LIBRARTAN/iX™

User’s Guide

Version 4.00
May 1998

Quality ¢ Innovation ¢ Service

LIBRARIAN/iX User’s Guide
Version 4.00

Copyright © 1988-1995 by Operations Control Systems, Inc.
All Rights Reserved. Printed in the US.A.

Restricted Rights Legend

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. OCS does not warrant

that this document is error-free.

This manual contains proprietary information that is protected by copyright. No part of this
document may be copied, reproduced, or translated to another language without the prior
written consent of OCS.

LIBRARIAN™, LIBRARIAN/iX™, and OCS/LIBRARIAN™ are trademarks of Operations
Control Systems, Inc.

All other company and product names used in this publication are trademarks or registered
trademarks of their respective companies or organizations.

Table of Contents

Pretace
Purposeof ThisManual i ix
Audience e e ix
How This Manual is Organizedo oo, ix
0 1= o N T 4 1= O X
File Narming Conventionsciiviiininrirrnaccuareinininns xi
Related Documentationt i e xii
LT S T o -1 xii
UL OIS . ot ettt ettt aaer et eaniaanaeroasanaans xii
Chapter 1: Introduction
Product Componentsand Conceptsttt 1-1
Master Library Management ciiuiiiiiiiiiniiaana 1-2
Change Controloove it 1-2
Configuration Managementol 1-3
Automated Move—to-Producton 1-3
Audit Trails and Reporting oot 1-3
LIBRARIAN/IX Plus FealaTesccviriinninrninnnsnennrnnnnns 14
DaltaManagementc.ovvive i oriverornnearirirsasirauranaes 14
11 0 (- P 14
Source Code ANDOALON ... cv vt ittt et i it aaa e caaaas 14
1Y 1 57N -4 1-5
Meeting Your Objectives with LIBRARIAN Features 1-5
Chapter 2: Getting Started
Howto Run LIBRARIANttt ittt itnrirtarnrnrenanarenes 2-1
Background Process on UNIXClientsooviiiiiiiiiiiiiniana, 2-1
Providing Your User [Dand Passwordot 2-2
Changing Your Password and Lockword 2-3
Pagsword Security Features ioiniiiiiioi i e 2-3
Switchingto Another UserID i i, 2-3
Memta MOgE oottt it et ae et i e, 24
Command Modeo i i i e i s e 2-5
Shell CommMands .. .ovvrr it ie e tee e sttt et et e s 2-5
OnlineHelp iiiiiii i e e -6
Performing Steps and OtherFile Activiies ool 2-6
Performing StepsinMermuModet 2-7
StepDialog 2-7
Performing Steps from the Command Line 2-9
Common LIBRARTAN Commands .. c.vvvirirveririnnnr oreeaneens 2-10

Table of Contenis |

Chapter 3: File Transactions

Overviewof File Transachonsovin i oo e e ie e 31
HowtoRefertoFiles et aee e 32
DIrect RefeTamICeS vttt it it it e et 3-2

| 1 L 4= L= 32
Logical Fileset 3-3
Listfile (Indirect File) it 3-3
Files from the Last TTansacton v vveevrin it creeciaecnaann 3-3
Indimect References .. oovt it i it ey e 33
ReVISION . . i i i e e e e e 3-3
Versionand Version Coumtvvirivinrint i e e e 34
Generation Count et 34
Secondary Locationcciiiiiiiiiiiiiiii i 35
Implied Reference by Projectot 35
Implied Reference by Stepo 3-6
Multiple File References 3-6
Exclusions Selectionttt e e 36

b BT a T =] = ot T4 n P 3-6
Project e -6

Tag ..o e 37
Modificabon Status e e 37
User Confirmationoiiiin ittt iai i ieneanaenn 37
Tracking Statust i e 3-7
How toReferto Destinationscoviiiiiiin ittt ieeciinnriannnns 37
Edit Masks for UND(Pathnamesccvviiveriniancienrieinnaaeans 3-8
Edit Masks for Groupand Accounts oo 39
HowtoPerformStepsciiiiiiiiiiie i, 3-10
Step Parameters . ,..........oivuvvenis e e 312
Assodating Files with Projects i 3-14

P xS 315
Using Personal Lockwords i, 3-15
LY, 1= v o< PV I 3-15
OtherFile Operations i i 316
Ediing Fileso .iin i e e 316
CompressingFilesl 3-16
Other Commandscvvitieririin it iiervriararracreesnanens 317
Operationson Untracked Filesoooooi i, 317
Batch Transaconso i i 3-18
BATCH Parameter - ..o oo it e e ettt 319
LIBRARIAN Commandsin Jobstreams0out. 3-20
How to Check Transacon Statis - . .. o .. it i ittt i e cnrecnnnns 321
Reviewing FileInformation oo 322

Chapter 4: Revisions
Managing Revisionsoooi i e 4-1
Identifying Revisions 4-2
Branching ... i 4-3
ForcedBranching oo 44
Preventing Branching e, 44
NewFiles ... e 44

i LIBRARIAN/X User’'s Guide

How Revisions AreStored il
Delta Files vs. Generation Fileso0 0o venir i cnnon,
Location of Retained Files oo,
Managing Generationand DeltaFiles

Merging Revisionso
Merging Specific Revisions i
Excluding Revisions fromaMergeociviiiiii e
Resolving Conflictso o

Comparing and Printing Revisions
Annotated Listings i

PurgingDeltaFiles i i i

Viewing Revision Informationo
RevisionReportso o i

Chapter &: Printing, Scanning, and Comparing Files
PrintingFilesfiles i
Annotation e e s
Scanning and Replacing Text v oot
Examplesiorior i e
Replacement Varables i
Comparing Files with LCOMPAREo
Comparing Files withS/COMPAREc.oiiiiieniiiiinannn.

Chapter &: User Filesets
What Are User Filesebs? i ae
Creating and Maintaining User Filesets0oe..
Public and Private User Filesetscviuerureinveinaririninenens,
Reviewing User Fileset Information,
User Filesets in LIBRARIAN Commandscooieiiiiiiiian.

Chapter 7: Listfiles

What Are Listfiles?o i i
Creating Listfiles with IMAINT o iiiiiiii e,
Selection by ExpirationDatecovihiiiiiiiiiiiiii
Selection by File ModificationDatel
Selection by Simulating a LIBRARIANStep
Maintaining Listfiles oo
UsingListfiles i it e
Indirect Store Lists tiiin ittt
Archiving Applications with Listfileso in.
Chapter 8: Rebuilding Applicafions with MAKE
Why Use MAKE?onerianieaineonrananasaaeanaeannes
How MAKEWOIkS ocii i e e e
Defining the Dependency Tree
Creating Makefilest it iiiiaii i iiieiiiiiieniianenes
L) (4= o U T - P
L 1« 3T ¢ X

61
62
62
63
6-3
3

7-1
7-1
7-2

7-3
7-3
74
74
7-4

8-1
B-2
85
&5
8-5
86

Table of Contents il

Rules L e e
Example 1: TheBasics i

How MAKE Interprets the MAKEFILE ..._.......................

MYPROGRUIEt iiii et v eiarnanaas

MODHOBJ Rule it iiiriiiaiinan,
Example 22 A Comprehensivellustration
Dummy Targets e
User-Defined Variables i iiiiiiinnnn...
Iterative Command Processing o il
JobCard Placementoiiiriiiiiiiiir it irennen,
EdHMasks r e e e e
Standard (Specific)Rules i
GenericRules e e
Implicit Rubesot i
Automatic Search forInclude Files
ListfilesinGenericRulescco i e vane. .

STREAM ...ttt iaai e it e e

Promptscocuvvnnnnn, e
System Variables
Executing MAKEo
The TOUCH Command ., ... ovvviirr it iranrivacreansnanenns

Chapter 9: Macros

Sample MAcTO ... vt e e e e
Filelists and Parametersoovivireninriiiiiiiiaeieiarciananen o
Memus M MAacTOs e e e
Conditional Expressionsc.ovivviiiiiiiiiiiiiii i
LoopingInMacros o i e
Nesting MacToscoouoii i e

ReusingMacroParametersc..ccviiiiiniiinn it irnnnsne.
The ALLOW Commandiiiiniin i i i i a e
FrocedureFiles i i s
AUTOXEQ LSv it e e e e v

Appendix A: Applications in ProgressA
Identifying Secondary Files
Recording Checkoutocvi i i e
Glossary

Index

iv LIBRARIAN/IX User’'s Guide

List of Figures

Figure 2-1. LIBRARIANMain Menucoiiviii i 24
Figure 2-2.5tepDialog oo 2-7
Figure 2-3. Revision CriteiaMenu 2-8
Figure2—4.5tepOptionsMenu Lol 2-9
Figure 3-1. Step Authorizations Information 3-10
Figure 3-2. Sample LIBRARIAN Operation 3-12
Figure 3-3. Step Information for the AP-OUT Step 3-13
Figure 3—4. Using the BATCH Parameter 3-19
Figure 3-5. Using LIBRARIAN Commands in a Jobstream 3=20
Figure 3-6. VERIFYMenut aae 3-22
Figure 3-7. Sample VERIFY Displayccoooiiiiiiiininas, 3-23
Figure4-1. ARevisionTreec oo o, -2
Figure 4-2. Revision Tree for MYFILEo iiiiniiiin, 44
Figure 4-3. Merging Two Branchesintothe Trunk, 47
Figure 44. Merging a SpeaficRevisiony, 48
Figure 4-5. Merging Two Branches with Exclusions 49
Figure 4-6. Sample Conflict Notationo 410
Figure 4-7. LCOMPARE Offline Printoutc.c.oian.L 411
Figure 4-8. PRINT with ANNOTATE Parameter 4-12
Figure 4-9. VERIFYMenuo 4-13
Figure 4-10. Master-Secondary Revision Data (VERIFY Format 16) 4-13
Figure 4-11. Revision History (VERIFY Format 17) 4-14
Figure 4-12. Version Data (VERIFY Format3) 4-14
Figure 5-1. PRINT Offline Printoutcoioiiiviinins 5-2
Figure 5-2. LCOMPAREDisplayoviviiinianiiirainiianninns 5-6
Figure 8-1. Example ofa MAKE Operation 0000 8—4
Figure 8-2. Dependency Tree for MYPROGociii 85
Figure 8-3. Makefile for MYPROGExample 87
Figure 8~4. Makefile for MYPROGExample 8-3
Figure 8-5. Dependency Tree for the FINANCE Application 811
Figure 8-6. Makefile for the FINANCE Application 11

Table of Contents v

vi LIBRARIAN/IX User’'s Guide

List of Tables

Table 1-1. LIBRARIAN Features Related to Objectives 1-5
Table 2-1. Commeon LIBRARIAN Commandsc..oovviniun., 2-10
Table 3-1. Edit Mask Symbols and Descriptions 3-8
Tabie 3-2.Step Parameters ... 3-14
Table3-3.FileCommands, 317
Table 34. X Commands for Untracked Files 318
Table 4-1. Revision Information in Standard Reports 4-15

Table of Contents i

viii LIBRARIAN/IX User’s Guide

Preface

Purpose of This Manual

The LIBRARIANAX User’s Guide describes how to use LIBRARIAN, It is
the companion piece to the LIBRARIAN/AX Reference Guide and
LIBRARIAN/iX Administrator’s Guide.

Audience

This manual is written for personnel who use LIBRARIAN on a daily
basis, such as programmers, operators, and managers. Knowledge of
basic operating system concepts and terminology is assumed. No
previous knowledge of LIBRARIAN is required.

How This Manual is Organized

The LIBRARIAN/AX Administrator’s Guide chapters are organized as
follows:

Chapter 1 “Introduction”: what LIBRARIAN does, and how it fits in
to the application development cycle.

Chapter 2 “Getting Started”: applying the Shortcut program to get
RARIAN.

started using LIB

Chapter 3 “File Transactions”: how to move and copy files using
steps, perform other file activities, and review information
about files.

Chapter 4 “Revisions”: how to branch from one version and how to

merge two revisions.
Chapter 5 “Printing, Scanning, and Comparing Files”: how to print,
view, and edit files, show the file differentiators, and scan

and replace strings of text.

Chapter 6 “User Filesets”: creating and maintaining user filesets
using FMAINT commands.

Chapter 7 “Listfiles”: creating and using listfiles with LMAINT
cormmanads.

Chapter 8 “Rebuilding Applications with MAKE": how to rebuild
applications with the MAKE facility.

Chapter 9 “Macros”: how to create and use macros and procedure
files.

Appendix A “Applications in Progress”: how to implement
LIBRARIAN for applications with work already in
Progress.

Preface ix

Glossary

Index

Conventions

A Glossary of Terms is Erovided at the back of this guide
as well as the index to

An index of LIBRARIAN topics at the end of this guide.

e guide

We use the following conventions throughout this guide.

COMMANDS

KEYWORDS

italics

punctuation

)

[]

All commands appear in bold capital letters. If a
command can be abbreviated, the optional portion of the
command is enclosed in brackets ([]). A blank space
must separate the command from the parameter list.

Keywords and parameters (shown in bold capital letters)
must be entered exactly as specified.

Words or characters in italics represent variables or
arguments that you must replace with an actual value. In
the following example, you must replace fileset with the
name of the file you want to copy.

>COPY fileset

Italics are also used to introduce new terminology or for
emphasis.

Enter punctuation exactly as shown. (Refer to specific
instructions for brackets and braces, below.)

Braces enclose required elements. When there are several
elements within braces, you must select one element. In
the following example, you must select one of
PROCEDURES, PROJECTS, or STEPS.

PROJECTS

>HELP | PROCEDURES
STEPS

Brackets enclose optional elements. In the following
example, brackets around the letters UPDATE indicate
that you do not have to type the entire word.

>AUTO[UPDATE)

¥ LBRARIAN/iX User's Guide

If there are several elements, you can select any one or
none of them. In the following example you can select
BATCH, CONFIRM or MEMO, or none.

>COMPRESS | filefist]

[;BATCH]
[;CONFIRM]
[;MEMO]

When brackets are used, you cannot enter a value in the
inner brackets unless you enter a value (wildcard or
literal) in the outer brackets.

An ellipsis indicates that the previous bracketed element
can be repeated or that elements have been omitted.

ol

An ampersand indicates that the command continues on
the next line.

The white flag symbol indicates that the text pertains to
LIBRARIAN running under the MPE operating system.

&

The gray flag symbol indicates that the text pertains to
LIB running under the UNIX operating system.

The striped flag symbol indicates that the feature being
described is only available with LIBRARIAN /iX-Plus.

2cf

This symbol identifies LIBRARIAN commands that have
no equivalent under the UUNIX operating system.

MPE only

File Naming Conventions
In specifying files, LIBRARIAN commands use the following wildcard

conventons:
EE @ Zero or more alphabetic and/or numeric characters. Used
alone, denotes all members of a set.
%p; * Zero or more alphabetic and/or numeric characters. Used
alone, denotes all members of a set.
‘95 # Single numeric character.
? Single alphabetic or numeric character.

In addition, a slash (/), a single period and slash (./}, a double period
and slash {../), or a tilde and a slash (~/) immediately preceding a
filename indicate a UNIX file.

Preface i

Related Documentation

Along with this manual, you can refer to the following documentation by
OCs.

The LIBRARIAN/iX Reference Guide provides information on
LIBRARIAN functions, including complete command syntax and
reference material for all LIBRARIAN features.

The LIBRARIANAX Administrator’s Guide contains information on how
to setup and maintain LIBRARTAN.

Online help contains the contents of all LIBRARIAN manuals. You
can access online help with the HELP command or pressing F1 (Help)
in menu mode.

Client Services

LIBRARIAN is supported by OCS Client Services, which is dedicated to
providing timely and accurate information and solutions. For fast,
accurate answers, we maintain a telephone hotline that includes
emergency after-hours service. You can count on OCS to isolate any
problems quickly and provide consdentious support and a fast response.

Operations Control Systems hotline numbers:
Phone (415) 4934122
FAX (415) 493-3393

Your Comments

We value your comments. As we write, revise, and evaluate our
documentation, your opinions are the most important input we receive.
Please use the Reader’s Comment Form at the end of this guide to tell us
what you like and dislike about and of the OCS manuals.

xi LIBRARIAN/IX User’'s Guide

Infroduction]

Your organization relies on the applications managed by your develop-
ment team to stay in business. When an application fails in a production
environment, your company loses time, productivity, and money. That is
why controls to safeguard applications are so important. LIBRARIAN
protects applications through the entire development cycle, from coding
to production.

LIBRARIAN enforces a change control and testing discipline, and docu-
ments all changes to source code. LIBRARIAN centralizes access to source
files to prevent simultaneous changes to the same code, synchronizes
source versions with their related executable programs, and ensures that
only authorized changes are incorporated into a production version.
LIBRARIAN also controls and automates the move—to—production pro-
cess, even across networks.

This chapter describes the functions of LIBRARIAN within the context of
the application development cycle. Topics discussed include:

@ Product Components and Concepts

® Master Library Management

m Change Control

® Configuration Management

® Automated Move-to-Production

& Audit Trails and Reporting

s LIBRARIAN/iX Plus Features

& Meeting Your Objectives with LIBRARIAN Features

Product Components and Concepts

LIBRARIAN offers a wide range of functionality in an easy-to—imple-
ment, easy—to—learn, and easy—to—use format. All LIBRARIAN functions
can be accessed through on-screen, pull-down menus and context-sensi-
tive online help is always available. LIBRARIAN is also easy to set up us-
ing the Shortcut utility described in Chapter 2, “Getting Started with Ba-
sic Rules” in the LIBRARIAN/iX Administrator’s Guide. As you become
familiar with LIBRARIAN functions and commands, you might prefer to
use the command-line interface. You can easily switch between the menu
and command-line interfaces to meet your needs and preferences.

introduction 1-1

LIBRARIAN consists of:
the main LIBRARIAN program
& maintenance screens to set up and maintain rule definitions
® report programs
® utility programs for file housekeeping and mass changes

m databases to store rules, file tracking information, and audit
information

® a MAKE utility to rebuild applications and synchronize libraries

® delta and generation files containing file revisions

Master Library Management

Because LIBRARIAN is designed to automate and manage functions re-
lating to the application development cycle, the application provides an
organizational framework for file management activities. The files you
manage with LIBRARIAN are called master files. You include the master
files for an application in a master library and define how the files can be
accessed, copied, and/or replaced. Copies of master files in other loca-
tions are called secondary files or secondaries. These copies can be develop-
ment or maintenance work in progress, or copies for reference only. With-
in a master library, you can create a hierarchy of filesets to meet your
particular file management needs.

One distinct advantage LIBRARIAN offers is the ability to define and
group collections of files {for example, the files related to an application)
and associated rules that govern your library organization, allowable file
movements, and user authorizations. You can define different sets of
rules for each application to match the needs of your environment. See
Chapter 3 “Master Library”and Chapter 6, “Projects”, in the LIBRARIAN/
iX Administrator’s Guide, and see Chapter 6, “User Filesets” in this manu-
al, for more information.

Change Control

LIBRARIAN prevents duplicate updates, accidental deletions, wrong ver-
sions, and lost programs. The standards and procedures you define are
automatically enforced because all file movements and authorized opera-
tions must be performed through LIBRARIAN. LIBRARIAN automates
the entire file movement cycle, from the time files are checked out of the
library, through maintenance, development, and distribution activities.
All actions are logged to an audit trail database.

1-2 LIBRARIAN/IX User's Guide

Your file movement rules reflect your own established procedures and
define how and where copies of master files are made, how approvals are
noted, and how master files are replaced. You define these rules as steps
and routes. A step is a specific file movement and a route is a complete
cycle of individual file movements, including checkpoints and prerequi-
sites. Defining file movement rules is discussed in Chapter 6 of the
LIBREARIAN/iX Administrator’s Guide.

Configuration Management

LIBRARIAN allows you to define multiple baselines or versions for your
applications at strategic points in time. You can easily recreate an applica-
Hon as it was at the time you created the baseline. LIBRARIAN manages
both revisions to individual files in an application and changes to the en-
tire set of files that make up versions of applications.

LIBRARIAN also allows you to branch from the main development path
to support cases where, for example, you need to fix or send out a patch
for a problem with a previous file revision currently in production.
LIBRARTAN will allow you to force branching, for example, to support a
situation where you need to work on a file that is being worked on by
someone else, but do not want your changes to be reflected in the main
development path. For more information on LIBRARIAN's configuration
management capabilities, please see Chapter 7, “Versions”, in the
LIBRARIAN/iX Administrator’s Guide and Chapter 4, “Revisions”, in this
marnual.

Automated Move-to-Production

LIBRARIAN controls and automates the move-to—production process,
even across networked, heterogeneous, and/or remote systems. Produc-
tion moves can be scheduled during off-hours to accommodate online
users, and can be configured with automatic recovery in case of an in-
complete update. Refer to Chapter 2, “Getting Started with Basic Rules”
in the LIBRARIAN/IX Administrator’s Guide for more information.

Audit Trails and Reporting

LIBRARIAN eliminates the tedious manual task of documenting file
changes and activities. All changes to master library files and all file
movements and activities are automatically recorded in LIBRARIAN's
audit trail database. You can also include memo text with transactions for
documentation.

LIBRARIAN also offers reports and online inquiries to let you review the
rules you have defined, file status and history information, and the audit
trail records. This manual, the LIBRARIAN/iX Administrator’s Guide, and
the LIBRARIAN/iX Reference Guide each have chapters detailing LIBRARI-
AN'’s reporting functions,

Infroduction 1-3

LIBRARIAN/iX Plus Features

2

For teams that maintain extensive releases of software, maintain existing
versions of applications while developing new releases, or have several
developers working on the same source code simultaneously, OCS recom-
mends LIBRARIAN//iX Plus. The LIBRARIAN/iX Plus package includes
the standard LIBRARIAN features, plus:

8 Delta Management

8 Merge

8 Annotated Source Listings
LCOMPARE

Delta Management

Merge

Delta management cuts disk space overhead by keeping only the changes
to a source file rather than saving complete revisions. To accomplish this,
LIBRARIAN creates a special file that contains the original version of the
source file and a history of all changes made for each subsequent revision
to that file. Delta files provide the data necessary for annotation.

The MERGE option lets you combine source code changes from one or
more branches to the main development path. For more information on
branching, see Chapter 4, “Revisions” in this manual.

In a case where modifications to one file may need to be split among sev-
eral programmers, a branch can be created for each programmer to work
on individual tasks. The MERGE option lets you combine these different
branches when the work is completed.

To protect your source code from conflicts that can occur when the same
code is modified simultaneously by more than one programmer, the
MERGE option highlights conflicting changes with comments indicating
items that should be resolved prior to the next development step.

Another case where the MERGE function is needed is for patches to pro-
duction releases. You can create a patch to fix the current production re-
lease of an application, and then MERGE these changes into the current
development path for the application.

Source Code Annotation

Source Code Annotation creates a listing of source code showing lines
that were inserted and deleted for each revision to the file, including date,
time, user, and project information. ANNOTATE is an option of the
LIBRARIAN PRINT and COPY commands and requires the use of the del-
ta storage option.

1-4 LIBRARIAN/X User's Guide

LCOMPARE

The LCOMPARE command provides a quick and easy way to identify
what has changed between two different copies, versions, or revisions of
files. This can help eliminate commeon problems such as duplicate up-
dates and accidental deletions and is a useful tool in the development,
maintenance, and testing cycles.

Meeting Your Objectives with LIBRARIAN Features

LIBRARIAN provides a robust set of features that allow you to achieve a
wide range of file management objectives. The following table matches
typical file management objectives to the corresponding LIBRARIAN fea-

fure.
Table 1-1. LIBRARIAN Fegiures Related to Objectives
File Manaogement Objective Conmesponding LUBRARIAN Fealures
1. Imptove efficiency and UBRARIAN provides mass file moverments, customized file
convenience movement commands, fileé push movemnents across accounits and
systern boundanes, complete audit tral, and autormated
maintenance.
2. Control copies of source, Define files in o master librory.,
object, jobsireams, etc,
3. Require gpproval of changes | Define CHECKIN step requirng an opproval prestep. Authorize
specific users 1o perform the APPROVE step.
4. Require testing of changes Define rules requirmng a step to document testing before allowing
checkin.
5. Prevert overapping Assign senal access confrol to files.
changes
6. Synchwonize source/object Use MAKE to compile changed source automatically. use VERIFY
option on checkin and file distribution.
Enforce separation of duties Authorize different users fo perform specific steps.
Require independcent testing | Authorze specific users to perform testing.
Restict access to master files | Authorize programimers only for steps within specific applications.
based on gpplication
10, Associcate work with project Requve project codes for all steps in the route; guthorize
ar senvice request prograrmnmers for specific projects.
11. Maintain backup copies of Use “retention” fegture on checkin,
ald versions
12. Control versans on remote Use LIBRARIAN to distribute software; audit troil tracks versions.
systems
13. Provide audit frails LIBRARIAN automatically maintains an qudit frad of all filke
movements.
14, Review specific file changes Use SYCOMPARE to compare file versions and display differences.
15. Maintain curent release Use Forward Versioning and separate mainfenance ond
while developing next development routes.
release
16. Maintain concument revisions | Use the revision contral facility.
cf individual programs
17. Tracking versions Use LIBRARLAN version stomping focilities.

Introduction 1-5

1-6 LIBRARIAN/IX User’s Guide

Gefting Started 2

This chapter describes the basics of how to use LIBRARIAN. The
following topics are covered in this chapter:

s How to Run LIBRARIAN

a Providing Your User ID and Password

m Changing Your Password and Lockword
m Switching to Another User ID

8 Menu Mode

® Command Mode

a Shell Commands

® Online Help

a Performing Steps and Other File Activities

How to Run LIBRARIAN

L To run LIBRARIAN from MPE, type:
LIB

s} To run LIBRARIAN from UNIX, type
HP-UX[1] ocslib if path set,
otherwise

HF-UX[1] $OCSLIBDIR/ocslib

where $OCSLIBDIR is the name of the directory where the LIBRARIAN
client software is installed.

Background Process on UNIX Clients

UNIX users can run a background process to issue LIBRARIAN
commands from a UNIX shell prompt or within a script.

Since the background process maintains its connection to the server,
LIBRARIAN is ready to accept requests at any time without the overhead
of reconnecting. This capability greatly improves performance.

Gefling Siarted 2-1

One use of the background feature is to check out files from MAKE files.
Start a2 background process by entering the following:
$ocslib —-bg

To issue LIBRARIAN commands to the background process, use the
following syntax:

$ocslib -fo command

where command can be any of the LIBRARIAN commands, except screens
and utilities. For security reasons, all requests must be made from the
same terminal (or terminal window).

To termunate the background process, enter the exit command, as shown
below:
Socslib —ig exit

1f your command includes delimiters or special characters that the shell
might interpret, you must use a prefix of “\” with these characters, or
enclose the entire command portion in quotations.

Note a The background process inherits its environment from the process you
started from, including the working directory and environment
variables. However, you can change the current directory for the
background process, as shown below:

$ocslib —fg ¢d directory name

Providing Your User ID and Password

Before you can perform any LIBRARIAN functions, you must identify
yourself with your LIBRARIAN user ID and personal password by
responding to the prompts. Your response to the password prompt will
not be displayed as you type it.

You will be prompted to assign a password the first time you use
LIBRARIAN. You can change your own password at any time using the
PASSWORD parameter of the LIBRARIAN USER command, or from the
User menu as discussed below.

If you do not have a user ID, contact your LIBRARIAN Manager. The
LIBRARIAN Manager also assigns any special user capabilities and
specific LIBRARIAN step authorizations. As a general user, you can
access and update your own user data on the Users (US) screen.

2-2 LBRARIAN/IX User's Guide

UNIX

Note tl

If your UNIX login user ID matches a LIBRARIAN user definition, then
you can press RETURN to accept the default user at the user ID prompt.
In this case, a password is not required.

Al LIBRARIAN user IDs and passwords are case-sensitive.

Changing Your Password and Lockword

If you want to change your password or personal lockword (MPE), use
the PASSWORD and/or LOCKWORD options of the USER command or
select Passwords from the User menu. The following example shows how
FRANK would change his password with the USER command:

>USER FRANK;PASSWORD
New password?
Please verify new password by typing it again
New Password?
User data successiully updated

[f you want to remove your password or personal lockword, do not
supply a new value. For example, remove the password for user name
FRANK by typing:

>USER FRANK;PASSWORD=

Password Security Features

The LIBRARIAN Administrator can configure the following password
security features:

s Aging (Days valid)

s Minimum length

& Maximum tries

®» Disable user after maximum tries?

For more information, see the section “Setting Password Security” in the
LIBRARIAN Administrator’s Guide.

Switching to Another User ID

If you have more than one LIBRARIAN user ID assigned to you, you can
switch your active user ID at any time by issuing the USER command or
selecting Identification from the User menu. Issuing this command
without parameters displays how you are currently signed on to
LIBRARIAN.

Getfing Started 2-3

Menu Mode

LIBRARIAN operates in menu mode by default. This mode allows you
to execute commands and select options from a set of menus. The main
menu consists of a horizontal menu bar that appears at the top of the
screen under the OCS/LIBRARIAN title bar. The title bar shows whether
you are running LIBRARIAN under MPE /iX or UNIX. (see Figure 2~1).
To bypass the menus, see the section entitled “Command Mode” in the
following section:

N ocs/L1efAlel for HPE/ 1
H Frie -

T F= R

Figure 2-1. UBRARIAN Main Menu

The title bar and main menu are displayed at the top of the screen while
LIBRARIAN is running in menu mode. LIBRARIAN also provides a
command line alternative discussed below. Function keys are defined as
follows:

s F1—Help Gives context-sensitive help on the
current menu option or dialog item.

n F2 — Command Mode/f

Menu Mode Toggles between the two modes.
= F3 Not used.
a F4 — Print Sends the current window to the printer.
w F5— Refresh Redraws the display.
= F6 — MPE/Shell Exdts temporarily to the MPE/iX or
UNIX shell.
s F7 Not used.
» F8— Close Exits LIBRARIAN. You can also select

Exit from the Main menu bar or from
the File menu.

2-4 LBRARIAN/IX User's Guide

Use the menus to issue the commands described in detail in the
LIBRARIAN/iX Reference Guide.

Access and operate the menus as follows:

1. Use the right and left arrow keys to highlight the appropriate main
menu option, or type the first letter of the menu option followed by
RETURN.

2. Press RETURN.

3. Use the up and down arrow keys to highlight the desired pull-down
menu item.

4. Press RETURN to select the item.

5. If applicable, enter the appropriate information in the dialog window
and press Go (F7) or Cancel (F8).

Use the F8 function key to return to the main menu.

escape sequence follows, and can cause unexpected behavior when you

Waoming @ The Esc key should not be used in menu mode! This key signals that an
press additional keys.

Command Mode

As an alternative to menu mode and for batch mode operation, a
command line interface is also provided. When you switch to command
mode from menu mode, the screen clears and the > prompt is displayed.

You can switch between menu and command modes by pressing the F2
function key. You can also put the command MENU OFF in an AUTOXEQ
macro file to bypass the menus automatically when you run LIBRARIAN.
Macros are discussed in Chapter 9, “Macros”, in this manual.

