNT =versioncount]

Versionid is the identifier of a version. If the application for the version is
ambiguous,LIBlviRIAN prompts for it.
VCOUNT identifies the files with a version count equal to VCOUNT (the
number of tixnes the master 6le has been revised since the base version
was created). Default 0 (baseline version),

A VCOUNT value of LAST causes LIBRAIUAN to operate on the last
revision of a file within a version.

For example, the following comas c op ies the latest revision of each file
in the 1.0 version to the V100 area:

>COPY 1,0 OF %FINANCE TO =,=.V100;VCOUNT=LAST;OLDNAME

>COPY 1.0 OF %FINANCE TO /apps/gl/v1 00/(3,);VCOUNT=LAST;OLDNAME

A VCOUNT value of IASTNOTO causes LIBRARIAN to operate on the last
revision of a file within a retained version that is not a base revision. (e.g.
to create a patch tape.)

For example, the following command distributes only those files that
have changed since the base version was distributed:

>COPY RE.1.0 OF %MYFILES TO=.=.RELEASE;VCOUNT=LASTNOTQ

>COPY RE.1.0 OF % MYFILES TO /apps/gl/release/(3,);VCOUNT=LASTNOTO

Generation Count
You can indirectly refer to generations of a master file by specifying a
master file(s) and a generation count. The syntax is.

[system:] file [.group [.acct]]

[system,] /[path ../] file

%fileset

;GCOUNT = [-] gcount

The GCOUNT parameter directs LIBRARIAN to operate on files with the
specified generation count (total number of times the master file has been
replaced since its creation). This value can be either a positive or a
negativevalue.

A negative value describes the generation relative to the current
generation. For example, GCOUNT = ­2 specifies files two generations
prior to the current one.

3-4 L IBRARIAN/iX User's Guide

Secondary Location
You can indirectly refer to secondary files by specifying the master
filename(s) and the general location to search for associated secondaries
The syntax for MPE is:

~%%dfi leset AT

[system]file [,group [.acct]] AT
[system:]file [.group [.acct]]

When using this syntax, LIBRARIAN operates on secondaries of the
specified master files found in the specified secondary (AT) location. For
example.

RAP-FILES AT I:O.O.O

refers to all secondary copies of %AP-FILES.

Alternatively, the syntax for UNIX is:

%fileset AT

[system:] /[path ../] file AT
[system:] /[path.../] file

When using this syntax, LIBRARIAN operates on secondaries of the
specified master files found in the specified secondary (AT) location. For
example:

refers to all secondary copies of %AP-FILES.

RAP-FILES AT '/

Note In a menu mode dialog, enter the "AT" syntax directly in the filelist
fieid, as you would in command mode.

Implied Reference by Project
You can imply the files associated with a project when performing a step
by specifying the project name, rather than files. The syntax is:

>step. project

Alternatively, you can omit the project name and select your project from
the project menu when projects are defined. In menu mode, this is the
only alternative.

F ile Transactions 3 - 5

tmplied Reference by Step
If you do not specify any files when performing a step, the step fileset (as
defined on the Step (ST) screen) is used. For example:

>step

If projects are being used, you are presented a menu of projects By
selecting a project, you imply the project fiieset when no files are
specified.

Multiple File Reterences
You can refer to znultiple files combizung any of the znethods described
above. Use commas to create a list of file specifications. The syntax is:

filelist [, fi!elist [, ...]]

Each filelis t is processed by the IIBRAIQAN program in a single
transaction.

Exclusions Selection
This method designates files to be excluded from the operation. The
syntax is:

— [system:] file [.group [acct]]

— [system:] /[path.„/] file

— %fileset’PU".0:

When specifying znultiple 61elists, specify the exdusion(s) last.
Exclusion(s) must be direct references, with or without wi ldcards. Use
coznmas to separate exclusions.

Subset Selection
Project
Subset selection by project selects only files associated with a particular
project. This parameter must follow all file references, including
destination locations, if specified. PROJECT i s valid for all comzz~d s .
The syntax is:

filelist; PROJ ECT=proj

If you use a step to copy files in read — mode (e g., move — to — production),
LIBRARD&l automatically copies the appropriate revisions of the files
associated with the project that you specify. However, if you do not use a
step for file distribution (e.g., COPY), then use the project fileset as well as
the PROJECT parazneter.

3-6 LIBRARIAN/IX User's Guide

Tag
Subset selection by tag selects only files that were assigned a specific tag
with the SET TAG cornrnand. This parameter must follow all file
references induding destination locations, if specified. The syntax is:

filelistTAG =tagid

Modification Status
Subset selection by modification status selects files based upon whether
or not they have been modified since LIBRARIAN created them. Use the
MODIFIED or UNMODIFIED parameters to select only those files modified
or not modified since they were last copied or moved by LIBRARIAN
The current timestamp in the file label is compared with the tirnestamp in
the LIBRARIAN database. The syntax is:

filelist, MODl FIED

User Confirmation
Subset selection by user confirmation has LIBRARIAN prompt for
confirmation of each authorized fi l p r ior to processing. Use the
CONFIRM parameter to request prompting.Files not confirmed are
exduded from the operation. The syntax is:

filelist CONFIRM

Tracking Status
Subset selection by tracking status lets you select files being tracked by
LIBRARIAN, exduding those not being tracked. This applies only to ad
hoc commands, such as COPY and PURGE To indude only untracked
files, prefix these commands with X. The syntax is.

filelist;TRAC KED

How to Refer to Destinations
Edit masks are used to determine the correct destination given a specific
source name. The znasks are either defined in the destination of a step, or
specified when performing the step or other file movement comrzzand.

Edit masks are also used to specify refinements for step destinations, and
to translate pending production secondary filenames into pending znaster
filenames. This enables LIBRARIAN to create pending znaster records
automatically.

There is a one — to — one correspondence between elements of a fully
qualified filename. (For MPE, elements are system, file, group, and
account. For UNIX, elements are system, path components, and
filename.) For each element, the mask can result in carrying forward the
element, replacing the element, or editing the element..

File Transactions 3 -7

Table 3 — 1 describes the valid edit mask characters for any element of an

� El ements are carried forward using the equal sign (=), or the at sign
(©) in a step definition, if the user can override the element.

� El e ments are replaced by using a string literal.

� Elements can be edited using a combination of equal (=), at (@),
question (?), minus (—) sign, and literals, as described below.

MPE or UNIX fi lename, along with their descriptions and examples.

Table 3-1. Edit Mask Symbols and Descriptions

DescriptionEdit Mask
Character

I

Minus sign

Question
mark

?

At sign/Star

Copies original value into edited version. Typically preceded and/or
followed by other characters. For example, when edited with the edit
mask of ABC@XYZ, the value of FRED results in a value of
ABCFREDXYZ. 'For MPE filenames, the result is truncated to eight
characters (ABCFREDX).

Copies the character at this position into the resulting string. For
example, the mask?? applied to the string FRED results in the string
FR. The question znark can be combined with literal characters such
as??X, which would result in the string, FRX, or X??, resulting in
XRE. It can also be combined with the minus sign (—).

Indicates that the original character in that position should not be
included in the edited result, For example, the mask -? applied to the
string FRED results in R. Alternatively, the mask =— — results in the
string RE. An additional feature is the use of "—" in conjunction with
"©", which strips characters from the beginning and/or end of the
original element before adding other characters to the beginning or
end. For example, PRTA100 edited with ­ — -46 results in A100S,
deleting the 6rst three characters before adding the S . Note that ­ ­

= -S would result in A10S, replacing the last character

Copies aII remaining characters after the zninus sign, question mark,
and literal characters have been evaluated. For example, a mask of =X
with the original string FRED results in the string FREX. The mask

? with the initial string FRED results in FRQD.

Equal sign

Edit Masks for UNIX Pathnames
To carry forward, edit, or replace an element that is at the same level in
both the source and destination filenames, follow the rules described
above.

Because UNIX pathnames can have varying numbers of path elements
(directories), you can edit (or skip) components at varying levels in the
source filename using the following construct.

/(x [— y]) [edit — mask]

where x and y represent the desired range of components from the source
pathname. x and y are numbers from j. to ', where i s the last directory
element of the pathname. If you want a specific element, omit y which is
optional.

3-8 U B RARIAN/iX User's Guide

The optional edit mask is applied to each element in the range (do not
include the brackets).

For example, the mask/(1 — 2)/devel/! USERID/(4 — *)/= applied to the
filename /usr/usr2/master/screens/abc results in the filename
/usr/usr2/devel/milind/screens/abc.

You can also use the following wildcards in place of x or y:

number of levels in home directory path

number of levels in the current working directory path

one less than the number of levels in the current working
directory path

You can use curly braces, i.e., (x [— y)), to indicate mapping from the
master file name rather than the current secondary file name,

For example, consider the following step called demo — test.

� Source files are defined as secondary files:

sputnik:/usr/usr2/demo/dev/level1/level2/"

� De s t ination files are defined as secondary files:

sputnik:/usr/usr2/demo/test/(5 — *) / =

The edit mask (5 — ') is evaluated using the associated master file
path.

� Given the following source files:

sputnik:/usr/usr2/demo/src/dir1/dir2/dir3/*

� Th e destination files would be expanded to the following:

sputnik:/usr/usr2/demo/test/dir1/dir2/dir3/=

Edit Masks for Group and Accounts
You can specify an edit mask that refers to a different element (i.e., file,
group or account). To do this, use the following syntax in your edit mask:

F
G star t : !ength
A

where F is for filename, G is for group name, and A is for account name.
Start is the starting position, and length is the number of characters to be

The example below shows an edit mask that creates a group name using
the first three characters of the filename:

used.

Source
Edit:
Destination:

ABC100S.PSOURCE
PRG??? .P(F:I:3) OBJ
PRG j.00.PABCOBJ

F ile Transactions 3 - 9

How to Perform Steps
You can only perform steps that the LIBRARIAN Manager or Application
Manager has authorized you to perform. For an online list of the steps
you can perform, use the HELP STEPS comm'md or open the Steps menu

HELP STEPS displays your user information, a list of the steps you are
authorized to use, and information about the step, as shown in
Figure 3 — 1.

from the File menu.

STEP AU T H O R I Z A T I O N S

.RoUte

.AR-MAINT
,AR-M AINT
.AR-MAINT
.AR-MAINT
,AR-MAINT

User ID: UBMGR

Step
AR-OUT
AR-NEW
AR-IN
AR-RELEASE
AR-COPYIN

Enter HELP and the name of fhe Step for further informcrlion,

Name: Frank

.Appl Mode Ty From Location

.AR R/W M S I .5

.AR R/W SS I .I

.AR R/W SM @ .I
,AR R/W SS I .O
.AR R/W SM @ .I

Move
.SYS1 C O PY
.SYS1 NULL
.SYS1 MOVE
.SYS1 CO PY
. SYS1 M O V E

,???PROD
.! LOGON
.! LOGON
,! LOGON
.! LOGON

Figure 3-L Step Authorizations Information

When you performa step, LIBRAjRIAN authorizes the request based on
the rules for that step, executes the operation for each authorized file, and
logs the status of each operation in the audit database.

When LIBRAMAN authorizes a request, it authorizes each file separately,
evaluating your user ID and permissions associated with it, checking the
existence of the file, the policies for the file, and the rules for the step.

LIBRARIAN displays the status for requested files. The following
example shows a typical "Request Status" display:

*REQUEST STATUS
2 authorized 0 conditional 0 violations 0 excluded

You have the option to review the list of files for each of the categories,
and LIBRAEGAN offers further online explanations of each
error/exclusion status, as follows:

Authorized

Conditional

Files have passed all checks and can be processed as
requested.

Files are conditional on read mode, and cannot be
obtained in write mode because a write mode copy
already exists. You have the option of obtaining the file in
read mode or creating a branch. Conditional warnings
are issued only when the file has serial access control.

Files that did not pass one or more policy checks. For
example, files cannot be outside the scope of the step.
Other violations include trying to replace an existing
write mode secondary, or a prestep has not been
performed.

Violations

3-10 L IBRARIAN/IX User's Guide

Excluded Files have been bypassed. For example, duplicate 6les are
excluded, as are 6les you excluded using the dash
(—)prefix.

Note You can suppress the "Request Status" display and associated
prompts by using the QU) ET DISPLAY corrurrand, or by selecting
Quiet Mode...DISPLAY in the Settings dialog from the User menu.

When LIBRARIAN executes a step transaction, it performs the operation
for each authorized file. At the end of the operation, LIBRARIAN
displays asummary, showing the number of authorized file operations

Each file transaction is logged to the LIBLOG database to provide a
complete audit trail. You can review the audit trail using the SHOWLOG
report writer discussed in Chapter 4, "SHOWLOG Comnmnds", in the
LIB RARIAN/i X Reference Guide.

that succeeded or that failed.

File Transactions 3-1 1

Figure 3 — 2 shows an example of a step transaction performed in
LIBRARIAN (with full display — QUIET OFF).

)APOUT RP I OS.SOURCE, RP20P.OBJECT

AUTHORIZING RP10S.SOURCE.UBPROD.SYSA
1 file(s) found
AUTHORIZING RP20P.OBJECT,UBPROD.SYSA

1 file(s) found

REQUEST STATUS
2 authorized 0 conditional 0 via lahons 0 excluded

PROCESSING REQUEST

Copied RP10S,SOURCE,UBPROD to RPI OP.UNDA.UBDEVEL
Copied RP20P.OBJECT.UBPROD to RP20P.UNDA.UBDEVEL

2 file(s) copied.
0 file(s) not copied.

Figure 3-2. SaIT1ple UBRARIAN Operation

Step Parameters
Each step definition includes default parameters that LIBRARIAN
automatically invokes each time you perform the step. Additionally, the
step definition specifies which default parameters you can override.

For example, use the BATCH parameter to perform the step in batch mode
and schedule the step to run at a later time. Use the MEIVlO parameter to
add text describing the transaction. The BATCH and MEMO options are
discussed later in this chapter. Use the NOMOVE parameter to simulate
the file operation by authorizing the request but not performing the
actual operation. Use parameters to COMPRESS or DECOMPRESS
destination files automatically, or to RETAIN copies of files when they are
to be replaced.

You can review the default parameters and allowed overrides for a step
by using the HELP command with a step name, or press Fl with the step
name highlighted on the Steps menu. For an offline report, run the Step
Detail Report (RAD20), which describes all steps in an application.
Figure 3 — 3 illustrates the HELP display for the AP-OUT step

3- I 2 LIBRARIAN/IX User's Guide

Ste: AP-OUT .DEVELOPMENT .DEMO GLOBAL VALUES

Move E xp Exp
T R t~N ~ ~ ~FI Fr

10 MS DEMO-FILES @.@.TPUBPROD.SYSA COPY 0
= .! USERID .TPUBDEV .SYSA

Desc: This step copies files from production to development

Step: AP-OUT .DEVELOPMENT. DEMO PREVIOUS VERSION LOCATIONS

Previous Version Locations will be searched in the following order,

Seq Previous Version Search Locations

010 = .= .TPUBUB .SYSA

Step: AP-OUT .DEVELOPMENT .DEMO

There are no step refinements.

Step: AP-OUT .DE VELOPMENT .DEMO

No presteps are documented for this step.

Step: AP-OUT .DE VELOPMENT .DEMO

There are no pending producbon areas associated with this step.

Step: AP®UT .D EVELOPMENT .DEMO

Default parameters for the step are configured as follows:

ONUNE, MEMO!, NOCOMPRESS, NODECOMPRESS, NORETAIN, NOORPHAN

Note: a !" means that you cannot ovemde the default when you perform this step.

Figvre 3-3. S tep Informcrtion for the AP-OUT Step

Table 3 — 2 summarizes the parameters currently available for use with
steps. For an online list of the parameters and descriptions of each, type
HELP PERFORM PARMS at the command line, or open the Options menu
from the step dialog and press F1 help for a particular option.

PRESTEPS

REF!NEMENTS

PENDING AREAS

DEFAULTS

File Transactions 3-13

Table 3-2. Step Parameters

Parameters

ANNOTATE

APPEND

AUTO UPDATE

BATCH

BRANCH

COMPRESS

CONDfllONAL = maxcon

CREATE=

CREATOR= creator

DECOMPRESS

ERRORS = maxen

EXTERNAL

INPROG RESS

KEEP

LOCKWORD = lockwo&

MEMO

MERGE =

NOMEMO

NOCOMPRESS

NOAUTOUPDATE

NOBATCH

NODECOMP RESS

NOERRORS

MODIFIED

NOMOVE

NOSEARCH

OLD DATE

ONLINE

ORPHAN

OWNER =

PERMISSIONS =

PUSHREAD

RENUMBER

REPLACE

RESET

RETAIN

VERIFY

VIOLATIONS = maxvio

NO RETAIN

UNMODIFIED

NOORPHAN

NOVIOLATIONS

These parameters are described in detail under the PERFORM command
in Chapter 1, "Commands", in the LlBRARIAN/iX Reference Guide.

Associating Files with Projects
If projects are defined, you can associate the files processed in each step
operation with a specific project. When you perform a checkout step,
LIBRARJAN displays a menu of open projects for the applications that
have been assigned to you. Select the appropriate project from the menu.

lf you are not required to associate your work with a project you can
select the "no project" option froxn the menu.

In addition, you can specify the project in your step comxx~d by
appending the project name to the end of the step naxne, separated froxn
it by a period. For exaxnple, you could perform the AP-OUT step for the
REPT-MODS project:

>AP-OUT REPT-MODS

If you are not required to associate your work with a project, you can
bypass the project name and specify the "no project" option in the step
coxnm uxd by including the special $NP token:

> AP-OUT.$NP

3-14 L IBRARIAN/IX User's Guide

Memos
A memo is text that describes the current transaction in the audit trail.
Use the MEMO parameter to indude a memo. To create one � line memos
up to 72 characters, enter the memo text on the command line as a value
for the MEMO parameter (e.g., MEMO = memo — text). For multi — line
memos, do not specify the text on the command line and LIBRARIAN
will invoke the configured editor; the default is EDITOR/3000 on MPE, or
vi on UNIX. Enter at least one line of text, then exit. Enter Y when
prompted to replace the memo file (MPE only).

You can review and modify the text through the SHOWLOG module.

If you configured QEDIT as your editor for MPE in the configuration
file, LIBRARIAN executes QEDIT enabling you to enter memo text.

Note

Using Personal Lockwords

Started".

master files.

with LIBRARIAN:

LIBRARIAN personal lockwords can enhance file level security in MPE
while maintaining convenient file access through LIBRAIGAN. You can
have your own personal lockword, which is encrypted and stored in the
database with your other user information. For information on defining
andmaintaining your own lockwords, refer to Chapter 2, "Getting

If you have a personal lockword, it is placed on any file you create in
LIBRARIAN. The lockword serves as protection from access by other
MPE users; LIBRA&AN automatically supplies your lockword for
authorized source files.

Lockwords are not automatically assigned to master files. Only
Application Managers or LIBRARIAN Managers can assign lockwords to

In addition to automatic lockword substitution for lockwords assigned
outside of LIBRARIAN there are two ways to assign specific lockwords

1. Use the SET comm.and to change the current lockword on files or

2 U se the LOCKWORD parameter to specify a lockword to use rather
than your personal lockword when performing a step.

filesets.

Macros
Macros are comm-md files which can be in any location to which you
have read access, or in the XEQ.OCSLIB group (MPE) or in the
/opt/ocs/ocslib/xeq directory (t jNIX). Use macros in place of a step to
perform complex file operations. For more information on creating and
using macros, refer to Chapter 9, "Macros".

File Transactions 3-15

Other FiIe Operations
Additional LIBRARIAN commands are available for working with f i les
that LIBRAIUAN is tracking. Users can use these additional commands
for files they own. The file owner is the LIBRARIAN user who created the
file with a LIBRARIAN cornzzzand. Master files are the exception — only
the Application Manager or LIBRARIAN Manager can use the other file
commands for master files. Some commands, such as PRINT and
COMPARE, are available for master files if a user has read access.

Ecliting Files
It is not necessary to exit the LIBRARIAN programto work on fi les that
you checked out. You can run any editor directly from the LIBRARIAN
prompt.

Compressing Files
Compressing files can result in 60 — 90% disk space savings, depending
on the file type. Additionally, file compression provides additional fi le
security because compressed files cannot be read directly — they must be
decompressed before they can be read (however, for MPE, LIBRARIAN
offers special programs that can read compressed prograzns serially).

LIBRARIAN offers options for you to automatically or manually
compress/decompress files.

You can use the COMPRESS and DECOMPRESS commands (also
available from the Tools menu), or use the COMPRESS and
DECOMPRESS parameters available with most file operations. Steps can
also be defined toautomaticallycompress ordecompressdestination files
after they are created.

Certain types of files can exist that you want to exclude frozn
compression, such as XL or program files. The LIBRARIAN Manager can
use the CompressExclusions (CE) screen to define file codes to be
excluded from automatic compression.

3-16 I IBRAPIAN/iX User's Guide

Other Commands
Table 3 — 3 is a list of other LIBRARIAN commands that operate on files
and describes the function of each.

Table 3-3, File Comrnancls

Command

LCOMPARE
COMPRESS

COPY
DECOMPRESS
EDIT t

LOCK

MOVE
ORPHAN
OVERLAY

PRIM
PURGE

RELEASE t
RENAME

RESET (TIMESTAMP)

Funclion

Shows differences between text files.

Compresses files.
Copies files to a new location.

Decompresses files.
Accesses configured editor.
tucks files.

Moves files to new location.
Disables tracking of secondary files.

Replaces tracked files with other files.
Displays the contents of files.

Deletes files from the database and disk
Removes MPE security from files.

Changes filename or fileset name.
Replaces modification timestamps in the datab
timestamps from file labels.

Restores retained files to original location.

Searches and replaces strings of text.

Compares files with S/COMPARE.
Restores MPE security to files.

Changes access mode.

Changes file expiration dates.
Changes lockword on files.
Changes the owner of a file.

Releases files that were locked.
Refreshes read secondary from master.

Views information about files and versions.

ase with

RESTORE
SCAN

SCOMPARE t

SECURE t

SET (MODE)
SET (EXP DATE)
SET (LOCKWORD) t

SET (OWNER)
UNLOCK
UPDATE
VERIFY
~ = MPE only

Operations on Untracked Files
Most LIBRARIAN fi le operations are restricted to files that LIBRARIAN
is tracking, that is, master files or their associated secondaries and
retained files. All other files on the systemare untracked (unknown to
L IB RAR~ .

LIBRARIAN indudes a special group of X comrt~d s to operate on these
unknown fi les. Table 3-4 lists the X corrunands currently available from
LIBRARIAN.

F ile Transactions 3 -1 7

Table 3-4. X Commands for Untracked Files

FunctionCommand

XCOMPARE t

XCOMPRESS

XCOPY
XDECOMPRESS
XLCOMPARE

Compares file contents using S/COMPARE

Compresses files

Copies a file to a new location
Decompresses a Gle

Shows differences between files not tracked by
LIBRARIAN
Moves a file to a new location
Prints the file contents online or offline

Deletes a file
Renames a file

Scans/replaces text in a File

Updates the MPE znodification tiinestamp with the

XMOVE

XPRINT

XP URGE
XRE NAME

XSCAN

XTOUCH t

t= MPE only

When you use X comrriands, you can specify a single 6le, a file mask with
wildcards, or a list of files or file masks, listfiles, and user filesets. The
files must be untracked by LIBRARIAN.

current date and time

Note Unless you want to restrict a command to untracked files, you do not
need to use the X prefix. LIBRARIAN wi l l process both tracked and
untracked files, but wil l enforce file system security for untracked files
and LIBRAIGAN rules for tracked files. To exclude untracked files
from these operations, use the TRACKED parameter.

X comrtmnds allow you to specify many of the same parameters allowed
for their counterpart LIBRAMAN comn~ d s.

The LIBRARIAN Manager can assign X capability with the User
Capabilities (UC) screen. Users with X capability can use the X commands
without enforcing normal file system security. Otherwise, security is

All X transactions are logged in the audit database, and they can be
reviewed with SHOWLOG reports.

enforced.

Batch Transactions
All LIBERIAN file operations can be performed in batch mode. You can
use the BATCH parameter on a command or step, or you can run
LIBIUIBKAN from jobstreams.

3-18 L IBRARIAN/IX User's Guide

BA7CH Parameter
The BATCH parameterin a command or step causes the transaction to be
performed in batch mode by creating a temporary job. The operation is
authorized online, but executed in batch mode.

When you use the BATCH parameterunder MPE, LIBRARI/QU prompts
you for a! JOB comm.md and MPE:STREAM options All job parameters,
such as INPRl, PRI, OUTCLASS, STREAM, AT, and DATE are supported.

If the OCS-ENABLED flag is set to Y on the System Profile (SP) screen, the
EXPRESS SUBMIT facility is invoked enabling you to schedule the
transaction. If the flag is set to N, you are promptedto supply the login
values and MPE:STREAM options for the transaction job before it is

When you use the BATCH parameterunder UNIX, LIBRARIAN launches
jobs using the UNIX at command LIBRARIAN prompts you for at
options, or you can set the environment variable, LIBBATCH, to provide
these options.

Figure 3-4 illustrates the use of the BATCH parameterwith the COPY
command (user supplied information is shown in bold).

streamed.

)COPY REL1.00 OF ’lI FINPROD TO =.TEST;BATCH;OLDNAME+LL

AUTHORIZING %FINPROD
6 files found

REQUEST STATUS
6 authorized 0 conditional 0 violation 0 excluded

SHOW AUTHORIZED IN/Y)? N

CONTINUE THIS OPERATION (Y/N)? Y
MPE Jobname (OCSMOVEJ): TESTJOB
User/Password PAGR):
Account/Password (PROD): PROD/TUBE
Group/Password PUB):
Job Logan Parms I) NPR1=8;PRI=DS;OUTCLASS=LP,B):
MPE STREAM Parameters (Optional); AT 03M

If your login computer is not the host computer, where the UBRARIAN databases are
found, please enter the System ID where the databases reside. Otherwise, just press
(RETURN>.

Host Computer System ID:

CREATING BATCH JOBSTREAM " PROCESSING REQUEST

ff J94

Figure 3-4. Using the BATCH Parameter

File Transactions 3-19

LIBRARiAN Commands in Jobstrearns
You can run the LIBRARIAN program from a jobstream to perform
complete transactions, including authorization, in batch mode For
example, you could set up a nightly job to move all approved files to
production,

Running LIBRARIAN from a jobstream is useful when large numbers of
files are involved. For example, if the fileset has 200 members and
secondaries exist in several locations, the execution of a step could take

By scheduling a jobstream to run late at night, you can execute
transactions when the system is least busy. You can schedule a job to run
after production has completed so that the files are copied to the areas
where they will be used the next day

When you run LIBRARIAN in a jobstream, remember to identify the user
and password, We recommend that LIBI4QUAN passwords in jobstreams
be filled in dynamically when streamed through a scheduler or other
stream utility that supports parameter substitution

You can set up a job with a defined limit for errors or violations. For
example, you can specify that the step can be performed only when there
are no violations (MOVIOLATIONS), creating an "all-or-nothing" operation.
You can also specify the number of times to attempt linking to a remote
MPE system that is not responding with RETRY.

