
LIBIUPHAN/iX™

Administrator's Guide

Version 4jM
May 1998

Quality • Innovation • Service

LIBRARIAN/iX Admin is trator's Guide
Version 4.00

Copyright © 1988 — 1995 by Operations Control Systems, Inc.
All Rights Reserved Pr in ted in the U.S.A.

document is error-free,

Restricted Rights Legend

The information in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in wri t ing. OCS does not warrant that this

This manual contains proprietary information that is protected by copyright. No part of this
document may be copied, reproduced, or translated to another language without the prior

LIBRARIAN' , LIBEVDQAN/iX™, and OCS/LIBRARIAN'" are trademarks of Operations
Control Systems, Inc.

All other company and product names used in this publication are trademarks or registered
trademarks of their respective companies or organizations

written consent of OCS.

Table of Contents

Audience

Preface
Purpose of This Manual

How This Manual is Organized .

File Naming Convenfions

vu
Conventions

Related Docuxnentation
Client Services
Your Comments . .

Review and Load Data .

Chapter 1: Introduction
File Management Objectives .

Typical File Management Objectives ...
File Management Rules

Master Library Files
Diagram File Movements
Identify Rules for File Movements

Examples of FileManagement Rules
Example 1 — Basic Development Environment
Example 2 — Separate QA Function

Example 3 — Networking and Source/Object Synchronization
Example 4 — Mult iple Version Management

Chapter 2: Getting Started with Basic Rules
Basic Setup .

Running Shortcut
Identify An Application .
Define the Appl ication Library .
Define Steps .
Identify Users

Troubleshooting
Deleting an Application ..
Setting Password Security .
Customizing the System Profile
Creating a LIBRARj'AN Manager .
What Next?

Chapter 3: Master Library
Defining an Appl ication

Defining a Library .
D efining Filesets
Access Mode and Control .

2 — 1
2-2
2 — 3
2W
2M
2 — 5
2 — 5
2 — 5
2 — 5
2-6
2 — 7
2 — 8
2-8

1 — 1
1 — 2
1 — 3
1-3
1 — 3
1 — 4

1&
1-5
1 — 6
1 — 7
1 — 9

3 — 1
3-2
3 — 3
3 — 3
W3

Applications (AP) Screen Fields

Table of Contents i

A ccess Mode .. . , , , ,
Access Control
How Access Control and Access Mode Work

Defining Filesets .
Filesets (FS) Screen Fields

Defining a Fileset Hierarchy .
Fileset Components (FC) Screen Fields

Defining Physical File Members
Auto Filesets (AF) Screen Fields ..

Using AUTOUPDATE for New Master Files
Using the Files in Filese ts (FF) Screen

Files in Filesets (FF) Screen Fields .

File Access (FA) Screen Fields..

3 — 5
3-6
3-6
3-6
3 — 7
3 — 9
3 — 9

3 — 10
3-11
3-11
3 — 12
3 — 12
3 — 13
3 — 14

3-4
3-4

CustomizingFile Access Rules

Reviewing Library and File Information
Deleting Library and File Information
Summary

Chapter 4: File Movement Rules
Steps and Routes
Defining a Route .
Defining Basic Step Data,

Step Identification
Step Operation
Source and Destination Locations

Source Location . .
D estination Location , .
Equal (=) vs. At (@)

4-1
4 — 2
4 — 3
4 — 5
4-6
4 — 7
4 — 7
4-7
4-7
4-7
4-9

4-10
4 — 10
4 — 10
4 — 10
4 — 11
4 — 12
4 — 13
4-13
4-15
4-16
4 — 18
4 — 19
4 — 19

Wilde ards
Edit Masks for UMX Pathnames .
Prerequisites

Prestep
Alternate Presteps
Mult iple Prerequisites/Date Prerequisite

Step Description
Defining Options for Steps

File Expiration .
Step Parameters (Defaults and Allowed Overrides)

Example of a Step Definition .
Defining Rules for Introducing New Files
Defining Step Refinements and Exceptions
Reviewing File Movement Rules
Sequence Summary

Chapter 5: Users and Authorizations
Defining Users
Assigning User Capabilit ies
Authorizing Users for Defined Steps .
Reviewing User Data
Sequence Summary
Deleting or Inactivating Users

5-1
5-3
5-4

ii UBRARIAN /iX Administrator's Guide

Chapter 6: Projects
Defining Project Managers
Creating Projects
Defining Project Hierarchies
Authorizing Projects
Changing Project Status
Reviewing Projects .
Flushing Project Transaction Records
Using Projects in LIB~ & J
Project Filesets
Distributing Files by Project

Chapter 7: Versions
Version Management

Working with Versions
Creating Versions
Referring to Versions in LIBI AEUAN
Changing Version Status ,
Deleting Versions
Using Forward Versioning