Shell Commands
In addition to LIBRARIAN commands, you can run any of the following

from LIBRARIAN:

s MPE or UNIX commands
8 UNIX scripts

s MPEUDCs

m MPE user programs

Getfing Started 2-5

N
R

)
N

Online Help

There are two ways to run any of the above, without exiting LIBRARTAN:

1. Type a colon (:) at the LIBRARIAN prompt >, and then press
RETURN to break to the MPE/UNIX shell, or press Fé.

For MPE, you can only issue commands that are available in BREAK
mode. Type RESUME to return to LIBRARIAN from MPE.

Type exit to return to LIBRARIAN from the UNIX shell.

2. Issue a UNIX or MPE comumand preceded by a colon (:) at the
LIBRARIAN prompt >. The colon is optional if it will not be confused
with a LIBRARIAN command.

You can configure the LIBRARIAN prompt by setting a system variable
called LIBPROMPT prior to running LIBRARIAN to the string you want
to use as a prompt. For example:

:SETVAR LIBPROMPT "UB>"
:export LIBPROMPT = "LIB=>"

You can put the SETVAR statement in the LIBRARIAN UDC file for the
LIB and LIBSERY commands on the MPE/iX server. Then, each time you
run LIBRARIAN, the prompt is set automatically.

Comprehensive online help is available for all LIBRARIAN commands
and their parameters. Use the F1 function key or the HELP command.

You can also select Help from the main menu bar to open the help index
for help on a variety of topics, review the glossary, or get information
about the current version of LIBRARIAN that you are running.

Performing Steps and Other File Activities

Once your LIBRARIAN Administrator has defined file movement rules to
LIBRARIAN using Shortcut, you are ready to use LIBRARIAN to manage
software files and control changes.

Each step moves or copies files based on rules defined in the database by
the LIBRARTAN Manager, Application Manager or Rule Administrator.
Each step definition, such as for checkout, identifies which files are valid,
the destination location, any prerequisites, special operational rules, and
default parameters.

7-6 LBRARIAN/X User's Guide

Performing Steps in Menu Mode

If you use the menus, select Steps from the File menu. This menu
includes only the steps you are authorized to perform.

The File menu displays a list of operations
related ta files.

r— Steps Displays a list of steps vou are au-
LI-NEW thornized to perform.

LIX-0BJ

LIX-READY

LDHN

Step Dialog
When you select a step from the Steps menu, the dialog box shown in
Figure 2-2 appears.

I ocs/LieeaRian for HPE/iH (N

fdnin Help

Info

tacros Tools

Froo

To

&3 Revision Criteria) Optian Menu

3 | ‘ption || Print Refresh 3 ee [cancer |

Figure 2-2. Step Didlog

In this dialog, you can enter source and destination file(s). Note that
these fields scroll to the left if you type past the end of the field.

Gefting Starfed 2-7

Enter the names of the files you want the step to process in the From field
as described in “How to Refer to Files” in the next chapter. If you do not
use absolute pathnames (fully qualified filenames), LIBRARIAN uses the
step definition to determine the location of files. For other LIBRARIAN
commands, LIBRARIAN uses your current working directory to locate
files.

The To field is optional. LIBRARIAN uses the step definition to
determine where to create files. You can only override this location if
wildcards were used in defining the destination location for the step. If
you leave this field blark for non-step operations, LIBRARIAN creates
files in your current working directory.

You can apply revision criteria to the files listed by pressing F2. The
Revision Criteria menu appears as shown in Figure 2-3 :

I oCs/LIBRRRIAN for wPE/ix A
hecros Tools Info fdrin Help
H-00T-
Fros

1

]

" Option Nemu

L

Figure 2-3. Revision Criteria Menu

When you select an option from this menu, a field appears allowing you
to specify a value. Press F8 (Cancel) to leave this menu without accepting
the options you selected, or press F7 (Apply) to leave this menu, applying
the options you selected.

You can select step options and override default parameters by pressing
F3 (Option Menuy) in the dialog box. A menu of the most common
options appears as shown in Figure 2-4.

2-8 LBRARIAN/X User's Guide

R 0Cs/LIBRARIAN for nPE/iH

Hacros Topls

Infp Adnin

Help

1
<step defavit>

| eaTca

BRANCH

INPROGAESS I
) MEMO

HERGE

NASTER

siep defoult>
Dption Heny

VERIFY <stei defaul > [

| print Refresh " Perapt | |- cencal

Figure 2-4. Step Options Menu

Other options are available by selecting More... from this menu. When
you are finished selecting options and/or setting parameter values, press
F7 to accept the values or F& to cancel. You will return to the main step
dialog box.

After specifying files, revision criteria and/or options, press F7 (Go) to
proceed with the transaction, or press F8 (Cancel) to return to the
previous menu.

Performing Steps from the Command Line

Perform a step from the command line by using the PERFORM command.
For example, to perform the AP-OUT step you could type:

>PERFORM AP-OUT
You do not need to include PERFORM in the command. Instead, you can
simply type:

>AP-OUT
If the step name used in this command is part of more than one route or

application, LIBRARIAN displays a menu of steps, and you select the
desired step from the menu.

If you know that there is more than one step with the same name and you
want to identify the step uniquely when typing the command, use the full
step name (step, route, and application). For example, the sample
command above could also have been entered as:

>AP-OUT.APDEVEL.FIN

Getling Starfed ™ 2-9

When you use the step name without parameters, LIBRARIAN
automatically attempts to authorize all of the files identified in the step
definition. In most cases you specify that the step should be performed
for a subset of files. The next chapter describes how to specify subsets of
files and additional parameters.

Common LIBRARIAN Commands

Table 2-1 lists some commonly used commands. These commands are
also available from the menus. If you prefer to enter commands, use F2
to switch between menu mode and cormmand mode.

Note xxx refers to the application name defined in Shorteut, up to four
characters long. The > symbol is the standard LIBRARIAN prompt.

Table 2-1 Common LIBRARIAN Commands

Command

Purpose

>HELP STEPS
=00x=0UT flename

>000-NEW flename

=000-0K filename

>000-TEST flename

=0o0=FAlL filename

»00x-TESTOK flename

Displays information on which steps you can perform.

Check out file(s) from the master library to development loca-
Hon. A violation occurs if the checkout would replace another
tracked file. A conditional read-mode checkout allowed if
another user has checked out the file to another location.

Introduce new file(s} to an application. A “new” file is a new
program or source file you have created, or a newly compiled
object file nat checked out. Introduce new files in the same
group they will oceupy in the master library.

{Optional) Approve files to be moved out of development,
either to a test location or back to the library:

(Optional} Move file(s) from development to a test location.
Generally source and object are moved together to test. Move
does not leave a copy in development.

(Optional) Move file(s) back to development from test loca-
tion. Generally both source and object are returned to devel-
opment if executable code fails testing.

(Optional) Approve file(s) to be checked in from the test loca-
tion to the master library. Must be dene before the checkin.

2-10 LIBRARIAN/IX User's Guide

Table 2-1 Common UBRARIAN Commands (continued)

Command

Purpose

>x0=IN flename

>000-READ filename

>PURGE filename

>VERIFY filename

Check in file(s) from test or development. Automatically re-
tains (archives on disk) the old master file and compresses it.

Copy file(s) from the master library to the development loca-
tion in read mode. Read copies cannot be checked back in to
the library. To clone a file, use this command with the OR-
PHAN option, rename the file, and use xxXxx—NEW to introduce
it to LIBRARIAN,

Delete a file that was checked out and is no longer needed.
This command can also be used to remove your current copy
in order to replace it with a fresh copy from the master library.

Request information about a file or files, User is presented
with a menu of formats showing available information rang-
ing from file code and modification date to the file’s LIBRARI-
AN owner or step history.

For details on command syntax and usage, refer to Chapter 1,
“Commands”, in the LIBRARIAN/X Reference Guide. Extensive online
help is always available. To get help, use the HELP command or press F1.

Gething Started 2-11

2-12 UBRARIAN/IX User's Guicle

File Transactions

You can perform all activities related to file movement using
LIBRARIAN. In fact, your system administrator may have set up file
system security in a way that only allows access to files through
LIBRARIAN. LIBRARTAN authorizes files and performs single system or
networked file operations based on rules stored in the rules database, and
logs all transactions to an audit database.

This chapter describes how to move and copy files using steps, perform
other file activities, and review information about files. Topics discussed
in this chapter include:
® Overview of File Transactions
» How to Refer to Files
How to Refer to Destinations
How to Perform Steps
Memos
Using Personal Lockwords
Macros
Other File Operations
Batch Transactions
How to Check Transaction Status
Reviewing File Information

Overview of File Transactions

You can perform all of your file movements from a single LIBRARTAN
session. There is no need to log on to different accounts or directories to
copy or move files. LIBRARIAN automatically pushes authorized files to
the correct destination, across account and system boundaries.

Most file operations are done by executing steps defined by the
LIBRARIAN Manager or Application Manager. You can perform these
steps on the command line or select a step from the Steps menu which
you can access from the File menu.

Each step definition identifies the part of the library (master fileset) to
which the step applies, as well as the general location of valid files for the
step. LIBRARIAN will only authorize files that are both members of the
step’s fileset and within the scope of the source location defined for the

step.

File Transactions 3-1

There are many other LIBRARIAN operations available for files that
LIBRARIAN is tracking. These operations also appear on the File menu
and on the Tools menu.

In addition, the LIBRARIAN X commands allow you to operate on files
that LIBRARIAN is not tracking. If you have X capability, file system
security is ignored; otherwise, file system security is enforced.

How 1o Refer to Files

There are several ways you can refer to files when you perform steps or
other LIBRARIAN commands. This section describes each of these
methods.

Direct References

Filename

You can directly refer to files by name and location. The syntax for MPE
is:

Eﬁ [system:] fie [.group | .acct)]
where file, group, and acct identify the MPE filename. You can use
wildcards consistent with MPE LISTF conventions. The syntax for UNIX
is:

ﬁ [system:] /[path.../] file
UNDL

where file identifies filename, including path preceding the filename. Use
wildcards consistent with UNIX conventions (see “Filenaming
Conventions” in the Preface of this guide).

For both MPE and UNILX, system is the name of the system where the file
is located. Your current login values are used for omitted elements, except
when performing steps, in which case corfigured values are used.

% By default, LIBRARIAN treats all path references recursively; That is, all
% files in subdirectories of any directory specified are included when
LIBRARIAN authorizes files. Recursion can be disabled by adding a
suffix of a plus sign followed by a zero (+0} to the file reference.

For example, /ust/devel/d*+0 finds all files starting with the letter “d” in
the devel directory without including files that are in subdirectories
starting with the letter “d.”

You can also control the number of levels of recursion, by adding a suffix
of “+n”, where “n” is the maximum number of directory levels to
traverse.

3-2 UBRARIAN/IX User’s Guide

Note

Hd

Q

Logical Fileset

You can directly refer to files in a logical fileset by specifying the fileset
name preceded by a percent sign (%). A logical fileset can be a master
fileset, user fileset, or project fileset. The syntax is:

%fileset

Listfile (Indirect File)

A listfile is a file that contains a list of filenames. You can use listfiles as a
way to refer to files in all LIBRARIAN commands. Create listfiles using
the LMAINT module of LIBRARIAN or with the editor of your choice.
You can directly refer to files in a listfile by specifying the listfile name
preceded by an exclamation point (!) or a caret (*). The syntax is:

filename

Files from the Last Transaction
You can directly refer to files from the last logged transaction by
specifying a star (*) or double—star (**). Destination files associated with,
or the files processed in the last logged transaction, are authorized. The
syntax is:

*(MPE) or ** (UNIX)

The single or double asterisk refers to the destination files successfully
processed in the last transaction (or frozen with the SET * command).

To use this feature, transaction logging must be enabled on the System
Profile (SP) screen.

Indirect References

In a menu mode file dialog, press the F2 function key (Revision Criteria)
to specify indirect criteria.
Revision
You can indirectly refer to revisions of master files by specifying the
master file(s) and a revision ID. The syntax is:

[system:] file [.group [.acct]]

[system:) /|path.../] file ;REV{ISION]) =revision-id | ALL

“%fileset
The revision ID is in the format VERSION:VCOUNT [.BRANCH.LEAF..].

You can authorize all revisions of a master file when using the SET and
PURGE commands. To do this, use the REVISION parameter with the
value of ALL. For example,

PURGE MYFILE.PUB.LIBRARY:REVISION=ALL

purges all revisions of the files associated with the master file,
MYFILE.FUB.LIBRARY.

File Transactions 3-3

Version and Version Count
You can indirectly refer to versions of master files by specifying the
master file(s) and a version and version count. The syntax is:

[systemn:] file [.group [.acct]]

versionid OF |} [system:] /[path.../] fite [:VCOUNT=versioncount]
%fileset
Versionid is the identifier of a version. If the application for the version is
ambiguous, LIBRARIAN prompts for it.
VCOUNT identifies the files with a version count equal to VCOUNT (the
number of times the master file has been revised since the base version
was created). Default: 0 (baseline version).

A VCOUNT value of LAST causes LIBRARIAN to operate on the last
revision of a file within a version.

For example, the following command copies the latest revision of each file
in the 1.0 version to the V100 area:

E')E >COPY 1.0 OF %FINANCE TO = =.V100;VCOUNT=LAST;OLDNAME
% >COPY 1.0 OF %FINANCE TO /apps/gl/v100/(3,"):VCOUNT=LAST:OLDNAME
[14

A VCOUNT value of LASTNOTD causes LIBRARIAN to operate on the last
revision of a file within a retained version that is not a base revision. (e.g.
to create a patch tape.}

For example, the following command distributes only those files that
have changed since the base version was distributed:

m >COPY RE.1.0 OF $MYFILES TO =.=.RELEASE;VCOUNT=LASTNOTO
B,

>COPY RE.1.0 OF MYFILES TO /apps/gl/release/(3,7):VCOUNI=LASTNCTD

Generation Count

You can indirectly refer to generations of a master file by specifying a
master file(s) and a generation count. The syntax is:

%E [system:] file [.group [.acct]]
[system:) /[path.../] fite :GCOUNT = [-] goount
%iileset

The GCOUNT parameter directs LIBRARIAN to operate on files with the
specified generation count (total number of times the master file has been
replaced since its creation). This value can be either a positive or a
negative value.

A negative value describes the generation relative to the current
generation. For example, GCOUNT = -2 specifies files two generations
prior to the current one.

3-4 UBRARIAN/IX User’'s Guide

Note

9!

Secondary Location

You can indirectly refer to secondary files by specifying the master
filename(s) and the general location to search for associated secondaries.
The syntax for MPE is:

%fileset AT
[system.]file [.group [.acct]]
[system:]file [.group [.acct]] AT

When using this syntax, LIBRARIAN operates on secondaries of the
specified master files found in the specified secondary (AT) location. For
example:

%AP-FILES AT @:@.@.@
refers to all secondary copies of %AP-FILES.
Alternatively, the syntax for UNIX is:

{ sufileset AT

} [system:] /[path...]] file
isystemn:] fipath.../] file AT

When using this syntax, LIBRARIAN operates on secondaries of the
specified master files found in the specified secondary (AT) location. For
example:

%AP-FILES AT *:/*
refers to all secondary copies of %AP-FILES,

In a menu mode dialog, enter the "AT” syntax directly in the filelist
field, as you would in command mode.

Implied Reference by Project

You can imply the files associated with a project when performing a step
by specifying the project name, rather than files. The syntax is:
»sfep.project

Alternatively, you can omit the project name and select your project from
the project menu when projects are defined. In menu mode, this is the
only alternative.

File Transactions

3-5

Implied Reference by Step

If you do not specify any files when performing a step, the step fileset (as
defined on the Step (ST) screen) is used. For example:

>step

If projects are being used, you are presented a menu of projects. By
selecting a project, you imply the project fileset when no files are
specified.

Multiple File References

You can refer to multiple files combining any of the methods described
above. Use comumas to create a list of file specifications. The syntax is:

filelist [, fifefist [, ...]]

Each filelist is processed by the LIBRARIAN program in a single
transaction.

Exclusions Selection
This method designates files to be excluded from the operation. The

syntax is:
EE — [system:] fite {.group [.acct])
_ [system:] /[path...] file
.x — %figset

When specifying multiple filelists, specify the exclusion(s) last.
Exclusion(s) must be direct references, with or without wildcards. Use
commas to separate exclusions.

Subset Selection

Project

Subset selection by project selects only files associated with a particular
project. This parameter must follow all file references, including
destination locations, if specified. PROJECT is valid for all commands.
The syntax is:

filelist; PROJECT=proj

If you use a step to copy files in read—mode (e.g., move-to—production),
LIBRARIAN automatically copies the appropriate revisions of the files
associated with the project that you specify. However, if you do not use a
step for file distribution (e.g., COPY), then use the project fileset as well as
the PROJECT parameter.

3-6 LIBRARIAN/iX User's Guicle

Tag
Subset selection by tag selects only files that were assigned a specific tag

with the SET TAG comumand. This parameter must follow all file
references induding destination locations, if specified. The syntax is:

filelist, TAG =tagid

Modification Status

Subset selection by modification status selects files based upon whether
or not they have been modified since LIBRARIAN created them. Use the
MODIFIED or UNMODIFIED parameters to select only those files modified
or not modified since they were last copied or moved by LIBRARIAN.
The current timestamp in the file label is compared with the timestamp in
the LIBRARIAN database. The syntax is:

fitelist MODIFIED

User Confirmation

Subset selection by user confirmation has LIBRARIAN prompt for
confirmation of each authorized file prior to processing. Use the
CONFIRM parameter to request prompting. Files not confirmed are
excluded from the operation. The syntax is:

fielist, CONFIRM

Tracking Status

Subset selection by tracking status lets you select files being tracked by
LIBRARIAN, excluding those not being tracked. This applies only to ad
hoc commands, such as COPY and PURGE. To include only untracked
files, prefix these commands with X. The syntax is:

fiteiist, TRACKED

How to Refer to Destinations

Edit masks are used to determine the correct destination given a specific
source name. The masks are either defined in the destination of a step, or
specified when performing the step or other file movement command.

Edit masks are also used to specify refinements for step destinations, and
to translate pending production secondary filenames into pending master
filenames. This enables LIBRARIAN to create pending master records
automatically.

There is a one—to—one correspondence between elements of a fully
qualified filename. (For MPE, elements are system, file, group, and
account. For UNIX, elements are system, path components, and
filename.) For each element, the mask can result in carrying forward the
element, replacing the element, or editing the element:

File ransactions 3-7

w Elements are carried forward using the equal sign (=), or the at sign
(@) in a step definition, if the user can override the element,

w Elements are replaced by using a string literal.

® Elements can be edited using a combination of equal (=), at (@),
question (?), minus (=) sign, and literals, as described below.

Table 3-1 describes the valid edit mask characters for any element of an
MPE or UNIX filename, along with their descriptions and examples.

Table 3-1. Edit Mask Symbols and Descriptions

Edit Mask Description
Character

Copies original vajue into edited version. Typically preceded and/or
At sian/Siar followed by other characters, For example, when edited with the edit
d A mask of ABC@XYZ, the value of FRED results in a value of

e ABCFREDXYZ. For MPE filenames, the result is truncated to eight
characters (ABCFREDX).
Question Copies the character at this position into the resulting string. For
mark example, the mask 7? applied to the string FRED results in the string
? FR. The question mark can be combined with literal characters such

as 77X, which would result in the string, FRX, or X??, resulting in
XRE. It can also be combined with. the minus sign ().

Indicates that the original character in that position should not be
included in the edited result. For example, the mask -? applied to the
string FRED results in R. Alternatively, the mask —=— results in the
string RE. An additional feature is the use of “—" in conjunction with
“@", which strips characters from the beginning and/or end of the
original element before adding other ¢haracters to the beginming or
end. For example, PRTA100 edited with = - ~@5 resulis in A100S,
deleting the first three characters before adding the S:. Note that = -
-=5 would result in A10S, replading the last character.

Copies all remaining characters after the minus sign, question mark,
Equal sign and literal characters have been evaluated. For example, a mask of =X
= with the original string FRED results in the string FREX. The mask
=07 with the initial string FRED results in FRQD.

Minus sign

Edit Masks for UNIX Pathnames

@ To carry forward, edit, or replace an element that is at the same level in
® both the source and destination filenames, follow the rules described
above,

Because UNIX pathnames can have varying numbers of path elements
(directories), you can edit (or skip) components at varying levels in the
source filename using the following construct:

[(x[-vy]) [edit—-mask]

where x and y represent the desired range of components from the source
pathname. x and y are numbers from 1 to *, where * is the last directory
element of the pathname. If you want a specific element, omit y which is
optonal.

3-8 LUBRARIAN/IX User’'s Guide

[N

The optional edit mask is applied to each element in the range (do not
include the brackets).

For example, the mask /(1—2)/devel\USERID/(4—*)/= applied to the
filename /usr/usrg/master/screens/abc results in the filename
{usr/usre/devel/milind/screens/abe.

You can also use the following wildcards in place of x or v
~ numnber of levels in home directory path
number of levels in the current working directory path
one less than the number of levels in the current working
directory path
You can use curly braces, i.e., { x [- y1 }, to indicate mapping from the
master file name rather than the current secondary file name.
For example, consider the following step called demo—test:
® Source files are defined as secondary files:
sputnik:fusr/usr2/demo/dev/ievell flevel2/*
® Destination files are defined as secondary files:
sputnik:/usrfusr2/demoftest/{ 5 —*} /=

The edit mask { 5 — * } is evaluated using the assodated master file
path.

= Given the following source files:
sputnik:/usrfusr2/demo/src/dir1/dir2/dir3/*

® The destination files would be expanded to the following:
sputnik:fusriusre/demoftest/dirt /dir2/dir3/=

Edit Masks for Group and Accounts

You can specify an edit mask that refers to a different element (i.e., file,
group or account). To do this, use the following syntax in your edit mask:

(e

where F is for filename, G is for group name, and A is for account name.
Start is the starting position, and length is the number of characters to be
used.

The example below shows an edit mask that creates a group name using
the first three characters of the filename:

Source: ABC1005.PSOURCE
Edit: PRG??7.P(F:1:3)OB]
Destination: PRG100.PABCOB]

Fite Transactions 3-©

How to Perform Steps

You can only perform steps that the LIBRARIAN Manager or Application
Manager has authorized you to perform. For an online list of the steps
you can perform, use the HELP STEPS command or open the Steps menu
from the File menu.

HELP STEPS displays your user information, a list of the steps you are
authorized to use, and information about the step, as shown in

Figure 3-1.
STEP AUTHORIZATIONS

UserD: LBMGR Narme: Frenk Phone:
Step Route ApplModeTy From Locglion Move
AR-QUT AR-MAINT AR RW M3 @ @ IA7PROD L5YS1 COPY
AR-NEW ARMAINT AR RW S5 @ 0@ JLOGON SYS1 NULL
AR-IN AR-MAINT AR RIW SM @ @ JLOGON SY51 MOVE
AR-RELEASE .AR-MAINT AR RW S5 @ @ JLOGON SYS1 COFY
AR-COMYIN . AR-MAINT AR R/W SM @& @ JLOGON SYST MCVE
Enter HELP and the naome of the Step for further information.

Figure 3-1. Step Authorizations Informartion

When you perform a step, LIBRARIAN authorizes the request based on
the rules for that step, executes the operation for each authorized file, and
logs the status of each operation in the audit database.

When LIBRARTAN authorizes a request, it authorizes each file separately,
evaluating your user ID and permissions associated with it, checking the
existence of the file, the policies for the file, and the rules for the step.

LIBRARIAN displays the status for requested files. The following
example shows a typical “Request Status” display:

*REQUEST STATUS
2 authorized 0 conditional 0 violgtions 0 excluded

You have the option to review the list of files for each of the categories,
and LIBRARIAN offers further online explanations of each
error /exclusion status, as follows:

Authorized Files have passed all checks and can be processed as
requested.

Conditional Files are conditional on read mode, and cannot be
obtained in write mode because a write mode copy
already exdsts. You have the option of obtaining the file in
read mode or creating a branch. Conditional warnings
are issued only when the file has serial access control.

Violations Files that did not pass one or more policy checks. For
example, files cannot be outside the scope of the step.
Other violations include trying to replace an existing
write mode secondary, or a prestep has not been
performed.

3-10

LIBRARIAN/X User's Guide

Excluded Files have been bypassed. For example, duplicate files are
excluded, as are files you excluded using the dash
(-)prefix.

Note You can suppress the "Request Status” display and associated
prompts by using the QUIET DISPLAY command, or by selecting
Quiet Mode...DISPLAY in the Settings dialog from the User menu.

When LIBRARIAN executes a step transaction, it performs the operation
for each authorized file. At the end of the operation, LIBRARIAN
displays a summary, showing the number of authorized file operations
that succeeded or that failed.

Each file transaction is logged to the LIBLOG database to provide a
complete audit trail. You can review the audit trail using the SHOWLOG
report writer discussed in Chapter 4, “SHOWLOG Commands”, in the
LIBRARIANY/iX Reference Guide.

File Transactions 3-11

Figure 3-2 shows an example of a step transaction performed in
LIBRARIAN (with full display — QUIET OFF).

»>AP-OUT RP105.SOURCE, RP20P.OBJECT

“AUTHORIING *RP10S.5CURCE.LIBPROD SYSA”
1 file(s) found
"AUTHORIZING *RPZ0P-OBJECT.UBPROD.SYSA”
1 file(s) found

*REQUEST STATUS
2 autholized 0 conditional O viclations D excluded

*PROCESSING REQUEST

Copied RP105.5CQURCE.UBPROD fo RP10P.UNDA. LIBDEVEL
Copied RP20P.0BJECT.UBPROD to RP20P.LINDA LIBDEVEL

2 file(s} copied.
0 file(s) not copied.

Figure 3-2. Sample LIBRARIAN Operatfion

Step Parameters

Each step definition indudes default parameters that LIBRARIAN
automatically invokes each time you perform the step. Additionally, the
step definition specifies which default parameters you can override.

For example, use the BATCH parameter to perform the step in batch mode
and schedule the step to run at a later time. Use the MEMO parameter to
add text describing the transaction. The BATCH and MEMO options are
discussed later in this chapter. Use the NOMOVE parameter to simulate
the file operation by authorizing the request but not performing the
actual operation. Use parameters to COMPRESS or DECOMPRESS
destination files automatically, or to RETAIN copies of files when they are
to be replaced.

You can review the default parameters and allowed overrides for a step
by using the HELP command with a step name, or press F1 with the step
name highlighted on the Steps menu. For an offline report, run the Step
Detail Report (RAD20), which describes all steps in an application.
Figure 3-3 illustrates the HELP display for the AP-OUT step.

3-12

LIBRARIAN/iX User's Guide

Step: AP-OUT .DEVELOPMENT .DEMO GLOBAL VALUES

Move Exp Exp
NO Tvpe Step File Set From/To Locations Tpe Sec Ret

10 MS DEMO-FILES @.@.TPUBPROLLSYSA COFY 0 0
= .IUSERID .TPUBDEV .5Y5A

Desc: This step copies files from production to development

Step: AP-OUT .DEVELOPMENT .DEMO PREVIOUS VERSION LOCATIONS

Previous Version Locations will be searched in the following order:
Seq Previgus Version Search Locations

010 = .= | TPUBUB.SYSA
Step: AP-OUT .DEVELOPMENT .DEMO REFINEMENTS
There are no step refinements.
Step: AP.OUT DEVELOPMENT .DEMO PRESTEPS
No presteps are documented for this step.
Step: AF-OUT .DEVELOPMENT .DEMO FENDING AREAS
There are no pending production areas associated with this step.
Step: AP-OUT _DEVELOPMENT .DEMOQ DEFAULTS

Default parameters for the step are configured as follows;
ONLINE, MEMO!, NOCOMPRESS, NODECOMPRESS, NORETAIN, NOORPHAN
MNote: a *!" means that you cannot override the default when you perform this step.

Figure 3-3. Step Information for the AP-CUT Step

Table 3-2 summarizes the parameters currently available for use with
steps. For an online list of the parameters and descriptions of each, type

HELP PERFORM PARMS at the command line, or open the Options menu

from the step dialog and press F1 help for a particular option.

File Transactions

3-13

Table 3-2. Step Parometers

Parameters Parameters

ANNOTAITE MODIFIED UNMCDIFIED
APPEND NOMOVE

AUTOUPDATE NOAUTCUPDATE NOSEARCH

BAICH NCOBATCH OLDDATE

BRANCH ONLINE

COMPRESS NOCOMPRESS ORPHAN NOORPHAN
CONDITIONAL = maxcon NOCQONDITIONAL OWNER =

CREATE = PERMISSIONS =

CREATOR = creator PUSHREAD

DECOMPRESS NODECOMPRESS READ WRITE
ERRORS = maxerr NOERRORS RENUMBER

EXTERMAL REPLACE

INPROGRESS RESET

KEEF RETAIN NORETAIN
LOCKWORD = lockword VERIFY

MEMO NOMEMO VIOLATIONS = mexvio NOVIOLATIONS
MERGE =

These parameters are described in detail under the PERFORM command
in Chapter 1, “Commands”, in the LIBRARIAN/iX Reference Guide.

Associating Files with Projects

If projects are defined, you can associate the files processed in each step
operation with a specific project. When you perform a checkout step,
LIBRARIAN displays a menu of open projects for the applications that
have been assigned to you. Select the appropriate project from the menu.

If you are not required to associate your work with a project you can
select the “no project” option from the menu.

In addition, you can specify the project in your step command by
appending the project name to the end of the step name, separated from
it by a period. For example, you could perform the AP-OUT step for the
REPT-MODS project:

>AP-OUT.REPT-MQDS

If you are not required to associate your work with a project, you can
bypass the project name and specify the “no project” option in the step
command by including the special $NP token:

>AP-OUT.ENP

3-14 LIBRARIAN/IX User’s Guide

Memos

A memo is text that describes the current transaction in the audit trail.
Use the MEMO parameter to include a memo. To create one-line memos
up to 72 characters, enter the memo text on the command line as a value
for the MEMO parameter (e.g., MEMO = memo-text). For multi-line
memos, do not specify the text on the command line and LIBRARIAN
will invoke the configured editor; the default is EDITOR/3000 on MPE, or
vi on UNIX. Enter at least one line of text, then exit. Enter Y when
prompted to replace the memo file (MPE only).

You can review and modify the text through the SHOWLOG module.

Note If you configured QEDIT as your editor for MPE in the configuration
ﬂ file, LIBRARIAN executes QEDIT enabling you to enter memo text.

Using Personal Lockwords

m LIBRARIAN personal lockwords can enhance file level security in MPE
WPE while maintaining convenient file access through LIBRARIAN. You can
have your own personal lockword, which is encrypted and stored in the
database with your other user information. For information on defining
and maintaining your own lockwords, refer to Chapter 2, “Getting
Started”.
If you have a personal lockword, it is placed on any file you create in
LIBRARIAN. The lockword serves as protection from access by other
MPE users; LIBRARIAN automatically supplies your lockword for
authorized source files.
Lockwords are not automatically assigned to master files. Only

Application Managers or LIBRARTAN Managers can assign lockwords to
master files.