Figure 3-5 illustrates runrung LIBRAS LI&J from a jobstream to poll for
approved files and move those files to the test area. The sample job
SUBMITJ performs the SUBMIT step in the DEVEL route of the
HNANCE application. The SUBMIT step is defined to move files from
the development area to the test area if the prestep APPROVE has been
performed.

more time.

! JOB SUBMITJ. MGR.FINTST
! CONTINUE
! UB
USER LIBMGR:UB
SUBMIT %FINANCE AT @.O.FINDEV; WRITE: MIODIFIED
EXIT
!EOJ

¹! /b!n/sh
ocslib -batch<ad!!!
USER LIBMGR:UB
SUBMIT %FINANCE AT O.O.FINDEV; WRITE; MODIFIED
EXIT
I I I

Figure 3-5. Using LIBRARIAN Commands in a JobstTeam

The sample SUBMITJ job logs on to the FINTST account and runs the
LIBRARIAN program. Notice that a LIBRARIAN user and password
must be supplied. Default answers are supplied automatically where the
user would normaHy be promptedonline.

3-20 U BRARIAN/IX User's Guide

LIBRARIAN then authorizes all secondaries of the step's documented
61eset in the specified location. Any secondaries without wri te-mode
access that have not been modified are not authorized. Any f i les with
unsatisfied presteps are violations.

LIBRARIAN moves each authorized file to the specified testing location.
Complete authorization and execution information appears in the job
listing.

With this use of LIBRARIAN for automatic polling, LIBRARIAN
authorizes any approved files and rejects files that are not ready to move
as violations.

How to Check Transaction Status
LIBRARIAN sets several variables QCWs for MPH) when executing a file
operation. You can reference these values in your jobstreams or macros to
control further activities. For example, assume you want a job to perform
an activity that depends on the successful movement of all files in a fileset
to another location. You could check the LIBFAIL variable to see if all
authorized files for the previous LIBRARIAN command were moved
successfully. See Table 3 — 5 for a list of the LIBRARIAN variables.

Table 3-5. UBRARIAN JCWs

JCW/Variable

L!BAUTHORIZED
UBCONDITIONAL

UBEXCLUDED
LIBMATCHES

LI BVIOLATIONS
LIBERRORS

UBFAIL
transaction

Function

Number of files authorized
Number of files conditional on read

Number of excluded files
Number of files in which matches were found by the
SCAN command
Number of violations
Number of violations and conditional files
Number of files unsuccessfully processed in the last

Number of files successfully processed in the lastUBOK
transaction

The last LIBRARIAN en or numberUBJCW

File Transactions 3-2 i

Reviewing File lnforrnaf ion

offiine.

The VERIFY comrt~d (a va i lable from the Info menu) offers extensive
information about files. You can review information such as who last
checked out a file and when, the location to which the file was copied,
and what step was used to perform the copy. You can review the
information online or use the LP parameter to send the information

The VERIFY corruTTand accepts all file references as described for other
comm Inds. In addition, three parameters are provided for further
refinement of the file selection.

OWNER = username

STEP = step. route. application

MODE = WRITE/READ

Selects only secondary 61es whose owner
is the one you specify.

Selects files with the specified step as the
most recent step performed.

Selects only secondaries in either read or
write — mode.

When you issue the VERIFY command, a menu of formats displays. Each
format includes different types of information. Figure 3-6 shows the
VERIFY menu.

L I B R A R I A N V E R I F Y N E N U
sass s s ssa s s a a s a as a a a s a a a s a a aa a a a a s s a a a a a a s s s s s a a a a

6 Flies 8 Unknaen 6 Nesters 8 Secanderias 8 Retained 8 D e l t a

[81] Actual Nodificelian Tinestaap, Fi lect’ eil f i l es
[82) L (8 Nodificatian Tieestmp. Lock Status... . . . el I f i l e s
[83) Associated Nester File (or Delta File). e l l f i l es
[843 Assaclated Nester Fi leset(s),. a i I f l les
[85] Associated Pro)eel (s). al I f i les
[86] Associated User Fi least(s),. . . , , ai I f i le s
[87) Version Infaraet ion.

. . . , e l i f i l es
[INI) Nester F I le Counters. e a s ter f I les anlg
[89] Location of Brit~ Copg easter f i les onig
[18] Preoims Versians (Oenerated Files).. casters/secondaries
[lt] Ih ster. Access Node. Expiratim. Esceptians... secondaries anlg
[IB] L est Step. secondaries onlg
[l3] S t ep Historg. seconder i es anl g
[l4] O r i g inal Fi le Naca. retained files anig
[I5) D a t e Retained, Expiratian Date.. retained files anig
[l6) R evision Infmmatian/Tag.... el I tracked files
[I?) R eulsian Historg. easter f i les onl g
[IB) Languag~ipt lan. ea s ter f i ies onlg
[l9) R e turn lo LIBRARIAN praapt (ar 0)
Forest Nueber [.LP]?

a aa a assas s sa a s a a a as a a a a s a s sa a o � aaa s a s s s s a a a s as ss s s

Figure 3-6. VERIFY Menu

Select a format by entering the format number and LIBRARIAN displays
the requested information. You can continue to choose f ormats for the
same files until you exit and return to the LIBRARIAN prompt.

3-22 L IBRARIAN/LX User's Guide

D' you are familiar with this menu, you can bypass it by using the VER1PI’
command with the FORMAT parameter. Figure W7 is a sample display of
master 6les and associated delta files (format 3).

LIBRARIAH VERIFY (Al I Fi les/Associated Raster Fi le)

Fi le

PBlGUIN: ABC 18885. VEROHKA. L I BDVilEL
PEH6UIN: ABCZ8885. VERONICA. LIOOEVEL
PBIGUIN: ABC38885. VERONICA. LIBQEVEL
PBHIIIIN: ABC 180$S. SOURCE. LIBPRW
PBIRIIN: ABC208$5 SOURCE. LIBPRDD
PENGUIN: ABC38885. SOURCE. LIBPRQD
PEH6U IN: DOSW8$1. SOURCE, LIBPRQQ
PBIGUIN: 088$8882. SOURCE LI BPWD
PMiUIN: DWWW3, SOURCE. L I BPRQQ
spain ik: /apt/ocs/acs I i b/ I ibdeue I /

paul/ebc1888 c
sputnik:/apt/ocs/ocsl ib/i ibdevel/

pau I /ebc3888. c
sputnik:/apt/ocs/ocs I i 0/I ibprad/

sputnik: iapt/acs/ocs I lb/I I bprod/

H a

8

abc 1888. c

ebc3$%. c

I i le
TUpe ltester Fi le

5 PENGUIN:RBC18005.SOURCE. LIBPROD
S PBKUIH: ASC21HIOS. SOURCE. L IHPRQD
S PENGUIN: AOC3$OOS, SOURCE. L IBPRXI
H (DE LTA F I(E: DOW8881� CQBIIL/RPG)
H (DE LTA FILE: IHSBBWZ- COBOL/RPG)

(DELT4 F I LE: DIH1$8803 � COBOL/RP6)
0 PEH6UIN:ASC1888S. SOURCE.LIBPROD OK
D PENGUIN - ABC2888S. SOURCE. LIBPRDD GK
0 PEHGUIH: ABC3888S. SOURCE, LIBPRQO GK
5 s putnik:/apt/ocs/ocsl ib/I ibprad/

5 sputnik-/opt/ocs/ocs I i b/ I i bprod/

ebc1888. c

abc3$W. c

Figure 3-7. Sample VERIFY Display

File Transactions 3-23

3-24 L IBRARIAN/IX User's Guide

Revisions

LIBRARIAN helps you track and control revisions of individual files A
revision is any set of changes made to a file and checked in to the library.
This chapter describes how to manage revisions of 6les within
LIBRARIAN. Topics discussed in this chapter indude:

� Ma n aging Revisions

� Id entifying Revisions

� Ho w R evisions are Stored

� Me r g ing Revisions

a Comparing and Printing Revisions

� Pu rg ing Delta Files

� Vi e w ing Revision Information

Managing Revisions
A revision refers to a file after changes have been made and checked in to
the library. Each time you check out, edit, and check a file back in,
LIBRARL&J assigns a new revision identifier to the file. Revision
identifiers for each file reflect the number of times modifications have
been made.

A revision is different from a version because it refers to a single file only.
A version refers to an entire application at a specific point in time. Refer
to Chapter 7, "Versions", in the LIBRARIAN!iX Administrator's Guide.

By default, a checkout step obtains the latest revision of a file; any
previous revision is obtained by specifying the revision's identifier as a
parameter to the checkout step. For example, if the current revision of
MYFILE is A:4, you can obtain the A:2 revision by issuing this command:

>ABC-OLJT MYFILE;REV=A:2

Checkmg out an older revision of a file creates a branch. Branching is
discussed later in this chapter.

Before checking out previous revisions of files, it is important to
understand how revisions are named, and what happens when they are
checked out.

Revisions 4- 1

Identifying Revisions
Revision identifiers have a version ID prefix, or an asterisk (') prefix if no
version exists. This is followed by a set of counters that uniquely identify
the particular revision. Refer to Chapter 7, "Versions", in the
LIBRARIAN!i X Administrator's Guide for more information. The counters
include the version count and any number of branch/leaf count pairs
delimited by periods. Revision IDs have the following general format.

version id;vcoLInt[.branch ieaf...j

To understand revision IDs, think of the file's revision path as a tree The
version count grows along the trunk of the tree, which starts at 0, and
increments by 1 f' or each revision to a file within a version. If the revision
ID contains only a version count, the revision is considered to be on the
main development path (the trunk of the tree).

Branching occurs when you check out previous revisions of files, or force
branches off the latest revision. The branch count represents the number
of branches that have grown from a revision. The leaf count represents
the number of revisions along a branch. Thus, the branch count and leaf
count are always appended to the revision ID in pairs, allowing you to

Figure 4 — 1 illustrates the revision history tree for a hypothetical file by
showing its revision IDs.

branch off the leaves of branches.

BRANCH/LEAF
A:3.2.1

AI4 IN DEVELOPMENT
(NOT cHEcKED IN)

VERSIONPAIRS
ID

A:3.1'0 .'I 0 A:3.I.'1.1 1
BRANCH
COUNT

A:3.1.3 A:3 . 1 2 A:3.1. 1

A.'3.1.2,1.1
A:1.2T — A.192 — A:1,2$VERSION

COUNT
A:1.1.1

LEAF
COUNT

Figure 4-1, A Re v i sion Tree

In this illustration, the version ID is A and all file identifiers start with the
prefix A:. The base revision has a version count (VCOUNT) of 0, set when
the version was defined. Subsequent revisions cause VCOUNT to
increment by 1 with each file check in. Base revisions are protected from
being flushed until you define the associated version as obsolete

4-2 L IBRARIA/iX User's Guide

To check out a previous revision you can specify the REVISION parameter
of the checkout step. For example, if you wish to check out revision A: j. of
MYFILE, your checkout step would look something like this.

)ABC-OVT MYFILE;REV=A:1

Branching
A branch is a revision that is not checked in on the main development
path (trunk).

When you attempt to check out a file which has already been checked out
by another user, LIBRARIAN gives you the option of accessing the file
conditionally. If you answer NO, no copy will be znade However, if you
respond YES to the conditional prompt, you wil l be prompted to indicate
whether you want to create a branch.

If you respond YES, you will get a WRITE mode copy of the file on a
branch. If you answer NO, you will have a READ mode copy of the file.

Branching also occurs when you checkout a previous revision of a master
file, or use the BRANCH parazneter.

In summary, branching occurs when
e a revision other than the latest trunk revision is checked out and

checked in (a branch is automatically created),

� a b ranch is forced from the latest leaf on a branch revision, or the
latest trunk revision, by specifying the BRANCH parameter on a
checkout step.

Branching is useful to fix a problezn in a previous file revision without
affecting the current revision. For example, if you fix a bug in a software

program and wish to send out a patch to fix a previous version of the
application, you would check out the problemfiles (previous revisions),
correct the problezns, and check the files back in — automatically creating
a branch. Later, you can merge these changes into the main development
path as described later in this chapter.

When you create a branch, LIBRARIAN appends a branch pair to the
revision ID of the revision you checked out. In Figure 4 — j., if you checked
out the A:1 revision, then the branch A:1.1.1 would be created. Another
user checking out A:1 causes a second branch, A:1.2.1, to be created.

Checking out and checking in the most recent revision on a branch causes
the leaf count to increment. The A:1.2.1 revision was checked out, revised,
and checked in two znore tiznes, increasing the leaf count each tizne
(A:1.2.2 and A:1.2.3).

Checking out previous branches of revisions causes further branches to
be created. In Figure 4 — 2, the A:3.1.1 revision of the file was checked out,
after being revised as A:3.1.2. This causes a new branch, A.3.1.1.1.1 to be
created. For each branch created, a new branch count and leaf count are
appended to the previous revision ID.

Revisions 4- 3

Forced Branching
You can force branching to happen when checking out a file. This can be
useful when you know someone else will need the file in write — mode,
and you do not want your changes to be reflected on the main

development path. For example, if you want to check out the current
revision of the file MYFILE and force a branch, issue the following
command:

>ABC-OUT MYFILE;BRANCH

Assuming that MYFILE has the revision tree illustrated in Figure 4 — 2, the
most current revision (in this case, A:3) is checked out as a new branch. In
this example, A:3.1.1 is created.

A:3 ~ A:3 . 1 .1

t’2 ~ A:2 .1.1 ~ A:2 . 1 .2

A:1.1.2~ A ;1, 1 , 1 ~ A:1

I
A:0

Figure 4-2. Revision Tree for MYFILE

If any write-mode copies exist, the only method of obtaining another
write — mode copy is to create a branch. Branches can later be merged into
the main development path as described in "Revisions" later in this
chapter

Prevenfing Branching
You can use the NOBRANCH parameter to block the use of the BRANCH
option. The LIBRARIAN or the Application Manager can prevent users
from using BRANCH by coding NOBRANCH in a macro, or by configuring
this option as an additional step parameter on the STO screen.

The NOBRANCH option prevents the branch prompt from appearing and
prevents a user from using the BRANCH parameter.Additionally,
NOBRANCH prevents the user from checking out a write — mode copy of a
previous revision of a file.

New Fiies
New fi les are 6les that are introduced "new" to LIBRARIAN in a
development or test location by a step with a Pending Production Area
(see PP screen in the LIBRARIAN Reference Guide), rather than being
checked out from the library. These files may be entirely new programs
or other files that do not exist in the library, or may simply be new
generations of files that were not checked out but wil l be checked in "on
top of" existing master files.

4-4 L IBRARIA/IX User's Guide

New files that will not replace existing master files are automatically
assigned a revision number of

< current version >:1

by LIBRARIAN T h e idea here is that these files are part of the current
version, but are not "base revisions" ((cunent version > '0), since base
revisions by definition were there when the version was created.

New' files that will replace an existing master file are assigned the next
available revision number on the trunk — i.e.,

<current version>: <nextvcount>

as though the current master 61e had been checked out.

New 61es, then, cannot be branched in either case. If you branch a source
file, and want the related executable file to bear the same revision number
as the source, you must check out the executable file as well as the source,
branching to create the desired revision number

How Revisions Are Stored
Previous revisions of 6les must be retained if they are going to be
recovered or modified later. The base revision of a file for a version is
automatically retained. Intermediate revisions are retained if the step
RETAIN parameter is in effect. Refer to Chapter 4, "File Movement Rules",
in the LIB~V A N ! iX Administrator's Guide for more i nformation about
setting the RETAIN parameter on step definitions.

Revisions are typically retained in the master library. You can also retain
files in secondary locations by using the RETAIN parameter on a step that
creates files in a secondary location where the file already exists.

In addition to a file's revision identifier, a generation count is recorded.
The generation count (GCOUNT) begins at 1 when the file is created, and
increments by 1 each time the file is replaced by a new revision. Al l
revisions on the same branch off of the trunk have the same GCOU NT. You
can only identify branches using revision IDs.

Delta Files vs. Generation Files
Revisions to text files can be retained either in delta files or as generation

� A de l tafile is a special file containing the complete text of the first
source file revision and a history of all subsequent changes — i.e.,
insertions and deletions, who made the changes, and when they were
made. Only revisions to text files can be retained as deltas; all other
files are retained as generation files.

� A ge n erationfile is a complete compressed archive copy of an older

files.

revision of a file.

Revisions 4-5

By default, retained files are stored as generation files. If Deita is set to Y
for an application on the Applications (AP) screen, previous revisions of
text files within that application are stored as deltas.

Most users do not need to know whether revisions are being stored as
generation files or delta files. Delta files take less space than the
corresponding generation files and enable the use of LIBRARLtQU's merge

LIBRAIUAN tracks revisions using a system generated nazne in the
forznat GI¹¹¹¹%¹ (MPE) or .P¹¹¹ ¹C¹ (UMX). These unique G — names
are derived randomly. The G — name for a revision appears on reports and
on LIBRARIAN screens. For CM/KSAM files (MPE), the key file, if not
coznpressed, is stored as C%¹¹ ¹% ¹ .

Delta filenames are in the format D¹4¹¹~ (M PE) or .d@¹¹¹~
(UNIX). Delta file numbering is sequential.

and annotation feature.

Location of Retained Files
Generation files typically reside in the same location as the corresponding
master file; you can znove these files to another location by using the
MOVE command. You can only move delta files if you also move the
corresponding master file

Managing Generation and Delta Files
You can coznpress generation files to conserve disk space. If you want to
have LIBRARIAN compress these 61es autoznatically, use the Systezn
Profile (SP) screen to set Auto-Compress Retained Files to "Y".

When you want to distribute these compressed generation files using the
REVISION and TAG parameters, be sure to use the DECOMPRESS
parazneter. This ensures that these flles do not remain compressed in the
production location.

You can use the FLUSH uti l ity and PURGE comm'md to delete revisions
that you no longer need. Keep in mind that the base revision of a file is
kept until you znake the version to wtuch it belongs obsolete. When you
Hush obsolete revisions from delta files, the delta file usually becomes

All other retained files have expiration dates, and you can flush them
when they have expired. The expiration date for 61es created with steps is
determined by the number of days you specified on the Steps (ST) screen.
When you use the RETAIN parameter in a command, the files created by
the comznand expire immediately. You can change the expiration date for
a file by using SET EXPDATE. If you want to purge expired files, run the
FLUSH utility, as described in Chapter 1, "Commands", in the
LIBRA fUAN/iX Reference Guide.

sznaller.

4-6 L IBRARIA/iX User's Guide

In addition to the expiration date of the retained file, you can specify the
minimum number of generation files for a master file that should be kept
by using the Systezn Profile screen (SP). The FLUSH POLiCY field on the SP
screen allows you to enter a number from 0 to 99 for the number of
previous generations that should be retained If a retained revision has
expired, but is within the flush policy limit, the retained file is kept.

The FLUSH policy applies to generations along the trunk. I f a trunk re­
vision qualifies to be flushed, then all revisions on a branch from that
file are also flushed,

Warning

IVlerging Revisions
To merge revisions, use the MERGE parameter. Merge is only available
when revisions are stored as deltas. Merge is also restricted to
master — to-secondary (checkout) steps. This allows you to resolve any
conflicts and test the result prior to introducing the merged file into the
library.

Note You can only merge revisions of the same file. You cannot merge two
different files (i.e., files must come from the same base).

For example, suppose Figure 4 — 2 shows the current revision tree for

If you want to merge the changes from A:1.1 2 and A:2.1.2 with A:3 to
create A.4, check out A:3 as follows:

MYVILE,

)ABC-OUT MYFiLE; MERGE=A:1.1.2, A:2.1.2

Figure 4-3 illustrates merging two branch revisions into the latest trunk
revision.

Ai3

MERGE

2 ~ A:2. 1 . 1 A:2.1 . 2

A:1.1.2 A:1.1 . 1 ~ A:1

Figure 4-3. Merging Two Branches into the Trunk

Revisions 4 - 7

Merging Specific Revisions
You can merge changes from a specific revision by using the exclamation
point (!) in your merge list This includes only changes made in that
revision, ignoring previous changes along that branch. For example:

)ABC-OUT MYFILE;MERGE=! A:1.1.2, A:2.1.2

Figure 4 — 4 illustrates merging a specific set of changes. The solid arrows
indicate changes included in this merge. Changesmade between
revisions A:1 and A:5.1.1 are not included in the merge.

A3

MERGE

A:3

:2~ A:2 . 1 .1 A:2.1.2

(mis set of A:1.1.
changes only)

A:1.1. &› � - A;1

t
A:0

Figure 4-4. Merging a Specific Revision

4-8 L IBRARIA/IX User's Guide

Excluding Revisions from a Merge
You can exclude specific changes when merging revisions using the
minus (—) sign in your merge list. This includes all changes along the
development path, except for the specified revision. For example:

Figure 4 — 5 illustrates excluding a set of changes f rom a merge. The solid
arrows indicate changes included in this merge.

>ABC-OUT MYFILE;MERGE=A:1.] .2, A:2.1.2, -A:2.1.1

At3

MERGE

Exdude this

:2­ - gA :2.1.1 A:2.1 .2

t
A:1.1.2 A:1.1 . 1 A:1 ctxmge

A;0

Figure 4-5. Merging Two Branches with Exclusions

Resolving Conflicts
LIBRARIAN noti f ies you if i t encounters a conflict during a merge I f
LIBRARj~ in fo rms you that it encountered changes affecting the same
part of the code (e.g., you changed a line in one revision that was deleted
in another revision being merged), you must decide whether to retain the

LIBRARIAN annotates the conflicting blocks with comments in the
format for the language of that file For more details on language, refer to
the Fileset (FS) screen in Chapter 5, "Screens", in the LIBRARIAN/iX
Reference Guide

Using your editor, search the merged file (in the development area) for
the string < =? => to locate conflicts. Figure 4 — 6 contains sample conflict

insertion or the deletion.

notation for a COBOL file.

Revisions 4-9

001000
001100
001200
001300
001400
001500
001600
001700
001800
001 900
002000
002100
002200

002400
002500
002600
002700
002800
002900
003000
003100
003200

0034K
003500
003600
003700
003800
003900
004000
004100

004300
004400
004500

004700
004800
004900
005000
005100
005200

*< E —)

PROCEDURE DMSION.
PARAGRAPH-1.

01 RECEIVE-BUFFER-AREA:

DISPLAY" ~' ENDING DEMOREAD .
STOP RUN.

PARAGRAPH-2,

IF CALl.-STATUS EQUAL ZERO

LABEL RECORDS ARE OMITTED.

OPEN OUTPUT OUTPUT-FILE.
DISPLAY ENTER FILE TO READ:".
ACCEPT FILE-NAME.
DISPLAY READING " FILE-NAME,

PERFORM PARAGRAPH-2

05 RECEIVE-BUFFER PIC X(79).
05 RLLER PIC X(4019),

SELECT OUTPUT-FiiLZ ASSIGN TO LISTING".

SELECT OUTPUT-RLE ASSIGN TO "OUTPUT".

IDENTIFiCATION DMSION.
PROGRAM-ID. CALLREAD,
ENVIRONMENT DIVISION.
INPUTOUTPUT SECTION.
FILE-CONTROL.
?????? Merge Con6ict?????? <=? >
Revision A:1 (08/23/91 14:37 DEREK)

Revision A:1 [End INSERT)
?????? End MergeContilct?????? < =? = >

DATA DMS ION.
FILE SELECTION,
FD OUTPUT-RLE

01 RECORD-BUFFER PIC X(79),
WORKING-STORAGE SECTION.
01 FILE-NAME PIC X(38) VAUJE SPACE
01 CALL-STATUS PIC S9(4) COMP VALUE 0

UNTIL CALL-STATUS NOT EQUAL ZERO.

CALL "SUB100" USING @FlLE-NAME, ORECEIVE-BUFFER,
CALL-STATUS,

WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 4-6, Sample Conflict Notation

Comparing and Printing Revisions
You can compare revisions using the FROMREV and TOREV parameters
with the LCOMPARE and SCOMPARE commands. For example, to
compare the second and base revisions of MYFILE, type:

>LCOMPARE MYF(LE;FROMREV=A:2;TOREV=A:0

Figure 4 — 7 shows the LCOMPARE report highlighting changes between
revisions A 0 and A:2. This report can be generated online or printed to
an offline device.

4-10 L (I3RARlA/iX User's Guide

UBRARIAN File Difference Lfsfing

Reference File
Compare File

: ABC1000S.MASTER.UB400 [A;0] MON, AUG 19,1991, 11;16 AM
: ABC1000S.MASTER.UB400 [A:2) Page 1

DELETE
INSERT

001 000 ID E NTIFICATION DIVISION.

PROGRAM-ID. DEMOREAD.
ENVIRONMENT DMSION.
INPUT-OUTPUT SECTION.
FILE-CONTROL

INSERT
INSERT
INSERT

INSERT

002000
003000
004000
005000
006000
007000
008000
009000
010000
011000
012000
013000
014000
015000
016000
017000
018000
019000
020000
021 000
022000
023000
024000

DATA DIVISION.
R LE SEC'TION.
FD OUTPUT-RLE

01 RECORD-BUFFER PIC X(132).
FD INPUT-RLE

01 RECORD-BUFFER PIC X(79).
WORKING-STORAGE SECTION.
01 FILE-NAME
01 CALL-STATUS
01 RECEIVE-BUFFER-AREA:

LABEL RECORDS ARE OMITTED,

LABEL RECORDS ARE OMITTED.

05 RECEIVE-BUFFER PIC X(79).
05 FILLER P(C X(4019),

SELECT OUTPUT-FILE ASSIGN TO "OUTPUT .
SELECT INPUT-FILE ASSIGN TO "INPUT .

PIC X(38) VALUE SPACE.
PIC S9(4) COMP VALUE 0

PROCEDURE DIVISION.
PARAGRAPH-1,

+++** m s* a a s e a e a e e e e a a + wa t ++ s s a s s s a s sssss

0008 MATCHING UNES NOT DISPLAYED ~
~ 4~+k k k ~ ~ & W rt & 4 * kt * * * *k lt+0 4t t k k l k kk tI t t

DISPLAY " ~*ENDING DEMOREAD".
STOP RUN.

035000
0360IM
037000
038000
039000

PARAGRAP H-2.

CALL SUB100" USING IRLE-NAME, @RECENE-BUFFER,
CAU=STATU S.

041 000
042000

IF CALL-STATUS EQUAL ZERO
WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 4-7. L C OMPARE Oft)inc Printout

Annotated Listings
You can create a listing that highlights example of the changes that were
made for each revision of a file using the ANNOTATE parameterwith the
PRINT command if revisions are stored in a delta file. For example,the
following command produces the printout shown in Figure 4 — 8.

)PR)NT ABC1000S. MASTER:REV=A;2;ANNOTATE

For information on command syntax and usage, refer to Chapter 1,
"Comm~ d - " , in the L1PR&UAY/iX Reference Guide.

For information on printing, comparing, and scanning files, refer to
Chapter 5, "Printing, Scanning, and Comparing Files".