How Forward Versioning Works
Setting Up Forward Versioning
M ultiple Search Locations
U sing Forward Versioning for File Distribution . .
Concurrent Maintenance and Development
Using Forward Versioning with Vendor Software

6 — 7
6 — 7
6 — 7

6 — 1
6 — 2
6 — 3
6-4
6 — 5

7 — 1
7 — 3
7 — 3
7 — 3
7-4
7 — 4
7 — 5
7 — 5
7 — 5
7 — 6
7 — 7
7 — 7
7 — 7
7M
7 — 9

7 — 10

Tags
Reviewing Version and Tag Information
Version Reports

Chapter 8: Reports
Generating Reports

Menu Mode
Command Mode

File Inquiry Screen
Project Inquiry Screen
File Information Using VERIFY .
Version Inquixies
Step/Project Inquir ies
Using the SHOWLOG Report Writer

Chapter 9: Housekeeping
Flushing Expired Files
F lushing Expired Transactions from the Audit Trail (LIBLOG). , . .
LIBRARIAN Databases — Capacity Management
Changing Database Passwords .
Changing Network Cordiguration and Remote System Logon Information ,

8 — 1
8-1
8 — 2
8-2
8 — 3
8-3
8 — 5
8-5
8-4

9 — 1
9 — 2
9 — 2
9 — 2
9 — 3

Table of Contents i i i

Appendix A: Automafiic Decompression
Enabling Automatic Decompression .

Add PH Capability to Application Programs
Set Up Group/Public SL or XL

A — I
A — I
A — 2
A — 3
A — 3

Allocate DCMPRSS.COMP.OCSLIB
Error Conditions

Appendix B: LIBRARIAN Utility Program
Operation .

Changing the System ID in LIBDB (Option I) .
Changing the SystemID for an Application (Option 2) .
Unload Database to a File (Option 3)
Load Database from a File (Option 4)
Exiting the LIBRARIAN UtiTity Program

8 — I
8 — I
8 — 2
8 — 2
8 — 3
8 — 3

Appendix C: LIBRARIAN Configuration Program
Configuration Program (MPE) .

Updating the Configuration File (Option I)
Changing LIBDB/LIBLOG Passwords (Option 2)
Changing SERVER Logon/Passwords (Option 3)
Exiting the LIBRARIAN Utility Program

Con6gur ation Program (UNIX)

Glossary

Index

C — I
C — I
C-2
C — 3
C — 3
C — 4

iv U BRARIAN /iX Administrator's Guide

List of Figures

1-5
1 — 7

1M
1 — 9
2 — 3
2 — 8
3 — 2
3 — 5
3 — 7
3-4

3 — 10
3 — 11
3 — 12
3-13
4 — 2
4 — 3
5 — 1

5 — 3
5 — 4
6 — 2
6-4
6 — 5

Figure 1 — 1. Basic Development Route
Figure 1-2. Separate QA Route .
Figure 1 — 3. Network Route .
Figure 1 — 4. Version Control Routes

F igure 2 — 1 Admin Menu from the LIBRAIUAN Main Menu ,
Figure 2 — 2 System Profile (SP) Screen
Figure 3 — 1 Applications (AP) Screen
Figure 3 — 2. Filesets (FS) Screen
Figure 3 — 3. Fileset Components (FC) Screen
Figure 3 — 4. Auto Filesets (AF) Screen
Figure 3-5. AUTOUPDATE Command
Figure 3-Ei. Fi les in Filesets (FF) Screen .
Figure 3-7. File Access (FA) Screen .
Figure 3-8. Associated Master Filesets .

Figure 4 — 1. Sample Route Flow Diagram
Figure 4 — 2. Routes (RT) Screen
Figure 5 — 1. Users (US) Screen
Figure 5 — 2 User Capabilities (UC) Screen
Figure 5 — 3. Step Authorizations (SA) Screen
Figure 6 — 1. Projects (Pg Screen
Figure 6 — 2. Project Authorizations (PA) Screen .
Figure 6 — 3. Project Status Change (PS) Screen
Figure 6-4. Project Inquiry (PI) Screen .
Figure 7 — 1. Sample Versions
Figure 7 — 2. Forward Versioning (FV) Screen
Figure 7 — 3. Alternate Search Locations for New Release
Figure 7-4. Concurrent Maintenance and Development

Figure 7 — 5. VEFHFY Menu
Figure 7W. VERIFY Display with Version Data (Format 7)...
F igure 7 — 7. VERIFY Display Showing Tags (Format 16)
Figure 8 — 1. File Inquiry (FI) Screen
Figure 8 — 2. Project Inquiry (PI) Screen,
Figure 8 — 3. VEFZFY Menu . .
Figure 8-4. VEPJFY Display (Format 9),
Figure 8-5 Versions Display .
Figure ~ . Help Information for AP-OUT Step .
Figure 8-7. Help Steps
Figure 8 — 8. Help Projects
Figure 8 — 9. Initial SHOWLOG Display .
Figure 8 — 10. SHOWLOG Display
Figure 8 — 11. SHOWLOG Summary Report
Figure B-1. LIBRARIAN Ut i l i ty Functions Menu
Figure C — 1, LIBRARIAN Configuration Functions Menu , . . .