In addition to automatic lockword substitution for lockwords assigned
outside of LIBRARIAN there are two ways to assign specific lockwords

with LIBRARTAN:
1. Use the SET command to change the current lockword on files or
filesets.

2. Use the LOCKWORD parameter to specify a lockword to use rather
than your personal lockword when performing a step.

Macros

Macros are command files which can be in any location to which you
have read access, or in the XEQ.OCSLUIB group (MPE) or in the
fopt/ocsiocslib/xeq directory (UNIX). Use macros in place of a step to
perform complex file operations. For more information on creating and
using macros, refer to Chapter 9, “Macros”.

File Transactions 3-15

Other File Operations

Additional LIBRARIAN commands are available for working with files
that LIBRARIAN is tracking. Users can use these additional commands
for files they own. The file owner is the LIBRARIAN user who created the
file with a LIBRARIAN command. Master files are the exception — only
the Application Manager or LIBRARTIAN Manager can use the other file
commands for master files. Some commands, such as PRINT and
COMPARE, are available for master files if a user has read access.

Editing Files

It is not necessary to exit the LIBRARIAN program to work on files that
you checked out. You can run any editor directly from the LIBRARIAN
prompt.

Compressing Files

Compressing files can result in 60—90% disk space savings, depending
on the file type. Additionally, file compression provides additional file
security because compressed files cannot be read directly — they must be
decompressed before they can be read (however, for MPE, LIBRARIAN
offers special programs that can read compressed programs serially).

LIBRARIAN offers options for you to automatically or manually
compress/decompress files.

You can use the COMPRESS and DECOMPRESS commands (also
available from the Tools menu), or use the COMPRESS and
DECOMPRESS parameters available with most file operations. Steps can
also be defined to automatically compress or decompress destination files
after they are created.

Certain types of files can exist that you want to exclude from
compression, such as XL or program files. The LIBRARIAN Manager can
use the Compress Exclusions (CE) screen {o define file codes to be
excluded from automatic compression.

3-16

LIBRARIAN/X User’'s Guide

Other Commands

Table 3-3 is a list of other LIBRARIAN commands that operate on files
and describes the function of each.

Table 3-3. File Commands

Command Funclion

LCOMPARE Shows differences between text files.

COMPRESS Compresses files.

COoPY Copies files to a new location.

DECOMPRESS Decompresses files.

EOIM 1 Accesses configured editor.

LOCK Locks files,

MOVE Moves files tv new location.

ORPHAN Disabies tracking of secondary files.

OVERLAY Replaces tracked files with other files.

PRINT Displays the contents of files,

PURGE Deletes files from the database and disk.

RELEASE 1 Removes MPE security from files.

RENAME Changes filename or fileset name,

RESET (TTMESTAMP) Replaces modification timestamps in the database with
timestamps from file labels.

RESTORE Restores retained files to original location.

SCAN Searches and replaces sirings of text.

SCOMPARE 1 Compares files with $/COMPARE.

SECURE t Restares MPE security to files.

SET (MODE) Changes access mode.

SET (EXPDATE) Changes file expiration dates.

SET LOCKWORD) 1 Changes lockword on files.

SET (CWNER) Changes the owner of a file.

UNLOCK Releases files that were locked.

UPDATE Refreshes read secondary from master.

VERIFY Views information about files and versions.

1=MPE only

Operations on Untracked Files

Most LIBRARIAN file operations are restricted to files that LIBRARIAN
is tracking, that is, master files or their associated secondaries and
retained files. All other files on the system are untracked (unknown to

LIBRARIAN includes a special group of X commands to operate on these

unknown files. Table 34 lists the X commands currently available from
LIBRARIAN.

File Transactions 3-17

Table 3-4. X Commands for Unfrocked Files

Command Function

XCOMPARE T Compares file contents using /COMPARE

XCOMPRESS Compresses files

XCOPY Copies a file to a new location

XDECOMPRESS Decompresses a file

XLCOMPARE Shows dilferences between files not tracked by
LIBRARIAN

XMOVE Moves a file to a new location

XPRINT Prints the file contents online or offline

XPURGE Deletes a file

XRENAME Renames a file

XSCAN Scans/replaces text in a file

XTOUCH t Updates the MPE modification timestamp with the

curtent date and Hme

t = MPE only

When you use X commands, you can specify a single file, a file mask with
wildcards, or a list of files or file masks, listfiles, and user filesets. The
files must be untracked by LIBRARIAN.

need to use the X prefix. LIBRARIAN will process both tracked and
untracked files, but will enforce file system security for untracked files
and LIBRARIAN rules for tracked files. To exclude untracked files
from these operations, use the TRACKED parameter.

Note G Unless you want to restrict a command to untracked files, you do not

X commands allow you to specify many of the same parameters allowed
for their counterpart LIBRARIAN commands.

The LIBRARIAN Manager can assign X capability with the User
Capabilities (UC) screen. Users with X capability can use the X commands
without enforcing normal file system security. Otherwise, security is
enforced.

All X transactions are logged in the audit database, and they can be
reviewed with SHOWLOG reports.

Batch Transactions

All LIBRARIAN file operations can be performed in batch mode. You can
use the BATCH parameter on a command or step, or you can run
LIBRARIAN from jobstreams.

3-18 LIBRARIAN/IX User's Guide

BATCH Parameter

The BATCH parameter in a command or step causes the transaction to be
performed in batch mode by creating a temporary job. The operation is
authorized online, but executed in batch mode.

When you use the BATCH parameter under MPE, LIBRARIAN prompts
you for a JOB command and MPE:STREAM options. All job parameters,
such as INPRI, PRI, OUTCLASS, STREAM, AT, and DATE are supported.

If the OCS-ENABLED flag is set to Y on the System Profile (SP) screen, the
EXPRESS SUBMIT facility is invoked enabling you to schedule the
transaction. If the flag is set to N, you are prompted to supply the login
values and MPE :STREAM options for the transaction job before it is
streamed.

When you use the BATCH parameter under UNIX, LIBRARIAN launches
jobs using the UNIX at command. LIBRARIAN prompts you for at
options, or you can set the environment variable, LIBBATCH, to provide
these options.

Figure 3—4 illustrates the use of the BATCH parameter with the COPY
command {user supplied information is shown in bold).

>COPY RELT.00 OF %FINFROD TO =TEST,BATCH; OLDNAME;ALL

"AUTHORIANG “%FINPROD™
6 files found

"REQUEST STAIUS
6 authorized Q conditional 0 violgfion O exciuded

“SHOW AUTHOREZED (N/Y)? N

*COMTINUE THIS OPERATION (Y/N)? Y

MPE Jobname (OCSMOVE): TESTJOB
User/Password (MGR):

Account/Password (PROD). PROD/TURE
Group/Password [PUB):

Job Logen Parmis (INPRI=8:PRI=DS:QUTCLASS=LP.8);
MPE STREAM Parameterns (Optional); AT 03:00

If your login computer i not the host computer, where the UBRARIAN dofabases are:
found, please enter the System 1D where the databxases reside. Otherwise, just press
<RETURN.

Host Computer Systemn ID:
~ CREATING BAICH JOBSTREAM * PROCESSING REGRIEST
#194

Figure 3-4. Using the BATCH Porameter

File Transactions 3-19

LIBRARIAN Commands in Jobstreams

You can run the LIBRARTAN program from a jobstream to perform
complete transactions, including authorization, in batch mode. For
example, you could set up a nightly job to move all approved files to
production.

Running LIBRARIAN from a jobstream is useful when large numbers of
files are involved. For example, if the fileset has 200 members and
secondaries exist in several locations, the execution of a step could take
more time.

By scheduling a jobstream to run late at night, you can execute
transactions when the system is least busy. You can schedule a job to run
after production has completed so that the files are copied to the areas
where they will be used the next day.

When you run LIBRARIAN in a jobstream, remember to identify the user
and password. We recommend that LIBRARIAN passwords in jobstreams
be filled in dynamically when streamed through a scheduler or other
stream utility that supports parameter substitution.

You can set up a job with a defined limit for errors or violations. For
example, you can specify that the step can be performed only when there
are no violations (NOVIOLATIONS), creating an “all-or-nothing” operation.
You can also specify the number of times to attempt linking to a remote
MPE system that is not responding with RETRY.

Figure 3-5 illustrates running LIBRARIAN from a jobstream to poll for
approved files and move those files to the test area. The sample job
SUBMIT] performs the SUBMIT step in the DEVEL route of the
FINANCE application. The SUBMIT step is defined to move files from
the development area to the test area if the prestep APPROVE has been
performed.

1 JOB SUBMITJ, MGR.FINTST
I CONTINUE

| UB
m USER LIBMGR:LIB
SUBMIT %FINANCE AT @ @ FINDEV: WRITE: MODIFIED

ExXIT
IEQJ

#/bin/sh
ocslib -batch<<!t!

E USER LBMGR:LIB
Ui SUBMIT %FINANCE AT @@ FINDEV: WRITE; MODIFIED
et

Figure 3-5. Using LIBRARIAN Cormmands in a Jobstregm

The sample SUBMIT] job logs on to the FINTST account and runs the
LIBRARIAN program. Notice that a LIBRARIAN user and password
must be supplied. Default answers are supplied automatically where the
user would normally be prompted online.

3-20 UBRARIAN/IX User's Guide

LIBRARIAN then authorizes all secondaries of the step’s documented
fileset in the specified location. Any secondaries without write-mode
access that have not been modified are not authorized. Any files with
unsatisfied presteps are violations.

LIBRARIAN moves each authorized file to the spedified testing location.
Complete authorization and execufion information appears in the job
listing.

With this use of LIBRARIAN for automatic polling, LIBRARIAN
authorizes any approved files and rejects files that are not ready to move
as violations.

How to Check Transaction Status

LIBRARIAN sets several variables (JCWs for MPE) when executing a file
operation. You can reference these values in your jobstreams or macros to
control further activities. For example, assume you want a job to perform
an activity that depends on the successful movement of all files in a fileset
to another location. You could check the LIBFAIL variable to see if all
authorized files for the previous LIBRARIAN command were moved
successfully. See Table 3-5 for a list of the LIBRARIAN variables.

Table 3-5. LIBRARIAN JCWs

JCW/Variable Function

LIBAUTHCRIZED Number of files authorized

LIBCONDITIONAL Number of fles conditional on read

LIBEXCLUDED Number of excluded files

LUBMATCHES Number of files in which matches were found by the
SCAN command

LIBVIOLATIONS Number of violations

LIBERRORS Number of violations and cenditional files

LIBFAIL Number of files unsuccessfully processed in the last
transaction

LBOK Number of files successfully processed in the last
transaction

LIBJCW The last LIBRARIAN ervor number

File Transactions 3-21

Reviewing File Information

The VERIFY command (available from the Info menu) offers extensive
information about files. You can review information such as who last
checked out a file and when, the location to which the file was copied,
and what step was used to perform the copy. You can review the
information online or use the LP parameter to send the information
offline.

The VERIFY command accepts all file references as described for other
comunands. In addition, three parameters are provided for further
refinement of the file selection.

OWNER = usemame Selects only secondary files whose owner
is the one you specify.

STEP = step.route.application Selects files with the specified step as the
most recent step performed.

MODE = WRITE /| READ Selects only secondaries in either read or
write—mode.

When you issue the VERIFY command, a menu of formats displays. Each
format includes different types of information. Figure 3-6 shows the
VERIFY menu.

LIBRARIARN VYERIFY HEND
6 Flles 6 lydowosn 5 Masters 0 Seconderies @ Retolned 8 tella
fo1] &civml Modificmlion Tineslowp, Filecsde...... all fijes
[62] LID Mification Tisesiemp, Lock Stetus...... all files
B3] wassocieted Master Fite (or Della Flle)....... all files
[64] mssociated Haster Flieset($).......00uvnennn. all flles
[65] associeled Project(s).......c.vnvevnnunnnn. .. all files
[86] mssociated User Fileset(S)......cv0vvneerusn. 8il files
[62] Version Infaretllon...........ccccivvuiannnnan oll files
{88] nMaster Flle COUMtErs. _.....ovvvnveiennsennesn axsier flies anly
[89] Location of WriteHode Copy........conuvunn., mrster files only
[18] Previous Versions (Geweraled Files).......... sasters/secondaries
[11) Duner, Access Mode, Expiration. Exxceptions.., secondaries eniy
[12] LBSt SteP...ccvuiiriirrannnranenncenrnranosnns secontar jes ohily
[13] Step Histery. .. .cocviiinrevienrencrronnniens seconderies gnly
[14] Orvginal File MEBE........ocoeeeeennnnnnnnns, retained files only
{15) Date Retaines), Expiration Date............... retained files aniy
[16] Revizsion InforEatIon/TO0. . veiiives iiinnnranns oll tracked files
(171 Revision Ristory..ccocvirrennnnncnnnnn, posier files only
[18) Language/Rescriptlmm.cvvveeenrrvronanss masier files only
(19} Retun (o LIBRARIAN progpt (ar “0°)
Format Wumber [, LP17

Figure 3-6. VERIFY Menu

Select a format by entering the format number and LIBRARIAN displays
the requested information. You can continue to choose formats for the
same files until you exit and return to the LIBRARIAN prompt.

3-22 LIBRARIAN/X User’s Guide

If you are familiar with this menu, you can bypass it by using the VERIFY
command with the FORMAT parameter. Figure 3-7 is a sample display of
master files and associated delta files (format 3).

LIBRAAIGN VERIFY (Al Files/associoted naster Fite)

File

File Type Haster File

PENGUIR: AGL 16005 . VERORICR . LIBDEVEL S PENGUIN:ABC 16205 . SRCE . LIBPAGD
PEMEUIR: ABCZRRES . VERONICA.LIGEYEL $§ PENGUIN:ABC2008S , SOURCE . L IBPROD
PEMGUIN : ABCIO00S . VERORICA.LIBOFVEL S PEMGUIN:ABCIA0SS . SOURCE . L IBPROD
PENSUIN : EL 16085 . SIMIACE . L IBPROD n = (DELTA FILE: Dﬂmi - COBM /RPE)
PENGUIN: ABC2008S . SOURCE . LIBEPROD W = (DETa FILE: DBOYERSZ - COBOL/APG)
PENSUIN: ARCIBEAS . SMELY . L IBPROD W = (DELTA FILE: DOGGOGO3 - COBOL/APG)
PEMGUTN: 06006601 . SOURLY. . L IBPROD 0 PENSUIN:AEC1680S . SNACY . [THPROD 0K
PENGUIN: (OBSEUE2 . SIUATE - L IOPRDD D PENGUIN :ABC2008S . SGUACE . L IEPROD oK
PENGUIN: COGBOH03 . SOURCE ., L IEPROD 0 PENGUIN:ABCISOBS. SWATE L TEFROD 114
spulnik:/opt/ocs/ocstib/libdevel/ S sputnik:/opt/ocs/ocst b/) ibprod/

pau| /abc 1008 .c abc 1888. ¢
mlnuk.lmtlmlucslth/lnmll 5 spuinik:/ept/ecs/ocstib/ 1 ibprod/

pou) fakc3088 . aheInmn. ¢
spuinik:/opt/ocs/ocst ib/ [ibprod/ H =

abc1dee.c

sputnik; fopt/ocs/ocs] ib/ 1 ibprod/ L I

abc600.c
Figure 3-7. Sample VERIFY Display

File Transactions

3-23

3-24 UBRARIAN/IX User's Guide

Revisions Vil

LIBRARIAN helps you track and control revisions of individual files. A
revision is any set of changes made to a file and checked in to the library.
This chapter describes how to manage revisions of files within
LIBRARIAN. Topics discussed in this chapter include:

®» Managing Revisions

® Identifying Revisions

= How Revisions are Stored

8 Merging Revisions

8 Comparing and Printing Revisions

» Purging Delta Files

® Viewing Revision Information

Managing Revisions

A revision refers to a file after changes have been made and checked in to
the library. Each time you check out, edit, and check a file back in,
LIBRARIAN assigns a new revision identifier to the file. Revision
identifiers for each file reflect the number of times modifications have
been made.

A revision is different from a version because it refers to a single file only.
A version refers to an entire application at a specific point in time. Refer
to Chapter 7, “Versions”, in the LIBRARIAN/X Administrator’s Guide.

By default, a checkout step obtains the latest revision of a file; any
previous revision is obtained by specifying the revision’s identifier as a
parameter to the checkout step. For example, if the current revision of
MYFILE is A:4, you can obtain the A:2 revision by issuing this command:

>ABC-OUT MYFILE ;REV=A:2

Checking out an older revision of a file creates a branch. Branching is
discussed later in this chapter.

Before checking out previous revisions of files, it is important to
understand how revisions are named, and what happens when they are
checked out.

Revisions 4-1

|dentifying Revisions

Revision identifiers have a version ID prefix, or an asterisk (*) prefix if no
version exists. This is followed by a set of counters that uniquely identify
the particular revision. Refer to Chapter 7, “Versions”, in the
LIBRARIAN/iX Administrator’s Guide for more information. The couniters
include the version count and any number of branch/leaf count pairs
delimited by periods. Revision IDs have the following general format:

version_id:vcount{.branch.leaf...]

To understand revision IDs, think of the file’s revision path as a tree. The
version count grows along the trunk of the tree, which starts at 0, and
increments by 1 for each revision to a file within a version. If the revision
ID contains only a version count, the revision is considered to be on the
main development path (the trunk of the tree).

Branching occurs when you check out previous revisions of files, or force
branches off the latest revision. The branch count represents the number
of branches that have grown from a revision. The leaf count represents
the number of revisions along a branch. Thus, the branch count and leaf
count are always appended to the revision ID in pairs, allowing you to
branch off the leaves of branches.

Figure 4-1 illustrates the revision history tree for a hypothetical file by
showing its revision IDs.

A4 INDEVELOPMENT
(NOT CHECKED IN)

BRANCH/LEAF . .
ABIAAR ABLLIT B3

o N/ So |

ABN13=— A302— A3.1I

2

A
A31.2TT ’ L.
l < ME _pBE—an3h
A:
A1) /
AD COUNT

VERSION
COUNT

LEAF

Figure 4-1. A Revision Tree

In this illustration, the version ID is A and all file identifiers start with the
prefix A:. The base revision has a version count (VCOUNT) of 0, set when
the version was defined. Subsequent revisions cause VCOUNT to
increment by 1 with each file check in. Base revisions are protected from
being flushed until you define the associated version as obsolete.

4-2 UBRARIA/IX User's Guide

To check out a previous revision you can specify the REVISION parameter
of the checkout step. For example, if you wish to check out revision A:1 of
MYFILE, your checkout step would look something like this:

>ABC-OUT MYFILE ;REV=A:1

Branching

A branch is a revision that is not checked in on the main development
path (trunk).

When you attempt to check out a file which has already been checked out
by another user, LIBRARIAN gives you the option of accessing the file
conditionally. If you answer NO, no copy will be made. However, if you
respond YES to the conditional prompt, you will be prompted to indicate
whether you want to create a branch.

If you respond YES, you will get a WRITE mode copy of the file on a
branch. If you answer NO, you will have a READ mode copy of the file.

Branching also occurs when you checkout a previous revision of a master
file, or use the BRANCH parameter.

In summary, branching occurs when

® arevision other than the latest trunk revision is checked out and
checked in (a branch is automatically created),

® abranch is forced from the latest leaf on a branch revision, or the
latest trunk revision, by spedifying the BRANCH parameter on a
checkout step.

Branching is useful to fix a problem in a previous file revision without
affecting the current revision. For example, if you fix a bug in a software
program and wish to send out a patch to fix a previous version of the
application, you would check out the problem files (previous revisions),
correct the problems, and check the files back in — automatically creating
a branch. Later, you can merge these changes into the main development
path as described later in this chapter.

When you create a branch, LIBRARIAN appends a branch pair to the
revision ID of the revision you checked out. In Figure 4-1, if you checked
out the A:1 revision, then the branch A:1.1.1 would be created. Another
user checking out A:1 causes a second branch, A:1.2.1, to be created.

Checking out and checking in the most recent revision on a branch causes
the leaf count to increment. The A:1.2.1 revision was checked out, revised,
and checked in two more times, increasing the leaf count each time
(A:1.2.2 and A:1.2.3).

Checking out previous branches of revisions causes further branches to

be created. In Figure 42, the A:3.1.1 revision of the file was checked out,
after being revised as A:3.1.2. This causes a new branch, A:3.1.1.1.1 to be

created. For each branch created, a new branch count and leaf count are
appended to the previous revision ID.

Revisions 4-3

Forced Branching

You can force branching to happen when checking out a file. This can be
useful when you know someone else will need the file in write~-mode,
and you do not want your changes to be reflected on the main
development path. For example, if you want to check out the current
revision of the file MYFILE and force a branch, issue the following
command:

>ABC-OUT MYFILE ;BRANCH

Assuming that MYFILE has the revision tree illustrated in Figure 4-2, the
most current revision (in this case, A:3) is checked out as a new branch. In
this example, A:3.1.1 is created.

Ad—eAd 11
22— A2]) A2).2
Al12es— A:) 1.1s——A

AD

Figure 4-2. Revision Tree for MYFILE

If any write~mode copies exist, the only method of obtaining another
write-mode copy is to create a branch. Branches can later be merged into
the main development path as described in “Revisions” later in this
chapter.

Preventing Branching

You can use the NOBRANCH parameter to block the use of the BRANCH
option. The LIBRARIAN or the Application Manager can prevent users
from using BRANCH by coding NOBRANCH in a macro, or by configuring
this option as an additional step parameter on the STO screen.

The NOBRANCH option prevents the branch prompt from appearing and
prevents a user from using the BRANCH parameter. Additionally,
NOBRANCH prevents the user from checking out a write-mode copy of a
previous revision of a file.

New Files

New files are files that are introduced “new” to LIBRARIAN in a
development or test location by a step with a Pending Production Area
(see PP screen in the LIBRARIAN Reference Guide), rather than being
checked out from the library. These files may be entirely new programs
or other files that do not exist in the library, or may simply be new
generations of files that were not checked out but will be checked in “on
top of” existing master files.

4-4

LIBRARIA/IX User’s Guide

New files that will not replace existing master files are automaticalty
assigned a revision number of

<current version>:1

by LIBRARIAN. The idea here is that these files are part of the current
version, but are not “base revisions” (<current version>:0), since base
revisions by definition were there when the version was created.

New files that will replace an existing master file are assigned the next
available revision number on the trunk - i.e,,

<current version>: <nexivcount>
as though the current master file had been checked out.

New files, then, cannot be branched in either case. If you branch a source
file, and want the related executable file to bear the same revision number
as the source, you must check out the executable file as well as the source,
branching to create the desired revision number.

How Revisions Are Stored

Previous revisions of files must be retained if they are going to be
recovered or modified later. The base revision of a file for a version is
automatically retained. Intermediate revisions are retained if the step
RETAIN parameter is in effect. Refer to Chapter 4, “File Movement Rules”,
in the LIBRARIAN/X Administrator’s Guide for more information about
setting the AETAIN parameter on step definitions.

Revisions are typically retained in the master library. You can also retain
files in secondary locations by using the RETAIN parameter on a step that
creates files in a secondary location where the file already exists.

In addition to a file’s revision identifier, a generation count is recorded.
The generation count (GCOUNT) begins at 1 when the file is created, and
increments by 1 each time the file is replaced by a new revision. All
revisions on the same branch off of the trunk have the same GCOUNT. You
can only identify branches using revision IDs.

Delta Files vs. Generdation Files

Revisions to text files can be retained either in delta files or as generation

files.

® Adelta fileis a special file containing the complete text of the first
source file revision and a history of all subsequent changes —i.e.,
insertions and deletions, who made the changes, and when they were

made. Only revisions to text files can be retained as deltas; all other
files are retained as generation files.

m A generation file is a complete compressed archive copy of an older
revision of a file.

Revisions 4-5

By default, retained files are stored as generation files. If Detta is set to Y
for an application on the Applications (AP) screen, previous revisions of
text files within that application are stored as deltas.

Most users do not need to know whether revisions are being stored as
generation files or delta files. Delta files take less space than the
corresponding generation files and enable the use of LIBRARIAN's merge
and annotation feature.

LIBRARIAN tracks revisions using a system generated name in the
format G#ris (MPE) or g (UNIX). These unique G-names
are derived randomly. The G-name for a revision appears on reports and
on LIBRARTAN screens. For CM/KSAM files (MPE), the key file, if not
compressed, is stored as CH#HHEEE.

Delta file names are in the format D##HEHE# (MPE) or .d#HeHRRH
(UNIX}. Delta file numbering is sequential.

Location of Retained Files

Generation files typically reside in the same location as the corresponding
master file; you can move these files to another location by using the
MOVE command. You can only move delta files if you also move the
corresponding master file.

Managing Generation and Delta Files

You can compress generation files to conserve disk space. If you want to
have LIBRARIAN compress these files automatically, use the System
Profile (SP) screen to set Auto-Compress Retained Files to "Y™.

When you want to distribute these compressed generation files using the
REVISION and TAG parameters, be sure to use the DECOMPRESS
parameter. This ensures that these files do not remain compressed in the
production location.

You can use the FLUSH utility and PURGE command to delete revisions
that you no longer need. Keep in mind that the base revision of a file is
kept until you make the version to which it belongs obsolete. When you
flush obsolete revisions from delta files, the delta file usually becomes
smaller.

All other retained files have expiration dates, and you can flush them
when they have expired. The expiration date for files created with steps is
determined by the number of days you specified on the Steps (ST) screen.
When you use the RETAIN parameter in a command, the files created by
the command expire immediately. You can change the expiration date for
a file by using SET EXPDATE. If you want to purge expired files, run the
FLUSH utility, as described in Chapter 1, “Commands”, in the
LIBRARIAN/iX Reference Guide.

4-6

LIBRARIA/IX User's Guide

In addition to the expiration date of the retained file, you can specify the
minimum number of generation files for a master file that should be kept
by using the System Profile screen (SP). The FLUSH POLICY field on the SP
screen allows you to enter a number from 0 to 98 for the number of
previous generations that should be retained. If a retained revision has
expired, but is within the flush policy limit, the retained file is kept.

Waming The FLUSH policy applies to generations along the trunk. If a trunk re-
vision qualifies to be flushed, then all revisions on a branch from that
file are also flushed.

Merging Revisions

m To merge revisions, use the MERGE parameter. Merge is only available

X when revisions are stored as deltas. Merge is also restricted to
master—to—secondary (checkout) steps. This allows you to resolve any
conflicts and test the result prior to introducing the merged file into the

library.

Note You can only merge revisions of the same file. You cannot merge two
different files (i.e., files must come from the same base).

For example, suppose Figure 4-2 shows the current revision tree for

If you want to merge the changes from A:1.1.2 and A:2.1.2 with A:3 to
create A:4, check out A:3 as follows:

>ABC-OUT MYFILE |MERGE=A:1.1.2, A:2.1.2

Figure 4-3 illustrates merging two branch revisions into the latest trunk
revision.

p*z——-mzl.
A:l.l.l*——A.t'l

A

Figure 4-3. Merging Two Branches inte the Trunk

Revisions 4-7

Merging Specific Revisions
You can merge changes from a specific revision by using the exclamation
point (!) in your merge list. This includes only changes made in that
revision, ignoring previous changes along that branch. For example:

>ABC-OUT MYFILE :MERGE=IA:1.1.2, A:2.1.2

Figure 44 illustrates merging a specific set of changes. The solid arrows
indicate changes included in this merge. Changes made between
revisions A:1 and A:1.1.1 are not included in the merge.

A}:z—-Azz.u

(This sat of Al] --AC1

changss only)
A

Figure 4-4. Merging a Specific Revision

4-8

LIBRARIA/iX User’s Guide

Excluding Revisions from a Merge

You can exclude specific changes when merging revisions using the
minus (-) sign in your merge list. This includes all changes along the
development path, except for the specified revision. For example:

>ABC-OUT MYFILE \MERGE=A:1.1.2, A:2.1.2, -A2.1.1

Figure 4-5 illustrates excluding a set of changes from a merge. The solid
arrows indicate changes included in this merge.

Figure 4-5. Merging Two Branches with Exclusions

Resolving Conflicts

LIBRARIAN notifies you if it encounters a conflict during a merge. If
LIBRARIAN informs you that it encountered changes affecting the same
part of the code (e.g., you changed a line in one revision that was deleted
in another revision being merged), you must decide whether to retain the
insertion or the deletion.

LIBRARIAN annotates the conflicting blocks with comments in the
format for the language of that file. For more details on language, refer to
the Fileset (FS) screen in Chapter 5, “Screens”, in the LIBRARIANAX
Reference Guide.

Using your editor, search the merged file (in the development area) for
the string <=?=> to locate conflicts. Figure 4-6 contains sample conflict
notation for a COBOL file.

Revisions 4-9

001000
001100
001200
001300
001400
001300
001600
001700
001800
001500

002100
002200
002300
002400
002500
002800
Q02700
002800
002300
003000
003100
003200
003300
003400
003500
003600

QQ3700
003800
003800
004000
004100
004200
004300
004400
004300
004500
004700
004800
004800
005000
005100
005200

IDENTIFICATION DIVISION.
FROGRAM-ID. CAl| AFAD,
ENVIRONMENT DMISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

Revision A1 [08/23/91 14:37 DEREK]
SELECT QUTPUT-FILE ASSIGN TO “OUTPUT™.
Revision A:1 [End INSERT]

SELECT QOUTPUTFILE ASSIGN TQ “LISTING".
DATA DIVISION.
FILE SELECTION.
FD OUTPUT-FILE

LABEL RECORDS ARE OMITTED.
01 RECCRD-BUFFER
WORKING-STORAGE SECTION.
01 FILE-NAME
01 CALL-STATUS
01 RECEIVE-BUFFER-AREA:

05 RECEIVE-BUFFER

0S5 FILLER
PROCEDURE DMISION.
PARAGRAPH-1.

OPEN OUTPUT OQUTPUT-FILE.
DISPLAY "ENTER FILE TO READ:".

ACCEPT FILE-NAME.
DISPLAY "READING " FILE-NAME.

PIC X{79).

PIC X(38) VALLIE SPACE
PIC 59{4) COMP VALUE 0

PIC X(79).
PIC X(4018).

PERFORM PARAGRAFH-2
UNTIL CALL-STATUS NOT EQUAL ZERO.

DISPLAY " ** ENDING DEMOREAD".
STOP RUN.

PARAGRAPH-2.

CALL "SUB100" USING @FILE-NAME, @RECEIVE-BUFFER,
CALL-STATUS,

IF CALL-STATUS EQUAL ZERC
WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 4-6, Sample Conflict Notation

Comparing and Printing Revisions

% You can compare revisions using the FROMREV and TOREV pararneters
b with the LCOMPARE and SCOMPARE commands. For example, to
compare the second and base revisions of MYFILE, type:

>LCOMPARE MYFILE ;FROMREV=A:2 ;TOREV=A:0

Figure 4-7 shows the LCOMPARE report highlighting changes between
revisions A:0 and A:2. This report can be generated online or printed to
an offline device.