Revisions 4- 11

FILENAME: ABC100OS.MASTER.UB400 [A:21

001000 IDE NTIFICATION DMSION.

003000
004000
005000
006000
007000

009000
01 0000
01 1000
012000
013000
014000
015000
016000
017000
018000
019000
020000
021000
022000
023000
024000
025000
026000
027000
028000
029000
030000
031000
032000
033000
034000
035000
036000
037000

PROCEDURE DMSION.
PARAGRAPH-l.

PROGRAM-ID. DEMOREAD.
ENVIRONMENT DMSION.
INPUT-OUTPUT SECTION.
FILE-CONTROL

WORKING-STORAGE SECTION.

LABEL RECORDS ARE OMITTED,

OPEN OUTPUT OUTPUT-FILE
DISPLAY "ENTER FILE TO READ: .
ACCEPT FILE-NAME.
DISPLAY READING RLE-NAME.

PERFORM PARAGRAPH-2

DISPLAY ' ~' ENDING DEMOREAD"
STOP RUN.

05 RECEIVE-BUFFER PIC X(79).
05 FILLER PIC X(401 9).

UNTIL CALL-STATUS NOT EQUAL ZERO.

DATA DMSION.
FILE SECTION.
FD OUTPUT-FILE

01 RECORD-BUFFER PIC X(132),
FD INPUT-FILE <-INSERT Rev AN [08/16/91 12>7Z8 DEREIq

LABEL RECORDS ARE OMITTED. <-INSERT Rev AZ [08/16/91 12:37>8 DEREIq
01 RECORD-BUFFER PIC X(79). <-INSERT Rev A:2 [08/16/91 12:37:28 DEREIq

01 FILE-NAME PIC X(38) VALUE SPACE,
01 CALL-STATUS PIC S9(4) COMP VALUE 0
01 RECEIVE-BUFFER-AREA:

SELECT OUTPUT-RLE ASSIGN TO 'OUTPUT .
SELECT INPUT-FILE ASSIGN TO "INPUT, <-INSERT Rev A:2 [08/16/91 12:37:28 DEREIq

<-DELETE Rev A:1 [08/1 6/91 12:37:38 DEREK]
<-INSERT Rev A:1 [08/1 6/91 12:37:38 DEREIq

PARAGRAPH-2.

CALL "SUB100 USING @RE-NAME, @RECEIVE-BUFFER,
CALL STATUS.

041000
042000 IF CALL-STATUS EQUAL ZERO

WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 4-8. P RINT with ANNOTATE Parameter

Purging Delta Files
If you purge a master file that has an associated delta file, the delta file is
notautomatically purged. This enables restoration of the master file at a
later time, To purge the delta file, use the DELTA parameterwith the
PURGE command. For example, purge MY'FILE and its corresponding
delta file by typing:

)PURGE MYFILE;DELTA

This comm Ind deletes the delta file and the master file.

4-12 L IBRARIA/IX User's Guide

Viewing Revision Information
You can review revision information by using the VERIFY comInand For
example, to view information for files in the @.MASTER.LIB400 location,

ype

)VERIFY @.MASTER,UB400

This comm'md produces the menu shown in Figure 4-9.

L I B R A R I A H V E R I F V ll E H U

a esaa c a
6 Files 8 Unknown 6 Rasters 8 Secondaries

[81]
[82]
[831
[M]
[85]
[86]
[87]
[88]
[89]
[18]
[11]
I; 12]
[’13]
[I<]
[15]
[16]
[17]
[18]
[19]
Forest

Actual llodificat ion Tinestaap, Fi lecode....
LIB Hadl f ication Tieestaap. Lock Status... .
A ssociated Raster File (or Delta File)
A ssociated Hester Fi leset(s)..
Associated Project (s).
A ssociated User F’i ieset (s)....
Version Infartattion.
nester Fi le Counters.
Locatian of Nri le-Rode Copg.....
Previous Versions (6enerated Files).......,
Oaner, Recess Rode. Exp lrat ion. Except ians.
Last Step. .
Step Historg.
Original File Hase.
Date Retained. Expiration D ate...
Revislan Infaraat ion/Tag...................
Revisian „starg.
Language/Descr i p t i an.
Return to L IRRARIAH praapt (or '8 ')
Hut&or [,LP]?

t C o ! I* Z C 5 0 5 C a O s s s Oa s a aa a a s n a a ma m e r a n e e
0 Retained 8 Delta

al I f i l es
all f i l es
a il f l i e s
a ll f i l e s
all f i l e s
el I f i l es
el I f i l es
easter f i les onlg
easter files onig
masters/seconder i es
seconder I es oni g
secawbtl les oui g
secondaries onlg
retained fi les anlg
retained fi les onlg

easter fi les onlg
� aster files anlg

all tracked f I les

Figure 4-9. V ERIFY Menu

Formats 16 and 17 show current revision/tag information and revision
history. A related display is format 3, which lists the files and delta file
information for a set of master file.

Figure 4 — 10 shows forInat 16, revision information, for the ABC
application and Figure 4 — 11 shows format 17 for these five files.

LIBRNlIAH VERIFY (Nasters-Secmafar i as/Revision Infernal i on)

Fi le

PDI6UIH: ABC 1888S . SOURCE. LIBPROD

PEHBUIH: ABC2888S. SOURCE. LIBPROD
PDI6UIH: ABC3888S . SDUHK. LIBPRUO

sputnik: /apt/ocs/ocs I i b/ I ibprad/

sputnik:/apt/acs Jocsl ib/I ibprod/

spu tnik: / opt/ocs/ocs I ib/ I ibprod/

V.2.88: 1
PATOI-281
V 2.80:2
V 2.88:1
PATQI-28 1
V.2.88:2

V.2. 88-3
PATOIS-281
V.2.88:2

Latest Rev i s i on/Tag

abc1888. c

abc2888. c

abc3888. c

Figure 4-10. Master-Secondary Revision Data (VERIFY Format 16)

Revisions 4- 13

LIBRARIAN VERIFV Oiaster Fi ies/Revision kistorg)

Hester Fl le
Rev i sion

PENUGIN: ABC200BS. SOURCE. L IBPRDD
V.2.00:2 SR2935
V.2. 80: I . 1. 1 SR9210
V.2,00: I SR92IB
V,2.00:8
«:I

sputnik:/apt/ocs/ocs I ib/I ihprad/ebC2$80.C

Pro j act Tog

PATCH200

PAT CH101

OEC 15,
DEC 13,
LKC 12,
DEC ll,
NDV 0,

HAR 10.
PEND INli
HAR 5,
FEB 14,
FEB 6,
FEB 2,
JAN 22.

Dote/Tine

V.2.00;3 SR9$35
V.2.00-2.2.1 SR9670
V. 2. 00- 2. 1. 2 SR9622
V.2.00-2. 1. 1 SR9510
V.2.00-’2 SR9211
V.2.08: I SR9210
V.2.0D: 0

PAT CH208
1994.
1994.
1994.
1994,
1994.

1993,
1993.
1993.
1993,
’1993,

1994. 1 : 0 7 Ptf

2:42 PH
11:07 AH
10:34 RH
9:18 AH
2:45 PH

5:05 PH
2:48 PH
10".06 AH
1:22 PH

PATCN101

Figure 4-11. Revision History (VERIFY Format 17)

Figure 4 — 12 shows the delta files associated with the ABC application
using format 3

LIBRRAIRN VERIFY (AI I F i les/Assoc ioted Hester Fi le)

Fi le
TBpe Hosier Fi leFile

PENGUIN: ABC I GOBS. VERONICA. LIIMKVEL
PENGUIN: RIK200BS, VEINNICA, LI BDEVEL
PEN6UIN: RBC300$S, VDIONICA, LI BDEVEL
PEN6UIN: RBC1$00S. SOURCE. L IBPRGD
PEN6UIN: ABC2$$$S. SOURCE. L IBPRQD
PEN6UIK: ASC300$S. SI11KE. L IBPRGD
PEN6UIR. DD080801. SQUIKE. L IBPINNI
PEN6UIN: DINNKI082. SOURCE. L IBPRGD
PEN6U IN: OBBIKI003. IQKE. L IBPRQD
spu t nik: /opt�/ocs/ocs I ib/ I i bdeve I /
pov I /abc I 088. c

sputnik: /opt/ocslocs I I b/ I I bdeve I /
pov I /ebc30$0. c
sputnik:/opt�/ocs/ocs I ib/I I bprod/

sputnik:/op I/ocs/ocs I ib/I i bprad/
ebc3NNI,c

H

abc IM8.c

ebc3800. c

S PENGUIN: ABC1088S. SIDKE.LIBPAQO
S PENGUIN: RBC21$8S. SIIRCE. LIBPRQD
S PENGLIIN: RBC3$$0S. SOURCE. L IBPRQD
H (DE LTA F IlE: D0080001 � CIKRJRPG)
H ~ IGELTA FILE: DBR10002 � COBOL/RPG)

tOELTA FIlE: DBNIB003 � 13100L/RPG)
D PEM6UIN: NK I BBBS. SOURCE. LIBPIKI O K
D PEN6UIN: ABC21NKIS. SOURCE. LIBPRQO G K
D PENGUIN - ABC3800S. SOURCE LI BPROD GK
6 sputnik: /apt/ocs/acs I i b/i i bprad/

5 s putnik:/opt/ocs/ocsl ib/I lbprod/

abel W8.c

Figure 4-12. Version Data (VERIFY Format 3)

On format 3, note the checksuxn status on the far right. If the status is OK,
LIBRARIAN calculated the checksum and found your delta file's
integrity is okay. If you see * or ER in the checksum column, call OCS
Customer Service. This error indicates the checksum is incorrect or
LIBRARIAN cannot calculate the checksum, and you may have an
integrity problem.

4-14 L IBRARIA/IX User's Guide

Revision Reports
Revision information is available in standard LIBRAMAN reports
Table 4 — 1 lists the reports you can use to access revision data.

Title

Table 4-1. Revision information in Standard Reports

Report
Code

RRH10 Rev i s ion History

RVD10 Fil e Version Report

RVT10

RVT20 Ver s ion Tirnestamp

Version Timestamp Report

Description

Revision history for files,

Detailed information on all files in a version.

Version and timestamp information for each
file in an application

Version and timestamp information for all
files in an application that have changedExcep iions
outside of LIBRARIAN control.

Revisions 4- 15

4-16 L IBRARIA/IX User's Guide

Printing, Scanning, and
Comparing Files

In addition to powerful file movement capabilities, LIBRARIAN offers
tools that allow you to scan and compare the contents of files.

This chapter describes how to print and display files, scan and replace
strings of text, and view the differences between files.

Operations discussed in this chapter include:

� Pr i n t ing Files

� Sc anning and Replacing Text

� ComparingFiles with LCOMPARE

� Co m p ar ing f i les with SCOMPARE

Prinf ing Files files
You can view the contents of files directly from LIBRARhQU with the
PRINT corn@ and (also available from the Tools menu), which displays the
files at your terminal or offline. For example,the following command
displays the contents of a file at the terminal with l ines numbered.

>PRINT SYSA;ABC.PUB.FIN;NUMBERED

~ PRINT /usr/iinldeveI/data/abc; NUMBERED

The contents of the file are displayed one screen at a time. At the end of
each screen, you can respond to the promptto continue or quit, The
prompt includes the line number of the next line to be displayed and the
total number of lines in the file. You can proceed directly to any line by
specifying a line number at the prompt, or you can exit by typing the
letter N. For example:

~Continue (23/4825j? 367

will take you direcfly to line 367. You can only view files to which you
have read access.

Note You can print QEDIT files (HLECODE = il l) if you are using QEDIT
Version 4.L.55 or higher.

P rinting, Scanning, and Comparing Fiies 5 -1

Annotation
If you are using delta files to store revisions, you can produce an
annotated printout of your fi les that shows deletions, insertions, and
revision information such as time and date of the change For example,
use the ANNOTATE parameter with the PRINT command to view all
changes made through the second revision of the file A3,MASTER by
typing:

) PRINT A3.MASTER.LIB400;REV=A:2;ANNOTATE;OFF UNE

) PRINT /usr/master/lib400/a3;REV=A:2;ANNOTATE;OFFUNE

This produces the printout shown in Figure 5 — 1.

001000
C03000
0$300D
(N4000
005000
006000
$77000
008000
009000
010000
011000
012000
013000
01 4000
01 5$XI

017000
019000
019000
02M60
021 000
022000
Q23000
024000
025000
026000
027$X)

029000
030000
031000
032$XI
033(NO
034000
035000
036000
037$M
038$X
039000
040000
041000
042(XO
043000

RLENAME ABC1000S.MASTER.UB400 [A2)

ID ENllFI CAT(ON D MS ION.
PROGRAM � ID.CALLREAD.
PROGRAM-ID. DEMO READ.
ENVIRONMENT DIVISION.
IN PUT% UTP UT SECTION.
RLECONTROL

PROCEDURE DIVISION.
PARAGRAPH-1.

IF CALL-STATUS EQUAL ZERO

lABEL RECORDS ARE OMITTED.

DATA D MS IO N.
RLE SECTION.
FD OUTPUT-FILE

01 RECORD-BUFFER PIC X(132).
FD INPUT- RLE

01 RECORD-BUFFER PIC XP9).
WORKING-STORAGE SECTION.
01 FILE-NAME PIC X(36) VALLIE SPACE.
01 CALL-STATUS PIC S9(4) COMP VALUE 0
01 RECEIVE-BUFFER-AREA:

OPEN OUTPUT OLITPUT-FI(E
DISPLAY "ENTER FILE TO READ:".
ACCEPT RLE-NAME.
DISPLAY "READING RLE~E .

PERFORM PARAGRAPH-2

DISPlAY ’ ’" ENDING DEMOREAD
STOP RUN.

LABEL RECORDS ARE OMITTED.

05 RECEIVE-BUFFER PIC X(79).
05 FILLER PIC X(4019).

SELECT OL/IPUTWLE ASSIGN TO ’OUTPUl .
SELECT INPUT-RLE ASSIGN TO INPUl .

CALL SUB100 USING IRIE~ . IE4 IECEIVE-BUFFEIL
CALL STATUS.

UNTIL CALL~ATUS NOT EQUAL ZERO.

c<NSERT Rvv/L2
P

Wl6/91 1~ ~ DER EK)
c-INSERT Rav /L2 08/I 6/91 12Q7~ DEREK)
c-INSERT Rev /L2 [08/16/91 1~ ~ DE R EK)

c-INSERT Rev /L2 [08/I 6/91 l~ ~ DER EK)

c DELETE Rev A.1 [08/I 6/91 12~ 36 DEREIq
c-INSERT Rev A:1 [08/I 6/91 1~~ D E REK)

WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 5- I . P RINT Ofiiine Printout

Scanning and Replacing Text
The SCAN comnland (also available from the Tools menu) searches text,
binary, and compressed files for character strings, it optionally replaces
those strings of text. This command is a powerful tool for reviewing file
contents online, scanning files for text strings, and/or incorporating global
changes across large groups of files. You can search the entire file or only
search specific line or column ranges.

5-2 UBRARIAN/iX User's Guide

You can scan files if you have read access, and can replace text only if you
have write access. This restriction does not apply to Librarian Managers
and Application Managers for files in their applications. In addit ion,
users with the LIBRARIAN X capability do not need these permissions

for files that are not being tracked by LIBRA3JAN.

Note You can print QEDIT files (FILECODE = 111) if you are using QEDIT
Version 4.L.55 or higher.

You can search for a specific string of characters, or use special wildcards
for pattern matching, Addit ionally, you can include an associated

replacement string and invoke a prompt to confirm each replacement

Note Enclose the search string (search) in quotes only if it includes commas,
semicolons, slashes, or blanks.

The foHowing pattern-matching wildcards can appear anywhere in the
search string:

@ m atc h any number of any character

? rn atc h any single alphanumeric character

¹ matc h any single numeric character

match any single alphabetic character

match any single blank character

! match any single character

(...j m atc h a character in the set of characters endosed in braces (e.g.,
(ABCO. You can reference a maximum of ten character sets in a
single comnmnd

All pattern-matching wildcards (except for @) can be followed by +,
indicating a match for one or more occurrences. A minus sign (—)
following the wildcard indicates zero or more occurrences. For example,
the search string ¹+ informs LIBRAIUAN to search for a string containing

The following characters can be used at the beginning and end of search
strings, respectively:

[match string at beginrung of line only.

J match string at end of line only.

The backslash (K) can precede any pattern-matching character and itself

one or more consecutive numeric characters.

to indicate a literal match.

Printing, Scanning, and ComparingFiies 5- 3

Examples

to case, and lists all of the lines where a match is found.

The following command searches all source files in the finance
application for all occurrences of the string $INCLUDE, without sensitivity

>SCAN @.SOURCE.FIN; TEXT=$!NCLUDE; IGNORE

> SCAN /usr/fin/source/*.pas; TEXT=$INCLUDE;IGNORE

The following example searches the FIN fileset for all files that include
references to version 2 (e.g., VER 2.00, 2.01, 2.02, etc.). The metacharacters
¹ in the coznmand indicate any numeric value. The comm md specifies
one match so that the scanning of each file stops after locating one

The LISTFILE parazneter directs the prograzn to create a list6le that
includes the names of all files where a match was found. Then, you can
specify the list6le name in a LIBRARIAN command to znove or copy all
files containing references to version 2.

>SCAN '/FIN; TEXT="VER = '2 . ¹ ¹ ' " ; MATCHES=1;LISTFILE=V2LSTPUB

) SCAN '/FIN; TEXT ="VER = '2 ¹ ¹ ' " , MATCHES=1;LISTFILE=v2lst

reference to version 2.

Replacement Variables
You can use variables instead of literal text as the replace string(s). These
variables include:

! GCOUNT

! NEXTG

! NEXTV

! REVISION

! VCOUNT

! VERSION

Substitutes the generafion count for this file.

Substitutes the next generation count for this file.

Substitutes the next version count for this file.

Substitutes the revision ID for this file.

Substitutes the version count for this file.

Substitutes the version nazne for this file.

Note You cannot replace text in master files that have revisions stored as
deltas.

Edit znasks can also be used to control replacement as described at the
beginning of Chapter 1, "Commands" in the LIBRARIAN fiX Reference
Guide. Endose the edit mask in parentheses.

If you use a prefix of "+" (plus) with a replace string, LIBRARIAN wiII
append the string to the line on which a match was found, rather than
replace the matching string.

You can use a special replaceznent variable,! DELETE, instead of a
replacement string to physically delete lines from a file that contain a
match.

5-4 UBRARIAN/iX User's Guide

Comparing Files with LCOMPARE
Use the LCOMPARE coznmand (also available from the Tools znenu) to see
the differences between files. You can compare adevelopment copy to its
znaster, a znaster to a previous revision, or any unrelated files. In
addition, you can compare compressed files.

You can use LCOMPARE to compare physical files, logical filesets, and
groups of physical files. You have access to all of the file specification
options that LIBRARIAN offers for other commands, and you have both
an enhanced 80-column online display and a standard offl ine report.

Each coznparison examines the differences between a compare file and a
reference file. Differences are shown as changes (insertions! deletions) to
the reference file that result in the compare file. For example, when
coznparing a secondary to its master, the secondary is the coznpare file
and the master is the reference 61e. A comparison between the two
would show you changes to the master file that make it different frozn the
secondary.

For example, the following command compares the development copies
of AF files with their corresponding masters, highlighting modi6cations:

) LCOMPARE %AP AT N.@.DEVEL, MASTER

>LCOMPARE %AP AT/usr/devel/*;MASTER

Figure 5 — 2 contains an example of the online output frozn LCOMPARE.

P rinting, Scanning, and Comparing Files 5 - 5

UBRARIAN File Information

File ID
System ID
File Type
Master ID
VCreated
VCurrent
Revision
GCount
Remarks

:A
:A
:0
:1
:RECONSTRUCTED

Reference File Compare Fife

:A3.MASTER.UB400
:BATMAN
:RETAINED MASTER (DELTA)

A3,MASTER.UB400
BATMAN
RETAINED MASTER (DELTA)

A
A
2
3
RECONSTRUCTED

Legend: Unchanged I n serted Defef e c r

001000

002000
003000
004000
005000
006000
007000
008000
009000
010000
011000
012000
013000
014000
015000.
016000
017000
018000
019000

021000
022000
023000
024000

0349X
035000
040000
041000
042000

PROCEDURE DIVISION.
PARAGRAPH-1.

IDENTIFICATION DMSION
R20&ZAIWD; C ~KAD.
PILOGRAIIII-ID. DEMOREAD.
ENVIRONMENT DIVSION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

IF CALL-STATUS EQUAL ZERO

DATA DMSION.
FILE SECTION.
FD OUTPUT-FILE

01 RECORD-BUFFER PIC X(1 32).
FD LNPLIT~

. O'I RECOII-BLIFFER.. PIXXQ9).
WORKING-STORAGE SECTION.
01 FILE-NAME PIC X(38) VALUE SPACE.
01 CALL-STATUS PIC S9(4) COMP VALUE 0
01 RECEIVE-BUFFER-AREA.

05 RECEIVE-BUFFER PIC X(79).
05 FILLER PIC X(4019).

LABEL RECORDS ARE OMITlHI

LABEL RECORDS ARE OMIT1ED.

DISPLAY " ENDING DEMOREAD .
STOP RUN.

SElf CT OUTPUT-FILE ASSIGN TO OUTPUT .
SELECT LMPUT~ASQGLII TO INPIJT"

WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 5-2. LCOMPARE Display

Output from LCOMPARE includes the filenames, file type, versions, and
revisions of the files being compared. The online display uses screen
enhancements to highlight changes.

If your terminal supports color enhancements, you must configure it to
distinguish the types of differences between files. The standard display
uses the following enhancements:

Regular Video Indicates unchanged lines.

Inverse Video Indicates inserted lines.

Half Inverse Video In di c a tes deleted lines.

5-6 L lBRARIAN/iX User's Guide

Offline listings are similar to PRlNT listings with the ANNOTATE option.
D eletions are shown with strikeout and insertions are shown in bold Y o u
can change the default escape sequences for these enhancements as
described in Chapter 1, Commands" in the LIBRARIAN/iX Reference
Guide.

Comparing Files with S/COMPARE
If S/COMPARE (proprietary product of the ALDON Computer Group) is
installed on your server or MPE client, you can use the LIBRARIAN
SCOMPARE command to access it. If you are using the menus, make sure
that the compare method on the Users...Setting window is set to
SCOMPARE

S COMPARE is similar to LIBRARIAN's own LCOMPARE comn~ d w i t h
the addition of.many advanced options. For a description of these
options, refer to Chapter 1, Commands" in the LIBRARIAN/iX Reference

Because S/COMPARE only provides a 132~oiumn display, online
listings are filtered through LIBRA~ an d d is p l ayed in the manner
described above for LCOMPARE. Offline listings are not filtered and
appear in standard S/COMPARE output format.

Guide.

Printing. Scanning, and Comparing Files 5- 7

5-8 U BAVARIAN/IX User's Guide

user Filesets

This chapter describes user filesets and how to create and maintain them
using the FMAINT module. Topics include:

� Wh a t are user filesets?

� Cr e at ing and maintaining user filesets

� Pu b l ic and private user filesets

� Reviewing user fileset information

� User filesets in LIBRARIAN commands

� Pr o ject filesets

� Example

For details on command syntax and use, refer to Chapter 2, "User Fileset
Comrr~ d s " , in the LIBRAR1ANAX Reference Guide.

Wha1 Are User Filesets?
User fi lesets allow individual users to create task-defined filesets which
organize files and simplify file references in LIBRARIAN commands.

User filesets allow the programmer to create a user fiieset for the files
needed tocompletea particular assignment and then reference the user
fileset in LIBRARIAN commands. When the work is complete, the user
can purge the user fileset(s).

� Use r f ilesets are similar to the master filesets that the LIBRARIAN
Manager creates for the master library. These user filesets are
arbitrary collections of files not necessarily related to each other by
physical location.

a Wh er eas master filesets are defined by the LIBRARIAN Manager or
Application Manager, user filesets can be defined and changed by any
user User filesets can include secondary or master files, and can also
include files that LIBRARIAN is not tracking (unknown files).

The master fileset structure does not always meet each user's needs. For
example, the Application Manager might create separate master filesets
for application program files, application source files, and application JCL
files. This arrangement groups the files logically, but a programmer might
need one or two files from each master fileset for a particular assignment.

User Filesets 6- 1

Creating and Maintaining User Filesets
User filesets can include logical and/or physical components. The user
fileset name must be unique. You can create a hierarchy of user filesets
depending on your own needs. Use the FMA(NT cornrnand to access the
FM AINT module from the LIBRARIAN command prompt or select User
Filesets from the Tools menu. Use the FMP~ c om n~ d s, o r menu
options, to create and maintain user filesets.

Note In command mode, the FM > prompt indicates that you are in the
R CAIMI' module.

Use the following comn~ d s to create a user fileset, add files to a user
fileset, delete files from a 6leset, and purge a user fileset

FM > CREATE Creates a new user fileset and optionally adds
files to it at the same time.

Adds files to a user 6leset.FM >ADD

FM > DELETE Deletes files from a user fileset.

FM>PURGE Purges a user 6leset.

User fileset hierarchies can be constructed by defining component
relationships similar to master filesets. For example, if you have created
several user filesets, each containing related files for a single program,
you could create a single fileset containing all of the others. Using this
f ileset, you can move all of the files as a group. The following comn~ d s
are for maintaining a hierarchy of user filesets:

FM >RELATE

FM > SEVER

Makes one 6leset acomponent of another.

Severs the relationship between two filesets.

Public and Private User Filesets
When you create a user fileset, it is assigned a PUBLIC or a PRIVATE
designation (Default PUBUC). Any user can add to or delete files from a
public fileset. If the fileset creator makes the fileset private, then only that
user can add files, delete 6les, establish component relationships, etc. Use
the MAKE comn~d t o c hange the public/pr iva te attribute of a user
fileset.

FM>MAKE fileset PUBLIC Al low s any general user to modify the

FM >MAKE fileset PRIVATE Al l o ws only the creator to modify the

fileset.

fileset.

6-2 U B RARIAN/iX User's Guide

Reviewing User Fileset information
Two comxnands are provided to display information about user filesets.
FM) LIST displays a list of all user filesets defined for a user, and
FM>SHOW displays the member files and coxnponent filesets of a user
fileset.

User Filesets in LiBRARIAN Commands
You can include user fileset names in LIBRAIGAN commands the same
way you use master fileset names, with the fileset naxne preceded by a
percent sign (%). LIBRARIAN then authorizes each file in the fileset for
the requested operation.

User filesets are restricted by the rules defined in the database. For
example, if you include a file in your user fileset that you are not
authorized to move, LIBRAIDAN shows a violation and does not
complete the xnove for that file.

Project Filesets
Project filesets are a special type of user fileset. A project fileset is created
automatically with the same name as the project when you define that
project Files are added automatically to the project fileset as they are
moved or copied with the associated project code. Although files are
automatically added to project filesets, you have the option of xnanually
altering project fiiesets through FM AJNT and using thexn like any other
user fileset in all respects. For more inforxnation on projects, refer to
Chapter 6, "Projects", in the LIBRARIAN/iX Administrator's Guide.

When you use either the CLEANDB or PURGE command to remove the
last master, related secondary, or retained file, the master filename will
automatically be removed from the project fileset.

Additionally, if you use either the MOVE or RENAME comm-md to remove
the last master, related secondary, or retained master associated with a
project, the old filename will automatically be removed and the new one
will be added.

Note Steps will automatically locate secondary file(s) in the step source
location if you specify the project or project fileset.

User Filesets 6 -3

Example
The following example shows how to create and maintain a user fileset. A
programmer wants to create a user fileset to work on six files. To do this,
the programmer first uses FM >CREATE to create the %RPT-FILES user
fileset with two program files.

FM > CREATE RPTFILES FROM RPT01POBJ ECTAPRPT02POBJECTAP

FM > CREATE RPT-FILES FROM /ap/object/rpt10p,/ap/object/rpt02p

Then, the FM>ADD cozrunand is used to add the source and JCL 6les to
the user fileset.

FM>ADD RPT01S.SOURCE.AP, RPT02S.SOURCE.AP TO RPT-FILES
FM>ADD RPT01 J.JCL.AP, RPT02J.JCLAP TO RPTFILES

FM >ADD /ap/source/rpt01 s, /ap/source/rpt02s TO RPT-FILES
FM >ADD /ap/jcl/rpt01j, /apfjcl/rpt02j TO RPT-FILES

The %RFI'-FILES user fileset now consists of the six required files. The

programmer exits the FMAlNT module.

The programmer checks out the required file.

>CHECKOUT%RPT-FILES TO =.MYGROUP

>CHECKOUT %RPT-FILES TO ./=

The programmer continues to use the %RPT-FILES user fileset for steps in
the development route. For example:

>SUBMIT %RPT-F ILES AT @.MYG ROUPY DEVEL

>SUBMIT %RPT-FILES AT /apdevel/mygroup/*

When the assigned task is coznpleted, the programmer removes all
references to the RPT-FILES user fileset from the database with
FM>PURGE.

FM > PURGE RPT-FILES

6-4 U B RARIAN/iX User's Guide

Listfiles

This chapter describes listfiles and how to create and use them with
LMAINT comn~ ds. Topics include:

� Wh a t are listfiles?

� Cr e at ing listfi les with LKV~T

� Mai n ta ining listfiles

� Us ing listfiles

For details on command syntax and use, refer to Chapter 3, "Listfile
Maintenance Commands" in the LlBRARIAN!~X Reference Guide.

What Are Listfiles?
Listfiles, also called indirectPtes, are files that contain a list of filenames.
You can create listfiles with the LMAIN'I' module of LIBRARIAN, with
any editor, or with an application program. These listfiles can be used in
LIBRARIAN comn~ d s as a way to refer to files, Listfiles can be used as
indirect store lists for the MPE:STORE and:RESTORE cornrnands, or the
UMX tar command, to archive files or to create distribution tapes.

Listfiles can contain filenames with wildcards. LIBRARIAN determines
which files qualify when you use the listfile.

Creating Listfiles with LMAINT
You can create listfiiles with any editor or you can use LMAINT
commands as a convenient way to build and maintain listfiles within

Access the LMAINT module by entering the LMAIMT command at the
LIBRARIAN prompt or by selecting the Listf i les option frozn the Tools

LIBRARIAN.

meIU1.

Note p In comm an d m ode, the LN> prompt indicates that you are in the
I2vV~ module.

L isttiles 7 - 1

Use the LM>OUTPUT command to create a list61e called FINFILES by
typing:

LM >OUTPUT ABC'S.SOURCE.FI NUB TO FINFILES

LM > OUTP VT/usr/finlib/source/abc* TO finfiles

In the above example, LIVIA ' ' I ' creates a listfile with a list of all tracked
files satisfying the wildcard mask ABC©S.SOURCE.FINLIB (MPE) or
/finlib/source/abc' (UNIX). To include untracked files in your listfile, use
the ALL parameter. You can refer to files that you want included in a
list61e in a variety of ways as described in "How to Refer to Files" in
Chapter 1, "Coauriands", in the L1BRARIAN jiX Reference Guide.

Additionally, you can select files based on a variety of criteria. Some of
these selection criteria are described in the following sections. Chapter 3,
"Listfile Maintenance Corrunands", in the LIBRA&AN/iX Reference Guide
describes all possible selection options that can be used with the

U N

L M >OUTPUT comri~ d .

Selection by Expiration Date
You can select files for a listfile based on expiration date, using the
relational operators =, « , =, >=, or >. The following command creates the
FNFIL list6le by selecting files which expire before June 30, 1993.

LM >OUTPUT @.@.FIN TO FNFIL;EXPDATE<06/30/93

LM>OUTPUT/usr/fin/ TO fnfil;EXPDATE<06/30/93

You can use this selection feature to create a store list for archiving
expired files prior to running the FLUSH utility.

Selection by File Modification Date
You can also select files based on the file modification date, using the
relational operators =, « , =, >=, or >. The following command creates a
list61e of all files in the FIN account not rnodi6ed since January 1, 1993:

LM>OUTPUT N.@.FIN TO FNRL;MODDATE< =01/01/93

LM >OUTPUT /usrifin/* TO fnfil; MODDATE< =01/01/93

In addition, you can select files that have been modi6ed since
LIBRARIAN created them through a step or other file movement
command. The following command creates a list6le of all files that were
modi6ed since they were created by a LIBRARIAN coznmand.

LM > OUTPUT @.@.FIN TO FNRL;MODIFIED

LM>OUTPUT/usr/fin/* TO fnfil;MODIFIED

You can compare the modification timestamp of files to the timestamp of
a specific file. For example, you could create a listfile including the names
of all files that were changed since the last time the listfile was created

7-2 L IBRARIAN/iX Users's Guide

The following exampleuses the RESETONZERO parameter to empty the
listfile if no files qualify using the selection criteria:

LM>OUTPUT@.@. FIN TO FNFIL;MODDATE>TIMESTAMP(FINFILES) 5
; RES ETONZERO

LM>OUTPUT /usr/fin/ TO fnfiI;MODDATE>TIMESTAMP(finfiIes) &
;RESETONZERO

Selection by Simulating a LlBRARIAN Step
You can use LMAINT to simulate execution of a defined step by invoking
the USE option of the OUTPUT command, With the USE option,
LIBRAIUAN ident i f ies the step destination for each selected file for the
step and places that filename in the listfile without performing the step.
The following command simulates a defined checkin step for all files in
the project fileset SR1234:

LM > OUTPUT %SR1234;USE CHECKIN

Since this is a simulation of a step, it has no impact on revisions or

The SIMULATE option is similar to the USE option, with the exception that
it only includes destinations for authorized files. The AUTHORIZE option
is also similar to the USE option, with the exception that it only includes
files that would be authorized for step (i.e., source locations).

versions­

Maintaining Listfiles
You can create and edit listfiles outside of the LMAINT module by using
any editor (e.g., vi in UNIX). In addition, other LMAINT commands
allow you to add documentation, sort, or modify the contents of a listfile.

The following LM/'AT commands are available from MPE only.

You can use the LM >SORT comrr~d t o sort a listfile and, optionally,
eliminate duplicate filenames

The LM > EDIT comn~d a l l o ws you to edit the contents of a listfile using
EDIT/3000.

The LM > DOCUMENT cornrnand allows you to add text or edit a
rnaxirnum of 750 lines of notes for the listfile with the EDIT/3000.

If you want to append filenames to a listfile, use the LM >ALTER
command to toggle the mode for that particular file to append.
Subsequent output to the file with the LM >OUTPUT comm'md is
appended to the existing file. For example:

LM>ALTER FINFILES;APPEND

L isffiiles 7 - 3

The UIA > REPORT command allows you to report documentation notes
for the listfile, summary i nformation (i.e., creation and modification
dates), and filenames contained in the listfile.

The LM > UST coxxux~d l i sts the filenames contained in a listfile.

Using Listfites
You can use listfiles in any LIBRARIAN comm md as a way to refer to
files. Listfiles are prefixed by ~ or!, as shown in the following examples:

>COPY MYFILES TO =.=.TESTACCT
> MOVE ! APFILES TO TESTSYS: =. =. =
> CHECKOUT NEWSRCE

>COPY myfiies TO /usr/test/=
>MOVE apf iles TO TESTSYS:=
>CHECKOUT newsrce

Indirect Store Lists
Listfiles can be used with many uti l i t ies, including the MPE:STORE
comxnand for indirect store lists. LTse a listfile in the STORE comxx~d by
preceding the command with!, as shown in the following example:

:FILE T; DEV = TAPE
.'STORE MYFILES; *T; SHOW

For more information on indirect STORE files, refer to the MPE Command
Reference Manual.

Archiving Applications with Listfiles
Use LMAINT to facilitate the selection (and coxnpression, if desired) of
files to be archived and stored to tape. You can use the same selection list
to store obsolete files and then purge the files from disk.

The following procedure describes how to archive files that LIBRARIAN
is tracking, as well as files not being tracked. Some aspects of the
archiving process are not available with fi les that are not being tracked by

Use LMJ~ to w rit e the filenames to a text file. For example:

LIBRARIAN.

>LMAINT
LM>

Use the LM >OUTPUT command to select files and list them to a file. For
example:

LM > OUTPUT AB@.SOURCE. INVTRY TO AP R1 589.STORE;ALL

LM >OUTPUT /invtry/source/ah* TO ./store/apr1 589,ALL

7-4 L IBRARIAN/IX Users's Guide

This command creates a text file which contains all files described by the
mask, regardless of whether or not these files are tracked in the
LIBRARIAN database (ALL parameter).

The following procedure describes a convenient way to compress and
archive a retained version of an application:

l. Access LIBRARIAN by typing:
:Ue

>USER Userid
Passwo ref?
Press F2 to switch to command mode.

2. Copy the retained version to a t emporaryarchive area by typing:

>COPY VERSID OF %APPL TO .= . =.ARCHIVE;OLDNAME;&
> COMPRESS

> COPY VERS ID OF %APPL TO ./archive/=;OLDNAME; &
> COMPRESS

3. Access the LMAINT module by typing:

> LMAINT

4. Create the STORE listfile with the names of' all files just copied by
typing:

LM >OUTPUT " TO STORELIST

LM >OUTPUT ** TO STORELIST

5 Exi t LMAINT by typing:

LM >EXIT

6. Store the files to tape by typing:

>STORE STOREUST

> cpio — o < STORELI ST
E

U IX
7. Purge the files that you archived to tape by typing:

The result is a complete archive tape of an application version in
compressed form. Step 7 does not necessarily purge all files which
have been stored to tape, since some version files, if unchanged,
remain members of the application in later releases.

8 M a k e the REL2 version obsolete by using the VERSION command and
the OBSOLETE parameter. For example:

>PURGE STOREUST

>VERSION APPL; ID=VERSID;OBSOLETE

9. Run the FLUSH util ity to remove the obsoleted version.

> FLUSH

L istfiles 7 - 5

7-6 U BRARIAN/IX Users's Guide

Rebuilding Applications with MAKE

The MAKE f'acility automatically rebuilds/recompiles changed
components of an application based on a set of user — defined rules. This
chapter describes MAKE and how it works. Topics in this chapter

� Why U se MAKE

� How M A KE Works

� Creating MPJCE files

� E xec u t ing MAKE

indude:

Why Use MAKE?
LIBRARIAN's MAICE facility is modeled after the UNIX program, make
MAKE helps keep applications up — to-date by rebuilding or recornpiling
only the changed parts of the application.

Large applications can have hundreds of modules, each of which
depends upon other modules. Manually tracking all the pieces of an
application is a time consuming and tedious task, Moreover, forgetting to

recompile a module that has changed — or that depends on something
you changed — can lead to serious problems. On the other hand,
recompiling everytlung is a waste of time and resources.

MAKE helps maintain any application by:

� centralizing rules for rebuilding applicationcomponents,
� accommodatingnew modules easily,

� pr o v id ing variables and generic rules to eliminate redundancy, and

e eliminating the need for compile jobs/scripts.

You provide MP JCE with a set of rules describing how to rebuild an
application's components (targets) when any associated dependencies
have changed. MAICE looks at these dependency rules, compares the
modification timestamps between target and dependency files, and
performs the nec~ tasks to create an up — to-date version. MAKE
never performsmore work than is necessary to bring an application
up — to — date.

Rebuilding Applications with MAKE 8-1

task.

An example of a dependency relationship is that between executable
(target) and source code (dependency). When a source file is modi6ed the
corresponding object code needs to be rebuilt, typically through a set of
compile and link comm;wads. MAKE compares the timestamp of' the
executable to the timestamp of the source code and performs a compile
and link, if necessary.

In addition to building programs, MAKE can also be used to run
automated test suites, extract and process data, rebuild documentation,
generate reports when new data is available, etc. For example, MAKE
could be instructed to launch a test script whenever the program it tests
changes, In this case, MAKE retests only those parts of the application
that have changed. MAKE applies to any situation where there are
timestamp dependency relationships between files, and a known set of
cozrunands to execute when a dependency changes.

MAKE has several advantages over using jobs or scripts to rebuild each
component of an application:

� MA 1 G. 'removes the burden on users to remember what has
changed and what components depend on those changes.

r Variables in MAKE aHow you to combine similar rules in a generic
way, requiring fewer instructions and files to perform the same

� MA KE recompiles only the components whose dependencies have
changed; jobs, however, require manual timestamp comparisons or
knowledge about what has changed.

� MA KE provides generic rules that allow you to add new
components without changing the makefile. With jobstreams, you
need to alter the jobs or add new jobs each time a new component is
introduced.

kow MAKE Works
Components built through lVIAXE are called fargets. Targets include
applications, programs, object 61es, and libraries; that is, anything you
can build. For an application to be up-t~a M , it s executables need to be
up � to-date. For the executables to be up-to-+late, the linker libraries need
to be up — to — date, etc.

MALICE keeps applications up � to-+late in the following way:

� Re ads a 61e (called a makefile) that contains a set of rules. This 6le
includes target components of your application, associated
dependencies, and the coma~ d s necessary to bring each target
up � tubate. Targets can depend on other targets in a hierarchical
fashion.

8-2 LIBRARIAN/IX User's Guide

� Com p a res the modification tirnestamp of each target against its
dependencies. If the target is older than any of its dependencies,
MAKE generates the series of commands required to rebuild the
target. If' that target, in turn, happens to be a dependency of another
target, then it, too, will be rebuilt. Strict ordering is enforced so that
components at the lowest level of the hierarchy are built first. If a
target does not exist, it is always rebuilt.

� Streams or schedules a job to execute the commands necessary to
bring the entire application up-to — date.

To i llustrate how MAKE works, consider a sample application which
contains four modules written in COBOL. To produce an up — tubate
version of the application, you must compileeach of the source modules
(MOD1 — MOD4) into respective object files (MOD1OBJ — MOD4OBJ),
and then link them into an executable program PvATROG). To ensure
that the program is up � to-date, you must recompile the modules that
have changed since the last time you generated the object file.

Rebuilding Applications with MAKE S-3

MAICE provides an automated method for identifying and recompiling
changed components. Figure 8 — 1 illustrates how MAKE handles the
recompilation of changed source code modules.

OBJECT FIEES

MOD I (2/25/92)

MOD2 (2/I /92)

MOD3 (2/25/92)

MOD I OLI (2/2/92)

MOD208J (2/2/92)

MOD3OBJ (2/2/92)

MOD408J (2/2/92)

Two modu)es
cbarrged sbrce ob›
ject code wcrs kit
cfeofed›

MOD I (2/25/92)

. MOD3 (2/25/92)

MAKE
Creaie*MAKEOUT lob ~

commands for re›
bu8ding changed corrBro›

MAKEOUT Jobslrearn
! COBOL MOD1,MOD1OBJ
! COBOL MOD3,MOD3OBJ
! UHK FROM=MOD I OBJ,

MOD2OBJ,
MOD3OL!,
MOD4OBJ,

TO= MYPROG

neoh.

MOD I OBJ (2/25/92) MYPROG

Figure 8-1. Example of a MAKE Operation

Figure 8 — 1 shows that the object files were last updated on February 2nd.
On February 25th, the source files, MOD1 and MOD3, were modified.
The make61e states that any source files modified since the object code
was last compiled need to berecompiled using the command:

! COBOL $<, $*

($ < and $* are examples of MAKE's powerful variables. These variables
get replaced with the name of the changed dependency — in this case, the
files MOD1 and MOD3 and associated target names, respectively). The

program file is then linked using the command:
! LiNK FROM =MOD1OBJ,MOD2OBJ,MOD3OBJ,MOD4OBJ;TO=MYPROG

hUrXE streams a job (called MAKEOUT) with these commands to bring
the changed components up-to-date.

8-4 L IBRARIAN/!X User'5 (uide

Defining the Dependency Tree
Before creating the makefile, determine application file dependencies.
You might find it useful to map out the dependency tree for the
application before actually creating the makefile.

To begin building the dependency tree, determine the ultimate target for
your application. This target is typically an executable program file or set
of application programs For example, the target of the application in the
previous section was to bring the executable program, MYPROG,
up — to-date.

Direct dependencies of the highest target are listed underneath the
primary target. In the MYPROG example, the executable file depends
upon the object files. The object files, in turn, depend upon each of the

Figure 8-2 illustrates the dependency tree for the MYPROG application.

source files.

MOD1OBJ MOD 2OBJ MOD 3OBJ MOD4 OBJ

MOD1 MOD4MOD3

Figure 8-2. Dependency Tree for MYPROG

Creating Makefiles
A makefile is simply a text file that contains one or more APACE rules.
Each rule defines a specific or generic target/dependency relationship and
the commands required to rebuild the target from the dependencies.
MAICE can handle a variety of tasks in developing, testing, and releasing
applications. Therefore, any command, or series of commands, is valid.
Create and maintain this file in the editor of your choice. Although
makefilte is the default name MAKE uses for this file, any name is
acceptable.

Conventions
When creating a makefile, adhere to the following conventions:

� Pu t a blank line between rules.

� Us e the slash (5) as a line continuation character.

e Wh en l isting targets and dependencies use a minimum of one space
between filenames. Do not use commas!

Rebuilding Applications with MAKE 8-5

Comments
Comments are written on separate lines and can appear anywhere in a
xnakefile The first non-blank character in a coxnment line must be a ¹. For
example:

¹This is a comment.

Comxnents that begin with ¹NOTE are treated in a special way at
runtime. Use the ECHO option with MALICE (see Executing MAKE below),
and these comments are displayed on screen as the makefile is processed.
For example, suppose your makefile had this comment.

¹NOTE Processing report rules...

When MAKE processes this file, the following line appears.

Processing report rules...

Comments that begin with ¹OPTION followed by an option list are also
treated in a special way at runtime. For example:

¹OPTION SHOW ECHO

The option list can include any MPJCE parameters (SHOW, ECHO,
NOMAKE, ALL, etc.) as described in Chapter 1, "Comxnands", in the
L1BRARIANliX Reference Guide.

Rules
Rules are statements that inforxn MAKE about file dependencies and
what action to perform when dependencies change. The dependency tree
described in the previous section is a graphic representation of the rules
in a makefile. Each rule has the general forxnat:

<target list> : < d ependency list>
< commands>

where,

target list Specifies the name(s) of the target(s) that must be
rebuilt if any 6le in the dependency list has changed
(i.e, the timestamp of the target is older than the
dependency).

Targets can be file names, variable expressions, or
dummy names. If a duxnxny name is used that does not
correspond to an existing file, the commands (see
below) are always performed.

any file in the dependency list has changed, the
commands given for the rule are performed.

dependency list Spec i 6es the names of the dependencies of the target. If

8-6 L i BRARIAN/iX User's Guide

commands Specifies the operating system corrunand(s) you wish
to execute if the target is older than any of its
dependencies. Any number of commands can be
issued for each target/dependency list

Cornrnands are placed in a jobfile called MAKEOUT,
by default. Thus, all commands in the action section
must conform to standard JCL conventions, including
prefixing commands with a job character (e.g,!).

Note Q Commands used to rebuild may be entered into any column beyond
Column 1.

The following section describes how to transform the MYPROG
dependency tree into a rnakefile.

Example 1: The Basics
As an example of creating a makefile, consider MYPROG and its
associated source files. The dependency tree for MYPROG (shown in
Figure 8 — 2) has three levels: the p rogram file, the object files, and the
source files. Traversing the tree from top to bottom expresses the rules in
the makefile. The MYPROG dependency tree illustrates two rules:

� Th e MYPROG file target depends upon the object Eiles MOD1OBJ,
MOD2OBJ, MOD3OBJ, and MOD4OBJ dependencies

� The object files, in turn, depend upon the corresponding source files.

Figure 8 — 3 is an example of a makefile for MYPROG.

¹ Build the MYPROG program file
MYPROG: MOD1OBJ MOD2OEU MOD3OBJ MOD4OBJ

:)! JOB MAKEPROG,MGR,MYACCT/PASSWORD
! UiNK FROM=MODl OBJ,MOD2OBJ.MOD3OBJ,MOD4OBJ;TO=MYPROG

¹ Build Object MOD l OELI
MOD10: MOD1

¹ Build Object MOD2OBJ
MOD20; MOD2

¹ Build Object MOD3OBJ
MOD30: MOD3

¹ Build Objeci MOD4OBJ
MOD40: MOD4

! COBOL MOD1,MOD1OBJ

!COBOL h/lOD2,IVIOD2OBJ

!COBOL h/IOD3.MOD3OBJ

!COBOL MOD4,MOD4OBJ

Figure 8-3. Ma kefije for MYPROG Example

Rebuilding Applications with MAKE 8-7

How MAKE Interprets the MAKEFILE
In Figure W3 the target MYPROG has four dependencies. The first
dependency, MOD1OBJ, is a target of another rule and must be evaluated
first to determine if it needs to be rebuilt . The target MOD1OBJ has one
dependency, MODl. MALICE checks if MOD1 is out~ f M a te and issues a
corrunand to rebuild MODIOBJ. Similarly, the other three dependencies
of MYPROG are evaluated and then h~ retur n s to the first rule to
rebuild target MYPROG, if necessary.

The makefile in Figure 8 — 3 can be made much shorter and more effective,
using predefined variables in a generic rule, as shown in Figure 8 — 4.

¹ Build the MYPROG program %le
IVIYPRQG: $(MQD¹OBJ)

:)! JQB MAKEPROG.MGR.MYACCT/FOOBAR
!UNK FROM=MOD1OBJ,MOD2OBJ,MOD3OBJ,MOD4OBJ:TO=MYPROG

¹ Create the object file by compiling the source files
MOD¹OBJ: — =

!COBOL Sc. S

Figure 8-4, Makefile for MYPROG Example

In this case, the dependencies, MOD¹OBJ are determined from a LISTF.
These files qualify as targets in the second generic rule, and must be
evaluated first. MAICE executes the comzzzands of the second rule for any
source files that are out-of-date, and then returns to the first rule to
rebuild the MYPROG file using the UNK cornzzzand.

MYPROG Rule
The makefile begins with a comment to inform us of the purpose of the
makefile. The first rule in this makefile specifies the ultiznate target — to
produce the MYPROG executable program. This standard rule means, If
program file MYPROG is older than the objectfiles on which it depends, proceed
with the commands beloro to rebuild the programfile

The dependency list in this rule is generated by using the LISTF variable
($[]). The LISTF variable finds files that match the pattern given
between the brackets and then substitutes the naznes of any files found.
In our exaznple, MOD1OBJ MOD2OBJ MOD3OBJ MOD4OB J replaces
$[MOD¹OBJJ at runtime.

To accommodate new source files, generate a list of object
dependencies by doing a LISTF in the source area as follows
$ [MOD¹] "@OBJ" This applies the edit mask "@OBJ" to each source file
found via LISTF. Since object for new source files will not exist, MAICE
automatically builds them.

Note

8-8 L IBRARIAN/IX User's Guide

The first command in the first rule is a special command w'hich specifies
the login for the MAKEOUT job. The job command must be the first
command in a rule, with the special prefix, ": >". In this example, if any
targets are out-of-date, the MPJCEOUT job created by MAICE logs on to
MGR.MYACCT using the password FOOBAR.

The job statement should be specified for the 6rst rule and for any rule
that could be an entry point into the makefile. MAICE allows you to
evaluate any target in the make61e, but by default it is the first target.
For more information about executing MAICE with target entry points,
refer to "Execuhng MAKE" later in this chapter.

Following the job comrimnd is the actual command used to rebuild the
program file from the object file.

MOD„OBJ Rule
The second rule in this make6le illustrates the power of MAKE's
variables in conjunction with generic rules (by default, variables are
prefixed by the dollar sign ($), but the next section describes how to
change this pre6x). The purpose of this rule is to rebuild any object file
whose source files have changed. In our example, we have only four
object files, but this rule is valid for any number of object files that follow
the naming convention.

This is a generic rule indicated by the ": —" delimiter between target and
dependency. Dependencies are determined in this case by applying an
edit mask to the target being evaluated. In this case, the associated
dependency is determined by removing the last three characters (= — — ­).
In the commands of the second rule, two more variables ($< and $') are
used. The $(variable is replaced with the name of the current
dependency and the $ variable is replaced with the name of the current
target exactly as entered in the rule (another variable, $@, represents the
fully qualified target name with account and group). Thus, the command
that is written to the MPJCEOUT job when MOD3 has changed is the
following.

Note

! COBOL IVIOD3,MOD3QBJ

Example 2: A Comprehensive illustration
The example in Figure 8 — 4 illustrates how easy it is to use MAKE for
rebuilding a simple software application with any number of component
modules Now examine a more comprehensive example that really takes
advantage of the power of MAKE . You will f ind that once you get to
know the MAKE syntax, even complicated applications can be managed
with a few simple MAICE rules.

Rebuilding Applications with MAKE 8-9

This example consists of a financial software application. All files are
contained in the DEVEL account, but the source files for some library
routines, written in Pascal, are kept in the PASCAL group and the source
files for the remainder of the application, writ ten in COBOL, are kept in
the COBOL group. The object code for these routines is placed in an RL
called FINRL. The application also has an outer block module wri t ten in
C, called FINSRC. The corresponding object for FINSRC is FINOBJ. Our
finance application program FINP is created by ~ g FIN OBJ and

The application also has a set of associated reports that must be built. The
source code for reports resides in the RSOURCE group, and each source
file ends in the letter S. The compiled reports need to be placed in the
PROG group and the names of the compiled reports are the same as the
source files, except the last character (S) is removed, Figure 8 — 5 shows the
dependency tree for this application, and Figure 8-6 shows the makefile
used to build the FINANCE application.

FIN TRL.