4-10 LIBRARIA/IX User's Guide

LIBRARLAN File Difference Listing

Reference File : ABC1000S.MASTER.LIB40O [A:0]) MON, AUG 15,1991, 11:16 AM

Cornpare File : ABC10005.MASTER.LIB400 [A:2]

001000 IDENTIFICATION DIVISION.
DELETE 002000 PROGRAM-ID-CALLREAD.
INSERT 002000 PROGRAM-1D. DEMOREAD.

003000 ENVIRONMENT DMSICN.
004000 INPUT-QUTPUT SECTION.
005000 FILE-CONTROL

006000 SELECT OUTPUT-FILE ASSIGN TO *OUTPUT".
INSERT 007000 SELECT INPUT-FILE ASSIGN TO “INPUT".

008000 DATA DIVISION.

G0s000 FILE SECTION.

Q10000 FO OUTPUT-FILE

011000 LABEL RECORDS ARE CMITTED.

012000 01 RECORD-BUFFER PIC X{132).
INSERT 013000 FD INPUT-FILE
INSERT 014000 LABEL RECORDS ARE OMITTED.
INSERT 015000 01 RECORD-BUFFER PIC X{79).

016000 WORKING-STORAGE SECTION.

Page 1

017000 91 FILE-NAME PIC X{38) VALUE SPACE.
018000 01 CALL-STATUS PIC S9(4) COMP VALUE O
019000 01 RECEIVE-BUFFER-AREA:

020000 05 RECEIVE-BUFFER PIC X(79).

021000 05 FILLER PIC X{4018}.

022000 PROCEDURE DIVISION.
022000 FARAGRAPH-1,
024000

ba b a s e st el ad e sl R sl il

** D008 MATCHING LINES NOT DISPLAYED *+

A ik e i A AR A AW TN TR T ey

033000 CISPLAY " **ENDING DEMOREAD".

034300 STOP RUN.

035000

036000 PARAGRAPH-2

£azo00

038000 CALL "SUB100" USING @FILE-NAME, @RECEIVE-BUFFER,
C3so00 CALL-STATUS,

040000

041000 IF CALL-STATUS EQUAL ZERO

042000

WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 4-7. LCOMPARE Offline Printout

Annotated Lisfings

You can create a listing that highlights example of the changes that were
made for each revision of a file using the ANNOTATE parameter with the

PRINT command if revisions are stored in a delta file. For example, the

following command produces the printout shown in Figure 4-8.
>PRINT ABC1000S.MASTER ;REV=A:2 ; ANNOTATE

For information on command syntax and usage, refer to Chapter 1,
“Commands”, in the LIBRARIAN/AX Reference Guide.

For information on printing, comparing, and scanning files, refer to
Chapter 5, “Printing, Scanning, and Comparing Files”.

Revisions

001000

FILENAME: ABC10005.MASTER.LIB4DO [A:2]

IDENTIFICATION DMISION.

PROGRANM-ID. DEMOREAD.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL
SELECT OUTPUT-FILE ASSIGN TQ "QUTPUT™.
SELECT INPUT-FILE ASSIGN TO “INPUT™,
DATA DIVISION.

FILE SECTION.
FDO OQUTPUT-FILE

LABEL RECORDS ARE OMITTED,
21 RECORD-BUFFER PIC X{132).
FD INPUT-FILE

LABEL RECORDS ARE OMITTED,
01 RECORD-BUFFER PIC X(79).
WORKING-STORAGE SECTION,
01 FILE-NAME PIC X(SB} VALUE SPACE.
01 CALL-STATUS PIC 59{4) COMP VALUE 0
01 RECEVE-BUFFER-AREA:

05 RECEIVE-BUFFER PIC X(79).

05 FILLER PIC X(4019).
PROCEDURE DVISION.
PARAGRAFPH-1,

CPEN QUTPUT OUTPUT-FILE

DISPLAY "ENTER FILE TO READ:",

ACCEPT FILE-NAME.

DISPLAY "READING " FILE-NAME,

PERFORM PARAGRAPH-2

<=DELETE Rev A:1 [0B/16/91 12:37:38 DEREK]
<—~INSERT Rev A:1 [08/16/91 12:37:38 DEREK]

<—~INSERT Rev A:Z [08/16/91 12:37:28 DEREK)

<—INSERT Rev A:2 [08/16/91 12:37:28 DEREK]
<=INSERT Rav A:2 [08/16/91 12:37:28 DEREK]
<=INSEAT Rev A:2 [08/16/91 12:37:28 DEREK]

UNTIL CALL-STATUS NOT EQUAL ZERO.

DISPLAY " ** ENDING DEMOREAD™
STOF RUN.

PARAGRAPH-2.

CALL "3UB10Q” USING @FILE-NAME, @RECEIVE-BUFFER,
CALlL STATUS,

IF CALL-STATUS EQUAL ZERO

WRITE RECORD-BUFFER FROM RECENVE-BUFFER.

Figure 4-8. PRINT with ANNOTATE Parameter

Purging Delta Files

If you purge a master file that has an associated delta file, the delta file is
not automatically purged. This enables restoration of the master file at a
later time. To purge the delta file, use the DELTA parameter with the
PURGE command. For example, purge MYFILE and its corresponding

delta file by typing:
>PURGE MYFILE ;DELTA

This command deletes the delta file and the master file.

4-12

LIBRARIA/iIX User's Guide

Viewing Revision Information

You can review revision information by using the VERIFY command. For
example, to view information for files in the @ MASTER.LIB400 location,

type.
>VERIFY @ MASTER,UBA400

This command produces the menu shown in Figure 4-9.

LIBRARIAN VERIFY HREMNU

6 Files 0 Andnown 6 Noslers 8 Seconer|es 0 Retained 8 Delta
[61] mctun) Modificetion Tinestanp, Filecede...... all files
fe2] LIB nodiflcation Timestemp, iock Stetus...... all files
[63] if=socinted Mester File (or Detta File)....... all files
[64] associoled Master Filesel(s).......covuun.nn. all files
[05]1 Associated Project(s)_....................... of) files
[66]1 nmAssocioled User Flleset(s)................... all files
[87) version Inferomtion..........ccveevuinonuan-. oll files
[68] tnaster Flle COMMters......covcviirivneinronas vaster files only
[09] Location of Hrile—fede Copy.....covaenenan.. msler files only
(18] Previous VYersions (Generated Files)........., nas ters/ secondar ies
[111 Doner, Access Mode, Expiretion, Excaplions... secomderies only
[12] Lest Step... iriiriacrarrrarraas secungeries anly
[13F Step History..ooieinieeaioninmaronccnannnen secnnder-iec onl
[14) origimel File ME@e. ... ccveneeivnrenciannan- retained files only
[15] Date Retained, Expirotion Date............... retained files only
[16] Revislon INTOrEALION/TAD...ovrvnrrarrrarannn al! tracked files
7] Revision HiStOrY.....ooovviviiieiiannrananas soster files enly
(18] Langunge/Descriptimm. .. .coocieicreiuiraeaans master files only
[19] Belwrn to LIBRARIAN proopt (or “Q')
Format Wumber [,LP]?

Figure 4-9. VERIFY Menu

Formats 16 and 17 show current revisionvtag information and revision
history. A related display is format 3, which lists the files and delta file

information for a set of master files.

Figure 4-10 shows format 16, revision information, for the ABC
application and Figure 4-11 shows format 17 for these five files.

LIBRARIAN VERIFY (Hasters—Secanssries/Revision Informalion)

File Latest Revision/Teg
PENGUIH : ABC 10005 . SOURCE . LIEPRID Vv.2.008:1
PRATEW-201
PENEUIN : RECX000S . STURLE, , [IBPROD ¥.2.00:2
PENGUIM : ABCIS0RS | SOURCE. . L TRPAI Vv.2.08:1
PATCH-2D1
spotnik: /opt/ocs/ecs| ib/ 1 ibyprod/ ¢.2.00:2
abe 1860.c
spotnik: fopt/ocs/oes| i/ | ibprod/ v.2.80:3
abx2800. ¢ PRATCH-{RX-2D1
sputnik: fopt/ocs/ocs| ib/ | ibprod/ Vv.2.80:2
ahcIE8._

Figure 4-10. Master-Secondary Revision Dafta (VERIFY Format 16)

Revisions 4-13

LIBRARIAN VERIFY (Mester Files/Revision History)

Haster File
Revision Project Teg Dole/Tioe

PENUG TN :RBC20B6S . SOURLCE . L [BPROD
v.2.80:2 SAZ9IS PATCH2808 OEC 15, 1993, 5:95 PH
yv.2.e0:0.1.1 SA9Z10 DEC 13, 1993, 2:40 PH
v.2.00:1 SR9216 PATCHIO? DEC 12, 1993, 10:96 aH
v.2.00:8 DEC 11, 1993, 1:22 Py
#:1 KV 8, 1993, 4:55 P4

sputnik:/opi/ocs/ocslib/ | ibprod/abc2008 . C
V.2.80:3 SH9ES MAR 18, 1994, 1:07 PN
v.2.88:2.2.1 SH9670 PENDTHG
v.2.em:2.1.2 SR96Z2 AR 5. 1994, 2:4€2 Pn
v.2.08:2.1.1 SRY510 PATCHZ0O FEB 14, 1994, 11:97 AN
v.2.88:2 snozi FEB 6. 1994, 10:34 AN
v.2.80:1 SHY210 PATCH1OY FEB 2, 19949, 9:18 an
9.2.89:0 SAN 22, 1994, 2:45 Pl

Figure 4-11, Rewision History (VERIFY Format 17)

Figure 4-12 shows the delta files associated with the ABC application
using format 3.

LIBRAAIAN VERIFY ()1 Files/associoted Masier File)

Flle
File Type masier File
PENGUIM:ABC1BDES. VERONICA L IBIEVEI S PENGUIN:ABC 10885 . SIMACE . | TEPROD
FENGUIN: ABC2000S . VERDNI(H.LIBREVEL 5 PENGUIN:ABCDSOS . SOURCE . L IBPROD
PENGUIN: RECIO0S . VERINICA . LIBEV] S PENGUIN: RECIGHOS . SUIRCE .| IBPAIND
PENGU I ABL 10898 . SOURLE . L IBPROD # = (CELTA FILE: DOGOGOAGO1 - COBOL/RPG)
PENGUIN : ABC2NDNS . SOIACE . L THPADD n = (GELTA FILE: DBARARR? - COBN /RPG)
PENGUIN : REC3008S . SOURCE . L IDPRID % = (DELTA FILE: DOOBERG3 - COBOL/RFG)
FENGUIN: DOGBE80 1 . SOUALCE . L IHFRIN 0 PENGUIN:ABC1688S . SOURCE .| IEPRID oK
PENGU IW: 0200602 . SOURCE . L TEPROD 0 PENGUIN: ARC2000S . SMRCE . LIGPROD =
PENGUIN : DSSOEGE] . SCURLE . L IFPROD D PENGUIN:ABCISNSS . SOEACE . LTEPROD o
sputnik:/opt/ocs/ocslib/libdevel/ § spolnik:/opt/ecsfocslib/ | ibprod/
e | S 16088 . abe 1868 .c
spoinik:/opt/ocs/ocsl indl Iktevel/ § sputnlk:/opt/oecs/ocs(ib/| |bprod/
paul/abt3080 . ¢ .
sputnik:/opt/ocs/ocs | ik/V | bprods n =
ab 1000, ¢
sputnik:/opt/ocs/ocs] i/l ibgrod/ n =
abc 3000 .¢

Figure 4-12. Version Data (VERIFY Format 3)

On format 3, note the checksum status on the far right. If the status is OK,
LIBRARIAN calculated the checksum and found your delta file’s
integrity is okay. If you see ** or ER in the checksum column, call OCS
Customer Service. This error indicates the checksum is incorrect or
LIBRARIAN cannot calculate the checksum, and you may have an
integrity problem.

4-14 LIBRARIA/IX User's Guide

Revision Reports
Revision information is available in standard LIBRARIAN reports.
Table 4-1 lists the reports you can use to access revision data.

Table 4-1. Revisian Infarmation in Standard Reports

Report
Cade Title Descriplion
RRH10 Revision History Revision history for files.
RVD10 File Version Report Detailed information on all files in a version.

RVT10 Version Timestamp Report Version and Emestamp information for each
file in an application.

RVT20 Version Timestamnp Version and timestamp information for all
Exceptions files in an application that have changed
cutside of LIBRARIAN control,

Revisions 4-15

4-16 LBRARIA/IX User's Guide

Printing, Scanning, and
Comparing Files 5

In addition to powerful file movement capabilities, LIBRARIAN offers
tools that allow you to scan and compare the contents of files.

This chapter describes how to print and display files, scan and replace
strings of text, and view the differences between files.

Operations discussed in this chapter include:
® Printing Files
@ Scanning and Replading Text
w Comparing Files with LCOMPARE
s Comparing files with SCOMPARE

Prinfing Files files

Note ﬂl’l

You can view the contents of files directly from LIBRARIAN with the
PRINT command (also available from the Tools menu), which displays the
files at your terminal or offline. For example, the following command
displays the contents of a file at the terminal with lines numbered:

>PRINT SYSA:ABC.PUB.FIN;NUMBERED

>PRINT fustfiinldevel/data/abc; NUMBERED

The contents of the file are displayed one screen at a time. At the end of
each screen, you can respond to the prompt to continue or quit. The
prompt includes the line number of the next line to be displayed and the
total number of lines in the file. You can proceed directly to any line by
specifying a line number at the prompt, or you can exit by typing the
letter N. For example:

>Continue (23/4825)7 367

will take you directly to line 367. You can only view files to which you
have read access.

You can print QEDIT files (FILECODE = 111) if you are using QEDIT
Version 4.L.55 or higher.

Printing, Scanning, and Comparing Files 5-1

Annotation

If you are using delta files to store revisions, you can produce an
annotated printout of your files that shows deletions, insertions, and
revision information such as time and date of the change. For example,
use the ANNOTATE parameter with the PRINT command to view all
changes made through the second revision of the file A3.MASTER by

typing:
>PRINT A3.MASTER.LIB400 :REV=A:2 ;ANNOTATE :OFFLINE
>PRINT jusr/master/lib400/a3;REV=A:2;:ANNOTATE; OFFLINE

This produces the printout shown in Figure 5-1.

E‘%

18

FILENAME: ABC1000S,MASTER.LIB40D [AZ)
001000 DENTIFICATION DIVISION,

OG0 PROGRAM-ID.CALLREAD. «<~DELETE Rev A’ [031691 12:37:38
MEI000 PROGRAM-ID. DEMOREAD. <—INSERT Rev A:1 [08A6/DT 12:37:38 DER
G040 ENVIRONMENT DMISION.

0OE000 INPUT.OUTPLT SECTION,

0OGD00 FILE-CONTROL

007000 SELECT OUTPUT-FILE ASSIGN TO *OUTPUT™.

DORODD SELECT INPUEFILE ASSIGH TQ MINPLT™. <=tHSERT Rev A2 [0AN 691 123728 DEREK]
003000 DATA DWISION,

010000 FILE SECTION.

011000 FD OUTPUTFILE

012000 LABEL RECORDS ARE OMITTED.

013000 t RECOAD-BEUFFER PIKC X(132).

013000 FD INPUT-FILE <=INSERT Rev A2 [DEN631 12:37:20 DER
15000 LABEL RECORDS ARE OMITTED. <—INSENT Rev Az2 [GBA& 123728 DER
016000 01 RECORD-BUFFER PIE X(79). <~ANSERT Rav A2 [nBnem 12237:20 DER
o17000 WORKING-STORAGE SECTION,

a18000 01 FILE-NAIE PIC X[38) VALUE SPACE.

019000 01 CALLSTATUS PIC 53(4) COMF VALUE 0

G20000 01 RECEIVE-BUFFER-AREA:

021000 05 RECEWVE-BLFFER PIC X(79).

22000 45 FILLER PIC X(4019}.

aZ3000 PROCEDURE DIMISION.

Q24000 PARAGRAPH-1.

(25000

Q2ED00 DPEN QUTPUT OUTPUTFILE

a0 DISPLAY *ENTER FILE TO READ:",

28000 ACCEPT FLLENAME,

29000 DISPLAY “READING * FILE-NAME.

(30000

31000 PERFORM PARAGRAPH-2

X200 UHTIL CALLSTATLS NOT EQUAL ZERD,

33000

434000 DISPLAY ™ ** ENDING DEMOREAD"

35000 STOP RUN.

38000

mv00D PARAGRAPH-Z.

Q3000

QEI000 CALL "$UB100" USING @FILE-NAME, @RECEIVE-BUFFER,

040000 CALL STATUS,

41000

42000 I CALL-STATUS EQUAL ZERO

D43000 WRITE RECORD-BUFFER FROM RECEIVE-BUFFER,

Figure 5-1. PRINT Ofifine Printout

Scanning and Replacing Text

The SCAN command (also available from the Tools menu) searches text,
binary, and compressed files for character strings; it optionally replaces
those strings of text. This command is a powerful tool for reviewing file
contents online, scanning files for text strings, and/or incorporating global
changes across large groups of files. You can search the entire file or only
search specific line or column ranges.

5-2 UBRARIAN/IX User’s Guide

You can scan files if you have read access, and can replace text only if you
have write access. This restriction does not apply to Librarian Managers
and Application Managers for files in their applications. In addition,
users with the LIBRARIAN X capability do not need these permissions

for files that are not being tracked by LIBRARIAN.

Notfe You can print QEDIT files (FILECODE = 111) if you are using QEDIT
Version 4.L.55 or higher.

You can search for a specific string of characters, or use special wildcards
for pattern matching. Additionally, you can include an associated
replacement string and invoke a prompt to confirm each replacement.

Note Enclose the search string (search) in quotes only if it includes commas,
semicolons, slashes, or blanks.

The following pattern-matching wildcards can appear anywhere in the
search string:

@ match any number of any character

? match any single alphanumeric character
match any single numeric character

* match any single alphabetic character

A match any single blank character

! match any single character

{.) match a character in the set of characters enclosed in braces (e.g.,
{ABC)). You can reference a maximum of ten character sets in a
single command.

All pattern-matching wildcards (except for @) can be followed by +,
indicating a match for one or more occurrences. A minus sign (-)
following the wildcard indicates zero or more occurrences. For example,
the search string #+ informs LIBRARIAN to search for a string containing
one or more consecutive numeric characters.

The following characters can be used at the beginning and end of search
strings, respectively:

[match string at beginning of line only.
] match string at end of line only.

The backslash {\} can precede any pattern-matching character and itself
to indicate a literal match.

Printing, Sconning, and Comparing Files 5-3

Examples

The following command searches all source files in the finance
application for all occurrences of the string $INCLUDE, without sensitivity
to case, and lists all of the lines where a match is found.

>8CAN @.SOURCE.FIN; TEXT =$INCLUDE; IGNORE
< >SCAN /usrfiin/source/* pas; TEXT=$INCLUDE;IGNORE

The following example searches the FIN fileset for all files that include
references to version 2 {(e.g., VER 2,00, 2.01, 2.02, etc.). The metacharacters
in the command indicate any numeric value. The command spedifies
one match so that the scanning of each file stops after locating one
reference to version 2,

The LISTFILE parameter directs the program to create a listfile that
includes the names of all files where a match was found. Then, you can
specify the listfile name in a LIBRARTAN command to move or copy all
files containing references to version 2.

>SCAN %FIN; TEXT="VER = ‘2.##""; MATCHES=1;USTFILE=V2LSTFPUB

) >8CAN %FIN; TEXT="VER = ‘2 ##'", MATCHES=1,USTFILE=v2Ist
NIX
Replacement Variables
You can use variables instead of literal text as the replace string(s). These
variables include:
IGCOUNT Substitutes the generation count for this file.
INEXTG Substitutes the next generation count for this file.
INEXTV Substitutes the next version count for this file.
'REVISION Substitutes the revision ID for this file.
IVCOUNT Substitutes the version count for this file.
IVERSION Substitutes the version name for this file.

Note G You cannot replace text in master files that have revisions stored as
deltas.

Edit masks can also be used to control replacement as described at the
beginning of Chapter 1, “"Commands” in the LIBRARIAN/iX Reference
Guide. Enclose the edit mask in parentheses.

If you use a prefix of “+” (plus) with a replace string, LIBRARTAN will
append the string to the line on which a match was found, rather than
replace the matching string.

You can use a special replacement variable, !DELETE, instead of a
replacement string to physically delete lines from a file that contain a
match.

54 UBRARIAN/IX User's Guide

Comparing Files with LCOMPARE

Use the LCOMPARE comumand (also available from the Tools menu) to see
the differences between files. You can compare a development copy to its
master, a master to a previous revision, or any unrelated files. In
addition, you can compare compressed files.

You can use LCOMPARE to compare physical files, logical filesets, and
groups of physical files. You have access to all of the file specification
options that LIBRARIAN offers for other commands, and you have both
an enhanced 80-column online display and a standard offline report.

Each comparison examines the differences between a compare file and a
reference file. Differences are shown as changes (insertions /deletions) to
the reference file that result in the compare file. For example, when
comparing a secondary to its master, the secondary is the compare file
and the master 1s the reference file. A comparison between the two
would show you changes to the master file that make it different from the
secondary.

For example, the following commmand compares the development copies
of AP files with their corresponding masters, highlighting modifications:

m >LCOMPARE %AP AT @.@.DEVEL;MASTER
% >LCOMPARE %AP AT fusr/devel/*;MASTER
) Figure 5-2 contains an example of the conline output from LCOMPARE.

Printing., Scanning, and Companng Files 55

UBRARIAN File Information
Reference File Compre File
File I :A3.MASTER.LIBADO A3MASTER.UBAJD
Systern ID BATMAN BATMAN
File Type :RETAINED MASTER (DELTA) RETAINED MASTER (DELTA)
Master ID = =
VCreated A A
VCunent A A
Revision 0 2
SCount 1 3
Remarks ‘RECONSTRUCTED RECONSTRUCTED
Legend: Unchanged I inzorted J LDeJe}ed '

001000 IDENTIFIC ATION DIVISION

OQ2000 " FROGRAMID. CALLREAD),

002000 PROGRANHD. DEMOREAD.

003000 ENVIRONMENT DIVISION.

004000 INPUT-OUTPUT SECTION,

005000 FILE-CONTROL,

006000 SELECT QUTPUT-FILE ASSKGN TC “OUTPUT.

Q07000 SELECT INPUT-FILE ASSIGN TD “INFUT™. .

008000 DATA DIVISION,

009000 ALE SECTION.

010000 FO QUIPUT-FILE

011000 LABEL RECORDS ARE OMITIED.

012000 01 RECORD-BUFFER PIC X(132).

013000 FDINPUT-HIES o

014000 LABEL RECORDS ARE OMITIED.

015000 . 01 RECORD-BUFFER . PIX X9

014000 WORKING-STORAGE SECTION.

017000 01 FILE-NAME PIC X(38) VALUE SPACE.

0718000 01 CALL-STATUS PIC S%(4) COMP VALUE O

Q12000 01 RECENVE-BUFFER-AREA.

Q20000 05 RECENVE-BUFFER PIC X(7%).

021000 05 FILLER PIC X(4019).

022000 PROCEDURE DIMISIONM.

023000 PARAGRAPH-1.

024000

033000 DISPLAY - ""ENDING DEMOREAD".

034000 STOP RUN.

035000

040000

041000 IF CALL-STATUS EQUAL ZERO

042000 WRITE RECORD-BUFFER FROM RECEIVE-BUFFER.

Figure 52. LCOMPARE Displcry

Output from LCOMPARE includes the filenames, file type, versions, and
revisions of the files being compared. The online display uses screen
enhancements to highlight changes.

If your terminal supports color enhancements, you must configure it to
distinguish the types of differences between files. The standard display
uses the following enhancements:

Regular Video Indicates unchanged lines.

Inverse Video Indicates inserted lines.

Half Inverse Video Indicates deleted lines.

54 UBRARIAN/IX User's Guide

Offline listings are similar to PRINT listings with the ANNOTATE option.
Deletions are shown with strikeout and insertions are shown in bold. You
can change the default escape sequences for these enhancements as
described in Chapter 1, “Commands” in the LIBRARIAN/iX Reference
Guide.

Comparing Files with SICOMPARE

If SICOMPARE (proprietary product of the ALDON Computer Group) is
mstalled on your server or MPE dient, you can use the LIBRARIAN
SCOMPARE command to access it. If you are using the menus, make sure
that the compare method on the Users...Setting window is set to
SCOMPARE.

SCOMPARE is similar to LIBRARIAN's own LCOMPARE command with
the addition of many advanced options. For a description of these
options, refer to Chapter 1, “Commands” in the LIBRARIAN/X Reference
Guide.

Because 5/COMPARE only provides a 132—column display, online
listings are filtered through LIBRARIAN and displayed in the manner
described above for LCOMPARE. Offline listings are not filtered and
appear in standard S/COMPARE output format.

Prinfing. Scanning, and Comparnng Files 5-7

58 LUBRARIAN/IX User's Guide

User Filesets 6

This chapter describes user filesets and how to create and maintain them
using the FMAINT module. Topics include:

s What are user filesets?

8 (Creating and maintaining user filesets
® Puoblic and private user filesets

= Reviewing user fileset information

@ User filesets in LIBRARIAN commands
e Project filesets

= Example

For details on command syntax and use, refer to Chapter 2, “User Fileset
Commands”, in the LIBRARIANAX Reference Guide.

What Are User Filesets?

User filesets allow individual users to create task-defined filesets which
organize files and simplify file references in LIBRARIAN commands.

User filesets allow the programmer to create a user fileset for the files
needed to complete a particular assignment and then reference the user
fileset in LIBRARIAN commands. When the work is complete, the user
can purge the user fileset(s).

® User filesets are similar to the master filesets that the LIBRARTAN
Manager creates for the master library. These user filesets are
arbitrary collections of files not necessarily related to each other by
physical location.

@ Whereas master filesets are defined by the LIBRARIAN Manager or
Application Manager, user filesets can be defined and changed by any
user. User filesets can include secondary or master files, and can also
indude files that LIBRARTAN is not tracking (unknown files).

The master fileset structure does not always meet each user’s needs. For
example, the Application Manager might create separate master filesets
for application program files, application source files, and application JCL
files. This arrangement groups the files logically, but a programmer might
need one or two files from each master fileset for a particular assignment.

User Filesets 6-1

Creating and Maintaining User Filesets

User filesets can include logical and/or physical components. The user
fileset name must be unique. You can create a hierarchy of user filesets
depending on your own needs. Use the FMAINT command to access the
FMAINT module from the LIBRARIAN command prompt or select User
Filesets from the Tools menu. Use the FMAINT commands, or menu
options, to create and maintain user filesets.

Note In command mode, the FM> prompt indicates that you are in the
FMAINT module.

Use the following commands to create a user fileset, add files to a user
fileset, delete files from a fileset, and purge a user fileset:

FM>CREATE Creates a new user fileset and optionally adds
files to it at the same time.

FM:>ADD Adds files to a user fileset.

FM>DELETE Deletes files from a user fileset.

FM>PURGE Purges a user fileset.

User fileset hierarchies can be constructed by defining component
relationships similar to master filesets. For example, if you have created
several user filesets, each containing related files for a single program,
you could create a single fileset containing all of the others. Using this
fileset, you can move all of the files as a group. The following commands
are for maintaining a hierarchy of user filesets:

FM>RELATE Makes one fileset a component of another.
FM>SEVER Severs the relationship between two filesets.

Public and Private User Filesets

When you create a user fileset, it is assigned a PUBLIC or a PRIVATE
designation (Default: PUBUC). Any user can add to or delete files from a
public fileset. If the fileset creator makes the fileset private, then only that
user can add files, delete files, establish component relationships, etc. Use
the MAKE command to change the public/private attribute of a user

fileset.
FM>MAKE fileset PUBLIC Allows any general user to modify the
fileset.
FM>MAKE fileset PRIVATE Allows only the creator to modify the
fileset.

6-2 LIBRARIAN/IX User's Guide

Reviewing User Fileset Information

Two commands are provided to display information about user filesets.
FM>LIST displays a list of all user filesets defined for a user, and
FM>SHOW displays the member files and component filesets of a user
fileset.

User Filesets in LIBRARIAN Commands

You can include user fileset names in LIBRARIAN commands the same
way you use master fileset names, with the fileset name preceded by a
percent sign (%). LIBRARIAN then authorizes each file in the fileset for
the requested operation.

User filesets are restricted by the rules defined in the database. For
example, if you include a file in your user fileset that you are not
authorized to move, LIBRARIAN shows a violation and does not
complete the move for that file.

Project Filesets

Project filesets are a spedal type of user fileset. A project fileset is created
automatically with the same name as the project when you define that
project. Files are added automatically to the project fileset as they are
moved or copied with the associated project code. Although files are
automatically added to project filesets, you have the option of manually
altering project filesets through FMAINT and using them like any other
user fileset in all respects. For more information on projects, refer to
Chapter 6, “Projects”, in the LIBRARIAN/IX Administrator’s Guide.

When you use either the CLEANDB or PURGE command to remove the
last master, related secondary, or retained file, the master filename will
automatically be removed from the project fileset.

Additionally, if you use either the MOVE or RENAME command to remove
the last master, related secondary, or retained master associated with a
project, the old filename will automatically be removed and the new one
will be added.

Note Steps will automatically locate secondary file(s) in the step source
location if you specify the project or project fileset.

User Filesets 63

Example

The following example shows how to create and maintain a user fileset. A
programmer wants to create a user fileset to work on six files. To do this,
the programmer first uses FM>CREATE to create the %RPT-FILES user
fileset with two program files.

FM>CREATE RPT-FILES FROM RPT01POBJECTAPRPT02POBJECTAP

FM>CREATE RPT-FILES FROM /ap/object/mpt10p,./ap/object/rpt02p

Then, the FM>ADD command is used to add the source and JCL files to
the user fileset.

FM>ADD RPT01S.SOURCE.AF, RPT025.SOURCE.AP TO RPT-FILES
FM>ADD RPT01J.JCL.AP, RPTO2J.JCLAP TO RPT-FILES

FM>ADD /ap/source/rpt01s, fap/source/rpt02s TO RPT-FILES
FM>ADD /ap/jcl/rptD1), fap/fjcl/mt02j TO RPT-FILES

The %RPT-FILES user fileset now consists of the six required files. The
programmer exits the FMATNT module.

FM=>EXIT

The programmer checks out the required file.
>CHECKOUT %HRPT-FILES TO = MYGROUP
>CHECKOUT %APT-FILES TO ./=

The programmer continues to use the %RPT-FILES user fileset for steps in
the development route. For example:

>SUBMIT %RPT-FILES AT @.MYGROUPAFDEVEL
»>SUBMIT %RFT-FILES AT /apdevel/mygroup/*

When the assigned task is completed, the programmer removes all
references to the RPT-FILES user fileset from the database with
FM>PURGE.

FM>PURGE RPT-FILES

&

&

@

6-4 UBRARIAN/IX User’s Guide

Listfiles

This chapter describes listfiles and how to create and use them with
LMAINT commands. Topics include:

@ What are listfiles?

a Creating listfiles with LMAINT

® Maintaining listfiles

® Using listfiles
For details on command syntax and use, refer to Chapter 3, “Listfile
Maintenance Commands” in the LIBRARIAN/iX Reference Guide.