8-10 L lBRARIAN/iX User's Guide

$=%
ACCT = DEVEL
PASS = FOOBAR
¹ Build the Finance application
FINANCE: FINP FINRPTS

:>! JOB MAKEFIN, IVIGR.%(ACCT)/%(PASS)
¹ Link FINP

2. FINP: FINRL FINOBJ

¹ Compile FINSRC — C source
3, FINOBJ: FINSRC

¹ Compile COBOL library code and update FINRL
4 FINRL:: %[O.COBOL]

! UNK FROM=FINOBJ;TO=FINP;RL=FINRL

! CCRL%<.%@.SNULL

!COBOL %<.,$NULL
!IF JCW< FATALTHEN

! LINKEDIT
RL FINRL
PURGERL IVIODULE=%c ="
ADDRL $OLD PASS
EXIT

!ENDIF
)

¹ Compile PASCAL library code and update FINRL
FINRL:: %[Q,PASCAL]

! PASXL k, SNULL
!IF JCW < FATAL THEN

ILINKEDIT
RL RNRL
PURGERL MODULE=X< =
ADDRL SOLDPASS
Exrr

!ENDIF
)

¹ Compile and link reports
6. FINRPTS - %[res RSOURCE] -- PROG"

:>! JOB MAKERPT, MGR.%(ACCT)/%(PASS)

(
! COBOL %<.. SNULL
! CONTINUE
! IF JCW < FATAL THEN
!UNK FROM=SOLDPASS;TO=XI
! ENDIF
I

7. IN.PROG: — @S.RSOURCE

Figure 8-5. Dependency Tree for the FINANCE Application

FINANCE

F RM FINOBJ

COBOL Pas cal C Source
Source S o urce

Report Files

Figure 8-6. Ma kefile for the FINANCE Application

The new concepts introduced with this rnakefile are dummy targets,
user-defined variables, iterative command processing, job card
placement, edit masks, and rule delimiters.

Rebuilding Applications with MAKE 8 — 11

Dummy Targets
Dummy targets are target names that do not correspond to any existing
file. Duxnmy targets are always built. The HNANCE and FINRPTS
targets in rules I and 6 of the makefile are examples of dumxny targets.

User-Defined Variables
The first three lines of this makefile define variables for use in the rest of
the file. Variable definitions have the following format.

variable name = substitution text

The substitution text replaces every reference to the variable in the
xnakefile. The first user-defined variable in Figure 8 — 6 is special — it
causes the percent sign (%) to be used as the variable prefix rather than
the default dollar sign ($). This variable is necessary in order to avoid
confusion between systexn defined filenaxnes, such as $OLDPASS or
$NULL, and variables in your makefile.

The other user-defined variables (ACCT and PASS) are useful because
there are several places where the account name and password are used.
Since passwords change frequently, you only need to change the value of
the PASS variab1e once and the correct password is replaced in the
appropriate locations.

A user-defined variable is referenced in the saxne manner as a predefined
variable. The variable prefix (in this exaxnple, a percent sign [%]) must
precede the variable's name. If a user-defined variable name contains
more than one character, the variable name must be enclosed in
parentheses. For exaxnple, notice the parentheses in the reference to the
%(ACCT) and %(PASS) variables in the job login in the first and fifth
rules.

Iterative Command Processing
One important point to notice in several of these rules is the use of braces
((8 before and after the coxnxx~ds of the rule. Braces instruct make to
iterate the commands between thexn for each changed dependency (the
current changed dependency name is substituted for the $< macro during
each iteration). If no braces are placed around the command, the
command is performed once for the first dependency in the dependency
list, regardless of which dependency has changed.

8-] 2 L IBRARIAN/iX User's Guide

The FINANCE example shows simple iterative command processing. In
the exaznple, braces are used to indicate that the comm inds are to be
performed once for each out-ofMate dependency. If a target needs to be
rebuilt, commands can be iterated using any of the following criteria in
any combination:

� once for every changed dependency (braces)
a once for each dependency (brackets)
� once for first dependency (no braces/brackets)

Let us examine another example in which iterative comm'md processing
is useful. In this example, we have a screen driver that depends on the
source files for the individual screens.

oy

SCREEN.PROG %[O.SCREENS]

! PASCAL % <,SCREEN.OBJ,$NULL
)
! LlNK FROM = SCREEN.OBJ;TO=%@

The block of commands between the braces are repeated once for each
dependency that has changed. The dependency variable value is
dynamically altered to reflect the current dependency at each iteration.

Notice how! UNK is located outside of the iterative block. Since no
braces/brackets surround this command, it is executed once after all of the
changed source files have been recompiled.

Alternatively, you can create a block of commands that is executed for
every dependency, regardless of which dependency in the list has
changed, as in the following example:

SCREEN.PROG: $ [@.INCLUDE]
[
!FILE%< = %< = .EXTERNAL"

]

! RESET%<
]
! PASCAL SCREEN. SOURCE

This example instructs MAKE to issue a file equation for all includes to
point to an associated external declaration. Then, it resets the 6le
equations for only those that have changed.

Job Card Placernenf
By default, MAKE begins by evaluating the first rule of the makefile and
continues processing the file sequentially. However, you can specify any
target in the makefile for MIX E to process. Since MP3CE can potentially
enter the rnakefile from any target, you must define job cards wherever
this is likely.

Rebuilding Applications with MAKE 8-13

In this example, you might want to rebuild the report programs without
rebuilding the entire application To accomplish this you would issue the
following command to invoke MAKE:

:MAKE MAKEFIN,FINRPTS

MAKE then enters the makefile at the 6fth rule and processes that rule
and related rules only, ignoring all other rules.

The job card must be the first command in a rule MAKE uses the 6rst j ob
card it encounters as the login for the 1VIPDXOUT job. Any subsequent
job cards encountered by MAKE are ignored.

Edit Masks

the LISTF variable.

Edit masks are used throughout a rnakefile for two purposes:

� t o de termine the dependency of a target in a generic rule

� to edit the value of a predefined file variable or file names returned by

Edit masks use the special characters, @, =,?, and —, as well as literal
characters. Enclose edit masks in quotes immediately following a 6le
variable reference to temporarily modifyits value. For detailed
information about each edit mask character, refer to "Edit Masks" at the
beginning of Chapter 1, "Comn~ds", in the LIBRA1UANfiX Reference

In rules 4 and 5, an edit mask is used to extract the filename (without
group and account) from the current dependency variable value.

Guide.

PURGERL MODULE = % (" = "

In rule 6, an edit mask is used with the LISTF variable to create a list of
report program names in the FROG group by removingthe last character
from the source file names in the LISTF result.

FINRPTS: % [NS.RSOURCEj "= — .PROG"

In rule 7, an edit mask is used as the dependency in a generic rule, so that
MPDZ can determme the dependency of a report target it evaluates (no
quotes are required in this case).

@.PROG � @S.RSOURCE

Standard (Specific) Rules
There are several kinds of' rules that MAKE recognizes based on the
delimiter between the target list and the dependency list. Rules one
through six are standard rules delimited by a single colon (:) or double
colon (::). Rule 7 uses the (. —) colon — dash delimiter to define a generic

The single colon and double colon delimiters are closely related. They are
both used for specific rules where the target list is a specific list of
filenames and the dependency list does not use edit masks. The difference
between the two delimiters is how rules with targets of the same name

rule.

are treated.

8-'I 4 LIBRARIAN/IX User's Guide

� The single colon detimiter (:) causes all rules with targets of the same
nazne to be coznbined as though they were one rule (i.e., dependencies
and commands are combined)

� The double colon delimiter (:) causes each rule to be evaluated
independently, and only the comzz~ds of the rule whose
dependencies have changed are executed.

As anexampleof the difference between the single colon and double
colon delimiters, consider rules 4 and 5. Both rules have the same target,
FINRL. Rule 4 states that all out-of-date znodules in the COBOL group
should be rebuilt using the COBOL comzz~ d R u le 5 states that all
out-of-date modules in the PASCAL group should be rebuilt using the
PASCAL coznzzzand. If a single colon were used to delimit these rules, the
two commands would be combined into one rule and the following
comznands would be issued if the ABCCOB5 znodule is out-of-date:

! COBOL ABCCOB5„$NULL
! PASCAL ABCCOB5„$NULL

This is dearly not desired. Therefore, each rule must be treated
independently (i.e., if a module in the COBOL group is out-of-date,
perform one comzzzand, and if a module in the PASCAL group is
outaf4 a te, perform a different cozrunand). In the case of rules 4 and 5,
the double colon delimiter guarantees the independence of the two rules.

Generic Rules
Specifying wildcard characters in a target makes the rule generic so that a
single rule can apply to any number of targets that rnatch. As MAKE
examines a rnakefile for dependencies that are theznselves targets, MAKE
checks generic target names for a match. The: — and: = delimiters are
used to specify a wildcard pattern for the target name and a
corresponding edit mask as the dependency name.

The: = delimiter can be used only when the target and dependency
names are the sazne, but with different suffixes (e,g., target ABC199M and
dependency ABC199S would be covered by the rule).

The: — delimiter is znore flexible than:=. The . '— causes MAKE to
deterznine the corresponding dependency name from the edit znask. For
example, consider the last rule in the FINANCE makefile:

@.PROG: — @S RSOURCE

This rule states that a dependency derives its name from the target being
evaluated. Thus, an S is added to the target name and the RSOLtRCE
group is added to derive the dependency nazne. If the target file were
RDV10.FROG, the dependency would be RDV10S.RSOURCE.

Rebuilding Applications with MAKE 8-15

MAKE also supportsmultipledependencies using edit masks in this type
of rule. For example,

N.COMP: ­ =S.SOURCE =FFORMS RL.COMP

In this rule, each program file in the COMP group is dependent on its
source file, a forms file in the FORMS group, and an RL file in the COMP
group.

Implicit Rules
A variation of the standard rule is the implicit rule (offen called the UNlX
generic rule). This type of rule is used when both the target and
dependency have the same name, but reside in different groups In this
construct, there is no dependency list to the right of the rule delimiter. For
example, the following rule states that MAKE should evaluate all targets
in the OBJECT group against all files of the same name in the SOURCE
group.

.SOURCE. OBJECT:

A target named ABC100.OBJECT would need to be rebuilt if
ABC100.SOURCE has changed.

Automatic Search for include Files
When a plus sign(+) is entered after a filename, files are scanned for
references to include files. The file and all its includes are taken as
dependencies. For example:

filename+ or $[@src+] or $[!!istfi!e+)

Currently, MAKE supports this feature for COBOL, C and PASCAL

Listfiles in Generic Rules
Generic rules can refer to generic listfile names. The listfile name is
determined from the target name using an edit mask (similar to the way
generic dependencies are determined.) For example:

XXNO: — $[! =L]
returns a dependency list with the filenames in a listfile with the same
name as the target, except for the last letter which is "L" .

LISTF Variable Exclusions
The LISTF variable supports exclusions. For example:

$[A@ — A1 — A2 — A3]

excludes A1, A2, and A3 from A@.

8-16 L IBRARIAN/iX User's Guide

Special MAKE Variables
In addition to the variables already mentioned in this chapter, four special
variables are available. These variables include:

e STREAM

� SCHEDULE

� AC COUNT

� GROUP

a AL TPATH

� EXCLUDE

� COP YMEM

� Pr o mpt variables

� Sy s tem variables

STREAM
You can optionally specify parameters for the MPE:STREAM command to
be issued when MAICE streams the MAKEOUT job. When the STREAM
variable is defined, its value is passed as a parameterlist to STREAM. For
example, if the following macro is used anywhere in the makefile, then
MPE launches the jobat 5:00 p.m,

For more information on STREAM, Refer to the MPE Commands Reference

STREAM = AT=17:00

Manual.

SCHEDULE
For users who have scheduling or streamer programs, MPJCE recognizes
the SCHEDULE variable. If the user defines a variable named
SCHEDULE anywhere in the rnakefile, then MAKE expects its value to be
the name of the scheduler program. MAICE runs this program and passes
the name of the MAKE jobstream via the info string, instead of streaming
the file. The program name may optionally have a slash (/j at the end,
followed by S, P, or G corresponding to the LIB=x parameter that the
scheduler program requires.

For example, if you define the following variable in a rnakefile, then
MAICE would run STREAMER.COMPEXPRESS with a LIB=G parameter.
MIXE passes the name of the ~ jobst r eam in the info string rather
than streaming the AGEE comn~ d f i l e d irectly to MPE.

SCHEDULE = STREAMER. COMP. EXPRESS/G

Bofh STREAM and SCHEDULE
If you define both the STREAM and SCHEDULE variables, MAJCE
invokes the scheduler and appends the stream options to the info string,
with a semicolon delimiter. The EXPRESS STREAMER command, for

example, implementsthe same options as the MPE:STREAM command.
This also provides a means of specifying additional scheduling
parameters.

Rebuilding Applications with MAKE 8-17

ACCOUNT = QAACCT

ACCOUNT
If you run MAJCE outside of the account where the 61es to be evaluated
reside, you can use the special ACCOUNT variable to set the account
globally. With this variable, you only need to qualify your target and
dependency 61enames up to the group level in the make61e. For example.

If you specify the ACCOUNT variable in the make6le, you can only
specify filenames up to the group level, since the ACCOUNT variable
appends the account name to all 6lenames in the rnakefile,

GROUP
If you run 1VIAKE outside of the group where the files to be evaluated
reside, you can use the special GROUP variable to set the group globally.
For example:

If you define the GROUP variable in the rnakefile, only specify filenames,
since MIXE appends the group name to all filenames in the makefile.

ALTPATH
The ALTPATH variable causes MAlCE to automatically search an
alternate account when a dependency is not found in the default account
defined by the ACCOUNT variable or logon account. You should set the
ALTPATH variable to the account you want MAKE to search as an
alternate for dependencies. For example:

GROUP = MAKEGRP

ACCOUNT=ABCDEV
ALTPATH =ABCLIB

ABC: $[@.PROG]
:>! JOB....,....

ABC1000PPROG: ABC1000S.SOURCE
!rebu11d statements...

QPPROG; ­ = S.SOURCE
!rebuild statements...

I f the dependency for a target does not exist in the same account, MIS E
searches for the samefi t .group in the ALTPATH account. For example, if
ABC3000P,PROG is found in the account ABCDEV, but
ABC3000S.SOURCE.ABCDEV does not exist, MAICE searches for
ABC3000S.SOURCE.ABCLIB, If MAKE finds the dependent file in the
ALTPATH account, it uses that file as the dependency. Al l other MAK E
logic remains the same.

This variable is useful when compil ing in an account that only has
modified source files and not the entire library. Using ALTPATH, you can
issue file equations using iterative command processing for all
dependencies to point to 61es in the library that are not in the account
where the compile is taking place. Then use iterative command
processing for changed dependencies to reset the appropriate file
equations.

8-18 L IBRARIAN/IX User's Guide

Forexample:
ACCOUNT = ABCDEV
ALTPATH = ABCL!B

ABC: $[N.PROG]
[
!FILE%< =%«

1

! RESET%<
)
! rebuild commands...

Note the special variable %«, which means the dependency name
qualified with the current account. %< always refers to changed
dependencies which could be in either account.

EXCI.UDE
The EXCLUDE variable can be used to exclude delta files and generation

For example.

files from a LISTF variable,

EXCLUDE = D¹¹ ¹ ¹ ¹ ¹ ¹ .@ . @ G ¹ ¹ ¹ ¹ ¹ ¹ ¹ .N .@

excludes D¹¹¹ ¹ ¹ ¹ ¹ .N . @ and G¹¹ ¹ ¹ ¹ ¹ ¹ .N . @ f i les from all
dependencies lists that use the LISTF variable.

COPYMEM
The COPYMEM variable is used in conjunction with the MAKE
automatic dependency scan feature to indicate that copylib members are
stored as individual files in [GROUP[.ACCOUNT]] as opposed to using
the COPYLIB file itself as the dependency. For example.

COPYUB =MYGROUP
COPYUB= MYGROUPMYACCT

Prompts
You can prompt the user for the value of a variable. Prompt variables
have the general format

$(prompt text)

You can use this type of variable prompt for filenames and passwords.
Forexample,

:>! JOB MAKEPROG, MGR.MYACCT/$(Password:)

The variable above causes MAKE to prompt the user with "Password:"
when MAICE is run. The text that the user enters at a prompt is inserted in
the makefile.

You can also use prompt variables to allow a user to enter a list of files to
build.

Rebuilding Applications with MAKE 8-19

Forexample:
MYBUILD: $(List files to build:)

(
! COBOL $< „$NULL
)

The use of the promptvariable above allows you to provide
dependencies at runtime.

System Variables
You can substitute the value of MPE/iX system variables in MAICE files
with the following syntax:

$(! system variable)

Executing MAKE
Execute MAXE by using the LIBRAIUAN MAKE command or selecting
Make from the Tools menu. With the MAKE comn~d you supply the
rnakefile name and, optionally, the target entry point, a listing filename,
and a job filename.

The first target in a makefile is the default target that MAKE bui lds. You
can override this default and instruct MASK to enter the makefile from
any target you choose If you plan to do this, be sure the target you
choose as an entry point into the makefile has a job login coma~d in

The following comn~ d i n f o rms MAICE to process the MAKEHN
makefile using the first target in the makefile.

the comn~ds of the rule.

> MAKE MAKEFIN

ignoring timestamps, use the ALL option.
If you want to require MAKE to rebuild everything in the makefile,

wMAKE MAKEFIN,ALL

You can specify any target as an entry point into the znakefile. For
example, if you wanted to rebuild only the reports of the FINANCE
a pplication, you would use the following comn~ d :

:MAKE MAN%FIN,FINRPTS

For more information on other MAKE options, refer to Chapter j.,
"Commands", in the UBRARIANAX Reference Guide

8-20 LIBRARIAN/iX User's Guide

The TOUCH Command
Because MAICE is driven by the MPE modification tirnestamp recorded in
a file’s label, it may be necessary to manipulate this timestamp directly.
Along with MAICE, LIBRARIAN provides a command called TOUCH
(available from the File menu) to make a file appear modified. In other
words, the TOUCH command updates the MPE modification timestamp in

If you touch a target file, it appears up-to-date. On the other hand, if you
touch a dependency, it makes any target depending on it out-of-date In
this way you can selectively force or prevent MAKE from rebuilding a
target.

the file label to reflect the current date and time.

Rebuilding Applications with MAKE 8-21

8-22 LfBRAR1AN/iX User's Guide

Macros

This chapter describes how to create and use macros. Topics discussed in
this chapter include:

� Wh a t are Macros?

� Sample Macro

Filelists and Parameters

� Me n us in Macros

� Co n d i t ional Expressions

� Looping in Macros

� Th e ALLOW Comm ind

Procedure Files

� AU TOXEQ Files

� M e n u s

Note For information about executing rnacros and procedures, refer to the
XEQ comrr~d in Chapter 1, "Commands", and Chapter 7, "Macro
Control Language", in the LIBRARLA¹iX Reference Guide.

What Are Macros?
Macros are files that contain commands for LIBRARIAN to execute. You
typically use macros to process a single file or a group of files. Macros
can accept parameter values from a user. Macros can contain looping and
conditional logic through the use of a special macro language.

You execute macros within LIBRARIAN by typing the name of a file
containing LIBRAIDAN commands, followed by an optional list of files
and other parameters. Since macros are more flexible than steps (in fact,
steps are frequently performed within rnacros), you can use macros to
define operations too complex to be performed by a single step.

M ac ros 9 - 1

Some coznrnon uses of macros are:

� Cr ea te a single comznand that performs several LIBRARIAN steps
and/or commands in sequence on a group of fi les.

� Per f o rm a step several times against the same group of files, but with
different destinations, such as to distribute a set of files to several
systems.

� Per f o rm a step or command with "hard coded" runt ime parazneters.

� Al lo w t he user to execute commands which would nozznally require
LIBRARIAN Manager or Application Manager capability.

The LIBRARIAN Manager can create macros in a secure location and
make them available to all users. For MPE, this location is XEQ.OCSLIB,
and, for UN%, this location is /opt/ocs/ocsiib/xeq. General users can, also,
create macros for their own use. LIBRARIAN checks the current
directory first, and then checks XEQ.OCSLIB (MFE) or /opt/ocs/ocslib/xeq
(UNIX) for a macro when parsing commands.

Sample Macro
The following example shows a macro used to submit source for testing
and to compile each program using the MAKE facility.

OPTION FILES=ABC-SUBMITABC-MAIM’ BC,NOBREAK
ABC-SUBMIT! XEQLIST
MAKE ABC MAKE. P U B ~ CQA, %% [= P 0 BJ ECTJV3 CQA]

This siznple macro uses the step ABC-SUBMIT to authorize files (OPTION
statement), submits the files, and then recompiles each file with MAICE.

! XEQLIST is a list of the files authorized, created automatically by the
macro processor. The %%[] parameter causes the 1VIAICE stateznent to
execute once for each file. The edit znask " =P.OBJECT.ABCQA"
transforms the name of each source file into the corresponding object
filename, which is t he target name that is passed to MISE .

Filelists ancI Parameters
Many macros accept a file reference like a step (as shown in the previous
example), but this is not required. The following example uses the macro
facility to execute SHOWME, followed by the SHOWJOB display of jobs
currently executing.

SHOWME
SHOWJOB EXEC; JOB=@J

To require a file reference, use the OPTION FILES statement (as in the first
exaznple) I f a step name is specified, the step definit ion is used to
authorize the files; otherwise, the files are authorized in the same manner
as for LIBRARlAN commands such as XCOPY or XNIOVE.

9-2 L !BRARIAN/IX User's Guide

Macros can contain a maximum of one hundred other parameters to be
substituted at runtime. You can use these parameters for any string
value, up to 80 characters.

You can set parameter values with the PARM statement and parameter
references can appear anywhere in the body of the macro. They must
appear in the format %%n, where n is the parameter number (0 to 99)

The following example uses a parameter to request a project name from
the user by presenting a menu of authorized projects (which LIBRARIAN
provides in a file called PROJMENU), then checks in all the files
associated with that project on an all-or-nothing basis.

MENU = PROJMENU
PARM 5;REQUIRED
ABC-CHECKIN %%1;NOVIOLATIONS

Alternatively, the preceding example could have been coded to have the
user specify the parameter on the command line, without presenting a
menu.

ABC CHECKIN %%0'NOVIOLATIONS

Note that parameters are positional (the first parameter is 0, the second is
1, etc.)

The user performs this macro, called ABCIN, for project SR1234
by typing:

ABCIN SR1234

Menus in Macros
You can create your own menus as shown in the following example:

ECHO NULL
LMAINT
OUTPUT%SOURCE — FILES TO SRCFILES;ALL
EXIT
ECHO STDLIST
PARM 3;MENU =SRCFILES;TITLE =Source Menu;PICKFILE
LOOP %%3

NEXT
ECHO %%*

This example uses IJVIAINT to create an indirect list of files presented to
the user as a menu. Selections are then displayed one per line. For more
information, refer to the PARM command in Chapter 7,"Macro Control
Language", in the LIBRARIAN/iX Reference Guide.

Macros 9 -3

Conditional Expressions
Macros can indude IF/ELSE/ENDIF conditional logic. Condit ional
expressions compare the values of strings, parameters,environment
variables (UNIX), JCWs (MPE), and numbers, in addition to testing for

The following example checks for the existence of a text file by first
applying an edit mask, and then checks out a source file if the text file
does not exist.

the existence of files.

OPTION FILES=OUT-SRC
LOOP

IF EXISTS %’/ [=-TTEXT =]
O UT-TEXT '/'/ [­ -TTEXT =]

OUT-SRC %%P
ELSE

ENDIF
NEXT

Looping in Macros
The macro control language supports the following looping structures:

a LOOP/NEXT

� REPEAT/UNTIL

� WHILE/ENDWHILE

The LOOP/NEXT structure works in either of two ways; it causes the
execution of a block of commands for each:

� au thorized file in the XEQLIST file, or

� record in a text file (fixed length record shorter than 80 characters).

The following example shows a macro which checks in COPYLIB
members, then streams a job to update the master COPYLIB:

OPT!ON FILES=COPYUB-IN
LOOP

COPYLIB-IN %O/ []
STREAM
! JOB COPYBLD,MGR.PROD
! RUN COBEDIT.PUB.SYS
UB DCUB.COPYUB.PROD
PURGE %%[=]
COPY
%%[=.COPYUB,PROD]

’/o% [=]
N
EXIT
!EOJ

N

NEXT

9-4 UBRARIAN/iX User's Guide

COPYLIB member 61es (referred to by the %%[] variable) are authorized
by the step (COPYLIS-IN) when executing this macro. Then, each file is
moved to the production account, and a job isstreamed to update the
production COPYLIB. The equal sign (=) edit mask produces only the
filename (without the group and account). The right angle bracket (>) is
necessary to indicate the end of the stream.

The previous example is provided to demonstrate the use of
LOOP/NEXT and the STREAM capability; a simpler solution to this

problemis a macro that invokes MAICE, similar to the exampleearlier
in this chapter.

The following shows a macro which distributes 61es to remote systems

Note

listed in a file called HOSTS.

LOOP HOSTS

NEXT

For each record in HOSTS, the 61es in the MFG FILES 61eset are
distributed by the step (MFG DIST) to the location defined by the
contents of the HOSTS record (referred to by the %%* variable).

If the filename is absent, LOOP/NEXT works as in the firstexample, in
which case you must include an OPTION FILES statement; otherwise, the
LOOP/NEXT command(s) will have no files for which to loop.

Note Loops cannot be nested, but they can contain conditionals.

MFG DIST %MFG FILES TD %%

The REPEAT/UNTIL and WHILE/ENDWHILE structures cause the repetition
of a block of comrr~ d s un t i l a condit ional expression is true, or while a
condition is true, respectively.

Macros 9 -5

Nesting Macros
Nested looping is supported through nested OPTION FILES macros.
LIBRARIAN keeps track of the nesting level, and opens a new
XEQLIST1,2,3,...n as each nested macro is invoked. The following
examplechecks in files specified by the user, and notifies the owner of
every copy of each file checked in:

PROCEDURE ABC-IN
OPTION FILES=ABC- IN
LOOP

SETJCW LIBOK=O
CONTINUE
ABC — IN %%[]
IF LIBOK>0 THEN
CONTINUE
ABC — NOTIFY * AT @.@.@.@
ENDIF

NEXT
END

PROCEDURE ABC — NOTIFY
OPTION FILES
LOOP

MAIL %%(! OWNER), A new version of %% [] K has been
checked in

NEXT
END

Reusing Macro Parameters
The LOCALPARMS parameter of the OPTION command allows macro
parms to be independent of nested macros. Within nested rnacros, all
parms are initialized to null values; original values are restored on return
to the calling macro This allows parms to be passed "by value", as
arguments to the macro call.

9-6 L I BRARIAN/!X User's Guide

The ALLOW Command
The ALLOW command temporarily allows you to perform functions that
require user capabilities or step authorizations that general users do not
possess. This is very useful, because it permits the LIBRARIAN Manager
to grant users specific capabilities, limited to certain files and
circumstances, without granting full capability. The following macro
allows any user to orphan write mode files residing in your work group.

OPTION FILES=ABC-MYFILES,NOBREAK,NOHELP
ALLOW LIBMGR:GORP
SET! XEQUST MODE = READ
ORPHAN!XEQUST
ALLOW

In this example, a null step, ABC-MYFILES, has been created to perform
the authorization by ownership. Selected users will be authorized on the
Step Authorizations (SA) screen to perform this step (and hence, the
macro), only for their own files.

The first instance of ALlQW provides the user with LIBRARIAN Manager
capability to perform the restricted coma~ d s ; the second instance of
ALLOW restores the user's normal capabilities. The NOBREAK and
NOHELP options are used so users cannot break while being allowed the
capability, and so users cannot display the LIBMGR password.

Note that ALLOW is preferable in this situation to actually changing user
identity with the USER comn~d w i t h in the macro, as it preserves the
original user ID in the audit trail.

It is recommended that you only use ALLOW in secure macro 61es.

Procedure Files
Procedure files are collections of macros in a single file, similar to a UDC
catalog (MPE). The use of procedure files avoids the proliferation of
macro files on disk, and allows to catalog multiple macros. Procedures in
a procedure 61e begin with the PROCEDURE statement and end with the
END statement, as in the following example:

PROCEDURE SJ J
SHOW JOB EXEC; JOB=@J
END

You can only invoke procedures if the procedure file has been loaded.
For example:

) SET PROCEDURE TO ABCXEQS XEQ.OCSUB

Alternatively, you can load procedures by selecting the Load Procedures
option from the Macros menu. Otherwise, procedure 61es and macros
are identical.

M acros 9 -7

AU7CjXEQ Files
At startup, LIBRARIAN searches for a macro called
AUTOXEQ.XEQ.OCSLIB (MPE) or /opt/ocs/ocsiib/autoxeq (UNIX), and if
found, performs it immediately. It then searches for a file called AUTOXEQ
(MPE) or autoxeq (UNIX) in your current login directory and executes the
file.

You can use this feature to set global parameters, or for each user to set a
user ID and work environment. For example:

QUIET DISPLAY
USER FRED
SET PROCEDURE TO FREDXEQ
SET APPLICATION FIN
MENU OFF

In this example, you suppress LIBRARIAN informational messages and
prompts, set your user ID, load a procedure fileautomatically,set the
default application to FIN, and suppress menus so that you immediately
go to the command line prompt.

9-8 L IBRARIAN/IX User's Guide

Appendix A
Applications in Progress

There are special considerations whenimplementingLIBRARIAN for an
application which is already undergoing modification.

e Wh en you define the library for the application, make sure to
identify the master files, as usual.

� Id e n t i fy f iles that are being modified as secondary copies of the
newly identified master files, even though they were not checked
out with LIBRARIAN, by doing a checkout with the lNPROGRESS

parameter.
This appendix describes how you can implement LIBRARIAN with
applications where work is already in progress. The following topics are

� Id entifying secondary files

� Re cording checkout

discussed:

Identifying Secondary Files
The need to identify existing files as secondaries arises when you first
implement LIBRARIAN for an application and files already exist in
secondary locations; these secondary files need to be linked to their
corresponding master files. Normally, you would copy files into those
locations with a master-to-secondary step, but in this case you need to
simulate the step without physically affecting the existing files in

For example, assume you defined the library for the AP application and
created the APOUT step to check out files from the AP account to the
APDEVEL account. However, a programmer is currently modify ing
copies of two AP files: RCA.PUB.AP and RCB.PUB.AP, which were
copied to APDEVEL before LIBRARIAN was installed.

Now you want to associate the files already in development with the
newly defined master library without replacing the work that has already
been done. The AP master files have serial access mode, and you want to
protect thesedevelopment copies by recognizing them as write-mode

progress.

secondaries.

Applications in Progress A-1

Recording Checkout
Use the INPROGRESS parameter with a defined master-to-secondary
step, in this case APOUT, to record files as secondaries of specific master
files With the INPROGRESS parameter, LIBRARIAN performs all aspects
of the step except physically copying the file. The file in the destination
location is left as-is, but is tracked as a write mode secondary of a master
file. Record the two files in the example above as secondaries in progress
by typing.

>APOUT RCA,PUB.AP, RCB.PUB.AP;INPROGRESS

>APOUT /ap/pub/rca, /ap/pub/rcb;INPROGRESS

If you have work in progress in another secondary location, such as QA,
which would normaUy be copied by a secondary-to-secondary step, you
can record those files, as well, as write mode secondaries. To do so, create

a temporarymaster-to-secondary step with the QA location as the
destination and then using the INPROGRESS parameter on the step, After
you use the step to record the files as secondaries in progress, delete the
step

A-2 UBR ARIAN/iX User's Guide

LIBRARIAN/IX Glossary of Terms

Note Terms that appear in italics in the following definit ions have separate
glossary entries.

Access Control
The attribute of a masterfile that determines how many read/write mode
copies are allowed. The four access control levels are: exclusive, read only,
serial write, and multiwrite.

Access Mode
The attribute of a secondaryfile that determines whether or not it can be
checked in and replace its associated masterfile. A secondary in write mode
can replace a master. A read mode can only replace a master through an
emergency checkin that is configured to use the PUSHREAD parameter. A
file's access mode is determined by access control, user request, step
definition, and default access mode (precedence is in order listed).

Aging Policy
A system profile value that indicates how long log records are kept. When
the FLUSHLOG utility is run, audit trail records that are older than the
number of days specified in the aging policy are deleted.

Transactions associated with projects override this policy and are deleted
only when the project status is flush pending.

Alternate prestep
A prestep that can be performed as an alternative to the defined prestep.
Up to three alternatives can be defined for a step.

Annotate
Comments inserted by LIBRARIAN into source listings that indicate
which lines were inserted/deleted for which revision Date/t ime, related
project and user who made the change are included.

Application
A sit~ e f i n ed organizational unit including a set of masterfiles that are
being controlled by LIBRARIAN, a set of steps for file
movement/approval, and, optionally, a set of projects for tracking file
changes associated with a particular work activity,

Application Manager
A special user capability assigned to the user responsible for the files and
steps within an application.

Glossary

Application fileset
The highest level fileset for an application.

Approval step
A null step that is required as a prerequisite for a subsequent step

Authorization
The process of determining which fi les have been requested in a
transaction and whether or not the rules permit the operation to be
performed on each of these files. Authorization is based on the user who
initiated the request and the current status of each file requested.

AUTOXEQ file
A macro that is executed before the first prompt/ma in inenu appears. A
file called AUTOXEQ that exists in the product account is executed prior
to any AUTOXEQ file that might exist in the user's horne directory.

Auto fileset descriptors
General locations that describe how masterfiles are assigned automatically
to masterfilesets, Descriptors can include or exclude files from filesets
using zuildcards, When you run AUTOUPDATE, introduce new files with
a pending master, or perform a checkin step with the AUTOUPDATE
parameter turned on, any previously untrackedfiles in these locations get
added to the appropriate master filesets.

Automatic Login lD
The login used when transactions require automatic logging in to a
remotesystem.
Autoupdate
The process used to add masterfiles to masterfilesets automatically based
on predefined autof i lese descriptors that include or exclude files f rom
filesets, typically using wildcards. Pending masters and masters not
currently assigned to required filesets are added, typically during checkin,
negro steps and/or running of the AUTOUPDATE util i ty.

Baseline
The master library at a particular point in time. An application manager
establishes a baseline by creating a version. This marks and protects all of
the files in an application at that time, so that the application or any part
of the application can be restored to that baseline any time in the future.

Base Revision
A revision that was current at the time a baseline version was created. The
version count (VCOUNT) for a base revision is always zero and cannot be
flushed until the version(s) of which it is a part is made obsolete.

II LIBRARIAN/IX

Branch
A set of revisions that are made as a divergence from the main
development path for a master file. A branch is created automatically
when a previous revision is checked out. A branch can also be forced
from the latest revision if the master is already checked out in write mode,
or the user does not intend to check the file back in on the trunk.
Whenever a new branch is created, a branch counter and leaf counter
(both starting at 1) are appended as a pair to the original revision ID.

Branch revision
A revision that appears on a branch.

Checkin step
Any step which copies or moves a 6le from a secondary location into the
master hbrary, either retaining and replacing the existing master,
introducing a new one or establishing a new branch .

Checkout step
Any step which copies a file from the master library into a secondary
location, generally for modification by programmers.
Client
An MPE or UMX implementation of LIBRARIAN where the LIBRAlUAN
data bases reside on a different system, but the user is able to perform all
LIBKQGAN functions.

Command Mode
In comas mode, the user enters LIBRARIAN commands at a
command line prompt. Users can switch between command mode and
menu mode by pressing the F2 function key.

Component Slesets
Filesets that are subsets of higher-level filesets.

Composite prestep
A collection of presteps that must be performed before a subsequent step
can be performed. Composite presteps also permit the specification of a
date prerequisite.

Default access mode
The access mode that is assigned to a secondaryfile when neither the user or
step explicitly specify the mode. The access control level for a file
determines which access modes are allowed.

Glossary Ill

Delta file
A privileged (MPE) or hidden g.JNIX) file that contains the history of
changes made to an associated masterfile.

Deltas
A method for retaining and reconstructing previous revisions of master
files that involves storing only the changes to files over time.

Dependency
A file that make evaluates with respect to some target to deterznine
whether to invoke some action, such as a compile or link.

Destination
The target location when copying or moving a file.

Dummy target
A make target that does not correspond to an actual file. Dependencies of
dummy targets are actual files that are always evaluated as targets
themselves to determine whether they are out of date and need to be
rebuilt,

Edit mask
A file expression that uses special editing characters to map one filename
into another; e g., source to destination name for a copy or move or
secondary to pending master name for introduction of a new file.

Emergency checkin
A checkin that moves a read mode secondaryfile into the library with the
PUSHREAD option. If a write mode copy exists, the owner is notified via a
LIBRARIAN mail message, and an exception is recorded.

Exception Flag
An indicator that somethingspecial has happened related to a file such as
an emergency checkin, merge conflict or previous master revision was restored
at a time when the file was checked out. The exception flag must be
cleared before any further operation on the file is allowed.

Exception message
A LIBRARIAN mail message that indicates that an exception flag has been
placed on a file. This message is sent to the owner of the write mode copy of
the file.

Exclusive access
The access control level that prevents secondary copies of a masterfile from
being made.

Expiration date
The date when after which a file can be flushed using the FLUSH util i ty.

IV LIBRARIAN/(X

Expired file
A read mode secondary or retainedfile that is eligible to be flushed by the
FLUSH utility.

Explosion
The creation of a list of files by expanding afileset, listfile, or wildcard file
specification for LIBRARIAN to authorize.

External
A file that resides on a system on which LIBRARIAN is not running,
typically an unsupported platforin, or system which is not on an
accessible network. LI BE RI A N steps can be used to record movement to
an external location, but cannot physically move the file or verify i ts
existence. Users are responsible for transferring files (via tape or other
means) for any transaction using the EXTERNAL option.

Fileset
A collection of files identified by a unique name assigned by the Librarian
Manager (masterfilesets) or any user (userfilesets), When requesting files,
filesets can be referenced by preceding the fileset name with a percent
sign (%). Because filesets contain collections of files that are related by
some criteria other than physical location, and can span directories and
systems, they are often referred to as logical fi leset.

Note: In MPE, a fileset is any set of files that can be referred to using
wildcards in name, group and/or account. LIBRARIAN refers to this as a
physical fileset.

File structure (hierarchy)
The relationship of filesets, subsets and physical files within an
application library.

Flush policy
The system profile policy that determines how many previous file
generations to keep when the FLUSH maintenance utility is run.

FLUSHLOG
The maintenance utility that purges old log records that have aged
beyond the aging policy specifled in the system profile.

FLUSH
The maintenance utility that purges expiredfiles and obsolete versions.

Flushed project
When a project is dosed and then assigned a status of flush pending, log
records associated with that project get flushed the next time the
FLUSHLOG utility is run. After FLUSHLOG has been run, the project
status is changed to flush, and the project can be deleted, if desired.

Glossary V

Flushed version
When a version's status has been changed to obsolete, base revision files that
are a part of that version are flushed if they are not also part of a
subsequent version. After FLUSH has been run, the version status is
changed to flush, and the version can be deleted, if desired.

Flush pending
A project status that indicates that log records for the project should be
purged when the FLUSHLOG utility is run.

FMAINT
The facility for creating and maintaining userfilesets.

Forward versioning
An option on checkout to automaticallysearch alternate libraries (usual1y
previous versions) when a masterfile is not found in the expected location
as defined by the checkout step. If the file is then found in an alternate
location, it is brought forward as a secondary of a new pending master for
the primary application.

G
Generation
Each time a file is checked in, a new generation is created. Previous
generations of masterfiles are stored in the library as retainedfiles (usually
compressed) or as deltas.

Generation count (GCOUNT)
A sequential number assigned to each masterfile generation. The current
GCOUNT is the total number of times a master file has been replaced.
When specifying GCOUNT as an option in a file request, a negative
number indicates a generation relative to the latest generation.

Generic rule
A target~e nd e ncy relationship in make that uses wildcards (target) and
edit masks (dependency) to determine what is out of date. Actual target
and dependency names are substituted into the rebuild cornrr~ d s us ing
make macros.

Indirect file
Also called a listfile, an indirect file is a text file that includes a list of
fi lenames This file can be used in LlBRARIAN cornrr~ds as a convenient
way of referencing files. Indirect files can be created in a text editor or
through LIBRARIAN's LMAINT facility.

Vl LIBRARIAN/IX

INPROGRESS
A parameter used with a checkout step that instructs LIBRARIAN to record
the existence of a zorite mode secondary without physically copying the file
from the library. This parameter is most often used when LIBRARIAN is
initially implemented and some files are already being worked on or
tested.

Intermediate revision
Master files that are retained between versions. The version count
(VCOUNT) for intermediate revisions is always greater than 0.

Leaf Revision
Each revision on a branch is called a leaf, sequentially numbered from the
start of the branch. Whenever a new branch is created, a branch counter
and leaf counter (both starting at 1) are appended as a pair to the original
revision ID.

LIBRARIAN
The program that controls and processes all file operationsmaintaining
an audit trail of activity.

LIBRARIAN Manager
A special user capability assigned to the person responsible for cordiguring
LIBRARIAN and defining site rules. The LIBRARIAN Manager has
unrestricted access to all LIBI~ IAN fu n c t ions for all files.

Library
A library is the repository from which fi les are checked out, and to which
they are subsequently checked in. Files are also distributed to production
locations from the library. It is the 'official' collection of files that are
under LIBRARIAN's control. Files in the library are called masterfiles. The
l ibrary provides a central point of control for changes to production
source, object and data.

Ustfiles
Also called an indirectfile, a listfile is a text file that includes a list of
fi lenames. This file can be used in LIBRARIAN commands as a convenient
way of referencing files. Listfiles can be created in a text editor or through
LIBRARIAN's UvIAINT facility.

LMAINT
The facility for creating and maintaining l istfiles (indirect files).

Location
The group/account (MPE) or directory (UNIX) and systemwhere a file
exists or should be created.

Glossary VI1

Logical fileset
A meaningful name assigned to a collection of files not bound by physical
boundaries. Seefileset.

ILOGON, <LOGIN
A special wildcard that can be used in defining step source and
destination locations to indicate that the user's login data should be
substituted as appropriate. For MPE, this wildcard can be used for group,
account and/or system. For UMX, this wildcard is equivalent to ',' for
current working directory and can also be used for system.

Macro
A set of LIBRARlAN and operating systemcommands for LIBRARIAN to
execute. A macro cantrol language provides programmatic control
(conditions and loops) and parameter substitution Parameter values can
be system&e6ned or provided by the user via prompts and/or
customized menus. Macros are analogous to MPE command fi les and
UNIX scripts. Multiple macros can be combined in a single procedurefile
Macros are also referred to as XEQ fi le.

Macro Control Language
The set of special corrunands and keywords that are used in rnacros to
control flow of execution (IF...THEN...ELSE, REPEAT, WFIILE, LOOP,
GOTO) and allow for parameter substitution (tokens preceded by %%).

Mail
Mail includes messages that are sent from one LIBRARIAN user to
another, or from L1BRARIAN notifying a user that an erception condition
has occurred that affects that user's work.

Make
A util ity that automatically rebuilds/ recompiles components of an
application when they change. Make reads a makefile that shows
dependencies between application components and evaluates which
components are out of date. Based on which components are out of date,
make issues only the commands necessary to bring the application up to
date

Makefile
A text 6le that contains make rules. This 6le can have any name and can
be created and maintained using any text editor This file includes
target — dependency relationships and comn~d s r equired to bring each
target up to date whenever their dependencies are changed Make macros
and generic rules can be used to reduce the size and complexity of a
makefile.

Make macros
A shorthand that sirnpli6es creating miikefiles. Macro references are
substituted with either user — defined or system — defined values when the

Vill LIBRARIAN/'IX

makefile is processed. For example, out~f — date dependency naznes can be
substituted in generic command descriptions,

Master file
A file that is part of a defined library and reflects the inost current
production version.

Master fileset
Afileset defined by the LIBRAIUAN Manager that includes library files.

Master library
The hierarchy of masterfilesets and associated masterfiles for an application.

Memo
Text that provides documentation for a transaction. Memos are stored in
the audit trail database and can be reviewed using SHOWLOG.

Menu Mode
The mode of LIBRARIAN operation in which users select LIBRARIAN
functions from a set of pul ld o w n menus. Users can switch to the
cornrriand line prompt at any time by pressing the F2 function key.

Merge
An option available on checkout steps to combine source code changes
from one or more branches. Conflicting changes are highlighted with
comments in the source code, and should be resolved prior to the next
step. Merge is only available if the delta feature is being used.

! MSUSER
A special wildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who originally checked out the file. For MPE, this wildcard can
be used to fill in group or account. For UNIX, this wildcard can appear
anywhere in the path name. This wildcard is typically used to reject files
and move them from a test area back to the appropriate developer's work
area.

Multi-write
The access control level that allows multiple secondaryfiles with write — mode
access.

Glossary IX

New step
A step that introduces a previously untrackedfile to LIBRARIAN as a
secondaryfile. The file is linked to a pre — existing masterfile or a pending
master record is created. Rules governing introduction of new fi les on a
step are configured on the PP (Pending Production Areas) screen.

Node
The actual device name associated with a system in a network. This name
may or may not be the same as the LIBRARIAN system ID.

Null step
A step not involving any file movement. A null step is used to reflect
some external action such as an approval. Null steps are used to control
dependencies between steps; that is, they are used as presteps.

Obsolete version
When the LIBRARIAN Manager or Application Manager change the status
of a version to obsolete, any retained base revisions associated with that
version will be flushed the next time the FLLISH utility is run. Once a
version is flushed, it can be deleted, if desired.

Operator
A special capability assigned to a user who canflush records in the log
database and can restore previous revisions of files.

Orphan
Any file not currently being tracked by LIBRARIAN or a masterfile not
associated with an application. Orphans can be created by a LIBRARIAN
operation that causes a tracked file to become untracked (unknown to
LIBRAIGANj, or by operations that use the orphan option to create files
in destinations that are not to be tracked.

!OWNER
A special rvildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who currently owns the file. For MPE, this wildcard can be used
to fill in group or account. For VMX, this wi ldcard can appear anywhere
in the path name. This wildcard is typically used to approve files in
multiple developer work areas.

X LIBRARIAN/iX

Parent Fileset
A fileset that includes component filesets

Pending master file
A file that is being tracked as a master library file, but, because it is new,
does not physically exist in the library yet. The associated secondary is
called a pending production file and was introduced through a new step or
through the use of LIBRARIAN's forward versioning feature

Pending master mask
An edit mask used to automaticallyderive a pehhding- masterfile name based
on the name of the secondaryfile being introduced through a new step

Pending production area
Any location(s) defined for a step where previously untrackedfiles can be
introduced as new secondaryfiles. Steps with pending production areas
are considered to be new steps.

Pending production file
A secondaryfile that was introduced using a new step. The masterfile does
not currently exist in the library.

Permissions
A UNIX texm used to indicate file access rights; a matrix of read, write,
and execute access for owner, group and world

Physical fileset
A collection of files that exist in a particular location. Physical fileset
references include specific filenames, or naxnes using standard operating
systexn/shell wildcards,

Prestep
A step that must be completed successfully for a file before the next step
in the route can be performed. Presteps are often null approval steps.

Procedure
A macro that is included in a file with other macros with a procedure
header.

Procedure file
A file that contains multiple macros. Each xnacro has a procedure header
indicating the name of the macro. Procedure files can be loaded and
unloaded while using LlBRARIAN.

Project
A way of organizing transactions and associated files with a specific work
activity.

Glossary XI

Project fileset
A userfileset that is createdautomaticallywhen defining a project. The
fileset is maintained automatically when files are checked out or
introduced as new files for the pxoject, Files can also be added to this
fileset in advance by a Project Manager using the FMAINT facility.

Project manager
A special user capability assigned to users who can create projects, modify
project status and authorize users to work on projects.

Project menu
Whenever projects are associated with a particular route, users are asked to
select the project that they are working on from a menu when checking
files out or introducing new fi les.

Project status
A flag that determines what activities can be associated with a project.

PUSHREAD
A step option which allows a read mode copy to replace a masterfile or write
mode secondary which has not been checked in yet. This option is typically
used for emergency steps.

Read mode
The attribute of a secondaryfile that indicates it cannot replace the master.
Read mode copies expire after a configured period of time and can be
flushed using the FLUSH utility.

Read only
An access control level that only allows read mode copies of a file.

Read step
A step that copies a masterfile to a secondary location in read mode, with no
intention for modification. An expiration policy can be applied, so that
read mode copies created by the step can be cleaned up automatically
with the FLLISH utility.

Receiver
A system that can receive files from other systems,but from which
LIBRARIAN transactions cannot be initiated.

Release Step
Similar to a read step, a release step copies files from the library to a
production location in read mode. Typically, these files do not expire, and
the previous version is often retained.

XII LIBRARIAN/IX

Retained file
A previous generation of a file saved under a LIBRARIAN — generated
name "G4W&h@f". Files are retained when the retain parameter is used
on a step and the destination file is a tracked master or secondaryfile. Base
revisions are always retained. If deltas are being used, changes to the
previous generations are stored.

Revision
Any set of changes made to a masterfile through a checkin step Revisions
include all generations of a master file including the most current. Leaves
and branches also make up the set of revisions for a file.

Revision ID
Revisions are identified by version name followed by a colon (:) followed
by version count. If the revision is on a branch, branch and leaf count
pairs are appended delimited with periods (.).

Route
A set of automated procedural controls for managing file changes and
distribution A route consists of a predefined file — movement path that
reflects an established cycle. The route includes steps for all allowable
movements of the files for that cycle.

Route Alias
When defining projects, a route alias can be defined to indicate that the
project only applies to a particular route. The project name can be used in
place of the route name when performinga step (i.e., step. project) to
bypass the project menu.

Rule Administrator
Similar to the LIBRAKIAN Manager, the Rule Administrator is a user with
special user capability who can define LIBRARIAN rules such as steps and
f ilesets, but is not automatically authorized to perform LIBRARIAN
functions, and cannot create user authorizations.

Scan/Replace
A LIBRAIGAN function that searches files for patterns of text, and
optionally replaces the matches with user — defined text.

Scope
The attribute of a step that restricts which files the user can request. When
copying ormovingfiles, the scope specifies where files come from and
where they can be copied. Steps can restrict by fileset, from location and

Secondary file
Any copy of' a masterfile or another secondary file. All secondaries are
linked to a master (or pending master) either directly or indirectly, and are
in read or write mode.

to location.

Glossary XIII

environment.

Secondarylocation
Any location where secondaryfiles can be created.

Serial write
The access control level that allows only one secondaryfile at a time to have
write mode access, preventing concurrent modifications

Server
A system that has an implementation of LIBRAR1AN which includes the
LIBRARIAN databases. Clients access this database and other
LIBRARIAN functions remotely.
Settings
LIBRARIAN session-level parameters that control the user's working

Special user capability
See user capabilities.

Standard Rule
A make rule that associates spedfic target(s) with specific dependencies.

Step
A rule governing the copying and moving of files from one local'on to
another. Steps are the basic building blocks of the LIBRAtVAN file
movement and control system. Steps are grouped into routes and are
performed using system — and! or site — defined names.

Step parameter defaults
Options that control the behavior of a step, by default.

Step parameter overrides
If allowed, users can override step parameter defaults by specifying desired

Step refinements/exceptions
A step definition that includes rules for altering the destination location
based on the from location, filecode (MPE), and/or fi'leset membership.
The same criteria can be used to alter the type of movement (copy, move
or null) or exclude files altogether from the step.

Step type
There are three types of steps: master — t~ondary (MS),
secondary — to-secondary (SS) and secondary — to — master (SM). MS steps
are steps that checkout or distribute files. SM steps are steps that check
files in SS steps encompass all steps in between, such as move to test and
approvals

System
A unique node within a network identified to LIB R AS'&l wi th a unique
system ID

overrides.

XIV LiBRARJAN/iX

System lD
Used to identify systems to LIBRARIAN with in a network. Optiona11y
appears as a prefix to a filename delimited by ' t o i nd icate the
appropriate system.

System Profile
A set of global parameters maintained by the LIBRARIAN manager that
control how LIBRARIAN operates. Indudes items such as flush policy,
aging policy, date formats, etc.

Tag
A userMefined naxne for a particular revision of a file or files that can be
used to identify thexn at a later time, even after they have been retained.

Target
Component of a xnake rule that is built froxn one or more dependencies
using one or more comxnands. Object code and executables are examples
of targets

Tracked file
A file for which there is a record in the LIBRARIAN data base. Tracked
files are masters, secondaries or retainedfiles and movement operations are
controlled by LIBRARIAN rules. All other files are untrackedfiles.

Transaction
Any LIBRARIAN operation attempted either successfully or
unsuccessfully on a set of files. Except for comxnands which provide
information, all transactions are logged in the LIBRARIAN audit trai l .

Trunk revision
A revision that is not checked in on a branch.

Untracked file
A file for which there is no record in the LIBRARI'UU database. Ad hoc
operations on these files conform to normal operating systexn security.
Steps cannot be performed for untracked files.

User authorizations
The mechanisxn for deterxnining who can do what. Authorizations can be
defined for steps and projects. S pecial user capabilities can be assigned so
that specific authoxization is not required in some cases.

Glossary XV

User capabilities
Grants users certain privi leges that transcend standard user authorizations.
These include LIBRARIAN Manager, Applicati on Manager, Project Manager,
Operator, Rule Administrator and X capability. If no special capability is
assigned, authorization is required for steps, and other commands
conf'orrn to normal operating system security.

Userfileset
Afileset created and maintained by a user through the FMAINT user
fileset module. User filesets allow users to group files for their
convenience. Like masterf i leset, precede user filesets with % when
referencing them in commands.

! USERlD
A special wildcard that can be used in defining step source and destination
locations. When the step is executed, the wildcard is replaced with the
user ID of the user performingthe step. For MPE, this wildcard can be
used to fill in group or account, For UNIX, this wildcard can appear
anywhere in the path name. This wildcard is typically used to check out
file's into the developer's work area.

UserlD
A unique identifier for a LIBRARIAN user that is password protected.
Users are prompted for their User ID when initiating the LIBRARIAN

User password
Used to protect against unauthorized use of the LIBRAIGAN system.
Pass~ords are required and can be changed by the individual users.

program.