What Are Listfiles?

Listfiles, also called indirect files, are files that contain a list of filenames.
You can create listfiles with the LMAINT module of LIBRARIAN, with
any editor, or with an application program. These listfiles can be used in
LIBRARIAN cornmands as a way to refer to files. Listfiles can be used as
indirect store lists for the MPE :$YORE and :RESTORE commands, or the
UNIX tar command, to archive files or to create distribution tapes.

Listfiles can contain filenames with wildcards. LIBRARIAN determines
which files qualify when you use the listfile.

Creating Listfiles with LMAINT

Note

You can cteate listfiles with any editor or you can use LMAINT
commands as a convenient way to build and maintain listfiles within
LIBRARIAN.

Access the LMAINT module by entering the LMAINT command at the
LIBRARIAN prompt or by selecting the Listfiles option from the Tools
menil.

In command mode, the LM> prompt indicates that you are in the
LMAINT module.

Listfiles 7-1

Use the LM>OUTPUT command to create a listfile called FINFILES by

typing:
R LM>OUTPUT ABC@S.SOURCE.FINLIB TO FINFILES
E
“%u LM> OUTPUT/usrffinlib/source/abc* TO finfiles
U

In the above example, LMAINT creates a listfile with a List of all tracked
files satisfying the wildcard mask ABC@S.SOURCE.FINLIB (MPE) or
finlib/source/abe* (UNIX). To incdude untracked files in your listfile, use
the ALL parameter. You can refer to files that you want included in a
listfile in a variety of ways as described in “How to Refer to Files” in
Chapter 1, “"Commands”, in the LIBRARIAN/AX Reference Guide.

Additionally, you can select files based on a variety of criteria. Some of
these selection criteria are described in the following sections. Chapter 3,
“Listfile Maintenance Commands”, in the LIBRARIAN/iX Reference Guide
describes all possible selection options that can be used with the
LM:>OUTPUT command.

Selection by Expiration Date

You can select files for a listfile based on expiration date, using the
relational operators =, <, <=, >=, or >. The following command creates the
FNFIL listfile by selecting files which expire before June 30, 1993.
E LM>OUTPUT @.@.FIN TO FNFIL ;EXPDATE <06/30/93
U

m

LM>OUTPUT fusrffin/* TQ nfil; EXPDATE <06/30/93

You can use this selection feature to create a store list for archiving
expired files prior to running the FLUSH utility.

Selection by File Modification Date

You can also select files based on the file modification date, using the
relational operators =, <, <=, >=, or >. The following command creates a
listfile of all files in the FIN account not modified since January 1, 1993:

LM>0UTPUT @.@.FIN TO FNFIL ;MODDATE<=01/01/93
LM>OUTPUT /usrffin/* TO fnfil; MODDATE<=01/01/33

In addition, you can select files that have been modified since
LIBRARIAN created them through a step or other file movement
command. The following command creates a listfile of all files that were
modified since they were created by a LIBRARIAN command:

LM>0OUTPUT @.@.FIN TO FNFIL ;MODIFIED
LM=OUTPUT /fusr/fin/* TO mfl;MODIFIED

You can compare the modification timestamp of files to the timestamp of
a specific file. For example, you could create a listfile including the names
of all files that were changed since the last ime the listfile was ¢reated.

@

7-2 LIBRARIAN/IX Users’s Guide

T

The following example uses the RESETONZERO parameter to empty the
listfile if no files qualify using the selection criteria:

WM=>0UTPUT @.@. FIN TO FNFIL;MODDATE > TIMESTAMP(FINFILES) &
;RESETONZERO

LM=>QUTPUT /fusrffin/* TO frfil, MODDATE >TIMESTAMP(finfiles)&
{RESETONZERO

Selection by Simulating a LIBRARIAN Step

You can use LMAINT to simulate execution of a defined step by invoking
the USE option of the OUTPUT command. With the USE option,
LIBRARIAN identifies the step destination for each selected file for the
step and places that filename in the listfile without performing the step.
The following command simulates a defined checkin step for all files in
the project fileset SR1234:

LM>OUTPUT %SR1234 ;USE CHECKIN

Since this is a simulation of a step, it has no impact on revisions or
versions.

The SIMULATE option is similar to the USE option, with the exception that
it only includes destinations for authorized files. The AUTHORIZE option
is also similar to the USE option, with the exception that it only includes
files that would be authorized for step (i.e., source locations).

Maintaining Listfiles

%

You can create and edit listfiles outside of the LMAINT module by using
any editor {e.g., vi in UNIX). In addition, other LMAINT commands
allow you to add documentation, sort, or modify the contents of a listfile.

The following LMAINT commands are available from MPE only,

You can use the LM>SORT command to sort a listfile and, optionally,
eliminate duplicate filenames.

The LM >EDIT command allows you to edit the contents of a listfile using
EDIT/3000.

The LM>DOCUMENT comumand allows you to add text or edit a
maximum of 750 lines of notes for the listfile with the EDIT/3000.

If you want to append filenames to a listfile, use the LM>ALTER
command to toggle the mode for that particular file to append.
Subsequent output to the file with the LM>OUTPUT command is
appended to the existing file. For example:

LM>ALTER FINFILES ;APPEND

Listfiles 7-3

The LM>REPORT command allows you to report documentation notes
for the listfile, summary information (i.e., creation and modification

dates), and filenames contained in the listfile.

The LM>LIST command lists the filenames contained in a listfile.

Using Listfiles

You can use listfiles in any LIBRARIAN command as a way to refer to
files. Listfiles are prefixed by # or !, as shown in the following examples:

mﬁ >COPY ~MYFILES TO =.=TESTACCT
>MOVE IAPFILES TO TESTSYS:=.=.=
>CHECKOUT ™~ NEWSRCE

@ >COPY ~myfiles TO /usrftest/=
X >MOVE " apfiles TO TESTSYS: =
>CHECKOQUT " newsrce

Indirect Store Lists

Listfiles can be used with many utilities, including the MPE :STORE
command for indirect store lists. Use a listfile in the STORE command by
preceding the comunand with !, as shown in the following example:

E FILE T; DEV=TAPE
€ :STORE MYFILES; *T; SHOW

For more information on indirect STORE files, refer to the MPE Command
Reference Manual.

Archiving Applications with Listfiles

Use LMAINT to facilitate the selection (and compression, if desired) of
files to be archived and stored to tape. You can use the same selection list
to store obsolete files and then purge the files from disk.

The following procedure describes how to archive files that LIBRARIAN
is tracking, as well as files not being tracked. Some aspects of the
archiving process are not available with files that are not being tracked by
LIBRARIAN.

Use LMAINT to write the filenames to a text file. For example:

>LMAINT
LM=>

Use the LM>OUTPUT command to select files and list them to a file. For
example:

m LM>OUTPUT AB@.SOURCE.INVTRY TO APR1583.STORE;ALL
E
@ LM>OUTPUT finviry/source/ab* TO .fstore/apr1589;ALL

X

7-4

LIBRARIAN/IX Users's Guide

This command creates a text file which contains all files described by the
mask, regardless of whether or not these files are tracked in the
LIBRARIAN database (ALL parameter).

The following procedure describes a convenient way to compress and
archive a retained version of an application:

1. Access LIBRARIAN by typing:
:uB

oy

7

&

>USER userid
Password?

Press F2 to switch to command mode.
2. Copy the retained version to a temporary archive area by typing:

>COPY VERSID OF %APPL TO .=, = . ARCHIVE;OLDNAME;&
>COMPRESS

>COPY VERSID OF %APPL TO .farchive/=,0LDNAME; &
>COMPRESS

3. Access the LMAINT module by typing:
>LMAINT
4. Create the STORE listfile with the names of all files just copied by
typing:
LM>OUTPUT * TO STORELIST
LM=>0UTPUT ** TO STOREUST
5. Exit LMAINT by typing:
WM>EXIT
6. Store the files to tape by typing:
>STORE ~ STOREUST
>cpio —o<STORELIST
7. Purge the files that you archived to tape by typing:
>PURGE "~ STORELIST

The result is a complete archive tape of an application version in
compressed form. Step 7 does not necessarily purge all files which
have been stored to tape, since some version files, if unchanged,
remain members of the application in later releases.

8. Make the REL2 version obsolete by using the VERSION command and
the OBSOLETE parameter. For example:

>VERSION APPL; ID=VERSID ;OBSOLETE
9. Run the FLUSH utility to remove the obsoleted version.

>FLUSH

Listfiles 7-5

7-6 UBRARIAN/IX Users’s Guide

Rebuilding Applications with MAKE 8

==
= The MAKE fadility automatically rebuilds/recompiles changed

o) components of an application based on a set of user—defined rules. This
‘or chapter describes MAKE and how it works. Topics in this chapter

= include:
i
= s Why Use MAKE

@ How MAKE Works
s Creating MAKE files
8 Executing MAKE

Why Use MAKE?

LIBRARTAN's MAKE facility is modeled after the UNIX program, make.
MAKE helps keep applications up—to-date by rebuilding or recompiling
only the changed parts of the application.

Large applications can have hundreds of modules, each of which
depends upon other modules. Manually tracking all the pieces of an
application is a time consuming and tedious task. Moreover, forgetting to
recompile a module that has changed — or that depends on something
you changed — can lead to serious problems. On the other hand,
recompiling everything is a waste of time and resources.

MAKE helps maintain any application by:
» centralizing rules for rebuilding application components,
w accommodating new modules easily,
® providing variables and generic rules to eliminate redundancy, and
¥ eliminating the need for compile jobs/scripts.

You provide MAKE with a set of rules describing how to rebuild an
application’s components (targets) when any associated dependencies
have changed. MAKE looks at these dependency rules, compares the
modification timestamps between target and dependency files, and
performs the necessary tasks to create an up-to-date version. MAKE
never performs more work than is necessary to bring an application
up-to—date.

Rebuilding Applications with MAKE 8-1

An example of a dependency relationship is that between executable
(target) and source code (dependency). When a source file is modified the
corresponding object code needs to be rebuilt, typically through a set of
compile and link commands. MAKE compares the timestamp of the
executable to the timestamp of the source code and performs a compile
and link, if necessary.

In addition to building programs, MAKE can also be used to run
automated test suites, extract and process data, rebuild documentation,
generate reports when new data is available, etc. For example, MAKE
could be instructed to launch a test script whenever the program it tests
changes. In this case, MAKE retests only those parts of the application
that have changed. MAKE applies to any situation where there are
timestamp dependency relationships between files, and a known set of
commands to execute when a dependency changes.

MAKE has several advantages over using jobs or scripts to rebuild each
component of an application:

a MAKE removes the burden on users to remember what has
changed and what components depend on those changes.

® Variables in MAKE allow you to combine similar rules in a generic
way, requiring fewer instructions and files to perform the same
task.

®» MAKE recompiles only the components whose dependencies have
changed; jobs, however, require manual timestamp comparisons or
knowledge about what has changed.

» MAKE provides generic nules that allow you to add new
components without changing the makefile. With jobstreams, you
need to alter the jobs or add new jobs each time a new component is
introduced.

How MAKE Works

Components built through MAKE are called targets. Targets include
applications, programs, object files, and libraries; that is, anything you
can build. For an application to be up-to-date, its executables need to be
up—to—date. For the executables to be up-to—date, the linker libraries need
to be up-to-date, etc.

MAKE keeps applications up-to—date in the following way:

® Reads a file (called a makefile) that contains a set of rules. This file
includes target components of your application, associated
dependencies, and the commands necessary to bring each target
up—to—date. Targets can depend on other targets in a hierarchical
fashion.

8-2 LIBRARIAN/IX User's Guide

® Compares the modification timestamp of each target against its
dependencies. If the target is older than any of its dependendies,
MAKE generates the series of commands required to rebuild the
target. If that target, in turn, happens to be a dependency of another
target, then it, too, will be rebuilt. Strict ordering is enforced so that
components at the lowest level of the hierarchy are built first. If a
target does not exist, it is always rebuilt.

® Streams or schedules a job to execute the commands necessary to
bring the entire application up-to—date.

To illustrate how MAKE works, consider a sample application which
contains four modules written in COBOL. To produce an up—to—date
version of the application, you must compile each of the source modules
(MOD1 - MODM) into respective object files (MOD10OB] - MOD40OBJ),
and then link them into an executable program (MYFROG). To ensure
that the program is up—to—-date, you must recompile the modules that
have changed since the last time you generated the object file.

Rebuilding Applicanions with MAKE 8-3

MAKE provides an automated method for identifying and recompiling
changed components. Figure 8-1 illustrates how MAKE handles the
recompilation of changed source code modules.

SQURCE RLES OBJECT FILES

| onson a2/}

MOD1 (2/25/92)
MOD2 (2/1/92)

:
i

MOD4 2/1792) Compannss | ovion @z}
and object B fo determine
changed modutes

ICOBOL MGD],MOD1OBJ
1COBOLMOD3,MODI0B)
{UNK FROM=MOD1 O/,

MODZOR),

Figure 8-1. Example of a MAKE Operation

Figure 8-1 shows that the object files were last updated on February 2nd.
On February 25th, the source files, MOD1 and MOD3, were modified.
The makefile states that any source files modified since the object code
was last compiled need to be recompiled using the command:

COBOL §< , $*

(% < and $* are examples of MAKE's powerful variables. These variables
get replaced with the name of the changed dependency — in this case, the
files MOD1 and MOD?3 and associated target names, respectively). The
program file is then linked using the command:

ILINK FROM=MOD1QBJ,MOD208J,MOD30B.),MOD40B.;, TO=MYPROG

MAKE streams a job {called MAKEOUT) with these commands to bring
the changed components up-to-date.

8-4 UBRARIAN/IX User's Guide

Defining the Dependency Tree

Before creating the makefile, determine application file dependencies.
You might find it useful to map out the dependency tree for the
application before actually creating the makefile.

To begin building the dependency tree, determine the ultimate target for
your application. This target is typically an executable program file or set
of application programs. For example, the target of the application in the
previous section was to bring the executable program, MYPROG,
up—-to—date.

Direct dependencies of the highest target are listed underneath the
primary target. In the MYPROG example, the executable file depends
upon the object files. The object files, in turn, depend upon each of the
source files.

Figure 8-2 illustrates the dependency tree for the MYFROG application.

MYPROG
/’/ \\
MOD10BJ MOD20OB/} MOD30BJ MODJORI]

| | | |

MCD1 MOD2 MODJ MOD4

Figure 8-2. Dependency Tree for MYPROG

Creating Makefiles

A makefile is simply a text file that contains one or more MAKE rules.
Each rule defines a specific or generic target/dependency relationship and
the commands required to rebuild the target from the dependencies.
MAKE can handle a variety of tasks in developing, testing, and releasing
applications. Therefore, any command, or series of commands, is valid.
Create and maintain this file in the editor of your choice. Although
makefile is the default name MAKE uses for this file, any name is
acceptable.

Conventions
When creating a makefile, adhere to the following conventions:
m Put a blank line between rules.
m Use the slash (1) a5 a line continuation character.

e When listing targets and dependencies use a minimum of one space
between filenames. Do not use commas!

Rebuilding Applications with MAKE 8-5

Comments
Comuments are written on separate lines and can appear anywhere in a

makefile. The first non-blank character in 2 comment line must be a #. For
example:

#This is a comment.

Comments that begin with #NOTE are treated in a special way at
runtime. Use the ECHO option with MAKE (see Executing MAKE below),
and these comments are displayed on screen as the makefile is processed.
For example, suppose your makefile had this comment:

#NOTE Processing report rules...
When MAKE processes this file, the following line appears.
Processing report rules...

Comments that begin with #0OPTION followed by an option list are also
treated in a special way at runtime. For example:

#OPTION SHOW ECHO

The option list can include any MAKE parameters (SHOW, ECHO,
NOMAKE, ALL, etc.) as desaibed in Chapter 1, “Commands”, in the
LIBRARIANAX Reference Guide.

Rules

Rules are statements that inform MAKE about file dependencies and
what action to perform when dependencies change. The dependency tree
described in the previous section is a graphic representation of the rules
in a2 makefile. Each rule has the general format:

<target list> : <dependency list>
. <commands>

where,

target list Specifies the name(s) of the target(s) that must be
rebuilt if any file in the dependency list has changed
(i.e., the imestamp of the target is older than the
dependency).

Targets can be file names, variable expressions, or
dummy names. If a dummy name is used that does not
correspond to an existing file, the commands (see
below) are always performed.

dependency list Specifies the names of the dependendies of the target. If
any file in the dependency list has changed, the
commands given for the rule are performed.

B-46 UBRARIAN/IX User's Guide

commands Specifies the operating system command(s) you wish
to execute if the target is older than any of its
dependencies. Any number of commands can be
issued for each target/dependency list.

Commands are placed in a jobfile called MAKEQUT,
by default. Thus, all commands in the action section
must conform to standard JCL conventions, including
prefixing commands with a job character (e.g., !).

Note G Commands used to rebuild may be entered into any column beyond
Column 1.

The following section describes how to transform the MYPROG
dependency tree into a makefile.

Example 1. The Basics

As an example of creating a makefile, consider MYPROG and its
associated source files. The dependency tree for MYPROG (shown in
Figure 8-2) has three levels: the program file, the object files, and the
source files. Traversing the tree from top to bottom expresses the rules in
the makefile. The MYPROG dependency tree illustrates two rules:

® The MYPROG file target depends upon the object files MOD1OB]J,
MOD2OB], MOD3OBJ, and MOD4OB]J dependencies

m The object files, in turn, depend upon the corresponding source files.
Figure 8-3 is an example of a makefile for MYPROG.

Buid the MYPROG prograrm file
MYPROG : MOD1OB.) MOD20B) MOD30B) MODAQR)
:>INOB MAKEPROG. MGR MYACCT/PASSWORD
ILINK FROM=MOD1QOBJ,MOD208J,MOD30B), MODAOBLTO=MYPROG

Build Object MOD1CBJ
MOD10: MOD1
1ICOBOL MOD1,MOD10B)

Build Object MODZOR)
MOD20 : MOD2
ICOBOL MOD2MCD20B

Build Cbject MOD3OBJ
MOD30 : MOD3
ICOBOL MOD3.MODAOAR)

Build Object MODAOB)
MODA0 : MOD4
ICOBOL MODA,MODACBJ

Figure 8-3. Makefile for MYPROG Example

Rebuiiding Applications with MAKE 8-7

How MAKE Interprets the MAKEFILE

In Figure 83 the target MYPROG has four dependencies. The first
dependency, MOD1OB]J, is a target of another rule and must be evaluated
first to determine if it needs to be rebuilt . The target MOD1OBJ has one
dependency, MOD1. MAKE checks if MOD1 is out—of—date and issues a
command to rebuild MOD10B]. Similarly, the other three dependencies
of MYPROG are evaluated and then MAKE returns to the first rule to
rebuild target MYPROG, if necessary.

The makefile in Figure 8-3 can be made much shorter and more effective,
using predefined variables in a generic rule, as shown in Figure 8.

Build the MYPROG program: file
MYPROG : S{MOD¥ORS)
>LJOB MAKEPROG, MGR.MYACCT/FOOBAR
ILINK FROM=MQOD1OBJ, MOD20BJ, MOD3OBI,MODAORLTO=MYPROG

Cregte the object file by compiling the source files
MOD#OBJ = =——
ICOBOL $<, §™

Figure 8-4. Makefile for MYPROG Example

In this case, the dependencies, MOD#OB] are determined from a LISTE
These files qualify as targets in the second generic rule, and must be
evaluated first. MAKE executes the commands of the second rule for any
source files that are out-of-date, and then retums to the first rule to
rebuild the MYPROG file using the LINK command.

MYPROG Rule

The makefile begins with a comment to inform us of the purpose of the
makefile. The first rule in this makefile specifies the ultimate target — to
produce the MYPROG executable program. This standard rule means, If
program file MYPROG ts older than the object files on which it depends, proceed
with the commands below to rebuild the program file.

The dependency list in this rule is generated by using the LISTF variable
(${])- The LISTF variable finds files that match the pattern given
between the brackets and then substitutes the names of any files found.
In our example, MOD10B] MOD20B] MOD3OBJ MOD40OBJ replaces
$[MOD#OB]] at runtime.

Note ﬂ To accommodate new source files, generate a list of object
dependencies by doing a LISTF in the source area as follows:
$[MOD#]"@OBJ" This applies the edit mask "@OB]” to each source file
found via LISTF. Since object for new source files will not exist, MAKE
automatically builds them.

8-8 UBRARIAN/IX User’s Guide

The first command in the first rule is a special command which specifies
the login for the MAKEOUT job. The job command must be the first
command in a rule, with the special prefix, ":>". In this example, if any
targets are out-of-date, the MAKEOUT job created by MAKE logs on to
MGR.MYACCT using the password FOOBAR.

Note G The job statement should be specified for the first rule and for any rule
that could be an entry point into the makefile. MAKE allows you to
evaluate any target in the makefile, but by default it is the first target.
For more information about executing MAKE with target entry points,
refer to “Executing MAKE" later in this chapter.

Following the job command is the actual command used to rebuild the
program file from the object file.

MOD#OBJ Rule

The second rule in this makefile illustrates the power of MAKE's
variables in conjunction with generic niles (by default, variables are
prefixed by the dollar sign ($), but the next section describes how to
change this prefix). The purpose of this rule is to rebuild any object file
whose source files have changed. In our example, we have only four
object files, but this rule is valid for any number of object files that follow
the naming convention.

This is a generic rule indicated by the ”:—” delimiter between target and
dependency. Dependencies are determined in this case by applying an
edit mask to the target being evaluated. In this case, the associated
dependency is determined by removing the last three characters (=—--).

In the commands of the second rule, two more variables ($< and $*) are
used. The $< variable is replaced with the name of the current
dependency and the $* variable is replaced with the name of the current
target exactly as entered in the rule (another variable, $@, represents the
fully qualified target name with account and group). Thus, the command
that is written to the MAKEOUT job when MOD3 has changed is the
following,.

1ICOBOL MOD3 MOD30BJ

Exampile 2: A Comprehensive lllustration

The example in Figure 84 illustrates how easy it is to use MAKE for
rebuilding a simple software application with any number of component
modules. Now examine a more comprehensive example that really takes
advantage of the power of MAKE . You will find that once you get to
know the MAKE syntax, even complicated applications can be managed
with a few simple MAKE rules.

Rebuilding Applications with MAKE 8-2

This example consists of a financial software application. All files are
contained in the DEVEL account, but the source files for some library
routines, written in Pascal, are kept in the PASCAL group and the source
files for the remainder of the application, written in COBOL, are kept in
the COBOL group. The object code for these routines is placed in an RL
called FINRL. The application also has an outer block module written in
C, called FINSRC. The corresponding object for FINSRC is FINOBJ. Our
finance application program FINP is created by linking FINOBJ and
FINRL.

The application also has a set of associated reports that must be built. The
source code for reports resides in the RSOURCE group, and each source
file ends in the letter S. The compiled reports need to be placed in the
PROG group and the names of the compiled reports are the same as the
source files, except the last character (S) is removed. Figure 8-5 shows the
dependency tree for this application, and Figure 8-6 shows the makefile
used to build the FINANCE application.

8-10 LIBRARIAN/IX User's Guide

5=%
ACCT = DEVEL
PASS = FOOBAR

Build the Finance applicction
1. FINANCE : FINP FINRPTS
SUOB MAKERIN, MGR.%(ACCT)/%{PASS)

Link FINP
2. FINP: FINRL FINOBJ
IUMK FROM=FINOBJ; TO=FINP;RL=FINRL

Cornpite FINSRC - C source
3. FINOBJ; FINSRC
ICCRL %<, %@, SNULL

Compile COBOL library code and update FINRL
4. FINRL :: %[@.COBOL]

{
ICOBOL %<, SNULL
UIF JCW < FATAL THEN
ILINKEDIT
R ANRL
PURGERL MODULE=%<"="
ADDRL $OLDPASS
EXIT
IENDAF
}

5. # Compile PASCAL library code and update FINRL
FINRL :: %(@.PASCAL)

{
IPASXL %<..SNULL
lIF JCW < FAJAL THEN
ILINKEDTY
RL FINRL
PURGERL MODULE=%«"="
ADDRL SOLDPASS
EXIT
IENDIF
}

Compile ond link reports
6. FINRPTS ; %[@SRSOURCE] == PROG”
+>1IOB MAKERFT.MGR. % ACCT)/%(PASS)

7. @.PROG - @5.RSOURCE

{

ICOBOL %<, SNULL

ICONTINUE

IF JCW < FATAL THEN

ILINK FROM=SOLDPASS.TO=%@
IENDIF

}

Figure 8-5. Dependency Tree for the FINANCE Application

FINANCE
fIkP FINRPTS
—
ENRD HN?&J
COBOL Pascal C Source Report Files

Source Source

Figure 8-6. Makefile for the INANCE Application

The new concepts introduced with this makefile are dummy targets,
user-defined variables, iterative command processing, job card
placement, edit masks, and rule delimiters.

Rebuilding Applications with MAKE 8-11

Dummy Targets

Dummy targets are target names that do not correspond to any existing
file. Dummy targets are always built. The FINANCE and FINRPTS
targets in rules 1 and 6 of the makefile are examples of dummy targets.

User-Defined Varigbles

The first three lines of this makefile define variables for use in the rest of
the file. Variable definitions have the following format:

variable_name = substitution_text

The substitution text replaces every reference to the variable in the
makefile. The first user-defined variable in Figure 8-6 is special — it
causes the percent sign (%) to be used as the variable prefix rather than
the default dollar sign ($). This variable is necessary in order to avoid
confusion between system defined filenames, such as $OLDPASS or
SNULL, and variables in your makefile.

The other user-defined variables (ACCT and PASS) are useful because
there are several places where the account name and password are used.
Since passwords change frequently, you only need to change the value of
the PASS variable once and the correct password is replaced in the
appropriate locations.

A user-defined variable is referenced in the same manner as a predefined
variable. The variable prefix (in this example, a percent sign [%]) must
precede the variable’s name. If a user-defined variable name contains
more than one character, the variable name must be enclosed in
parentheses. For example, notice the parentheses in the reference to the
%(ACCT) and %(PASS) variables in the job login in the first and fifth
rules.

lferative Command Processing

Omne important point to notice in several of these rules is the use of braces
({) before and after the commands of the rule. Braces instruct make to
iterate the commands between them for each changed dependency (the
current changed dependency name is substituted for the $< macro during
each iteration). If no braces are placed around the command, the
comumand is performed once for the first dependency in the dependency
list, regardless of which dependency has changed.

8-12 UBRARIAN/IX User's Guide

The FINANCE example shows simple iterative command processing. In
the example, braces are used to indicate that the commands are to be
performed once for each out-of-date dependency. If a target needs to be
rebuilt, commands can be iterated using any of the following criteria in
any combination:

m once for every changed dependency (braces)

s once for each dependency (brackets)
B once for first dependency (no braces/brackets)

Let us examine another example in which iterative command processing
is useful. In this example, we have a screen driver that depends on the
source files for the individual screens.

$=%
SCREEN.PROG: %(@.SCREENS]

{

IPASCAL %<, SCREEN.OBJ,$NULL

}

ILNK FROM= SCREEN.OB.I;TO=%@

The block of commands between the braces are repeated once for each
dependency that has changed. The dependency variable value is
dynamically altered to reflect the current dependency at each iteration.
Notice how ILINK is located outside of the iterative block. Since no
braces/brackets surround this command, it is executed once after all of the
changed source files have been recompiled.

Alternatively, you can create a block of commands that is executed for
every dependency, regardless of which dependency in the list has
changed, as in the following example:

SCREEN.PROG : $[@.INCLUDE]

[
IFILE %< = %<"=.EXTERNAL"
!

{

'RESET %<

}

IPASCAL SCREEN.SOURCE

This example instructs MAKE to issue a file equation for all includes to
point to an associated external declaration. Then, it resets the file
equations for only those that have changed.

Job Card Placement

By default, MAKE begins by evaluating the first rule of the makefile and
continues processing the file sequentially. However, you can specify any
target in the makefile for MAKE to process. Since MAKE can potentially
enter the makefile from any target, you must define job cards wherever
this is likely.

Rebuliding Applications with MAKE 8-13

In this example, you might want to rebuild the report programs without
rebuilding the entire application. To accomplish this you would issue the
following command to invoke MAKE:

:MAKE MAKEFIN,FINRPTS
MAKE then enters the makefile at the fifth rule and processes that rule
and related rules only, ignoring all other rules.
The job card must be the first command in a rule. MAKE uses the first job

card it encounters as the login for the MAKEOUT job. Any subsequent
job cards encountered by MAKE are ignored.

Edit Masks

Edit masks are used throughout a makefile for two purposes:
® to determine the dependency of a target in a generic rule
s to edit the value of a predefined file variable or file names returned by
the LISTF variable.
Edit masks use the spedal characters, @, =, 7, and —, as well as literal
characters. Enclose edit masks in quotes immediately following a file
variable reference to temporarily modify its value. For detailed
information about each edit mask character, refer to “Edit Masks” at the
beginning of Chapter 1, “Commands”, in the LIBRARIANAX Reference
Guide.
In rules 4 and 5, an edit mask is used to extract the filename (without
group and account) from the current dependency variable value.
PURGERL MODULE = %< "="
In rule 6, an edit mask is used with the LISTF variable to create a list of
report program names in the PROG group by removing the last character
from the source file names in the LISTF result.
FINRPTS : % [@S.RSOURCE] "= - .PROG"
In rule 7, an edit mask is used as the dependency in a generic rule, so that
MAKE can determine the dependency of a report target it evaluates (no
quotes are required in this case).
@.PROG :— @5.ASOURCE

Standard (Specific) Rules

There are several kinds of rules that MAKE recognizes based on the
delimiter between the target list and the dependency list. Rules one
through six are standard rules delimited by a single colon (:} or double
colon (:). Rule 7 uses the (:—) colon—dash delimiter to define a generic
rule.

The single colon and double colon delimiters are closely related. They are
both used for specific rules where the target list is a specific list of
filenames and the dependency list does not use edit masks. The difference
between the two delimiters is how rules with targets of the same name
are treated.

8-14

LIBRARIAN/IX User’s Guide

& The single colon delimiter () causes all rules with targets of the same
name to be combined as though they were one rule (i.e., dependencies
and commands are combined}.

® The double colon delimiter (::) causes each rule to be evaluated
independently, and only the commands of the rule whose
dependencies have changed are executed.

As an example of the difference between the single colon and double
colon delimiters, consider rules 4 and 5. Both rules have the same target,
FINRL. Rule 4 states that all out-of-date modules in the COBOL group
should be rebuilt using the COBOL command. Rule 5 states that all
out-of-date modules in the PASCAL group should be rebuilt using the
PASCAL command. If a single colon were used to delimit these nules, the
two commands would be combined into one rule and the following
commands would be issued if the ABCCOBS module is out-of-date:

ICOBOL ABCCOBS, SNULL
IPASCAL ABCCOBS, , $NULL

This is clearly not desired. Therefore, each rule must be treated
independently (i.e., if a module in the COBOL group is out-of-date,
perform one command, and if a module in the PASCAL group is
out-of-date, perform a different command). In the case of rules 4 and 5,
the double colon delimiter guarantees the independence of the two rules.