Verify
The LIBRAlUAN facility for reviewing file information on — line or off — line.

Version count (VCOUNT)
The sequential number that tracks the number of generations since the
current version was defined.

Version
All the files in an application, as they were at a specific point in time.

Version ID
The name given to a version by a LIBRARIAN or Application Manager.

Wildcards
Special characters or tokens used in filenames to request multiple files
that match a pattern, and/or to determine destination locations.

XVI UBRARIAN/IX

Work-in-progress
Untracked files that were in development and/or test prior to
LIBRARIAN implementation. These files can be handled using the
INPROGRESS parameterwith a checkout step.

Write mode
The attribute of a secondaryfile indicating that it can replace its masterfile
through an authorized checkin step.

XEQ file
A text file that contains the commands for a single macro. These macros
are executed by filename.

Glossary XVll

XVIII LIBRARIAN/IX

Index

?: adm4 — 6

::: usr 8-14

Symbols
!: ref 1 — 6, 3 — 1; adm 4-7

:: ref l — 4; usr 8 — 14

: —: usr8 — 14,8 — 15
:=: usr8 — 15
$NP: ref 1&7; usr 3-13
%%: ref7 — 3
@: adm4 — 6
—: adm4 — 6

': ref 1-6, 1 — 94, 1 — 115; usr3 — 3; adm4-4
": ref l&,1 — 94, 1 — 115; usr 3 — 3
"Empty " usr 9 — 5

ef3 — 1
=: adm4 — 6

Authorizations

Transactions

at command: usr 3 — 19

versions of: adm 7 — 1

default for session: ref 1 — 95, 1 — 101, 1 — 117
defixung: ref 5 — 11
deleting: ref 1 — 36; adm2 — 5
dependencies in: usr 8 — 1
example of archiving: usr 7 — 4
file dependencies: usr 8 — 4
in progress: usr A — 1
menu of: ref 7 — 17
processing text: usr 8 — 2
rebuilding documents: usr 8 — 2

Applications (AP) screen: ref 5 — 11

example of: adm W2

AT location: ref 1 — 9; usr 3-4
Audit trail. See Transaction reporting;

Audit trial transaction, flushing, adm 9 — 2

projects: adm 6-4
steps: adm 5-4

AUTHORIZE parameter for LM>OUTPUT: usr

default: adm 3 — 12

ACCOUNT variable for 1VDVZ: usr 8 — 17

Access control: adm 3-4
setting default ref 5 — 16, 5 — 29

Access mode: ref 1 — 150; adm 3-4

setting: ref 1 — 122
setting default: ref 5 — 16, 5 — 29

Accessing LIB ' ~ : usr 2 — 1

ACTIVATE: ref 1-19
ADJUST: ref 7 — 7
Adrnin menu: ref 9 — 8
Aging policy ref 1 — 41
ALL parameter for LM>OUTPUT: usr 7 — 2
ALL parameter for ~ usr 8 — 5
ALLOW: ref 1 — 20; usr 9 — 5
Alternate search locations: adm 7W
ALTPATH variable for ~ : usr 8 — 18
Annotation: ref 1 — 29, 1 — 120; usr l&,4 — 11,5 — 1

example of: usr 4 — 12,5 — 2
setting language for: ref 5 — 18, 5 — 30

Applications: usr 1 — 2,7M; adm 2 — 3,3 — 1
automated testing: usr 8-2
building. ref 8-1
compiling.ref 1 — 53; usr 8 — 1

2-1

Auto Filesets

Authorized files: usr 3 — 10

location of: usr 9 — 7

5 — 9, 5 — 21; adm 2 — 5, 3 — 8, 3 — 9

descriptors: ref 6 — 13
report of: ref 6 — 13

Auto Filesets (AF) screen: ref 5 — 9, 5 — 21

example of: adm 3-4
Auto Filesets (RAF10) report: ref 1 — 21, M13
AUTOUPDATE. See Auto Fileset Update
AUTOXEQ files: ref 1 — 3, 7 — 14

Background process, UNIX clients: ref IW; usr

Base revision: ref 1%2; adm 7 — 2

Baseline. See Versions
BATCH: usr 3 — 18

7 — 3

Auto fileset descriptors: adm 3-8
Auto Fileset Update (AUTOUPDATE): ref 1 — 21,

Base version See Base revision

Index I

Batch transactions: ref I — 3, I — 13; usr I — 3,3 — 9, excluding files from: ref 5 — 13
Concurrent maintenance, exaznple of: adm I — 9
Conditional expressions: ref 7 — 12

&18; adm4 — 9
Branches: usr 4 — 3

BRANCH: ref 168
znerging. See Merging revisions
NOBRANCH: ref I — 70

Building applications: usr 8 — I
Bypassing menus: ref I — 3, 7 — 14

in znacros: usr 9 — 3

Conditional looping: ref 7 — 21, 7 — 24
CONFIG, changing database passwords: adm 9 — 2
CONFIGP: ref 11 — I
Configuration file: ref 1 — 2, 11 — I

changing: adm C — I
Configuration management: usr I — 3

Conditional files: usr 3 — 12

See also Routes

Checkout

Checkout/checkin: adm 2 — I

Capabilities
See also User capabilit ies
SM: ref5 — 64

Capacities, L I B ' databa ses: ref I — 22, I — 55
Capailities. See User capabilities
Caret (~): ref 3 — 'I
Change control cycle: usr I — 2; adm 2-1

CHECKDB: ref I — 22
Checking

LIBRARIAN databases: ref I — 22
LIBRAIUAN databases capacities: ref I — 55

previous revision usr 4 — I
siznulating. usr A — 2

CLEANDB: ref I — 23
CLOSE: ref I — 24
Colon(:): ref I — 4
Command mode: ref I — 3; usr 2 — 5

switching to: usr 2 — 5

access restrictions. ref I — 15
commonly used: usr 2 — 10
editing previous: ref 1-86, 1-87
listing previous: ref I — 50
loopmg. ref 7 — 13, 7 — 21, 7 — 24
repeating execution of: ref I — 37
summary of: ref I — 16

Company name. ref 6-5
Comparing Eiles: ref I — 109

exaznple of usr 4 — 11
Coznpiling applications: usr 8 — I
Composite Presteps (CP) screen: ref 5 — 14

example of. adm 4 — 10
COMPRESS: ref I — 25
Coznpress Exclusions (CE) screen: ref 5-13
Compressing files: usr 3 — 15

automatic: ref 5 — 62

Datasets

CONFIRM: usr 3 — 7
Conflicts

exaznple of: usr 4 — 9
resolving for znerge: usr 4 — 9

CONNECT: ref I — 27
CONTINUE: ref 7-8
COPY; ref 1-29; usr 3 — 7
Copy steps: adm 4-5
Copying files: ref I — 66
COPYMEM variable for ~ : usr 8 — 19
Create projects

PROJECT command: adm 6 — 2
Projects (PJ) Screen: adm 6 — 2

Customized software: adm 7 — 7
Cycle. See Routes

Data, deleting mass: ref 5 — 93
Database passwords. ref 11 — I; adm C — I
Database utility: ref 10-1

LIBDB: ref 12 — I
LIBLOG: ref I2W

Date format: ref 5-62
Date prerequisites: ref 5 — 14
DECOMPRESS: ref I — 34
Decompressing files, automatic: adm A — I
Defining rules, Shortcut util i ty: adm 2 — I
Defining steps: adm 4-4, 4 — 13

DELETE: ref I — 36
Delete, mass data: ref W93
Delta files: usr I — 4, 4 — 4

associated znaster: ref I — 142; usr 4 — 14
integrity of: usr 4 — 14
znaintaining. usr ~
purging. usr 4 — 12
restoring frozn: ref I — 102
verifying checksuzn: ref I — 142
vs. generation files: usr 4 — 4

Coznmands

ii U BRAR(AN/iX

Dependency tree, for MME : us r 8-4
Development

in progress: usr A-1
Dial — DS: ref 5 — 85
Dialogs: ref 9 — 11
Differences between files: usr 5-4
Distribution, forward versioning with: adm 7 — 7
DO: ref 1 — 37

Documenting file rnovernents: usr 3 — 14
DS/3000: ref 5 — 37
DSLINE: ref 1 — 27
Durruny target: usr 8 — ll

ECHO: ref 7 — 9
ECHO parameterfor MAKE: usr 8 — 5
EDIT: ref 1 — 38
Editmasks: ref 1 — ll; usr3 — 7

for MAKE: usr 8 — 14
inmacros: usr 9M
in UNIX destinations: adm 4 — 9
list of symbols: usr 3-4
pathnames: usr 3 8
referring to djfferent elements: usr 3 — 9

Editing fi les. usr 3 — 15
Editor: ref l — 14; usr 3 — 15
Emergency fix rule: adm 1 — 7
END: ref 7 — 10
Environment variables: ref 1 — 2
Error messages, security rnoniton r ef 1 — 30, 1 — 57,

Escape key: usr 2 — 5
Exception report: ref 1 — 23
Exclamation point (!): ref 3 — 1
EXCLUDE variable for 1VL4JCE: usr 8-19
Excluded files: usr 3 — 12
Exclusive access control: adm 3 — 4
EXIT: ref 1 — 39
Expiration: ref 1 — 150, 1 — 154

defining policy for: adm 4 — 12
setting: ref 1-118

EXPRESS SUBMIT: ref 1 — 13

concurrent maintenance with: adm 7 — 7

File movement rules

routes: adm 4 — 1

1 — 68

6 — 54

6 — 52

commands for: usr 3 — 17

Filenames: usr 3 — 2
referring to ref 1-6

Files: ref 1 — 154
access control: ref 5 — 16
access mode: ref 1 — 122, 1 — 150, 5-16
access override: adm 3 — 11
annotation: ref 1 — 30, 1 — 120
applying selection criteria to: ref 3 — 10
assigning tags: adm 7 — 8
associated master: ref 1-142
asscxiated projects: ref 1 — 144
associated user filesets: ref 1 — 145
associated versions: ref 1 — 146
authorized: usr 3 — 10
automatic decompression: adm A — 1
checking existence of: usr 9-4

compiling ref 1 — 53, 8' 1
compressing. ref 1 — 25
conditional: usr 3 — 12

confirmingauthorized: ref 1 — 11
copying: ref 1 — 29
counts. ref 1 — 147

File dialog. ref 9 — ll
File Exceptions (RFX10) report: ref 6 — 29
File Inquiry (FI) screen: ref 5 — 24

exampleof: adm 8 — 2
Filemanagement

objectives: usr I — 5; adm 1 — 1
overview: adm 1 — 1
rules: adm 1 — 3

File menu: ref 9 — 3

See also Routes; Steps
reviewing: adm 4 — 19

sequence for defining: adm 4 — 19
steps: adm 4 — 1

File inovernents
associatmg projects: adm 4 — 3
defining rules for: adm 4 — 1

exclusions: usr 3 — 6
inultiple file references: usr 3-6

File naming conventions: ref xv
File operations, batch mode. usr 3 — 18
File security, enhancing: usr 3 — 15
File transactions: usr 3 — 1
File Versions (RVDIO) report: ref 6 — 50
File Versions and Timestamps (RVT10) report: ref

F ile Versions and Times~ p s (RVT20) report ref

Features: adm 1-2
File Access (FA) screen: ref 5 — 16

exampleof: adm 3 — 12

Index iii

4 — 6

excluded: usr 3 — 12

destinations: usr 3 — 7

modified status: usr 3-6

creating listfile of: ref 3 — 10
decompressing. ref I — 34; usr 3 — 15
defining movement rules: ref 5 — 71
deleting tracking. ref I& I
description: ref I — 157, 5 — 16

differences between: ref 1-46, I — 109
directly referring to: usr &2
editing: usr 3 — 15
exceptions: ref I — 96

excluding: ref I — 10
excluding from compression: ref 5 — 13
expiration date: ref I — 10, I — 150, I — 154

expiration policy: adm 4 — 12
expired: ref 1-40
FLUSH policy: usr 4-6
flushed: ref 6 — 7
forward versioning. adm 7 — 5
generated: ref I — 149
generation count. usr 3-4
in last transaction: usr 3 — 3
indirectly referring to: usr W3
i nformation about r ef I — 138, 5 — 24; us

adm 8 — 2,8 — 3
language: ref I — 120, I — 157, 5 — 16
last step performed: ref I — 151
last transaction: ref I — 7
locking. ref I — 52, I — 133
lockword,: ref I — 121
macros that process usr 9 — 2
znerging revisions: ref I — 70

moving.ref I — 56
MPE security: ref 1-88, I — 113
new: ref I — 70,5-42,5 — 51; usr4-4; adm
nonexistent: ref I — 23
onhold: ref I — 52,1 — 133
online inquiry: ref I — 138
original filenames: ref I — 153
ownership: ref I — 124, I — ISO
pathnames: usr 3-8
PC transfer: ref I — 64, I — 65
pending masters: ref 6 — 35
previous versions: ref I — 149
printing. usr 5 — I
purged: ref I — 23
purging. ref 1-81
purging old versions: adm 7-4
referring to r ef I — 5; usr W2

usr

4 — 15

sets of: usr 6-1

retained: adm 4 — 12

subset selection: usr 3-6

user confirmation: usr 3 — 7
VERIFY: adm 8 — 3
versions of: usr &3; adm 7 — I, 7 — 4
violations: usr 3 — 12

Files in Filesets (FF) screen: ref I — 21, 5-21
example of: adm 3 — 10

Fileset Components (FC) screen: ref 5 — 19
example of: adm 3-6

Fileset descriptors: ref 1-21
Fileset Explosion (RFE10) report: ref 6 — 21
Fileset Explosion (RFE20) report: ref 6 — 23
Fileset Status (RFD10) report ref 6 — 17
Filesets: usr 6 — I; adm3 — 5,3 — 14

auto fileset descriptors: ref 6-13
defining. ref W29

referring to by project: usr 3 — 5
referring to by revision: usr 3-3
referring to by step: usr 3 — 5
referring to multiple:ref I — 10
renaming: ref I — 90
replacing text in: ref 1 — 105; usr 5 — 2
report by master: ref 6-1 9
report of. ref 6 — 7, 6 — 17, 6 — 35
report of expired: ref 6 — 25
report of generations. ref 6 — 31
report of missing.ref 6-29
report of untracked: ref 6 — 29
report of versions: ref 6 — 50

retaining. usr 4 — 4
revision storage: usr 4 — 4
revisions: ref 1 — 155, I — 156; usr 3 — 3,4 — 2
scanIUng: usr 5 — 2
searching for text in. ref I — 105; usr 5 — 2
secondary location: usr 3-4
selecting by date: ref I — 11
selecting by project: ref I — 10
selecting by tag. ref 1-10
selecting tracked/untracked: ref 1-11

showing differences between: usr 5-4
showing versions of: usr 4-12
step history: ref 1-152

tagging. ref I — 128, I — 155; adm 7 — 8
timestamps: ref I — 99, 1 — 100, 1-131
tracked: ref 1-11
tracking status: usr 3-7
transferring from PC: ref l&5
transferring to PC: ref I — 64
untracked: ref 1-11; usr 3 — 17

ad hoc. See User filesets

iv U BRARIAN/iX

FOPEN

FM>SERVER: usr 6 — 2

files in: adm 3 — 7

numbered: usr 7 — 2

master. See Master filesets

defining& erarchy of: adm 3 — 14

hierarchy of: adm ~
information about files in: ref 5 — 24
logical: usr 3 — 3

membersof: ref 1 — 143; adm 3 — 7

projects: ref2 — 12; usr6 — 3
referring to: usr 3 — 3
report by master: ref 6-19
report of: ref 6 — 17
reporting members of: ref 6 — 21, 6-23
user. See User filesets

Filesets (FS) screen: ref 5 — 29
example of: adm 3 — 5

FLUSH: ref 1-40, 1M1
Flush, preview of files ready for: ref 6 — 25, 6-27
Flush Detail (FLUSH) report: ref 6 — 7
Flush policy: ref 5-62
Flushing

expired files: adm 9 — 1
expired transactions: adm 9 — 2

FLUSHLOG: ref 1 — 41, 6 — 39, 6-41, 6-43; adm 6-5,

FM>ADD: ref2 — 3; usr6 — 2
FM>CREATE: ref 2 — 4; usr 6 — 2
FM>DELETE: ref2-5; usr 6 — 2
FM>EXIT: ref 2 — 6
FM>HELP: ref 2 — 7
FM>LIST: reft; usr 6 — 3

FM>idvfAINT: ref 2 — 9
FM>MhJCE: ref 2 — 10; usr 6-2
FM>PURGE: ref 2 — 11; usr 6-2
FM>RELATE: ref 2 — 12; usr 6-2

FM>SEVER: ref 2-13
FM>SHOW: ref 2 — 14; usr 6 — 3
FMA.INT: ref 1~,2 — 1; adm 6-2

accessing: ref 3 — 7
commands: ref 2 — 2
exiting. ref 26

decompression: adm A — 2

trapping: adm A — 2
FORMAT parameter: usr 3 — 22
Forward versioning: adm 7 — 5

example of: adm 1 — 9

searching mult iple locations: adm 7 — 6

Indirect files. See Listfiles

vs, Delta files: usr 4 — 4

IF/ELSE: ref 7 — 12

Info menu r ef 9 — 7
INPROGRESS parameter: usr A — 1

transaction status: usr 3 — 21

H
HELP: ref 1-43; usr 2W; adm 4 — 19
Help menu. ref 9 — 10
HELP PROJECTS: adm 8-7
HELP STEPS: usr 3 — 9; adm 4 — 19, 8 — 7
Housekeeping: adm 9 — 1

JCWS
adjusting values in macros: ref 7 — 7
LIBMATCHES: ref 1 — 108

Jobs: usr 3 — 21
example of: usr 3 — 20
running LIBRARIAN from: usr 3 — 19

setting up: adm 7 — 5
Forward Versioning (FV) screen: ref 5 — 32

example of: adm 7-6

Function keys: ref 1 — 1

GCOUNT, See Generation count
Generated Files (RGF10) report: ref 6 — 31
Generation count: usr 3-4, 4 — 4

referring to: ref 1 — 8
Generation files: ref 1 — 7, 1 — 8, 1 — 149; usr 4-4

original filenames: ref 1 — 153, 6 — 31
report of: ref 6 — 31

Getting started: usr 2 — 1
Global changes to LIBRARIAN database: ref 10 — 1
Global search/replace: usr 5 — 2
GOTO: ref 7 — 11
GROUP variable for ~ : usr 8 - 18

K
KILL: ref 1 — 45

Index v

L
Language: ref I — 157

setting: ref l — 120,5 — 16, adm 3 — 12
setting default: ref 5 — 29

9 — I

I — 102
features: usr 1-4

Library. See Master library
LIBSCREEN: ref 1-49
LIBUTIL: ref 10 — I; adm B-I
Line drawing characters: ref I — 2

vi L IBRARIAN/IX

LIBBATCH variable: usr 3 — 19

LAST: usr3 — 4
Last transaction

referring to files in: ref I — 7; usr 3 — 3
resetting reference to: ref I — 94
saving list of files from: ref I — 115

LASTNOTO parameter: usr 3-4
LCOMPARE: ref l — 46; usr I — 5

example of usr 5 — 5

LIBDB database: ref 12 — I
LIBLOG database: ref 12 — 4; adm8-8

maintaining: ref 4 — 6
transaction codes: ref 6 — 3

LIBMGR See LIBIVUGAN Manager
LIBPROMPT variable: usr 2 — 6
LIB RA3lAN

accessirig: usr 2 — I
benefits and features: usr I — I

components: usr I — 2
concepts: usr I — I, I — 2
configuring: ref ll — I; adm C — I
con6guring server logon/passwords:
database passwords: ref 11 — I
features: usr 1-5; adm I — 2
terzrunology: usr I — 2

LIBRARIAN Administrator, housekeeping

LIB14OWM databases: ref 12 — I
capacity management adm 9-2
changing passwords for: adm 9 — 2
loading/unloading. adm B — I
monitormg: ref I — 22, I — 55
passwords: adm C — I

LIBRARJAN Manager. adm 2 — 2, 2-7, 5 — 3
capability: adm 2 — 7
creating: adm 2-7
deleting. adm 2-8
restricting: ref 5-62

LIBRARIAN prompt, changing: usr 2 — 6
LIBRARIAN/iX Plus: ref I — 29, l~, I — 76, 1-81,

ref 11 — I

Lockwords: usr 3 — 15

in MAKE: usr WI6

See also Transactions

Link: ref I — 24
LISTF: ref 16

Listfiles: usr 7 — I
appending to: ref 3 — 3
archiving with: usr 7-4
creating: usr 7 — I
creating with SHOWLOG: ref 4 — 12
editing. ref 3 — 5
example of: usr 7 — 2
generated by SHOWLOG: adm 8-8
listing files in: ref 3-9, 3-15
maintaining. ref I — 51, Wl; usr 7 — 3
maintaining documentation for: ref 3-4
numbered: ref 3 — 13
referring to: ref 1-6; usr 3 — 3
refreshing content of; usr 7 — 2
selecting files based on step: usr 7 — 3
selecting files by date: usr 7 — 2
selecting files for: ref 3 — 10
showing related documentation: ref 3 — 16
sorting ref 3 — 16
using with STORE: usr 7 — 4

LISTFXIO: ref I — 23
LISTRETlO: ref 1-50
LM>ALTER; ref 3-3; usr 7 — 3
LM>DOCUhKNT: ref 3-4; usr 7 — 3
LM>EDIT: ref3 — 5; usr 7 — 3
LM>EXIT: ref 3-6
LM>FMAINT: ref 3 — 7
LM>HELP: ref 3-8
LM>LIST: ref 3 — 9, usr 7-4
LM>OUTPUT: ref3-10; usr 7 — 1,7 — 3,7-4
LM>REPORT: ref 3 — 15; usr 7M
LM>SORT: ref 3-16; usr 7 — 3
LIVI A ' : re f I — 51, 3 — I; usr 7-1

accessing: ref 2 — 9
commands: ref 3 — 2
exiting: ref 3-6

LOCK: ref I — 52
Locks, status: ref I — 141

assigning: usr 3-15
changing: ref I — 136; usr2 — 3
setting. ref I — 121

Log records

deleting: ref 4-6
Log reporting; ref I — 130

See also Transaction reporting
Logical fileset, referring to: ref 1-6
LOGON wildcard: adm 4-7

i n znacros: usr 9 4

9 — 5

edit masks: usr 9 — 4

Macros: ref 7 — 1; usr 3 — 15, 3 — 21, 9 — 1

Long Pathnaxne (LP) screen: ref 5 — 34
Lookup, step refineznent: ref 5-67
LOOP/NEXT: ref 7 — 13
Loops

comznands: ref 7-13, 7 — 21, 7-24

nesting: usr 9 — 5
REPEAT/UN I I L : usr 9 — 5
WHILE/ EN D W H I LE: usr 9-S

LP parameter: usr 3 — 21

automatic execution of: usr 9 — 7
AUTOXEQ: usr 9 — 7
checking file existence in: usr 9 — 4
comments m: ref 7 — 5
conditional expressions: ref 7 — 12; usr 9 — 3
conditional looping: ref 7 — 21, 7 — 24
control language summary: ref 7M
control options: ref 7 — 15
controlling display: ref 7 — 9
displaying messages: ref 7 — 9

editing. ref 7 — 2
entering data on the coznmand line: ref 7 — 15
error handling: ref 7-8
example of: usr 9 — 2
execution of: ref 1-161, 7 — 1
filename substitufion in: ref 7 — 3
files for: ref 7 — 2, 7-15; usr 9 — 2
juznping to specific location in: ref 7 — 11
location of: usr 3 — 15, 9 — 2
looping for files: ref 7 — 13; usr 94
looping through records in a file: ref 7 — 13; usr

xnenus in: ref 7-17; usr 9 — 3
nesting: ref 7 — 15; usr 9A
nesting loops: ref 7 — 15; usr 9W
parameters in: ref 7 — 3, 7 — 17, 7 — 22 ; usr 9 — 3
pausing in: ref 7 — 23
procedure files: ref 1 — 125, 7 — 20; usr 9 — 7
prompting users: ref 7 — 17
providing custom help for: ref 7 — 3
reusing parazneters: ref 7 — 15; usr SH5
RUN ref 7 — S
signalling end of: ref 7 — 10
specifying parameter values: ref 1 — 161
STRE4Jvi: ref 7 — 5
suppressing coznmands/znessages ref 7 — 9

7 — 7

8 — 16

See also Makefiles

conventions: usr 8 — 5

LISII' variables: usr 8 — 16

variables. See Parameters

suppressmg wanung: ref 7 — 15
terxninating: ref 7 — 10
user capabilities in: ref 1-20

Macros znenu: ref 9 — 5
MAIL re f1 — 55
Main znenu: ref 9 — 2
Maintenance, concurrent developznent with: adm

~: ref 1 — 53, 8-1; usr 8 — 1~3

accomznodating new fi les: usr 8-8
account default for: ref 8-9
across multiple accounts: usr 8 — 18
applying edit znask to LISTF in: usr 8 — 8
automatic dependency determination: usr

benefits: usr 8 — 2
COBOL COPYLIB: ref 8 — 9
controlling j ob launching. ref 8 — 8
controlling job logon: ref 8 — 5
defining rules for: ref 8 — 2
dependency tree: usr 8-4
duxzuny target usr 8 — 11
edit xnasks: ref 8-6
example of operation: usr 8 — 3
executing. usr 8-20
files in multiple accounts: ref 8 — 10
generic rules: usr 8 — 15
generic values: ref 8-6
group default for: ref 8 — 9
iterative command processing. usr 8-12
job logon: usr 8-8
makefiles: usr 8 — 2
prompting users for input usr 8 — 19
rules: ref 8 — 2; usr8 — 5
searching for dependencies: ref 8-5
targets: usr 8 — 2
TOUCH comxnand: usr 8-20
types of rules: usr 8 — 14

Makefiles: ref 8 — 1; usr 8 — 2
comments in: ref 8 — 2; usr 8 — 5

creating. usr 8 — S
defining rules: usr 8 — 5
delimiters: usr 8 — 14
edit znasks in: usr 8 — 14
exaznple of: usr 8-6, 8-7, 8 — 9
job cards in: usr 8 — 13

znultiple generic dependencies in: usr 8 — 15
rules: usr 8 14

[ndex vii

Menus

~O U T: u s r 8- 8

special variables: usr 8 — 16

systemvariables in: usr 8 — 20
variable substitution in: ref 8-7; usr 8 — 12

Mass changes to LIBRARIAN database: ref 10-1
Master File Status (RFD20) report: ref 6 — 19
Master files: usr 1 — 2; adm 1 — 3

associated: ref 1 — 148
associated delta files: usr 4 — 14
associated deltas: ref 1 — 142
associated write-mode secondary: ref 1 — 148
new: ref5 — 42,5 — 51
ORPHAN: ref 1W1
pending. ref 1 — 70, 5 — 42, 5 — 51, 6 — 35
reporting revisions of: ref 6 — 37

Master filesets: ref 1 — 143
adding files to: ref 5 — 21; adm 3 — 10
defining hierarchy of: ref 5 — 19
deleting. adm 3 — 13
deleting files from: ref 5 — 21
reporting: adm 3 — 13

Master library: usr 1 — 2; adm 1 — 3,3 — 3,3 — 14
defining. ref 5 — 1 9, 5 — 21, 5 — 29
deleting. adm 2 — 5, 3 — 13
reporting: adm 3 — 13

MASTER parameter: ref 1-70
Matching patterns: ref 1 — 106
MEMO: ref 1-55; usr 3 — 15
Memos: ref 1 — 14; usr 3-15

editing: adm 8 — 8
MENU: ref 7 — 14
Menumode: ref 1 — 3; usr2 — 4

dialogs in: ref 9 — 11
steps dialog. usr 2-7
switching to: usr 2 — 5
usmg. usr 2-5

Admin: ref 9 — 8
bypassing: ref 1 — 3,7 — 14; usr 2-4
controlling: ref 7 — 14
File: ref 9 — 3
Help: ref 9 — 10
hierarchy of: ref 9 — 1
ininacros: ref 7 — 17; usr 2-4
Info: ref 9 — 7
Macros: ref 9 — 5
Main: ref 9-2
Options: ref 9 — 13
Revision Criteria: ref 9 — 12
setting parameters: usr 9 — 3

MPE

cordlicts: usr 4-9

MSUSER wildcard: adm 4 — 7

suppressing: ref 7 — 14
Tools: ref 9 — 6
User: ref 9-4
user — defined: ref 7 — 17; usr 9 — 3

Merge: usr 1M
Merge conflicts

example of: usr 4 — 9
setting language for: ref 5 — 18, 5 — 30

Merging revisions: ref 1 — 70; usr 4 — 7

excludingspecificchanges: usr 4 — 9
including specific changes: usr 4 — 7

Messages
audit trail: ref 1 — 55
controlling: usr 3 — 12
to users: ref 1 — 55

Modification timestamps: ref 1-131
MODIFIED: ref 1-11; usr ~
MOVE: ref 1 — 56
Move steps: adm 4-5
Move-to — production. usr 1 — 3
Movement rules. See Steps
Moving files: ref 1-66

commands ref 1 — 3
security: ref 1 — 113

Multiple search locations: adm 7M
Multiple versions, example of: adm 1 — 9
Multiple write access control: adm 3-4

Network Configuration (NC) screen: ref 5 — 37
example of: adm 2-5

Networking
buffer size: ref 5 — 37
changing cordigur ation: adm 9 — 3
configuring: ref 5 — 37, 5-69, 5-85
example of: adm 2 — 5

linking to remote MPE systems: ref 1 — 104
logon security: adm 2 — 5
node names: ref 5-69
overrides: ref 5 — 85
passwords: ref 5 — 37, 5-45
troubleshooting: adm 2 — 5

New files: ref 1 — 70; usr 4-4
See also Pending master files
added with a step: ref 1 — 5
rules for, ref 5-51; adm 4 — 15

X.25: adm2 — 5

viii U BRARIAN/iX

Node name, Systezn — to — System Table (SS) screen:
ref 5 — 69

NOMAKE parameter for ~ : usr 8 — 5
NOVIOLATIONS: usr 3 — 20
NS/3000: ref 5 — 37
Null steps: adm 4 — 5

0
Object code, introducing. ref 5 — 51
Objectives: adm I — I

file znanageznent: usr 1-5
Online help: ref I — 5; usr2 — 6
Online inquiry

files: ref I — 138
versions: ref 1 — 159

Option menu: ref9-13; usr 2 — 9
OPTION statement for macros: ref 7 — 15
Original filename. See Generations
ORPHAN parameter: ref I — 32, 1-61

Output, redirecting: ref 6-4
OVERLAY: ref 1-32, 1&2
Owner, setting: ref I — 124, I — 150

OUTPUT. usr 7-3

alternate: adm 4-9

Pending inaster file, report of: ref 6 — 35
Pending Master Files (PF) screen: ref 5 — 42
Pending Master Files (RPM10) report: ref 6-35
Pending Production Areas (PP) screen: ref 5-51

example of: adm 4-16
field descriptions: adm 4 — 16

PERFORM: ref l — 66; usr2 — 9,3 — 13
PH capability: adm A — I
Pre-Flush Notification (RFNIO) report ref 6-25
Pre — Flush Notification (RFN20) report ref 6-27
Presteps: adm 4 — 9

composite: ref 5 — 14; adm 4 — 9
multiple: adm 4-9
Steps (ST) screen adm 4 — 9

Previous transaction, saving files frozn: ref I — 115
PRINT: ref I — 76
Printer, escape sequences. ref I — 47, I — 77
PRINTESC file: ref 147
Printing files: usr 5-1

annotated: usr 5 — I

I’ecuzslon: usr 3 — 2

inmacros: usr 9 — 3

OWNER wi ldcard: adm 4 — 7

Parameters
allowing users to override: adm 4 — 12

step defaults: adm 4 — 12
FARM: ref 7 — 17
PASSWORD: usr 2 — 3
Passwords

changing: ref 1-136, 5 — 91
LIBRARIAN databases: ref Il — I
providing: usr 2 — I
removing: usr 2 — 3
security: ref 5-64, 5-65; adm 2 — 6

Pathnames: ref I — 6
entering long names on screen: ref 5-34

Pattern matching. ref I — 106

Pause in znacros: ref 7 — 23
PC. ref I ~, I ~
PCRECEIVE: ref 1~
PCSEND: ref 1-65
Pending master: ref I — 70

Procedures

2 — I

I — 92; usr 6 — 3; adm 6-7

PRIVATE: usr 6-2
Private filesets: usr 6 — 2
PROCEDURE: ref 7 — 20
Procedure files: ref I — 125; usr 9 — 7

executing: ref I — 161
nazning. ref 7 — 20
signalling end of: ref 7 — 10
terminating: ref 7 — 10

Process, running in the background: ref I — 4; usr

Process ID nuznbers r ef I — 19, IM5
Programs, compiling. ref 8 — I
PROJECT: ref I — 78
Project Authorizations (PA) screen: ref 5-40

exaznple of: adm 6 — 2
field descriptions: adm 6-2

Project Authorizations (RUP10) report ref 6-47
Project fileset, implied zeference to: ref I — 9
Project filesets: adm 6-7

finding secondaries: usr 6 — 3; adm 6 — 7

hierarchies: ref 2-12
maintaining: usr 6 — 3
updating autoznatically. ref I — 23, I — 59, 1&2,

using FIVLQN'I wi th: adm 6 — 2
Project Inquiry (PI) sci'een: ref 5 — 45

example of: adm 6 — 6, 8-3
Project manager, assigning capability: adm 6-1
Project Status (PS) screen, example of: adm 6-5
Project Status Change (PS) screen: ref 5 — 54

wildcards: usr 5 — 3

index ix

6 — 5, 6-6

Projects: adm 6 — 1,6 — 2
"no project" option: usr 3-13

associating files with: adm 6 — 7
authorizingusersfor: ref5 — 40; adm ~
changing linkage: ref I — 126
changing status of: ref 5 — 54; ad m 6-5
creating: adm 6 — 2

default for session: ref 1-97, I — 126
defining. ref I — 78
defining hierarchies: adm 6 — 3
defining manager for: adm 6-1
example of: adm 6-2
files in: ref I — 144
filesets: usr 6 — 3; adm 6 — 7

f lushing transactions associated with: adm

hierarchies: ref 2 — 12
implied reference to files: usr 3 — 5
inquiring. adm 8-5
linking fi les to: usr 3 — 13
list of, adm 6-6,8 — 3
l ist of authorized: adm K7
menu of: ref 7 — 17
online listing of: ref 5-45
report of: ref 6 — 33
report of users authorized for: ref 6 — 47
requiring. ref 5 — 57; adm 4 — 3
selecting from menu: adm 6 — 7
specifying: adm 6-7
status change: adm 6 — 5
subset selection: usr 3-6

Projects (PJ) screen: ref 5 — 48
example of. adm 6 — 2

Projects (RPJ10) report: ref 6 — 33
Prompt:ref IM
Prompts

changing: usr 2W
controlling. usr 3 — 12

Recursion

levels of: usr 3-2

Read — mode access: adm 3-4

RI: ref1 — 8S
R7: ref1 — 85
Read access control: adm 3 — 4
Read mode secondary, updating: ref I — 134

Read — mode secondaries, housekeeping: adm 9 — I

in pathnames: ref I&; usr 3 — 2

REDO: ref 1~ , 1-87
Reflection: ref 1 — 64, 1-65, I — 8S
RELEASE: ref I~
Releases, multiple: adm 7A
Remote logon: ref I — 27

configuring: ref 5 — 37
Remote sessions: ref 1-39
Remote systems

linking to: ref I — 24, 1-104
logon information: adm 9 — 3

RENAME: ref I — 90
REPEAT! UNITL: ref 7 — 21
Replacing text in files: ref I — 105; usr 5-2

variables: ref 1-107; usr S-4
Reports

PUBLIC: usr 6 — 2
Public filesets: usr 6 — 2
PURGE: ref I — 81; usr3 — 7

usr 7 — 2

from command mode: adm 8-2
from menus adm 8 — I
generating: ref 6-4; adm 8 — I
information about files: adm 8 — 2
project status: adm 8-3
redirecting: ref 6-4
retained files: ref 6 — 31

See aLso Geoerations
SHOWLOG: adm 8-4

summaryof: ref 6 — 2
~c t io n codes: ref 6-3
VERIFY: adm 8 — 3
version data: adm 8-4

Request status: usr 3 — 9
RESET (APPLICATION): ref 1 — 95, I — 101
RESET (EXCEPTION): ref 1-96
RESET (PROJECT): ref 1-97
RESET (ROUTE): ref I — 98
RESET (RESTAMP): ref I — 99, I — 100
RESET' ("): ref I — 94
RESETONZERO parameter for LM>OU'IPUT:

RESTORE: ref I — 101QA function adm I&
QEDIT files ref I — 77, I — 108, usr 5 — I, 5-3
QUIET: ref I — 83
QUIT: ref I — 39

x L I B RADIAN/IX

Retained files
See also Generation files
location of: usr 4-6

location of: usr 4-6

file reference: usr 3 — 3

maintaining: usr 4- 6
Retained masters, flushing: adm 9 — 1
Retained secondaries, flushing: adm 9 — 1
Retaining old revisions: usr 4-4
RE'lRY: ref 1 — 27, 1 — 104; usr 3 — 20
Revision Criteria menu: ref 9-12; usr 2-8
Revision History (RRH10) report: ref 6 — 37
Revision tree, example of: usr 4 — 2
Revisions: usr 4 — 1, 4 — 11

branching: usr 4-1
comparing: usr 4 — 9
concepts related to: adm 7 — 2
deleting: adm 7 — 4

history: ref 1 — 156
identifying: usr 4-2
information about: ref 1 — 138; usr 4 — 12

maintaining: usr 4 — 6
merging: ref 1 — 70

See also Merging revisions
printing with annotation: usr 4 — 11
referring to: ref 1 — 7
reports of: ref 6 — 37; usr 4 — 15
retrieving: adm 7 — 3
storage of: usr 4-4
tagging. adm 7 — 8
tags: ref 1 — 155
vs. versions: usr 4-1, adm 7 — 1

Root revision. See Base revision
Routes: usr 1-3; adm 1 — 3,4 — 1,4 — 2

default for session: ref 1-127
defirung: ref 5 — 57
examples of: adm 1-4, 4-2
menu of: ref 7 — 17
report of: ref 6-8, 6-10
steps in: adm 4-3

Routes (RT) screen: ref 5-57
Rules: adm 1 — 3

default for session: ref 1 — 98
file moveznent.. adm 4 — 1
setting up: adm 2 — 1
Shortcut uti l i ty : adm 2 — 1

RUN: ref 1 — 19, 1&5
Running LIBRARIAN: usr 2 — 1

S
SCAN: ref 1 — 105

appending to lines w'ith match: ref 1 — 107

Screens

untracked: usr A-1

not checked out: usr A — 1

SCHEDULE variable for MAKE: usr 8 — 17

deleting lines with rnatch: ref 1 — 107
example of: usr 5 — 3
QEDIT Files: ref 1-77, 1 — 108; usr5 — 1,5 — 3
replacement variables: usr 5 — 4
variables: ref 1 — 107

SCOMPARE: ref 1 — 109; usr 5-6

accessing. ref 1-49, 5 — 3
adding data: ref 5 — 4
breaking to UNIX! MPE: ref 5-5
carrying data forward: ref 5 — 5
changing data: ref 5-5
deleting data: ref 5 — 5
enter key: ref 5 — 4
exiting. ref 5 — 5
finding data: ref 5-4
function keys: ref 5 — 5
moving between: ref 5-4
moving between fields: ref 5-4
security: ref 5 — 3
summary of: ref 5 — 1
using: ref 5 — 4
using online help: ref 5 — 5

Searching files for text: ref 1 — '105; usr 5 — 2
Secondary files: usr 1 — 2; adm 1 — 3

m progress: usr A — 2
indirectly referring to: ref 1 — 9; usr ~
new: ref 5 — 51

ORPHAN: ref l&1
pattern — matching. usr 5 — 3

updating with current master: ref 1 — 134
write — mode: ref 1 — 148

SECURE: ref 1-113
Security

MPE: ref 1-88
Setting Passwords: ref 5 — 64, ~5
setting passwords: adm 2W

Security monitor: ref 1 — 91
error message: ref 1 — 30, 1 — 57, 1~

Sequence. See Routes
Serial access control: adm 2 — 1, 3 — 4
Server: ref 1 — 2

con6guring logon! passwords: ref 11 — 1
logon: adm C — 1
passwords: adm C — 1

SET (APPLICATION): ref 1 — 117
SET (EXPDATE): ref 1 — 118
SET (LANGUAGE): ref 1 — 120
SET (LOCKWORD) ref 1-121

Scan

Index xi

SET: u sr3 — 3

Shortcut: adm 2-1

SET (MODE): ref 1 — 122
SET (OWNER): ref 1 — 124
SET (PROCEDURE): ref 1 — 125
SET (PROJECT): ref 1 — 126
SET (ROUTE): ref 1 — 127
SET (TAG): ref 1 — 128

SET * (*'): ref 1 — 115
Setting parameters using menus: usr 9 — 3
Setup

applications: adm 2 — 3
defining steps: adm 2-4
defining users: adm 2W
deleting. adm 2 — 5
troubleshooting. adm 2 — 5

SETVAR: ref 7-22
Shell commands: ref 1 — 2, 1-3; usr 2 — 5

defining applications: adm 2 — 3
defining library: adm 2 — 4
defining steps: adm 2-4
defining users: adm 2 — 4
deleting setup: adm 2 — 5
function keys: adm 2 — 3
running: adm 2 — 2
troubleshooting. adm 2 — 5

SHOW parameter for ~ : usr 8 — 5
SHOWLOG: ref 1 — 130, 4 — 1, ~1; adm 8-4

accessing: ref 4 — 1
commands surrunary: adm 8-8
creating listfiles with: ref 4-12

example of: adm 8 — 10
exiting ref 4-5
generating reports: ref 4-10
getting saved settings: ref 4-9
refreshing display: ref 4 — 22
report format: ref 4-7
resetting report values: ref 4 — 15
resetting subset selection: ref 4 — 26
saving report settings: ref 4-16
selecting subsets: ref 4 — 24
selection criteria: ref 4 — 17
setting offiine/online: ref 4 — 13
sort sequence: ref 4 — 23
title for reports: ref 4 — 25
transaction codes: ref 4 — 2

SHOWLOG>EXIT: ref 4-5
SHOWLOG>FLUSH: ref ~
SHOWLOG>FORMAT: ref 4 — 7
SHOWLOG>GET: ref 4-9
SHOWLOG>GO: ref 4-10

xii L IBRARIAN/IX

1 — 7

5-66

SHOWLOG>HELP: ref 4 — 11
SHOWLOG>LIST: ref 4 — 12
SHOWLOG>OUTPUT: ref 4 — 13
SHOWLOG>REDO: ref 4-14
SHOWLOG>RESET: ref 4-15
SHOWLOG>SAVE: ref 4 — 16
SHOWLOG>SELECT: ref 4 — 17
SHOWLOG>SHOW: ref 4 — 22
SHOWLOG>SORT: ref 4 — 23
SHOWLOG>SUBSET: ref 4-24
SHOWLOG> TITLE: ref 4 — 25
SHOWLOG>UNDO: ref 4-26
SI1VKJLATE parameterfor LM>OUTPUT: usr 7-3
SM capability, warning message: ref 5-64
Son processes: ref 1&5
Source code, annotation: usr 1-4
Source/object synchronization, example of: adm

Special characters: adm 4 — 7

Step Authorizations (RUS10) report: ref 6-48
Step Authorizations (SA) screen: ref 5 — 59

example of: adm 5-4
field descriptions: adm 5 — 5

Step Detail (RAD20) report: ref 6 — 10
Step fileset, implied reference to: ref 1-10
Step Options (STO) screen: ref 5 — 76

exampleof: adm 4 — 10
field descriptions: adm 4 — 12

Step Options menu: usr 2-9
Step Refinements/Exceptions (SR) screen: ref

example of: adm 4 — 19
purpose: adm 4-18

Step Summary (RAD10) report ref 6-8
Steps usr 1 — 3; adm 1 — 3, 2 — 1, 4 — 1, 4 — 3, 4-4

authorizing users for r ef 5 — 59; usr 3 — 9

commonly used: usr 2 — 10
copy: adm4 — 5

customizing:adm 4-10
date prerequisite: ref 5 — 14
default parameters: ref 5 — 76; adm 4-12
defining. ref 5-71
defining advanced options: ref 5 — 76
defining alternate location for: ref 5 — 32
defining ambiguous: adm 4-4, 4-13

dependencies: adm 4 — 9
description: ref 5 — 71
destination location: adm 4-5, 4-6

catalog:ref9 — ll; usr2 — 7
entering description for: adm 4 — 10
example of executing: usr 3 — 12

command line execution: usr 2 — 9

exaznples of: adm 1 — 4, 4-2, 4-15
exceptions: ref 5-66; adm 4 — 18
executing: ref 1 — 66
explanation of: usr 3 — 1
forward versiozung rules: ref 5 — 32; adm 7 — 6
implied reference to files: usr 3 — 5
inquiry: adm 8 — 5

lookup refinement: ref 5-67
master — to-secondary: adm 4 — 5, 4 — 6

menu of: ref 7 — 17
multiple prerequisites: ref 5 — 14

System Profile (SP) screen: ref 5 — 62
example of: adm 2 — 7
SM capability: ref 5 — 64

Systezn variables: ref 1 — 1
LIBEDITOR; ref 1 — 38
LIBPROMPT: ref 14
source and destination: adm 4 — 6, 4 — 8

System — to — System Table (SS) screen: re f 5 — 69
node name: ref 5-69

Systems, mass change of references to: ref 10 — 1
Systems (SY) screen: ref 5 — 85

list of authorized: adm 8 — 7

STORE; usr 7-4

rules for: adm 1-4

variable for hGQCE: usr 8 — 17

new files: adm 4 — 15
overrides: adm 4-12

pending production areas: adm 4 — 15
PERFORM command: ref 1~
performing: usr 2A, 2 — 7
presteps: adm 4 — 9
refineznents: ref 5 — 66; adm M'18
report of: ref 6 — 8, 6 — 10
report of users authorized for: ref 6 — 48
request status: usr 3 — 10
restricting; ref W59

rules for new Files: ref 5 — 51
secondary — to — znaster: adm 4 — 5, 4-6
secondary- t ~ ond ar y : adm 4 — 5, 4-6
sorted list of: adm 4 — 4, 4 — 13
source location: adm 4 — 5, ~
Step Options (STO) screen: adm 4-10
Steps (ST) screen: adm 4-4
suzzuziazy of: ref 6-8
tuning: ref 5-66
types of adm4 — 5
users authorized for. adm 4-4, 4-13
using. usr 3 — 9

Steps (ST) screen: ref 5 — 71
example of: adm 4-4
Field descriptions: adm 4-4

Steps menu. usr 2-7

STREAM: ref 1 — 13; usr3 — 9,3 — 19; adm 4 — 9

Subset selection: usr 3-6, 3-7
Suspended process: ref 1 — 19
Switching modes: ref 1-3
System ID, changing globally: adm B — 1
System overrides: ref 5 — 85
Systezn profile, custoznizing: adm 2 — 7

Text

Transactions

Tools: usr 5 — 1

for MAKE: usr 8 — 20

definition of: adm 7-8

audit trail: usr 1 — 3
batch: usr 3 — 18
codes: ref4-2,6 — 3
deleting: adm 8-8

deleting data: ref 4-6

log reporting. ref 1 — 130
logging: ref 5 — 62
memos associated with: ref 6-43

Tags: adm 7-8

setting ref 1 — 128
subset selection: usr 3 — 6

Targets, dependencies: usr 8 — 2
testing. adm 1&

replaceznent: ref 1-105
search: ref 1 — 105

Third party software: adm 7-7
Tiznestamps: ref 1 — 125, 1 — 131

compiling based on: usr 8 — 1
discrepancies: ref 1 — 140, 6 — 54

frozn file label: ref 1.-140
UBRARIAN: ref 1 — 141
report of: ref 6-52, 6 — 54
validation: ref 1 — 140, 6-54

menu of. ref 9 — 6
TOUCH: ref1 — 131; usr 8 — 20
TRACKED parameter: usr 3 — 18
Tracking, deleting: ref 1 — 61
Transaction Detail (RTD10) report: ref &-39
Transaction Detail (RTD40) report: ref ~ 1
Transaction Summary (RTS10) report: ref 6-43

aging policy: ref 1M1, ~2

Files: usr 3 — 1

index xiii

purging records of: ref 1-41, ~
report of: ref I — 130, 4 — 1,4 — 2, 6 — 39, 6-41, 6-43;

status codes: ref 6-42
status of: usr 3 — 21
using jobs: usr 3 — 19

U

Trunk: usr 4-2

adm 8 — 8

UNIX
background process: ref I&; usr 2 — I
command line options: ref I — 2
commands: ref I — 3
pathnames: ref I — 12; usr 3-4; adm 4 — 9

UNLOCK: ref I — 133
UNMODIFIED: ref I — 11; usr 3-E

inactive: adm W2

User menu: ref 9-4
User passwords: ref I — 20
USERID wildcard: adm 4 — 7
Users: adm 5 — I

assigning capabilities: ref 5 — 89; adm 5-3
authorizing for steps: ref S — S9; adm 5-4
defining: ref 5 — 91
establishing for session: ref I — 136

passwords: adm 5 — 2
project authorization: ref 5 — 40; adm 6-4
report of: ref 6-45
report of authorized projects: ref ~7
report of authorized steps: ref 6-48
reports of: adm ~
sequence for defining: adm 5-E
step authorization: adm 5-4

Users (RUD10) report.. ref ~5
Users (US) screen: ref 5 — 91

deleting znass data: ref 5 — 93
example of: adm 2 — 8, S — I

Untracked files: usr 3 — 17
commands for: usr 3 — 18

UPDATE: ref I — 134
USE parazneter for LM)O UTPUT: usr 7 — 3
USER: refI — 136; usr2 — 3
User capabilities: ref I — 20

assigning, ref 5-89; adm 5 — 3
granting teznporazy: usr 9 — S
listof: adm5 — 3

User Capabilities (UC) screen: ref 5-89
example of: adm 5 — 3

User fileset znaintenance utili ty: ref 1-42
User filese ts: ref I~, 2 — I; usr 6-1

adding files to ref 2 — 3
creating. ref 24; usr 6 — 2
defining subsets: ref 2 — 12
deleting files frozn: ref 2 — 5
disconnecting subsets: ref 2 — 13
examples of using. usr W3
files in: ref I — 145
information about: usr 6 — 3
listing by usez-. ref 2M
listing files in: ref 2-14
listing subsets of: ref 2 — 14
znaintaining. usr 6 — 2
znaking public/private: ref 2 — 10
private: usr W2
public: usr 6 — 2
referring to: usr &3
reznoving: ref 2 — 11

switching: usr 2 — 3
User IDs: ref 1-20

xiv L IBRARIAN/IX

Variables

V

for macros: ref 7 — 17, 7 22
in macros: usr 9-3
LIBBATCH: usr 3 — 19
LIBEDITOR: ref 1-38
LIBPROMPT: usr 2W
list of: usr 3 — 21
~: ref 8 — 7
m akefiles: usr 8 — 12, 8 — 16

scan/replace: ref I — 107
VCOUNT. See Version count
Vendor software: adm 7 — 7
VERIFY: ref I — 138; usr 3 — 21, 3 — 22; adm 8 — 3

example of. adm 8-4
retrieving files: ref 1-138

VERSION: ref I — 159; adm 8-4
Version count: usr 3-4, 4 — 2

zeferring to: ref I — 7
Versions: usr I — 3; adm 7 — I

bringing forward. ref 5 — 32
copying: adm 7 — 3
defining, ref I — 159; adm 7 — 3
deleting: ref 1 — 159; adm 7 — 4
example of: adm 7 — 2

files: ref 1 — 146
flushing: ref I — 159
forward versioning: adm 7 — 5

User identification: usr 2 — I

identifying: adm 7 — 3
indirect file reference: usr 3 — 3
information about: adm 8-4
list of: ref 1 — 159; adm ~
obsolete: ref 1~ ; adm 7-4
referring to: ref 1 — 7; adm 7 — 3
report of: ref 6 — 14
report of files in: ref 6 — 50
restoring: adm 7 — 3
retained: usr 3-4
status of: adm 7M
vs. revisions: adm 7 — 1

Versions (RAV10) report: ref 6 — 14

XPURGE: ref 1-81
XRENAME: ref 1 — 90
XSCAN: ref 1 — 105
XSCOMPARE: ref 1 — 109
xterm: ref1 — 2
XTOUCH: ref 1 — 131

Video enhancements: usr 5-6
Violations: usr 3 — 12

W
WAIT: ref 7 — 23
WHILE/ENDWHILE: ref 7 — 24
Wildcards: ref xv, 1 — 6

?: adm 4 — 6,4 — 7
0: adm4-7
—: adm4-6,4 — 7
' adm 4-7
=: adm4 — 6
for pattern ­matching:usr 5 — 3
special: adm 4 — 7

Work in progress: usr A — 1
simulating checkout usr 8-5

Write Mode Secondaries by Path (RSF20) report:
ref 6 — 16

Write Mode Secondaries by User (RSF10) report:
ref 6 — 15

Write-mode secondaries: ref 1 — 148

X
X commands: usr &17, 3 — 18
X.25: ref 5 — 37; adm 2 — 5
X — terrrunal: ref 1 — 2
XCOMPRESS. ref 1 — 25
XCOPY: ref 1 — 29
XDECOMPRESS. ref 1 — 34
XEQ: ref 1 — 161
XEQ file. See Macros
XEQLIST. ref 7 — 13
XLCOMPARE: ref 1 — 46
XMOVE: ref 1 — 56
XPRINT: ref 1 — 76

Write-mode access: adm 3-4

Index xv

xvi L IBRARIAN/IX