Generic Rules

Specifying wildcard characters in a target makes the rule generic so thata
single rule can apply to any number of targets that match. As MAKE
examines a makefile for dependencies that are themselves targets, MAKE
checks generic target names for a match. The :— and := delimiters are
used to specify a wildcard pattem for the target name and a
corresponding edit mask as the dependency name.

The := delimiter can be used only when the target and dependency
names are the same, but with different suffixes (e.g., target ABC199M and
dependency ABC1995 would be covered by the rule).

The :— delimiter is more flexible than :=. The :— causes MAKE to
determine the corresponding dependency name from the edit mask. For
example, consider the last rule in the FINANCE makefile:

@.PROG :— @S_.ASOURCE

This rule states that a dependency derives its narne from the target being
evaluated. Thus, an S is added to the target name and the RSOURCE
group is added to derive the dependency name. If the target file were
RDV10.FROG, the dependency would be RDV10S.RSOURCE.

Rebuiding Applications with MAKE 8-15

MAKE also supports multiple dependencies using edit masks in this type
of rule. For example,

@.COMP :— =S.S0URCE =FFORMS RL.COMP

In this rule, each program file in the COMP group is dependent on its
source file, a forms file in the FORMS group, and an RL file in the COMP

group.

Implicit Rules

A variation of the standard rule is the implicit rule (often called the UNTX
generic rule}. This type of rule is used when both the target and
dependency have the same name, but reside in different groups. In this
construct, there is no dependency list to the right of the rule delimiter. For
example, the following rule states that MAKE should evaluate all targets
in the OBJECT group against all files of the same name in the SOURCE

group.
. SOURCE.OBJECT :

A target named ABC100.0BJECT would need to be rebuilt if
ABC100.S0OURCE has changed.

Automatic Search for Include Files

When a plus sign(+) is entered after a filename, files are scanned for
references to include files. The file and all its includes are taken as
dependencies. For example:

filename+ or $[@src+] or $fllistfile+)
Currently, MAKE supports this feature for COBOL, C and PASCAL.

Listfiles in Generic Rules

Generic rules can refer to generic listfile names. The listfile name is
determined from the target name using an edit mask (similar to the way
generic dependencies are determined.) For example:

XX@Q - ${1=L]

returns a dependency list with the filenames in a listfile with the same
name as the target, except for the last letter which is “L".

LISTF Variable Exclusions
The LISTF variable supports exclusions., For example:

$[A@-A1—-A2—-A3]
excludes Al, A2, and A3 from A@.

8-16 LIBRARIAN/iX User's Guide

Special MAKE Variables

In addition to the variables already mentioned in this chapter, four special
variables are available. These variabies include;

s STREAM
SCHEDULE
ACCOUNT
GROUP
ALTPATH
EXCLUDE
COFPYMEM
Prompt variables

System variables

STREAM

You can optionally specify parameters for the MPE :STREAM command to
be issued when MAKE streams the MAKEOUT job. When the STREAM
variable is defined, its value is passed as a parameter list to STREAM. For
example, if the following macro is used anywhere in the makefile, then
MPE launches the job at 5:00 p.m.

STREAM = AT=17:00
For more information on STREAM, Refer to the MPE Commands Reference
Manual.

SCHEDULE

For users who have scheduling or streamer programs, MAKE recognizes
the SCHEDULE variable. If the user defines a variable named
SCHEDULE anywhere in the makefile, then MAKE expects its value to be
the name of the scheduler program. MAKE runs this program and passes
the name of the MAKE jobstream via the info string, instead of streaming
the file. The program name may optionally have a slash (/) at the end,
followed by 8, P, or G corresponding to the LIB=x parameter that the
scheduler prograrn requires.

For example, if you define the following variable in a makefile, then
MAKE would run STREAMER.COMPEXPRESS with a LIB=G parameter.
MAKE passes the name of the MAKE jobstrearn in the info string rather
than streaming the MAKE command file directly to MPE.

SCHEDULE = STREAMER.COMPEXPRESS/G

Both STREAM and SCHEDULE

If you define both the STREAM and SCHEDULE variables, MAKE
invokes the scheduler and appends the stream options to the info string,
with a semicolon delimiter. The EXPRESS STREAMER command, for
example, implements the same options as the MPE :STREAM command.
This also provides a means of specifying addifional scheduling

parameters.

Rebuilding Applications with MAKE 8-17

ACCOUNT

If you run MAKE outside of the account where the files to be evaluated
reside, you can use the special ACCOUNT variable to set the account
globally. With this variable, you only need to qualify your target and
dependency filenames up to the group level in the makefile. For example:

ACCOUNT = QAACCT

If you specify the ACCOUNT variable in the makefile, you can only
specify filenames up to the group level, since the ACCOUNT variable
appends the account name to all filenames in the makefile.

GROUP

If you run MAKE outside of the group where the files to be evaluated
reside, you can use the special GROUP variable to set the group globally.
For example:

GROUP = MAKEGRP

If you define the GROUP variable in the makefile, only specify filenames,
since MAKE appends the group name to all filenames in the makefile.

ALTPATH

The ALTPATH variable causes MAKE to automatically search an
alternate account when a dependency is not found in the default account
defined by the ACCOUNT variable or logon account. You should set the
ALTPATH variable to the account you want MAKE to search as an
alternate for dependendcies. For example:

ACCOUNT=ABCDEV
ALTPATH=ABCLB

ABC : $[@.PROG]
:>LI0B.........

ABC1000PPROG : ABC1000S.SQURCE
frebuild statements...

@PPROG :— =S.SOURCE
Irebuild statements...

If the dependency for a target does not exist in the same account, MAKE
searches for the same file.group in the ALTPATH account. For example, if
ABC3000F.FROG is found in the account ABCDEV, but
ABC30005.S0URCE.ABCDEYV does not exist, MAKE searches for
ABC3000S.SOURCE.ABCLIB. If MAKE finds the dependent file in the
ALTPATH account, it uses that file as the dependency. All other MAKE
logic remains the same.

This variable is useful when compiling in an account that only has
modified source files and not the entire library. Using ALTPATH, you can
issue file equations using iterative command processing for all
dependencies to point to files in the library that are not in the account
where the compile is taking place. Then use iterative command
processing for changed dependencies to reset the appropriate file
equations.

8-18 LUBRARIAN/IX User's Guide

For exarnple:

ACCOUNT = ABCDEV
ALTPATH = ABCLIB

ABC : $[@.PROG]

[
IFILE %< = %< <
]

{

| RESET %<

}

lrebuifd cormnmands...

Note the special variable %<<, which means the dependency name
qualified with the current account. %< always refers to changed
dependencies which could be in either account.

EXCLUDE
The EXCLUDE variable can be used to exclude delta files and generation
files from a LISTF variable.
For example;
EXCLUDE = D#######.@.@ GH#######.@.@

excludes D#######.@.@ and G#######.@.@ files from all
dependencies lists that use the LISTF variable.

COPYMEM

The COPYMEM variable is used in conjunction with the MAKE
automatic dependency scan feature to indicate that copylib members are
stored as individual files in [GROUP[.ACCOUNT]] as opposed to using
the COFYLIB file itself as the dependency. For exarnple:

COPYLIB=MYGRQUP

COPYLIB=MYGROURMYACCT
Prompts
You can prompt the user for the value of a variable. Prompt variables
have the general format:

${ prompt_text }
You can use this type of variable prompt for filenames and passwords.
For example,

:> OB MAKEPROG, MGR.MYACCT/${Password:}

The variable above causes MAKE to prompt the user with “Password:”
when MAKE is run. The text that the user enters at a prompt is inserted in
the makefile.

You can also use prompt variables to allow a user to enter a list of files to
build.

Rebuilding Applications with MAKE 8-1¢

For example:
MYBUILD : ${List files to build:}

{
ICOBOL $<, $NULL
}
The use of the prompt variable above allows you to provide

dependencies at runtirne.

System Variables

You can substitute the value of MPE/iX system variables in MAKE files
with the following syntax:

$(Isystem_variable)

Executing MAKE

Execute MAKE by using the LIBRARIAN MAKE command or selecting
Make from the Tools menu. With the MAKE command you supply the
makefile name and, optionally, the target entry point, a listing filename,
and a job filename.

The first target in a makefile is the default target that MAKE builds. You
can override this default and instruct MAKE to enter the makefile from
any target you choose. If you plan to do this, be sure the target you
choose as an entry point into the makefile has a job login command in
the commands of the rule.

The following command informs MAKE to process the MAKEFIN
makefile using the first target in the makefile.

>MAKE MAKEFIN

If you want to require MAKE to rebuild everything in the makefile,
ignoring timestamps, use the ALL option.
>MAKE MAKEFIN;ALL

You can specify any target as an entry point into the makefile. For
example, if you wanted to rebuild only the reports of the FINANCE
application, you would use the following command:

:MAKE MAKEFIN,FINRPTS

For more information on other MAKE options, refer to Chapter 1,
“Commands”, in the LIBRARIAN/iX Reference Guide.

8-20

LIBRARIAN/iX User's Guide

The TOUCH Command

Because MAKE is driven by the MPE modification timestamp recorded in
a file’s label, it may be necessary to manipulate this timestamp directly.
Along with MAKE, LIBRARIAN provides a command called TOUCH
(available from the File menu) to make a file appear modifijed. In other
words, the TOUCH command updates the MPE modification timestamp in
the file label to reflect the current date and time.

If you touch a target file, it appears up-to-date. On the other hand, if you
touch a dependency, it makes any target depending on it out-of-date. In
this way you can selectively force or prevent MAKE from rebuilding a

target.

Rebuilding Applications with MAKE 8-21

8-22 LIBRARIAN/IX User’s Guide

Macros

9

This chapter describes how to create and use macros. Topics discussed in
this chapter include:

What are Macros?
Sample Macro

Filelists and Parameters
Menus in Macros
Conditional Expressions
Looping in Macros

The ALLOW Command
Procedure Files
AUTOXEQ Files

Menus

Nole For information about executing macros and procedures, refer to the
XEQ command in Chapter 1, “Commands”, and Chapter 7, “Macro

Control Language”, in the LIBRARIANAX Reference Guide.

wWhat Are Macros?

Macros are files that contain commands for LIBRARIAN to execute. You
typically use macros to process a single file or a group of files. Macros
can accept parameter values from a user. Macros can contain looping and

conditional logic through the use of a special macro language.

You execute macros within LIBRARIAN by typing the name of a file
containing LIBRARIAN commands, followed by an optional list of files
and other parameters. Since macros are more flexible than steps (in fact,
steps are frequently performed within macros), you can use macros to
define operations too complex to be performed by a single step.

Macros @-1

Some common uses of macros are:

® Create a single command that performs several LIBRARIAN steps
and/or commands in sequence on a group of files.

® Perform a step several times against the same group of files, but with
different destinations, such as to distribute a set of files to several
systems.

® Perform a step or command with “hard coded” runtime parameters.

= Allow the user to execute commands which would normally require
LIBRARIAN Manager or Application Manager capability.

The LIBRARIAN Manager can create macros in a secure location and
make them available to all users. For MPE, this location is XEQ.OCSLIB,
and, for UNIX, this location is /opt/ocs/ocslib/xeq. General users can, also,
create macros for their own use. LIBRARIAN checks the current
directory first, and then checks XEQ.OCSLIB (MPE) or /opt/ocs/ocslib/xeq
(UNIX) for a macro when parsing commands.

sample Macro

The following example shows a macro used to submit source for testing
and to compile each program using the MAKE facility.

OPTION FILES=ABC-SUBMIT.ABC-MAINTABC , NOBREAK
ABC-SUBMIT IXEQUST
MAKE ABCMAKE PUB.ABCQA,%%[=POBJECTABCQA]

This simple macro uses the step ABC-SUBMIT to authorize files (OPTION
statement), submits the files, and then recompiles each file with MAKE.

IXEQLIST is a list of the files authorized, created automatically by the
macro processor. The %%[] parameter causes the MAKE statement to
execute once for each file. The edit mask “=P.OBJECT.ABCQA”
transforms the name of each source file into the corresponding object
filename, which is the target name that is passed to MAKE.

Filelists and Parameters

Many macros accept a file reference like a step (as shown in the previous
example), but this is not required. The following example uses the macro
facility to execute SHOWME, foliowed by the SHOWJOB display of jobs
currently executing.

SHOWME
SHOWJOB EXEC,JOB=@J

To require a file reference, use the OPTION FILES statement (as in the first
example). If a step name is specified, the step definition is used to
authorize the files; otherwise, the files are authorized in the same manner
as for LIBRARIAN commands such as XCOPY or XMOVE.

9-2 UBRARIAN/IX User's Guide

Macros can contain a maximum of one hundred other parameters to be
substituted at runtime. You can use these parameters for any string
value, up to 80 characters.

You can set parameter values with the PARM statement and parameter
references can appear anywhere in the body of the macro. They must
appear in the format %%n, where n is the parameter number (0 to 99).

The following example uses a parameter to request a project name from
the user by presenting a menu of authorized projects (which LIBRARIAN
provides in a file called PROJMENU), then checks in all the files
associated with that project on an all-or-nothing basis.

MENU= PROJMENU
PARM 1;REQUIRED
ABC-CHECKIN.%%1;NOVIOLATIONS

Alternatively, the preceding example could have been coded to have the

user speafy the parameter on the command line, without presenting a
menu.

ABC-CHECKIN.%%0;NOVIOLATIONS

Note that parameters are positional (the first parameter is 0, the second is
1, ete)

The user performs this macro, called ABCIN, for project SR1234
by typing:
ABCIN S5R1234

Menus in Macros

You can create your own menus as shown in the following example:

ECHO NULL
LMAINT
OUTPUT %SOURCE -FILES TO SRCFILES ;ALL
EXIT
ECHO STDLIST
FAAM 3 ;MENU=SRCFILES ;TITLE=Source Menu ;PICKFILE
LOOP %%3
ECHO %%*
NEXT

This example uses LMAINT to create an indirect list of files presented to
the user as a menu. Selections are then displayed one per line. For more

information, refer to the PARM command in Chapter 7 ,“Macro Control
Language”, in the LIBRARIAN/iX Reference Guide.

Macros 6-3

Conditional Expressions

Macros can include IF/ELSE/ENDIF conditional logic. Conditional
expressions compare the values of strings, parameters, environment
vaniables (UNIX), JCWs (MPE), and numbers, in addition to testing for
the existence of files.

The following example checks for the existence of a text file by first
applying an edit mask, and then checks out a source file if the text file
does not exist.

OPTION FILES=0UT-SRC
LOOP
IF EXISTS %%[=-TTEXT.=]
OUT-TEXT %% [=-TTEXT.<]
ELSE
OUT-SRC %9%(]
ENDIF
NEXT

Looping in Macros

The macro control language supports the following looping structures:
a LOOP/NEXT
s REPEAT/UNTIL
® WHILE/ENDWHILE

The LOOP/NEXT structure works in either of two ways; it causes the
execution of a block of commands for each:

® authorized file in the XEQLIST file, or
8 record in a text file (fixed length record shorter than 80 characters).

The following example shows a macro which checks in COPYLIB
members, then streams a job to update the master COPYLIB:

OPTION FILES=COPYLIB-IN
LOOP
COPYUIBHIN %9%[]
STREAM
1JOB COPYBLD,MGR.PROD
'RUN COBEDIT.PUB.SYS
LIB DCLIB.COPYLIB.PROD
PURGE %%[=]
COPY
%%(=.COPYLIB.PROD]
N

%%[=]
N

EXIT

IEOJ

>
NEXT

9-4 LIBRARIAN/IX User's Guide

Note

Note

COPYLIB member files (referred to by the %9%[] variable) are authorized
by the step (COPYLIB-IN) when executing this macro. Then, each file is
moved to the production account, and a job is streamed to update the
production COPYLIB. The equal sign (=) edit mask produces only the
filename (without the group and account). The right angle bracket (>) is
necessary to indicate the end of the stream.

The previous example is provided to demonstrate the use of
LOOP/NEXT and the STREAM capability; a simpler solution to this
problem is a macro that invokes MAKE, similar to the example earlier
in this chapter.

The following shows a macro which distributes files to remote systems
listed in a file called HOSTS.

LOOP HOSTS
MFG DIST %MFG FILES TO %%*
NEXT

For each record in HOSTS, the files in the MFG FILES fileset are
distributed by the step (MFG DIST) to the location defined by the
contents of the HOSTS record (referred to by the %%* variable).

If the filename is absent, LOOP/NEXT works as in the first example, in
which case you must include an OPTION FILES statement; otherwise, the
LOOP/NEXT command(s) will have no files for which to loop.

Loops cannot be nested, but they can contain conditionals.

The REPEAT/UNTIL and WHILE/ENDWHILE structures cause the repetition
of a block of commands until a conditional expression is true, or while a
condition is true, respectively.

Macros

?-5

Nesting Macros

Nested looping is supported through nested OPTION FILES macros.
LIBRARIAN keeps track of the nesting level, and opens a new
XEQLIST1,2,3,...n as each nested macro is invoked. The following
example checks in files specified by the user, and notifies the owner of
every copy of each file checked in:

PROCEDURE ABC—IN

OPTION FILES=ABC—-IN

LOOP
SETJCW LIBOK=0
CONTINUE
ABGC—IN %9%[|
IF UBOK>0 THEN
CONTINUE
ABC-NOTIFY * AT @.@.@.@
ENDIF

NEXT

END

PROCEDURE ABC—NOTIFY

OPTION FILES

LOOP
MAIL %% (!1OWNER}), A new version of %% [] & has been
checked in

NEXT

END

Reusing Macro Parameters

The LOCALPARMS parameter of the OPTION command allows macro
parms to be independent of nested macros. Within nested macros, all
parms are initialized to null values; original values are restored on return
to the calling macro. This allows parms to be passed “by value”, as
arguments to the macro call.

9-4

LIBRARIAN/iX User's Guide

The ALLOW Command

The ALLOW command temporarily allows you to perform functions that
require user capabilities or step authorizations that general users do not
possess. This is very useful, because it permits the LIBRARIAN Manager
to grant users specific capabilities, limited to certain files and
circumstances, without granting full capability. The following macro
allows any user to orphan write mode files residing in your work group.

OPTION FILES =ABC-MYFILES NOCEBREAK,NOHELF
ALLOW LIBMGR:GORP

SET IXEQUIST MODE=READ

ORPHAN 'XEQLIST

ALLOW

In this example, a null step, ABC-MYFILES, has been created to perform
the authorization by ownership. Selected users will be authorized on the
Step Authorizations (SA) screen to perform this step (and hence, the
macro), only for their own files.

The first instance of ALLOW provides the user with LIBRARIAN Manager
capability to perform the restricted commands; the second instance of
ALLOW restores the user’s normal capabilities. The NOBREAK and
NOHELP options are used so users cannot break while being allowed the
capability, and so users cannot display the LIBMGR password.

Note that ALLOW is preferable in this situation to actually changing user
identity with the USER command within the macro, as it preserves the
original user ID in the audjit trail.

It is recommended that you only use ALLOW in secure macro files.

Procedure Files

Procedure files are collections of macros in a single file, similar to a UDC
catalog (MPE). The use of procedure files avoids the proliferation of
macro files on disk, and allows to catalog multiple macros. Procedures in
a procedure file begin with the PROCEDURE statement and end with the
END statement, as in the following example:

PROCEDURE SJJ
SHOWJOB EXEC,JOB=@\J
END

You can only invoke procedures if the procedure file has been loaded.
For example:

>SET PROCEDURE TO ABCXEQS.XEQ.OCSLIB

Alternatively, you can load procedures by selecting the Load Procedures
option from the Macros menu. Otherwise, procedure files and macros
are identical.

Macros -7

AUTOXER Files

At startup, LIBRARIAN searches for a macro called
AUTOXEQ.XEQ.QOCSUB (MPE) or fopt/ocs/ocslib/autoxeq (UNIX), and if
found, performs it immediately. It then searches for a file called AUTOXEQ
(MPE) or autoxeq (UNIX) in your current login directory and executes the
file.

You can use this feature to set global parameters, or for each user to set a
user ID and work environment. For example:

QUIET DISPLAY

USER FRED

SET PROCEDURE TO FREDXEQ
SET APPLICATION FIN

MENU OFF

In this example, you suppress LIBRARIAN informational messages and
prompts, set your user ID, load a procedure file automatically, set the
default application to FIN, and suppress menus so that you immmediately
go to the command line prompt.

9-8 UBRARIAN/IX User’'s Guide

Appendix A
Applications in Progress

There are special considerations when implementing LIBRARIAN for an
application which is already undergoing modification.

® When you define the library for the application, make sure to
identify the master files, as usual.

» Identify files that are being modified as secondary copies of the
newly identified master files, even though they were not checked
out with LIBRARIAN, by doing a checkout with the INPROGRESS
parameter.

This appendix describes how you can implement LIBRARIAN with
applications where work is already in progress. The following topics are
discussed:

® Identifying secondary files
m Recording checkout

l|dentifying Secondary Files

The need to identify existing files as secondaries arises when you first
implement LIBRARIAN for an application and files already exist in
secondary locations; these secondary files need to be linked to their
corresponding master files. Normally, you would copy files into those
locations with a master-to-secondary step, but in this case you need to
simulate the step without physically affecting the existing files in
progress.

For example, assume you defined the library for the AP application and
created the APOUT step to check out files from the AP account to the
APDEVEL account. However, a programmer is currently modifying
copies of two AP files: RCA PUB.AP and RCB.PUB.AF, which were
copied to APDEVEL before LIBRARIAN was installed.

Now you want to associate the files already in development with the
newly defined master library without replacing the work that has already
been done. The AT master files have serial access mode, and you want to
protect these development copies by recognizing them as write-mode
secondaries.

Applications in Progress A-1

Recording Checkout

Use the INPROGRESS parameter with 2 defined master-to-secondary
step, in this case APOUT, to record files as secondaries of specific master
files. With the INPROGRESS parameter, LIBRARIAN performs all aspects
of the step except physically copying the file. The file in the destination
location is left as-is, but is tracked as a write mode secondary of a master
file. Record the two files in the example above as secondaries in progress

by typing:
>APOUT RCA PUB.AP. RCB.PUB.AP :INPROGRESS

>APOUT /ap/pub/rca, /ap/pub/rcb INPROGRESS

If you have work in progress in another secondary location, such as QA,
which would normally be copied by a secondary-to-secondary step, you
can record those files, as well, as write mode secondaries. To do so, create
a temporary master-to-secondary step with the QA location as the
destination and then using the INPROGRESS parameter on the step. After
you use the step to record the files as secondaries in progress, delete the

step.

A-2

LIBRARIAN/X User’'s Guide

LIBRARIAN/iX Glossary of Terms

Note ﬂ Terms that appear in #talics in the following definitions have separate
glossary entries.

Access Control

The attribute of a master file that determines how many read/write mode
copies are allowed. The four access control levels are: exclusive, read only,
serial write, and multiorife,

Access Mode

The attribute of a secondary file that determines whether or not it can be
checked in and replace its associated master file. A secondary in write mode
can replace a master. A read mode can only replace a master through an
emergency checkin that is configured to use the PUSHREAD parameter. A
file’s access mode is determined by access control, user request, step
definition, and default access mode (precedence is in order listed).

Aging Policy

A system profile value that indicates how long log records are kept. When
the FLUSHLOG utility is run, audit trail records that are older than the
number of days specified in the aging policy are deleted.

Transactions associated with projects overnide this policy and are deleted
only when the project status is flush pending.
Aliernaie prestep

A prestep that can be performed as an alternative to the defined prestep.
Up to three alternatives can be defined for a step.

Annotate

Comuments inserted by LIBRARIAN into source listings that indicate
which lines were inserted /deleted for which revision. Date /time, related
project and user who made the change are included.

Application

A site—defined organizational unit including a set of master files that are
being controlled by LIBRARIAN, a set of steps for file
movement/approval, and, optionally, a set of projects for tracking file
changes associated with a particular work activity.

Application Manager

A special user capability assigned to the user responsible for the files and
steps within an application.

Glossary |

Applicgtion fileset
The highest level fileset for an application.

Approval step
A null step that is required as a prerequisite for a subsequent step.

Authorization

The process of determining which files have been requested in a
fransaction and whether or not the rules permit the operation to be
performed on each of these files. Authorization is based on the user who
initiated the request and the current status of each file requested.

AUTOXEAQ file

A macro that is executed before the first prompt/main menu appears. A
file called AUTOXEQ that exists in the product account is executed prior
to any AUTOXEQ file that might exist in the user’s home directory.

Auto fileset descriptors

General locations that describe how master files are assigned automatically
to master filesets. Descriptors can include or exclude files from filesets
using wildcards. When you run AUTQUPDATE, introduce new files with
a pending master, or perform a checkin step with the AUTOUPDATE
parameter turned on, any previously untracked files in these locations get
added to the appropriate master filesets.

Auftomatic Login ID

The login used when transactions require automatic logging in to a
remote system.

Autoupdate

The process used to add master files to master filesets automatically based
on predefined auto fileset descriptors that include or exclude files from
filesets, typically using wildcards. Pending masters and masters not
currently assigned to required filesets are added, typically during checkin,
new steps and / or running of the AUTOUPDATE utility.

Baseline

The master library at a particular point in ime. An application manager
establishes a baseline by creating a version. This marks and protects all of
the files in an application at that ime, so that the application or any part
of the application can be restored to that baseline any time in the future.

Base Revision

A revision that was current at the time a baseline version was created. The
version couni (VCOUNT) for a base revision is always zero and cannot be
flushed untl the version(s) of which it is a part is made obsolete.

I LIBRARIAN/IX

Branch

A set of revisions that are made as a divergence from the main
development path for a master file. A branch is created automatically
when a previous revision is checked out. A branch can also be forced
from the latest revision if the master is already checked out in write mode,
or the user does not intend to check the file back in on the trunk.
Whenever a new branch is created, a branch counter and leaf counter
(both starting at 1} are appended as a pair to the original revision ID.

Branch revision
A revision that appears on a branch.

Checkin step

Any step which copies or moves a file from a secondary location into the
master library, either retaining and repladng the existing master,
tntroducing a new one or establishing a new branch .

Checkout step

Any step which copies a file from the master library into a secondary
location, generally for modification by programmers.

Client

An MPE or UNIX implementation of LIBRARIAN where the LIBRARIAN
data bases reside on a different system, but the user is able to perform all
LIBRARIAN functions.

Command Mode

In command moede, the user enters LIBRARIAN commands at a
command line prompt. Users can switch between command mode and
menu mode by pressing the F2 function key.

Companent filesefs
Filesets that are subsets of higher-level filesets.

Composite prestep

A collection of presteps that must be performed before a subsequent step
can be performed. Composite presteps also permit the specification of a
date prerequisite.

Default access mode

The access mode that is assigned to a secondary file when neither the user or
step explicitly specify the mode. The access control level for a file
determines which access modes are allowed.

Glossary [l

Delta file

A privileged (MPE) or hidden (UNIX) file that contains the history of
changes made to an associated master file.

Deltas

A method for retaining and reconstructing previous revisions of master
files that involves storing only the changes to files over time.

Dependency

A file that make evaluates with respect to some target to determine
whether to invoke some action, such as a compile or link.

Destination
The target location when copying or moving a file.

Dummy target

A make target that does not correspond to an actual file. Dependencies of
dummy targets are actual files that are always evaluated as targets
themselves to determine whether they are out of date and need to be
rebuilt.

Edit mask

A file expression that uses special editing characters to map one filename
into another; e.g., source to destination name for a copy or move or
secondary to pending master name for introduction of a new file.

Emergency checkin

A checkin that moves a read mode secondary file into the library with the
PUSHREAD option. If a write mode copy exists, the owner is notified via a
LIBRARIAN mail message, and an exception is recorded.

Exceptlion Flag

An indicator that something special has happened related to a file such as
an emergency checkin, merge conflict or previous master revision was restored
at a time when the file was checked out. The exception flag must be
cleared before any further operation on the file is allowed.

Exceplion message

A LIBRARIAN mail message that indicates that an exception flag has been
placed on a file. This message is sent to the owmer of the write mode copy of
the file.

Exclusive access

The access control level that prevents secondary copies of a master file from
being made.

Expiration date
The date when after which a file can be flushed using the FLUSH utility.

IV LIBRARIAN/iX

Expired file

A read mode secondary or retained file that is eligible to be flushed by the
FLUSH utility.

Explosion

The creation of a list of files by expanding a fileset, listfile, or wildcard file
specification for LIBRARIAN to authorize.

External

A file that resides on a system on which LIBRARIAN is not running,
typically an unsupported platform, or system which is not on an
accessible network. LIBRARTAN steps can be used to record movement to
an external location, but cannot physically move the file or verify its
existence. Users are responsible for transferring files (via tape or other
means) for any transaction using the EXTERNAL option.

Fileset

A collection of files identified by a unique name assigned by the Librarian
Manager (master filesets) or any user (user filesets). When requesting files,
filesets can be referenced by preceding the fileset name with a percent
sign (%). Because filesets contain collections of files that are related by
some criteria other than physical location, and can span directories and
systems, they are often referred to as logical filesets.

Note: In MPE, a fileset is any set of files that can be referred to using
wildcards in name, group and/or account, LIBRARIAN refers to this as a
physical fileset.

File structure (hierarchy)

The relationship of filesets, subsets and physical files within an
application library.

Flush policy

The system profile policy that determines how many previous file
generations to keep when the FLUSH maintenance utility is run.

FLUSHLOG

The maintenance utility that purges old log records that have aged
beyond the aging policy specified in the system profile.

FLUSH
The maintenance utility that purges expired files and obsolete versions.

Flushed project

When a project is closed and then assigned a status of flush pending, log
records associated with that project get flushed the next time the
FLUSHLOG utility is run. After FLUSHLOG has been run, the project
status is changed to flush, and the project can be deleted, if desired.

Glossary V

Flushed version

When a version’s status has been changed to obsolete, base revision files that
are a part of that version are flushed if they are not also part of a
subsequent version. After FLUSH has been run, the version status is
changed to flush, and the version can be deleted, if desired.

Flush pending

A project status that indicates that log records for the project should be
purged when the FLUSHLOG utility is run.

FMAINT
The facility for creating and maintaining user filesets.

Forward versioning

An option on checkout to automatically search alternate libraries (usually
previous versions) when a master file is not found in the expected location
as defined by the checkout step. If the file is then found in an alternate
location, it is brought forward as a secondary of a new pending master for
the primary application.

Generation

Each time a file is checked in, a new generation is created. Previous
generations of master files are stored in the library as retained files (usually
compressed) or as deltas.

Generation count (GCOUNT)

A sequential number assigned to each master file generation. The current
GCOUNT is the total number of times a master file has been replaced.
When specifying GCOUNT as an option in a file request, a negative
number indicates a generation relative to the latest generation.

Generic rule

A target—dependency relationship in make that uses wildcards (target) and
edit masks (dependency) to determine what is out of date. Actual target
and dependency names are substituted into the rebuild commands using
make macros.

Indirect file

Also called a listfile, an indirect file is a text file that includes a list of
filenames. This file can be used in LIBRARIAN commands as a convenient
way of referencing files. Indirect files can be created in a text editor or
through LIBRARIAN's LMAINT facility.

VI UBRARIAN/IX

INPROGRESS

A parameter used with a checkout step that instructs LIBRARIAN to record
the existence of a write mode secondary without physically copying the file
from the library. This parameter is most often used when LIBRARIAN is
initially inplemented and some files are already being worked on or
tested.

Intermediate revision

Master files that are retained between versions. The version count
{VCOUNT) for intermediate revisions is always greater than 0.

Leal Revision

Each revision on a branch is called a leaf, sequentially numbered from the
start of the branch. Whenever a new branch is created, a branch counter
and leaf counter (both starting at 1) are appended as a pair to the original
revision ID.

LIBRARIAN

The program that controls and processes all file operations maintaining
an audit trail of activity.

LIBRARIAN Manager

A special user capability assigned to the person responsible for configuring
LIBRARIAN and defining site rules. The LIBRARIAN Manager has
unrestricted access to all LIBRARIAN functions for all files.

Library

A library is the repository from which files are checked out, and to which
they are subsequently checked in. Files are also distributed to production
locations from the library. It is the ‘official’ collection of files that are
under LIBRARIAN's control. Files in the library are called master files. The
library provides a central point of control for changes to production
source, object and data.

Listfiles

Also called an indirect file, a listfile is a text file that includes a List of
filenames. This file can be used in LIBRARIAN commands as a convenient
way of referencing files. Listfiles can be created in a text editor or through
LIBRARIAN's LMAINT facility.

LMAINT
The facility for creating and maintaining listfiles (indirect files).

Location

The group /account (MPE) or directory (UNIX) and system where a file
exists or should be created.

Glossary Vil

Logical fileset

A meaningful name assigned to a collection of files not bound by physical
boundaries. See fileset.

ILOGON, ILOGIN

A special wildcard that can be used in defining step source and
destination locations to indicate that the user’s login data should be
substituted as appropriate. For MPE, this wildcard can be used for group,
account and /or system. For UNIX, this wildcard is equivalent to *.” for
current working directory and can also be used for systerm.

Macro

A set of LIBRARIAN and operating system commands for LIBRARIAN to
execute. A macro control language provides programmatic control
(conditions and loops) and parameter substitution. Parameter values can
be system—defined or provided by the user via prompts and/or
customized menus. Macros are analogous to MPE command files and
UNIX scripts. Multiple macros can be combined in a single procedure file.
Macros are also referred to as XEQ files.

Macro Confrol Language

The set of special commands and keywords that are used in macros to
control flow of execution (IF...THEN...ELSE, REPEAT, WHILE, LOOPF,
GOTO) and allow for parameter substitution {tokens preceded by %%).

Mail

Mail incdludes messages that are sent from one LIBRARIAN user to
another, or from LIBRARIAN notitying a user that an exception condition
has occurred that affects that user’s work.

Make

A utility that automatically rebuilds/recompiles components of an
application when they change. Make reads a makefile that shows
dependencies between application components and evaluates which
components are out of date. Based on which components are out of date,
make issues only the commands necessary to bring the application up to
date.

Makefile

A text file that contains make rules. This file can have any name and can
be created and maintained using any text editor. This file includes
target—dependency relationships and commands required to bring each
target up to date whenever their dependencies are changed. Make macros
and generic rules can be used to reduce the size and complexity of a
makefile.

Make macros

A shorthand that simplifies creating makefiles. Macro references are
substituted with either user-defined or system-defined values when the

VIl LIBRARIAN/IX

makefile is processed. For example, out-of-date dependency names can be
substituted in generic command descriptions.

Master file

A file that is part of a defined library and reflects the most current
production version.

Master fileset
A fileset defined by the LIBRARIAN Manager that includes library files.

Master library
The hierarchy of master filesets and associated master files for an application.

Memo

Text that provides documentation for a transaction. Memos are stored in
the audit trail database and can be reviewed using SHOWLOG.

Menu Mode

The mode of LIBRARIAN operation in which users select LIBRARIAN
functions from a set of pull-down menus. Users can switch to the
command line prompt at any time by pressing the F2 function key.

Merge

An option available on checkout steps to combine source code changes
from one or more branches. Conflicting changes are highlighted with
comments in the source code, and should be resolved prior to the next
step. Merge is only available if the delta feature is being used.

IMSUSER

A special wildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who originally checked out the file. For MPE, this wildcard can
be used to fill in group or account. For UNIX, this wildcard can appear
anywhere in the path name. This wildcard is typically used to reject files
and move them from a test area back to the appropriate developer’s work
area.

Mulfi-write
The aceess control level that allows multiple secondary files with write-mode
access.

Glossary X

New step

A step that introduces a previously untracked file to LIBRARIAN as a
secondary file. The file is linked to a pre—existing master file or a pending
master record is created. Rules governing introduction of new files on a
step are configured on the PP (Pending Production Areas) screen.

Node

The actual device name associated with a system in a network. This name
may or may not be the same as the LIBRARIAN syster ID.

Null step

A step not involving any file movement. A null step is used to reflect
some external action such as an approval. Null steps are used to control
dependencies between steps; that is, they are used as presteps.

Obsolete version

When the LIBRARIAN Manager or Application Manager change the status
of a version to obsolete, any retained base revisions associated with that
version will be flushed the next time the FLUSH utility is run. Once a
version is flushed, it can be deleted, if desired.

Operator

A special capability assigned to a user who can flush records in the log
database and can restore previous revisions of files.

Orphan

Any file not currently being tracked by LIBRARIAN or a master file not
assodated with an application. Orphans can be created by a LIBRARIAN
operation that causes a tracked file to become untracked (unknown to
LIBRARIAN), or by operations that use the orphan option to create files
in destinations that are not to be tracked.

IOWNER

A spedial wildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who currently owns the file. For MPE, this wildcard can be used
to fill in group or account. For UNIX, this wildcard can appear anywhere
in the path name. This wildcard is typically used to approve files in
multiple developer work areas.

X LBRARIAN/IX

Parent Fileset
A fileset that includes component filesets.

Pending master file

A file that is being tracked as a master library file, but, because it is new,
does not physically exist in the library yet. The associated secondary is
called a pending production file and was introduced through a new step or
through the use of LIBRARIAN's forward versioning feature.

Pending master mask

An edit mask used to automatically derive a pending master file name based
on the name of the secondary file being introduced through a new step.

Pending production area

Any location(s) defined for a step where previously untracked files can be
introduced as new secendary files. Steps with pending production areas
are considered to be new steps.

Pending production file

A secondary file that was introduced using a new step. The master file does
not currently exist in the library.

Permissions

A UNIX term used to indicate file access rights; a matrix of read, write,
and execute access for owner, group and world.

Physical fileset

A collection of files that exist in a particular location. Physical fileset
references include specific filenames, or names using standard operating
system/shell wildcards.

Prestep

A step that must be completed successfully for a file before the next step
in the route can be performed. Presteps are often null approval steps.

Procedure

A macro that is included in a file with other macros with a procedure
header.

Procedure file

A file that contains multiple macros. Each macro has a procedure header
indicating the name of the macro. Procedure files can be loaded and
unloaded while using LIBRARIAN.

Project

A way of organizing transactions and associated files with a specific work
activity.

Glossary Xl

Project fileset

A user fileset that is cTeated automatically when defining a project. The
fileset is maintained automatically when files are checked out or
introduced as new files for the project. Files can also be added to this
fileset in advance by a Project Manager using the FMAINT facility.

Project manager

A special user capability assigned to users who can create projects, modify
project status and authorize users to work on projects.

Project menu

Whenever projects are associated with a particular route, users are asked to
select the project that they are working on from a menu when checking
files out or introducing new files.

Project status
A flag that determines what activities can be associated with a project.

PUSHREAD

A step option which allows a read mode copy to replace a master file or write
mode secondary which has not been checked in yet. This option is typically

used for emergency steps.

Read mode

The attribute of a secondary file that indicates it cannot replace the master.
Read mode copies expire after a configured period of time and can be
flushed using the FLUSH utility.

Read only
An access controf level that only allows read mode copies of a file.

Read step

A step that copies a master file to a secondary location in read mode, with no
intention for modification. An expiration policy can be applied, so that
read mode copies created by the step can be cleaned up automatically
with the FLUSH utility.

Receiver

A system that can receive files from other systems, but from which
LIBRARIAN transachions cannot be initiated.

Release Step

Similar to a read step, a release step copies files from the library to a
production location in read mode. Typically, these files do not expire, and
the previous version is often refained.

Xli LIBRARIAN/IX

Retained file

A previous generation of a file saved under a LIBRARIAN-generated
name “GH##EEEH". Files are retained when the retain parameter is used
on a step and the destination file is a tracked master or secondary file. Base
revisions are always retained. If deltas are being used, changes to the
previous generations are stored.

Revision

Any set of changes made to a master file through a checkin step. Revisions
include all generations of a master file including the most current. Leaves
and branches also make up the set of revisions for a file.

Revision ID

Revisions are identified by version name followed by a colon (:) followed
by version count. If the revision is on a branch, branch and leaf count
pairs are appended delimited with periods (.).

Route

A set of automated procedural controls for managing file changes and
distribution. A route consists of a predefined file-movement path that
reflects an established cycle. The route includes steps for all allowable
movements of the files for that cycle.

Route Alias

When defining projects, a route alias can be defined to indicate that the
project only applies to a particular route. The project name can be used in
place of the route name when performing a step (i.e., step.project) to
bypass the project menu.

Ruie Administrator

Similar to the LIBRARIAN Manager, the Rule Administrator is a user with
special user capability who can define LIBRARIAN rules such as steps and
filesets, but is not automatically authorized to perform LIBRARIAN
functions, and cannot create user authorizations.

Scan/Replace

A LIBRARIAN function that searches files for patterns of text, and
optionally replaces the matches with user—defined text.

Scope

The attribute of a step that restricts which files the user can request. When
copying or moving files, the scope specifies where files come from and
where they can be copied. Steps can restrict by fileset, from location and
to location.

Secondary file

Any copy of a master file or another secondary file. All secondaries are
linked to a master (or pending master) either directly or indirectly, and are
in read or write mode.

Slossary Xl

Secondary location
Any location where secondary files can be created.

Serial write

The access control level that allows only one secondary file at a ime to have
write mode access, preventing concurrent modifications.

Server

A system that has an implementation of LIBRARIAN which includes the
LIBRARIAN databases. Clients access this database and other
LIBRARIAN functions remotely.

Seffings
LIBRARIAN session-level parameters that control the user’s working
environment.

Special user capability
See user capabilities.

Standard Rule
A make rule that associates specific target(s) with specific dependencies.

Step

A rule governing the copying and moving of files from one location to
another. Steps are the basic building blocks of the LIBRARIAN file
movement and control system. Steps are grouped into roufes and are
performed using system- and/ or site—defined names.

Step parameter defaults
Options that control the behavior of a step, by default.

Step parameter averrides

If allowed, users can override step parameter defaults by specifying desired
overrides.

Step refinements/exceptions

A step definition that includes rules for altering the destination location
based on the from location, filecode (MPE), and/or filesetf membership.
The same criteria can be used to alter the type of movement (copy, move
or null) or exclude files altogether from the step.

Step type

There are three types of steps: master—to—secondary (MS),
secondary-to—secondary (55) and secondary~to~master (SM). MS steps
are steps that checkout or distribute files. SM steps are steps that check
files in. 5SS steps encompass all steps in between, such as move to test and
approvals.

System

A unique node within a network identified to LIBRARIAN with a unique
system 1D,

XV LIBRARIAN/IX

System ID

Used to identify systems to LIBRARIAN within a network. Optionally
appears as a prefix to a filename delimited by "’ to indicate the
appropriate system.

System Profile

A set of global parameters maintained by the LIBRARIAN manager that
control how LIBRARIAN operates. Includes items such as flush policy,
aging policy, date formats, etc.

Tag

A user—defined name for a particular revision of a file or files that can be
used to identify them at a later time, even after they have been retained.

Target

Component of a make rule that is built from one or more dependencies
using one or more commands. Object code and executables are examples
of targets.

Tracked file

A file for which there is a record in the LIBRARIAN data base. Tracked
files are masters, secondaries or retained files and movement operations are
controlled by LIBRARIAN rules. All other files are untracked files.

Transaction

Any LIBRARIAN operation attempted either successfully or
unsuccessfully on a set of files. Except for commands which provide
information, all transactions are logged in the LIBRARIAN audit trail.

Trunk revision
A revision that is not checked in on a branch.

Unfracked file

A file for which there is no record in the LIBRARIAN database. Ad hoc
operations on these files conform to normal operating system security.
Steps cannot be performed for untracked files.

User authornizations

The mechanism for determining who can do what. Authorizations can be
defined for steps and projects. Special user capabilities can be assigned so
that specific authorization is not required in some cases.

Glossary XV

User capabilities

Grants users certain privileges that transcend standard user authorizations.
These include LIBRARIAN Manager, Application Manager, Project Manager,
Operator, Rule Administrator and X capability. If no special capability is
assigned, authorization is required for steps, and other commands
conform to normal operating system security.

User fileset

A fileset created and maintained by a user through the FMAINT user
fileset module. User filesets allow users to group files for their
convenience, Like master filesets, precede user filesets with % when
referencing them in commands.

IUSERID

A special wildcard that can be used in defining step source and destination
locations. When the step is executed, the wildcard is replaced with the
user [D of the user performing the step. For MPE, this wildcard can be
used to fill in group or account. For UNLX, this wildcard can appear
anywhere in the path name. This wildcard is typically used to check out
file’s into the developer’s work area.

User ID

A unique identifier for a LIBRARIAN user that is password protected.
Users are prompted for their User ID when initiating the LIBRARIAN
program.

User password

Used to protect against unauthorized use of the LIBRARIAN system.
Passwords are required and can be changed by the individual users,

Verity
The LIBRARIAN facility for reviewing file information on—line or off-line.

Version count (VCOUNT)

The sequential number that tracks the number of generations since the
current version was defined.

Version
All the files in an application, as they were at a specific point in time.

Version D
The name given to a version by a LIBRARIAN or Application Manager.

w

Wildcards

Spedial characters or tokens used in filenames to request multiple files
that match a pattern, and/or to determine destination locations.

XVI LIBRARIAN/IX

Work-in-progress

Untracked files that were in development and /or test prior to
LIBRARIAN implementation. These files can be handled using the
INPROGRESS parameter with a checkout step.

Write mode

The attribute of a secondary file indicating that it can replace its master file
through an authorized checkin step.

X
XEQ file

A text file that contains the cornmands for a single macro. These macros
are executed by filename.

Glossary XV

XVIII LIBRARIAN/iX

INndex

Symbols

' ref 1-6, 3-1; adm 4-7

7. adm 46

o oref 14; usr 8-14

unousr 814

— usr 8-14, B-15

i=: usr&=15

$NP: ref 1-67; usr3-13

%%: ref 7-3

@: adm 4-6

- adm 4—6

* ref 1-6,1-94, 1-115; usr 3-3; adm 46
** ref 1-6, 1-94, 1-115; usr 3-3
*Empty**: usr 9-5

A oref 3-1

=: adm 4-6

A

Access control: adm 3—4

setting default: ref 5-16, 5-22
Access mode: ref 1-150; adm 34

default; adm 3-12

setting: ref 1-122

setting default: ref5-16, 5-29
Accessing LIBRARIAN: usr2-1
ACCOUNT variable for MAKE: usr 817
ACTIVATE: ref 1-19
ADJUST: ref 7-7
Admin menu; ref 9-8
Aging policy: ref 1-41
ALL parameter for LM>OUTPUT: usr 7-2
ALL parameter for MAKE: usr 8-5
ALLOW: ref 1-20; usr 9-5
Alternate search locations: adm 7-6
ALTPATH variable for MAKE: usr 818
Annotation: ref 1-29, 1-120; usr 14, 411, 5-1

example of: usr4-12,5-2

setting language for: ref 5-18, 5-30
Applications: usr 1-2, 7—4; adm 2-3, 3-1

automated testing: usr 82

building: ref 8-1

compiling: ref 1-53; usr§-1

default for session: ref 1-95, 1-101, 1-117
defining: ref 5-11
deleting: ref 1-36; adm 2-5
dependencies in: usr §-1
example of archiving: usr 74
file dependencies: usr 84
in progress: usr A—1
menu of: ref 7-17
processing text: usr8-2
rebuilding documents: usr 8-2
versions of; adm 7-1
Applications (AP) screen: ref 5-11
example of: adm 3-2
at command: wsr 3-19
AT location: ref 1-9; usr3—4
Audit trail. See Transaction reporting;
Transactions
Audit trial transaction, flushing: adm 9-2
Authorizations
projects: adm: 64
steps: adm 54
AUTHORIZE parameter for LM>OUTPUT: usr
7-3
Authorized files: usr 3-10
Auto fileset descriptors: adm 3-8
Auto Fileset Update (AUTOUPDATE): ref1-21,
59, 5-21; adm 2-5, 3-8, 3-9
Auto Filesets
descriptors: ref 6-13
report of: ref 6~13
Autoe Filesets (AF) screen: ref 59, 5-21
examplie of: gdm 3-8
Auto Filesets (RAF10) report: ref 1-21, 6-13
AUTOUPDATE. See Auto Fileset Update
AUTOXEQ files: ref1-3,7-14
{ocation of: usr 9-7

Background process, UNIX clients: ref T—4; usr
21

Base revision: ref 1-82; adm 7-2

Base version. See Base revision

Baseline. See Versions

BATCH: usr3-18

Index |

Batch transactions: ref 1-3, 1-13; usr 1-3, 3-9,
3-18; adm4-9

Branches: usr4-3
BRANCH: ref 1-68
merging. 5¢¢ Merging revisions
NOBRANCH: ref 1-70

Building applications: usr 8-1

Bypassing menus: ref 1-3, 7-14

C

Capabilities
See also User capabilities
SM: ref 564
Capacities, LIBRARIAN databases: ref 1-22, 1-55
Capailibes. See User capabilities
Caret (*): ref3-1
Change control cycle: usr 1-2; adm 2-1
See also Routes
CHECKDB: ref1-22
Checking
LIBRARIAN databases: ref 1-22
LIBRARIAN databases capacities: ref 1-55
Checkout
previous revision: usr4-1
simulating: usr A-2
Checkout/ checkin: adm 2-1
CLEANDE: ref 1-23
CLOSE: ref 1-24
Colon (:): ref1-4
Command mode: ref 1-3; wsr 2-5
switching to: usr 2-5
Commands
access restrictions: ref 1-15
commeonly used: usr 2-10
editing previous: ref 1-86, 1-87
listing previous: ref 1-50
looping: 7ef 7-13, 7-21, 7-24
repeating execution of: ref 1-37
summary of: ref 1-16
Company name: ref 65
Comparing files: rzf 1-109
example of: usr4-11
Compiling applications: usr 8-1
Composite Presteps (CP) screen: ref 5-14
example of: adm 4-10
COMPRESS: ref 1-25
Compress Exclusions (CE)} screen: ref 5-13
Compressing files: usr 3-15
automatic: ref 5-62

excluding files from: ref 5-13
Concurrent maintenance, example of: adm 1-9
Conditional expressions: ref 7-12

in macros: usr 9-3
Conditional files: usr 3-12
Conditional looping: ref 7-21, 7-24
CONFIG, changing database passwords: adm 9-2
CONFIGP: ref11-1
Configurabion file: ref 1-2, 11-1

changing: adm C-1
Configuration management: usr 1-3
CONFIRM: usr 3-7
Conflicts

example of: usr 4-9

resolving for merge: usr 4-9
CONNECT: ref 1-27
CONTINUE: ref 7-8
COPY: ref 1-29; usr3-7
Copy steps: adm 4-5
Copying files: ref 1-66
COPYMEM variable for MAKE: usr 8-19
Create projects

PROJECT comumand: adm 6-2

Projects (P]) Screen: adm 6-2
Customized software: adm 7-7
Cycle. Sez Routes

D

Data, deleting mass: ref 5-93

Database passwords: ref 11-1; adm C-1
Database utility: ref 10-1

Datasets
LIBDB: ref 12-1
LIBLOG: ref 124

Date format: ref 562
Date prerequisites: ref 514
DECOMPRESS: ref 1-34
Decompressing files, automatic: adm A-1
Defining rules, Shorteut utility: adm 2-1
Defining steps: adm 4-4, 4-13
DELETE: ref1-36
Delete, mass data: ref5-93
Delta files: usr1-4,44
associated master: ref 1-142; usr 4-14
integrity of: usr4-14
maintaining: usr 46
purging: usr 4-12
restoring from: ref 1-102
verifying checksum: ref 1-142
vs. generation files: usr 4—4

i

LBRARIAN/IX

Dependency tree, for MAKE: usr 8-4
Development
concurrent maintenance with: adm 7-7
in progress: usr A-1
Dial~-DS: ref 5-85
Dialogs: ref 9-11
Differences between files: usr5-4
Distribution, forward versioning with: adm 7-7
DO: ref1-37
Documenting file movements: usr 3-14
DS/3000: ref 5-37
DSLINE: ref 1-27
Dummy target: usr 8=11

E

ECHO: ref 7-9
ECHOQO parameter for MAKE: usr 85
EDIT: ref 1-38
Edit masks: ref 1-11; usr 3-7
for MAKE: wusr 8-14
In Iacros: usr 9—4
in UNIX destinations: adm 4-9
list of symbols: usr 3-8
pathnames: usr 3-8
referring to different elements: usr 3-9
Editing files: usr3-15
Editor: ref 1-14; usr 3-15
Emergency fix rule: adm 1-7
END:: ref 7-10
Environment variables: ref1-2
Error messages, security monitor: ref 1-30, 1-57,
1-68
Escape key: usr2-5
Exception report: ref 1-23
Exclamation point (!} ref 3-1
EXCLUDE variable for MAKE: usr 8-19
Excluded files: usr 3-12
Exclusive access control: adn 34
EXIT: ref 1-3%
Expiration: ref1-150, 1-154
defining policy for: adm 4-12
setting: ref 1-118
EXPRESS SUBMIT: ref 1-13

F

Features: adm 1-2

File Access (FA) screen: ref 5-16
example of; adm 3-12

File dialog: ref 9-11
File Exceptions (RFX10)} report: ref 6-29
File Inquiry (FI) screer: ref 5-24
example of: adm 8-2
File management
objectives: usr 1-5; adm 1-1
overview: adm 1-1
rules: adm 1-3
File menu: ref9-3
File movement rules
See also Routes; Steps
reviewing: adm 4-19
routes: adm 4-1
sequence for defining: adm 4-19
steps: adm 4-1
File movements
associating projects: adm 4-3
defining rules for: adm 4-1
exclusions: usr 3-6
multiple file references: usr3-6
File naming conventions: ref xv
File operations, batch mode; usr 3-18
File security, enhancing: usr 3-15
File transactions: usr 3-1
File Versions (RVD10) report: ref 6-50
File ;/:e;;ions and Timestamps (RVT10) report: ref
File ;f_e;ziom and Timestamps (RVT20) report: ref
Filenames: wusr 3-2
referring to: ref 1-6
Files: ref 1-154
access control: ref 5-16
access mode: ref 1-122, 1-150, 5-16
access override: adm 3-11
annotation: ref 1-30, 1-120
applying selection criteria to: ref 3-10
assigning tags: adm 7-8
associated master: ref 1-142
associated projects: ref 1-144
associated user filesets: ref 1-145
associated versions: ref 1-146
authorized: usr3-10
automatic decompression: adm A-1
checking existence of: usr 9—4
commands for: usr 3-17
compiling: ref 1-53, &1
compressing: ref 1-25
conditional: wsr 3-12
confirming authorized: ref 1-11
copying: ref 1-29
counts: ref 1-147

Index iii

creating listfile of: ref 3-10

decompressing: ref 1-34; usr 3-15

defining movement rules: ref 5-71

deleting tracldng: ref 1-81

description: ref 1-157, 5-16

destinations: usr 3-7

differences between: ref 1-46, 1-109

directly referring to: usr 3-2

editing: usr3-15

exceptions: ref 1-96

excluded: usr3-12

excluding: ref1-10

excluding from compression: ref 5-13

expiration date: regf 1-10, 1-150, 1-154; usr
46

expiration policy: adm 4-12
expired: ref 1-40

FLUSH policy: usr 4-6
flushed: ref 6-7

forward versioning: adm 7-5
generated: ref 1-149
generation count: usr 3—4

in last transaction; usr 3-3
indirectly referring to: usr 3-3

information about: ref 1-138, 5-24; usr 3-21;

adm 8-2, 8-3
langnage: ref 1-120, 1-157, 5-16
last step performed: ref 1-151
last transaction: ref 1-7
locking: ref 1-52, 1-133
lockword: ref1-121
macros that process: usr9-2
merging revisions: ref 1-70
modified status: usr 3-6
moving: ref 1-56
MPE security: ref 1-88, 1-113
new: ref 1-70, 542, 5-51; usr 44; adm 4-15
nonexistent: ref 1-23
on hold: ref 1-52,1-133
online inquiry: ref 1-138
original filenames: ref 1-153
ownership: rgf1-124, 1-130
pathnames: usr 3-8
PC tansfer: ref 1-64, 1-65
pending masters: ref 6-35
previous versions: ref 1-14%
printing: usr 5-1
purged: ref 1-23
purging: ref 1-81
purging old versions: adm 7-4
referring to: ref 1-5; usr 3-2

referring to by project: usr 3-5
referring to by revision: usr 3-3
referring to by step: usr 3-5
referring to multiple: ref 1-10
renaming: ref 1-90
replacing textin: ref 1-105; usr5-2
report by master: ref 6-19
report of: ref 6-7, 617, 6-35
report of expired: ref 6-25
report of generations: ref 6-31
report of missing: ref 629
report of untracked: ref 6-29
report of versions: ref 6-50
retained: adm 4-12
retaining: usr 4—4
revision storage: usr 44
revisions: ref 1-155, 1-156; usr 3-3, 42
scanning: usr5-2
searching for textin: ref 1-105; usr 5-2
secondary location: wsr 34
selecting by date: ref 1-11
selecting by project: ref 1-10
selecting by teg: rof 1-10
selecting tracked /untracked: ref 1-11
sets of: usr6-1
showing differences betweer: usr 54
showing versions of: usr4-12
step history: ref 1-152
subset selection: usr 3-6
tagging: ref 1-128, 1-155; adm 7-8
timestamps: regf 1-99, 1-100, 1-131
tracked: ref1-11
tracking status: usr3-7
transferring from PC: ref 1-65
transferring to PC: ref 1-64
untracked: ref 1-11; usr 3-17
user confirmation: usr3-7
VERIFY: adm §-3
versions of: usr 3-3; adm 7-1,7-4
viclations: wsr 312
Files in Filesets (FF) screen: ref 1-21, 5-21
example of: adm 3-10
Fileset Components (FC) screen: ref 5-19
example of: adm 3-6
Fileset descriptors: ref 1-21
Fileset Explosion (RFE1D) report: ref 6-21
Fileset Explosion (RFE20) report: ref 6-23
Fileset Status (RFD10) report: ref 6-17
Filesets: usr 6-1; adm 3-5, 3-14
ad hoc. See User filesets
auto fileset descriptors: ref 6-13
defining: ref 5-2%

iv

LIBRARIAN/iX

defining hierarchy of; adm 3-14
files in: adm 3~7
hierarchy of: adm 36
information about files in: ref 5-24
logical: wsr 3-3
master. See Master filesets
members of: ref 1-143; adm 37
numbered: wsr 7-2
projects: ref 2-12; usr 6-3
referring to: usr 3-3
report by master: ref 6-19
report of: ref 6~17
reporting members of: ref 6-21, 6-23
user. See User filesets
Filesets {FS) screen: ref 5-29
example of: adm 3-5
FLUSH: ref 1-40, 1-41
Flush, preview of files ready for: ref 6-25, 6-27
Flush Detail (FLUSH) report: ref 67
Flush policy: ref 5-62
Flushing
expired files: adm 9-1
expired transactions: adm 9-2
FLUSHLOG: ref 141, 6-39, 6—41, 6—43; adm 6~5,
66

FM>ADD: ref2-3; usr6-2
FM>CREATE: ref 2—4; wusr6-2
FM>DELETE: rgf 2-5; usr6-2
FM>EXTE: ref 2-6
FM>HELF: ref2-7
FM>LIST: ref 2-8; usr 6-3
FM>LMAINT: ref 2-9
FM>MAKE: ref 2-10; usr 62
FM>PURGE: ref 2-11; usr 6-2
FM>RELATE: ref 2-12; usr6-2
FM>SERVER: usr 6-2
FM>SEVER: ref 2-13
FM>SHOW: ref 2-14; usr 6-3
FMAINT: ref 1-42,2-1; adm 6=2
accessing: ref 3-7
commands: ref 2-2
exiting: ref 2-6
FOPEN
decompression: adm A-2
trapping: adm A-2
FORMAT parameter: usr 3-22
Forward versioning: adm 7-5
example of: adm 1-9
searching multiple locations: adm 7-6

setting up: adm 7-5

Forward Versioning (FV) screen: ref 5-32
example of: adm 7-6

Function keys: ref 1-1

G

GCOUNT. 5¢e Generation count
Generated Files (RGF10) report: ref 631
Generation count: usr 3-4, 44
referring to: ref1-8
Generation files: ref 1-7, 1-8, 1-149; usr4-4
original filenames: ref 1-153, 6-31
report of: ref 6-31
vs. Delta files: usr 44
Getting started: wusr 2-1
Global changes to LIBRARIAN database: ref 10-1
Global search/replace: usr 5-2
GOTO: ref 7-11
GROUPF variable for MAKE: usr 8-18

H

HELP: ref 1-43; usr2-6; adm 4-19
Help menu: ref 9-10

HELP PROJECTS: adm 8-7

HELP STEPS: usr 3-9; adm 4-19, 8-7
Housckeeping: adm 9-1

IF/ELSE: ref 7-12

Indirect files. See Listfiles

Irfo menu: ref9-7

INPROGRESS parameter: usr A-1

J

JCWS
adjusting values in macros: ref 7-7
LIBMATCHES: r¢f 1-108
transaction status: wsr 3=21

Jobs: usr3-21
example of: usr 320
running LIBRARIAN from: wusr 3-19

K
KILL: ref 145

Index v

L

Language: ref 1-157
setbing: ref 1-120, 5-16; adm 3-12
setting default: ref 5-29

LAST: usr3—4

Last transaction
referring to files in: ref 1-7; usr3-3
resetting reference to: ref 1-94
saving list of files from: ref 1-115

LASTNOTO parameter: usr 34

LCOMFPARE: ref 1-46; usr 1-5
example of: usr 55

LIBBATCH variable: wsr 3-19

LIBDB database: ref 12-1

LIBLOG database: ref 12—4; adm 8-8
maintaining: ref 4-6
transaction codes: ref 6-3

LIBMGR. See LIBRARIAN Manager

LIBPROMPT variable: usr 2-6

LIBRARIAN
accessing: usr 2-1
benefits and features: usr1-1
components: usr 1-2
concepts: usr1-1, 1-2
configuring: ref 11-1; adm C-1
configuring server logon/passwords: ref 11-1
database passwords: ref 11-1
features: usr 1-5; qdm 1-2
terminology: usr 1-2

LIBRARIAN Administrator, housekeeping: adm
9-1

LIBRARIAN databases: ref 12-1
capacity management: adm 9-2
changing passwords for: adm 9-2
loading/unloading: adm B-1
monitoring: ref 1-22, 1-55
passwords: adm C-1

LIBRARIAN Manager: adm 2-2, 27, 5-3
capability: adm 2-7
creating: adm 2-7
deleting: adm 2-8
restricting: ref 5-62

LIBRARIAN prompt, changing: usr 2-6

LIBRARIAN/iX Plus: ref 1-29, 146, 1-76, 1-81,
1-102
features: usr1+4

Library. See Master library

LIBSCREEN: ref 149

LIBUTIL: ref10-1; adm B-1

Line drawing characters: ref 1-2

Link: ref 1-24
LISTF: ref1-6
in MAKE: usr 8-16
Listfiles: usr 7-1
appending to: ref 3-3
archiving with; usr 7-4
creating: wsr 7-1
creating with SHOWLOG: ref4-12
editing: ref 3-5
example of: usr 7-2
generated by SHOWLOG: adm 8-8
kisting files in: ref 3-9, 3-15
maintaining: ref 1-51, 3-1; usr 7-3
maintaining decumentation for: ref 34
numbered: ref 3-13
referring to: ref 1-6; usr 3-3
refreshing content of: usr 7-2
selecting files based on step: usr 7-3
selecting files by date: wusr 7-2
selecting files for: ref 3-10
showing related documentatior: ref 316
sorting: ref 316
using with STORE: usr 74
LISTEX10: ref1-23
LISTREDQ: ref 1-50
LM>ALTER: ref 3-3; wsr7-3
LM>DOCUMENT: ref 3-4; usr 7-3
LM>EDIT: ref 3-5; usr 7-3
LM>EXTT: ref 3-6
LM>FMAINT: ref 3-7
LM>HELF: ref 3-8
IM>LIST: ref 3-9; usr 74
LM>QUTPUT: ref 3-10; usr 7-1, 7-3, 74
LM>REPORT: ref 3-15; usr7—4
LM>SORT: ref 3-16; usr7-3
LMAINT: ref 1-51, 3-1; usr 7-1
accessing: ref 2-9
commands: ref 3-2
exiting: ref 3-6
LOCK: ref1-52
Locks, status: ref 1-141
Lockwords: usr 3-15
assigning: usr 3-15
changing: ref 1-136; usr 2-3
setting: ref 1-121
Log records
See also Transactions
deleting: ref 46
Log reporting: ref 1-130
See also Transaction reporting
Logical fileset, referring to: ref 1-6
LOGON wildcard: adm 4-7

vi

LIBRARIANfiX

Long Pathname (LP) screen: ref 5-34
Lookup, step refinement: ref 5-67
LOOP/NEXT: ref 7-13
Loops
commands: ref7-13, 7-21, 7-24
in macros: usr 94
nesting: usr 9-5
REPEAT/UNTIL: usr9-5
WHILE/ENDWHILE: usr 9-5
LF parameter: usr3-21

M

Macros: ref 7-1; usr 3-15, 3-21, 9-1
automatic execution of: usr 9-7
AUTOXECQ: usr 97
checking file existence in: usr9-4
comments in: ref 7-5
conditional expressions: ref 7-12; usr 9-3
conditional looping: ref 7-21, 7-24
control language summary: ref 7-6
control options: ref 7-15
controlling display: ref 7-9
displaying messages: ref 7-9
edit masks: usr 9—¢4
editing: ref 7-2
entering data on the command line: ref 7-15
error handling: ref 7-8
example of: usr 9-2
execution of: ref 1-161, 7-1
filename substitution in: ref 7-3
files for: ref 7-2, 7-15; usr 9-2
jumping to specific location in: ref 7-11
location of: usr 3-15, 9-2
looping for files: ref 7-13; usr 94
looping through records in a file: ref 7-13; usr

9-5

menus in: ref 7-17; usr9-3

nesting: ref 7-15; usr 9-6

nesting loops: 7ef 7-15; usr 56
parameters in: ref 7-3, 7-17, 7-22; usr 9-3
pausing in: ref 7-23

procedure files: ref 1-125, 7-20; usr 9-7
prompting users: ref 7-17

providing custom help for: ref 7-3
reusing parameters: ref 7-15; usr 9-6
RUN: ref 7-5

signalling end of: ref 7-10

specifying parameter vatues: ref 1-161
STREAM: ref 7-5

suppressing commands/messages: ref 7-9

suppressing waming: ref 7-15
terminating: ref 710
user capabilities in: ref 120
variables. See Parameters

Macros memu: ref 9-5

MAIL: 7ef 1-55

Main menu: ref9-2

Maintenance, concurrent development with: adm
7-7

MAKE: ref 1-53, 8-1; usr 8-1-8-3
See also Makefiles
accommodating new files: usr 8-8
account default for: ref 8-9
across multiple accounts: usr 8-18
applying edit mask to LISTF in: usr 88
automatic dependency determination: wusr

8-16

benefits: usr 8-2
COBOL COPYLIB: ref8-9
controlling job Jaunching: ref 8-8
controlling job logor: ref 85
defining rules for: ref 8-2
dependency tree: usr 84
dummy target: usr 8-11
edit masks: ref 86
example of operation: usr B-3
executing: usr 8-20
files in multiple accounts: ref 8-10
generic rules: usr 8-15
generic values: ref 86
group default for: ref 89
iterative command processing: wusr 8-12
job logon: usr 88
makefiles: usr8-2
prompting users for input usr §-19
rules: ref 8-2; usr 8-5
searching for dependendies: ref &5
targets: usr 82
TOUCH command: wusr 8-20
types of rules: usr 8-14

Makefiles: ref 8~1; usr 8-2
comments in: ref 8-2: usr§-5
conventions: ust 8-5
creating: usr 8-5
defining rules: usr8-5
delimiters: usr 8-14
edit masks in: usr 8§-14
example of. usr 86, 87, 89
job cards in: 157 8-13
LISTF variables: usr 8-16
multiple generic dependencies in: usr 8-15
rules: usr 8-14

Index vil

special variables: usr 8-16
system vanables in: usr 8-20

variable substitution in: ref 8-7; usr 812

MAKEOUT: usr 88

Mass changes to LIBRARIAN database: ref 10-1

Master File Status (RFD20) report: ref 6-19
Master files: usr1-2; adm 1-3
associated: ref 1-148
associated delta files: usr 4-14
associated deltas: ref 1-142

associated write-mode secondary: ref 1-148

new: ref 542, 5-51
ORPHAN: ref 1-61
pending: ref 1-70, 542, 5-51, 6-35
reporting revisions of: ref 6-37
Master filesets: ref 1-143
adding files to: ref 5-21; adm 3-10
defining hierarchy of: ref 5-19
deleting: adm 3-13
deleting files from: ref 5~21
reporting: adm 3-13
Master library: wsr 1-2; adm 1-3, 3-3, 3-14
defining: ref 5-19, 5-21, 5-29
deleting: adm 2-5, 3-13
reporting: adm 3-13
MASTER parameter: ref 1-70
Matching patterns: ref 1-106
MEMO: ref 1-55; usr 3-15
Memos: ref 1-14; usr 3-15
editing: adm 88
MENU: ref 7-14
Menu mode: ref 1-3; usr 2—4
dialogs in: ref9-11
steps dialog: wsr 2-7
switching to: usr 2-5
using: usr2-5
Menus
Admin: ref 3-8
bypassing: ref 1-3, 7-14; usr 24
controlling: ref 7-14
File: ref9-3
Help: ref 9-10
hierarchy of: ref9-1
in macros: ref 7-17; usr 24
Info: ref -7
Macros: ref 9-5
Main: ref 9-2
Options: ref 913
Revision Critenia: ref 9-12
setting parameters: usr -3

suppressing: ref 7-14

Tools: ref9-6

User: ref 9-4

user—defined: ref 7-17; usr 9-3
Merge: usr1-4
Merge conflicts

example of: usr4-9

setting language for: ref 5-18, 5-30
Merging revisions: ref 1-70; usr 4-7

conflicts: usr 4-9

excluding specific changes: usr 4-9

including specific changes: usr4-7
Messages

audit trail: ref 1-55

controlling: usr3-12

to users: ref 1-55
Modification timestamps: ref 1-131
MODIFIED: ref 1-11; usr 3-6
MOVE: ref 1-56
Move steps: adm 4-5
Move-to—production: usr 1-3
Movement rules. Sez Steps
Moving files: ref 1-66
MFE

commands: regf1-3

security: ref 1-113
MSUSER wildcard: adm 4-7
Multiple search locations: adm 7-6
Multiple versions, example of: gdm 1-9
Multiple write access control: adm 3—4

N

Network Configuration (NC) screen: ref 5-37

example of: adm 2-5
Networking

buffer size: ref5-37

changing configuration: adm 9-3

configuring: ref 5-37, 5-69, 5-85

example of: adm 2-5

linking to remote MPE systems: ref 1-104

logon security: adm 2-5
node names: ref 569
overrides: ref 585
passwords: ref 5-37, 585
troubleshooting: adm 2-5
X25: adm 2-5

New files: ref 1-70; usr4—4
See also Pending master files
added with a step: ref 1-5
nales for: ref 5-51; adm 4-15

UBRARIAN/iX

Node name, System—to~System Table (SS) screen:
ref 569

NOMAKE parameter for MAKE: wusr 8-5

NOVIOLATIONS: usr 3-20

NS5/3000: ref 537

Null steps: adnt 4-5

O

Object code, introducing: ref 5-51
Objectives: adm 1-1

file management: usr 1-5
Online help: ref 1-5; usr2-6
Online inquiry

files: ref 1~138

versions: ref 1-159
Option menu: rgf 9-13; wsr2-9
OPTION statement for macros: ref 7-15
Original filename. See Generations
ORPHAN parameter: ref 1-32, 1-61
QUTPUT: usr 7-3
Output, redirecting: ref 64
OVERLAY: ref 1-32, 1-62
Owner, setting: ref 1-124, 1-150
OWNER wildcard: adm 4-7

P

Parameters .
allowing users to override: adm 4-12
in macros: usr9-3
step defaults: adm 4-12

PARM: ref 7-17

PASSWORD: wsr2-3

Passwords
changing: ref 1-136, 5-91
LIBRARIAN databases: ref 11-1
providing: usr 2-1
removing: usr 2-3
security: ref 5-64, 5-65; adm 26

Pathnames: ref 1-6
entering long names on screen: ref 5-34
recursion: usr 3-2

Pattern matching: ref 1-106
wildcards: usr5-3

Pause in macros: ref 7-23

PC: ref1-64,1-65

PCRECEIVE: ref1-64

PCSEND: ref 1-65

Pending master: ref 1-70

Pending master file, report of: ref 6-35
Pending Master Files (PF) screen: ref 542
Pending Master Files (RPM10) report: rzf 6-35
Pending Production Areas (PP) screen: ref 5-51
example of: adm 4-16
tield descriptions: adm 4-16
PERFORM: ref 1-66; usr2-9, 313
PH capability: adm A-1
Pre-Flush Notification (REN10) report: ref 6-25
Pre-Flush Notification (RFIN20) report: ref 6-27
Presteps: adm 4-9
alternate: adm 4-9
composite: ref 5-14; adm 4-9
multiple: adm 4-9
Steps (ST) screen: adm 4-9
Previous transaction, saving files from: ref 1-115
PRINT: ref1-76
Printer, escape sequences: ref 147, 1-77
PRINTESC file: ref 1-47
Printing files: usr 5-1
annofated: usr5-1
PRIVATE: usré&-2
Private filesets: usr 6-2
PROCEDURE: ref 7-20
Procedure files: ref 1-125; usr 9-7
Procedures
executing: ref 1-161
naming: ref 7-20
signalling end of: ref 7-10
terminating: ref 7-10
Process, running in the background: ref 1-4; usr
2-1
Process ID numbers: ref 1-19, 145
Programs, compiling: ref 8-1
PROJECT: ref1-78
Project Authorizations (PA) screen: ref 540
example of: adm 6-2
field descriptions: adm 6-2
Project Authorizations (RUP10} report: ref 647
Project fileset, implied reference to: ref 1-
Project filesets: adm 6-7
finding secondaries: usr 6-3; adm 6-7
hierarchies: ref2~12
maintaining: usr 6-3
updating automatically: ref 1-23, 1-59, 1-82,
1-92; usr 6-3; adm 6-7
using FMAINT with: adm 62
Project Inquiry (PI) screen: ref 545
example of: adm 66, 8-3
Project manager, assigning capability: adm 61
Project Status (PS) screen, example of: adm 6-5
Project Status Change (PS) screen: ref 5-54

Index ix

Projects: adm 6-1, 62 R

“no project” option: usr 3-13 ;
associating files with: adsm 6-7 Ié; :g}ﬁ
authm:izi.ns users for: regf 5-40; adm 6-4 Read access control: adm 3—4
changing linkage: ref 1-126 Read mode secondary, updating: ref 1-134
changing status of: ref5-54; adm 6-5 Read-mode access: adm 3—4
creating: adm 6-2 Read-mode secondaries, housekeeping: adm 9-1
default for session: ref1-97, 1-126 Recursion
defining: ref 1-78 in pathnames: ref 1-6; usr 3-2
defining hierarchies: adm 6-3 levels of: usr3-2
defining manager for: adm 6-1 REDO: ref 1-86, 1-87
example of: adm 6-2 Reflection: ref 1-64, 1-65, 1-85
files in: rgf1-144 RELEASE: ref 1-88
filesets: wsr 6=3; adm 6-7 Releases, multiple: adm 76
flushing transactions assodated with: adm Remote logon: 7ef 1-27

6-5, 66 configuring: ref 5-37
hierarchies: ref2-12 Remote sessions: ref 1-39

Remote systems

implied reference to files: usr 35
inquiring: adm 8-5

linking files to: usr 3-13

list of: adm 66, 83

list of authorized: adm §-7

linking to: ref 1-24, 1-104

logon information: adm 9-3
RENAME: ref 1-90
REPEAT/UNTIL: ref7-21
Replacing text in files; ref 1-105; usr 5-2

menu of: ref 7-17 ,) !
online listing of: 7gf545 Rep;r:;lables. ref 1-107; usr 54
report of: ref 6-33 from command mode: adm 8-2
report of users authorized for: ref 647 from menus: adm 8-1
requiring: ref 5-57; adm 4-3 generating: ref 6-4; adm 8-1
selecting from menu: adm 6-7 information about files: adm 82
specifying: adm 6-7 project status: adm 8-3
status change: adm 6-5 redirecting: ref 6~4
subset selection: usr 3-6 retained files: ref 6-31

Projects (PJ) screen: ref 548 See also Generations
example of: adm 6-2 SHOWLOG: adm 8-8

Projects (RPJ10) report: ref 6-33 summary of: ref 6-2

Prompt: ref 14 transaction codes: ref 6-3

version data: adm 8—4
Request status: usr 3-9
RESET (APFLICATION): ref 1-95, 1-101

changing: usr 2-6
controlling: wsr3-12

PUBLIC: usr 6-2 RESET (EXCEPTION): ref 1-96

Public filesets: usré6-2 .

PURGE: ref 1-81; usr 7 RESET (PROJECT): ref 1-57

’ RESET (ROUTE): ref 1-98

RESET {(TIMESTAMP): ref 1-99, 1-100
RESET L] (Ii): rdl_%

Q RESETONZERO parameter for LM>OUTPUT:

usr 7-2

QA function: adm 1-6 RESTORE: ref 1-101

QEDIT files: ref1-77, 1-108; usr 5-1,5-3 Retained files

QUIET: ref 1-83 See also Generation files

QUIT: ref 1-39 location of: usrd4-6

x UBRARIAN/IX

maintaining: usr4-6
Retained masters, flushing: adm 9-1
Retained secondaries, flushing: adm 9-1
Retaining old revisions: wsr 4-4
RETRY: ref 1-27, 1-104; usr 3-20
Revision Criteria menu: rzf 9-12; usr 28
Revision History (RRHI10) report: ref 6-37
Revision tree, example of: usr 4-2
Revisions: wsr 4-1, 4-11

branching: usr4-1

comparing: usr 4-9

concepts related to: adm 7-2

deleting: adm 7—4

file reference: usr 3-3

history: ref 1-156

identifying: usr 4-2

information about: ref 1-138; usr4-12

location of: usr 46

maintaining: usr 46

merging: ref 1-70

See also Merging revisions

printing with annotation: usr4-11

referring to: ref 1-7

reports of: ref 6~37; usr 4-15

retrieving: adm 7-3

storage of: usr4—4

tagging: aim 7-§

tags: ref 1-155

vs. versions: usr &-1; adm 7-1
Root revision. Sez Base revision
Routes: usr1-3; adm 1-3, 4-1,4-2

default for session: ref 1-127

defining: ref 5-57

examples of: adm 1-4,4-2

menu of: ref 7-17

report of: ref 68, 6-10

steps in: adm 4-3
Routes (RT) screen: ref 5-57
Rules: adm 1-3

default for session: ref 1-98

file movement: adm 4-1

setting up: adm 2-1

Shortcut utility: adm 2-1
RUN: ref 1-19, 145
Running LIBRARIAN: wust2-1

S

SCAN: ref 1-105
Scan
appending to lines with match: ref 1-107

deleting lines with match: ref 1-107
example of: usr 5-3
QEDIT files; ref 1-77, 1-108; usr5-1, 33
replacement variables: usr 5—4
variables: ref 1-107
SCHEDULE variable for MAKE: usr 8-17
SCOMPARE: ref 1-109; usr 56
Screens
accessing: ref 1-49, 5-3
adding data: ref 54
breaking to UNIX/MPE: ref 5-5
carrying data forward: ref 5-5
changing data: ref 5-5
delebing data: ref 55
enter key: ref 54
exiting: ref 5-5
finding data: ref 54
function keys: ref 5-5
moving between: ref 54
moving between fields: ref 5—4
security: ref5-3
summary of: ref 5-1
using: ref 54
using online help: ref 5-5
Searching files for text: ref 1-105; usr5-2
Secondary files: usr 1-2; adm 1-3
in progress: usr A—2
indirectly referring to: ref 1-9; wsr 34
new: ref 5-51
not checked out: usr A-1
ORPHAN: ref 1-61
pattern—matching: usr5-3
untracked: usr A-1
updating with current master: ref 1-134
write—mode: ref 1-148
SECURE: rf1-113
Security
MPE: ref 1-88
Setting Passwords: ref 5-64, 5-65
setting passwords: adm 2-6
Security monitor: ref 1-91
error message: ref 1-30, 1-57, 1-68
Sequence. See Routes
Serial access control: adm 2-1, 34
Server: ref 1-2
configuring logon/passwords: ref 11-1
logon: adm C-1
passwords: adm C-1
SET (APPLICATION): ref 1-117
SET (EXPDATE): ref 1-118
SET (LANGUAGE): rf1-120
SET (LOCKWORD): ref 1-121

Index xi

SET (MODE): ref 1-122
SET (OWNER): ref 1-124
SET (PROCEDURE): ref 1-125
SET (PROJECT): ref1-126
SET (ROUTE): ref 1-127
SET (TAG): ref 1-128
SET *: usr3-3
SET * (**): ref 1-115
Setting parameters using menus: usr 9-3
Setup
applications: adm 2-3
defining steps: adm 2—4
defining users: adm 2—4
deleting: adm 2-5
troubleshooting: adm 2-5
SETVAR: ref 7-22
Shell commands: ref 1-2, 1-3; usr 2-5
Shortcut: adm 2-1
defining applications: adm 2-3
defining library: adm 2—4
defining steps: adm 2—4
defining users: adm 2—4
deleting setup: adm 2-5
function keys: adm 2-3
running: adm 2-2
troubleshooting: adm 2-5
SHOW parameter for MAKE: usr 8-5
SHOWLOG: ref 1-130, 4-1, 6-41; adm 8-38
accessing: ref4-1
commands summary: adm 8-8
creating listfiles with: ref 4-12
example of: adm 8-10
exiting: ref 4-5
generating reports: ref 4-10
getting saved settings: ref 49
refreshing display: ref 4-22
report format: ref 47
resething report values: ref 4-15
resetting subset selection: ref 4-26
saving report settings: ref 4-16
selecting subsets: 7ef 4-24
selection criteria: ref 4-17
setting offline/online: ref 4-13
sort sequence: ref 4-23
title for reports: ref 25
fransaction codes: ref4-2
SHOWLOG>EXIT: ref 4-5
SHOWLOG>FLUSH: ref4-6
SHOWLOG>FORMAT: ref 4-7
SHOWLOG>GET: ref £-9
SHOWLOG>GO: ref 4-10

SHOWLOG>HELP: ref4-11
SHOWLOGSLIST: ref4-12
SHOWLOG>OQUTPUT: ef 4-13
SHOWLOG>REDO: ref4-14
SHOWLOG>RESET: ref4-15
SHOWLOG>SAVE: ref 4-16
SHOWLOG>SELECT: ref4~17
SHOWLOG>SHOW: ref 4-22
SHOWLOG>SORT: ref 4-23
SHOWLOG>SUBSET. ref 4-24
SHOWLOG>TITLE: ref 4-25
SHOWLOG>UNDO: ref 4-26

SIMULATE parameter for LM>OUTPUT: usr 7-3

SM capability, warning message: ref 564
Son processes: ref 1-45
Source code, annotation: usr 1-4

Source/object synchronization, example of: adm

1-7
Special characters: adm 4-7

Step Authorizations (RUS10) report: ref 648

Step Authorizations (SA) screen: ref 5-59
example of: adm 5-4
field descriptions: adm 5-5
Step Detail (RAD20) report: ref 6-10
Step fileset, implied reference to: ref 1-10
Step Options (STO) screen: ref 5-76
example of: adm 4-10
field descriptions: adm 4-12
Step Options menu: usr 2-9
Step Refinements/Exceptions (SR) screen: ref
5-66

example of: adm 4-19
purpose: adm 4-18

Step Summary (RAD10) report: 7ef 6-8

Steps: usr1-3; adm 1-3,2-1,4-1,4-3, 44
authorizing users for: ref 5-59; usr 3-9
command line execution: usr 2-9
commonly used: usr2-10
copy: adm4-5
customizing: adm 4-10
date prerequisite: ref 5-14
default parameters: ref 5-76; adm 4-12
defining: ref 5-71
defining advanced options: ref 5-76
defining alternate location for: ref 5-32
defining ambiguous: adm 4-4, 4-13
dependencies: adm 49
description: ref 5-71
destination location: adm 4-5, 4-6
dialog: ref 9-11; usr2-7
entering description for: adm 4-10
example of executing: wusr 3-12

Xii

LUBRARIAN/IX

examples of: adm 1-4,4-2,4-15
exceptions: ref 5-66; adm 4-18
executing: ref 1-66
explanation of: usr 3-1
forward versioning rules: ref 5-32; adm 76
implied reference to files: usr 3-5
inquiry: adm 8-5
list of authorized: adm 8-7
lookup refinement: ref 5-67
master—to—secondary: adm 4-5, 46
menu of: ref 7-17
multiple prerequisites: ref 5~14
new files: adm 4-15
overrides: adm 4-12
pending production areas: adm 4-15
PERFORM command: ref 1-66
performing: usr2-6, 2-7
presteps: adm 4-9
refinements: ref 5-66; adm 4-18
report of: ref 6-8, 6~10
report of users authorized for: ref 6-48
request status: usr 3=10
restricting: ref 5-59
rules for: adm 1-4
rules for new files: ref 5-51
secondary-to-master: adm 45, 46
secondary-to—secondary: adm 4-5, 46
sorted list of; adm 44, 4-13
source location: adm 4-5, 46
Step Options (STO) screen: adm 4-10
Steps (ST) screen: adm 44
summary of: ref 6-8
tuning; ref 5-66
types of: adm 4-5
users authorized for: adm 44, 4-13
using: usr 3-9

Steps (ST) screen: ref 5-71
example of: adm 4-4
field descriptions: adm 44

Steps menu: wusr2-7

STORE: usr7-4

STREAM: ref 1-13; usr 3-9, 3-19; adm 4-9
variable for MAKE: wusr §17

Subset selecton: usr 3-6, 3-7

Suspended process: 7ef1-19

Switching modes: 7ef 1-3

System ID, changing globally: adm B-1

System overrides: ref 585

System profile, customizing: adm 2-7

System Profile (SP) screen: rzf 562
example of: adm 2-7
SM capability: ref 564
Systern variables: ref 1-1
LIBEDITOR: ref 1-38
LIBPROMFT: ref 14
source and destination: adm 4-6, 4-8
System—to-System Table (55} screen: ref 5-69
node name: ref 5-69
Systems, mass change of references to: rgf 10-1
Systems (SY) screen: ref 5-85

T

Tags: adm 7-8

definition of: adm 7§

setting: ref1-128

subset selection: wsr 36
Targets, dependencies: usr 82
testing: adm 1-6
Text

replacement: ref 1-105

search: ref 1-105
Third party software: adm 7-7
Timestamps: ref 1-125, 1-131

compiling based on: usr 8-1

discrepandies: ref 1-140, 6-54

for MAKE: wusr §-20

from file label: ref 1-140

LIBRARIAN: ref 1-141

report of: ref 6-52, 6-54

validation: ref 1-140, 6-54
Tools: usr5-1

menu of: 7ef 9-6
TOUCH: ref 1-131; usr3-20
TRACKED parameter: usr 3-18
Tracking, deleting: ref 1-61
Transaction Detail (RTD10) report: ref 6-39
Transaction Detail (RTD40) report: ref 641
Transaction Summary (RTS10) report: ref 6-43
Transactions

aging policy: ref 141, 5-62

audit trail: usr1-3

batch: wusr 3~18

codes: ref4-2,6-3

deleting: adm 8-8

deleting data: ref 46

files: usr 3-1

log reporting: ref 1-130

logging: ref 562

memos associated with: ref 643

Index X

purging records of: ref 1-41, 46

report of: ref 1-130, 4-1, 4-2, 6-39, 641, 6-43;

adm 8-8
status codes: ref 642
status of: usr 3-21
using jobs: usr 3-19
Trunk: usr4-2

U

UNIX
background process: ref 1-4; usr2-1
command line options: ref 1-2
commands: ref 1-3
pathnames: ref 1-12; usr 3-8; adm 4-9
UNLOCK: ref1-133
UNMODIFIED: ref 1-11; usr 3-6
Untracked files: usr3-17
commands for: usr3-18
UPDATE: ref1-134
USE parameter for LM>OUTPUT: usr 7-3
USER: ref1-136; usr2-3
User capabilities: ref 1-20
assigning: ref 5-89; adm 5-3
granting temporary: usr 9-5
list of: adm 5-3
User Capabilities (UC) screen: ref 5-89
example of: adm 5-3
User fileset maintenance utility: ref 142
User filesets: ref 1-42, 2-1; usr 6-1
adding files to: ref 2-3
creating: ref 2—4; usr6-2
defining subsets: ref2-12
deleting files from: ref 2-5
disconnecting subsets: ref 2-13
examples of using: usr 6-3
files in: ref 1-145
information about: wsr 6-3
listing by user: ref 2-8
listing files in: ref 2-14
listing subsets of: ref 2-14
mamtaining: usr 62
making public/private: ref 2-10
private: usr 6-2
public: usr 62
referring to: usr 6-3
removing: ref 2-11
User identification: usr 2-1
switching: wsr 2-3
User IDs: ref 1-20

User menu: ref 94

User passwords: rgf 1-20

USERID wildcard: adm 4-7

Users: adm 5-1
assigning capabilities: ref 5-89; adm 5-3
authorizing for steps: ref 5-59; adm 5—4
defining: ref 5-91
establishing for session: ref 1-136
inactive: gadm 5-2
passwords: adm 5-2
project authorization: ref 540; adm 6-~4
report of: ref 645
report of authorized projects: ref 6-47
report of authorized steps: ref 648
reports of; adm 5-6
sequence for defining: adm 5-6
step authorization: adm 54

Users (RUDI1D) report: ref 6~45

Users (US) screen: ref 5-91
deleting mass data: ref 5-93
example of: adm 2-8,5-1

\'

Variables

for macros: ref 7-17, 7-22

in macros: usr9-3

LIBBATCH: usr 3-19

LIBEDITOR: ref 1-38

LIBPROMPT: usr2-6

list of: usr3-21

MAKE: ref 8-7

makefiles: usr8&=i2, 8-16

scan/replace: ref 1-107
VCOUNT. See Version count
Vendor software: adm 7-7
VERIFY: 78f 1-138; usr 3-21, 3-22; adm 8-3

example of: adm 84

retrieving files: ref 1-138
VERSION: ref 1-159; adm 84
Version count: usr3—4, 42

referring to: ref 1-7
Versions: usr 1-3; adm 7-1

bringing forward: ref 5-32

copying: adm 7-3

defining: ref 1-159; adm 7-3

deleting: ref1-159; adm 74

example of: adm 7-2

files: ref1-146

flushing: ref 1-159

forward versioning: adm 7-5

LIBRARIAN/iX

ideniifying: adm 7-3

indirect file reference: usr 3-3

mformation about: adm 8—4

list of: ref 1-159; adm 84

obsolete: ref 1-40; adm 7—4

referring to: ref 1-7; adm 7-3

report of: ref 614

report of files in: ref 6-50

restoring: adm 7-3

retained: wsr 3—4

status of: adm 74

vs. revisions: adm 7-1
Versions (RAV10) report: ref6-14
Video enhancements: usr 5-6
Violations: usr3-12

w
WAIT: ref 7-23
WHILE/ENDWHILE: ref 7-24
Wildcards: ref xv, 1-6
7 adm 4-6,4-7
adm4-7
- adm 46,47
* adm 47
=: admd—6
for pattern-matching: usr 5-3
special: adm 4-7
Work in progress: usr A~1
simulafing checkout: usr 8-5

Write Mode Secondaries by Path (RSF20) report:

ref 6-16

Write Mode Secondaries by User (RSF10) report:

ref 6-15
Write-mode access: adm 34
Write-mode secondaries: ref 1-148

X

X commands: usr3-17, 318
X.25: ref 5-37; adm 2-5
X-terminal: ref 1-2
XCOMPRESS: ref 1-25
XCOPY: ref1-29
XDECOMPRESS: ref 1-34
XEQ: ref 1-161

XEQ file. 5ee Macros
XEQLIST: ref 7-13
XLCOMPARE: ref 1-46
XMOVE: ref 1-56
XPRINT: ref1-76

XPURGE: ref 1-81
XRENAME: ref 1-90
X5CAN: ref1-105
XSCOMFARE: ref 1-109
xterm: ref 1-2
XTOUCH: ref1-131

Index xv

xvi LIBRARIAN/IX