7 — 2
7W
7W
7 — 7
7 — 9
7-9

7 — 10
8 — 2
8-3
8-4
8-4
8 — 5
8 — 6
8 — 7
8 — 7
8-8

8-10
8 — 10
B — 1
C — 1

Table of Contents v

vi L IBRARIAN /R Administrator's Guide

LiSt Of TableS

1 — 2
2 — 3

3 — 13
3 — 14
4 — 6
4 — 8

4-19
4 — 19
5 — 6
5 — 6

7 — 10
8 — 9

Table 1 — 1. LIBRARIAN Features Related to Objectives
Table 2 — I. Shortcut Function Key
Table 3 — 1. Library Information in Standard Reports
Table 3 — 2. Data Entry for Master Libraries
Table 4 — 1. Step Types
Table 4 — 2 Special Wildcards .
Table 4 — 3. File Movement Information on Standard Reports .
Table 4-4. Data Entry for File Movement Rules
Table 5 — 1. User Data Reports
Table 5-2. Data Entry for User Authorizations
Table 7 — 1. Version Information in Standard Reports .
Table 8-1. SHOWLOG Commands Sununary

Table of Contents v i i

viii L IBRARIAN /IX Administrator's Guide

Preface

Purpose of This Manual
The LIBRARIANA X Administrator's Guide describes how to setup and
maintain LIBRAIGAN. It is the companion piece to the LIBRAtVANAX
Reference Guide and the LIBRARIAN/iX User's Guide.

Audience
This manual is written for personnel responsible for setting up and
maintaining the LIBRARIAN database of rules Knowledge of basic
operating system concepts and terminology is assumed. No previous
knowledge of LIBRAIGAN is required.

How This Manual is Organized

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

follows:

Preface

Chapter 1

Chapter 2

Chapter 3

Chapter 4

The LIBRAMANliX Administrator's Guide chapters are organized as

The chapter you are now reading: how to use this guide.

"Introduction": an overview of typical file management
policies and objectives and how to configure LIBRARIAN.

"Getting Started with Basic Rules": applying the Shortcut
program to get started using LIBRARIAN.

"Master Library": master library concepts and how to
define a library in the database.

"File Movement Rules": how to define rules to determine
how users obtain copies, replace master files with
revisions, and performother file operations.

"Users and Authorizations": how to define the user
profiles and capabilities that identify LIBRARIAN users
and what they are allowed to do.

"Projects": how to set up and maintain projects with

"Versions": discusses the LIBRA&AN v ersion
management and forward versioning capabilit ies.

"Reports": how to generate reports and online inquiries;
description of SHOWLOG comm;wads.

"Housekeeping": periodic operations to keep LIBRARIAN
running efficient/ y.

LIB RARfAN.

P reface i x

Appendix A

Appendix B

Appendix C

Glossary

"Automatic Decompression": how to automatically

decompress files when users access them.

"LIBRARIAN Ut i l i ty Program": how to use the
LIBRARIAN Utility program (LIB UTILP).
"LIBRAIUAN Configuration Program": how to use the
LIBRARIAN Configuration program (CONFIGP).

A Glossary of Terms is provided at the back of this guide.

An index of LIBI ARIAN topics at the end of this guide.Index

Conventions
We use the following conventions throughout this guide.

COMMANDS

KEYWORDS

All conunands appear in bold capital letters. If a
command can be abbreviated, the optional portion of the
command is enclosed in brackets ([]). A blank space
must separate the corrunand from the parameter list.

Keywords and parameters (shown in bold capital letters)
must be entered exactly as specified.

Words or characters in italics represent variables or
arguments that you must replace with an actual value. In
the followingexample, you must replace fileset with the
name of the file you want to copy.

italics

> COPY fileset

Italics are also used to introduce new terminology or for
emphasis.

Enter punctuation exactly as shown. (Refer to specific
instructions for brackets and braces, below.)

Braces endose required elements. When there are several
elements within braces, you must select one element. In
the following example, you must select one of
PROCEDURES, PROJECTS, or STEPS.

)HELP PR OCEDURES

punctuation

PROJECTS
STEPS

Brackets enclose optional elements. In the following
example, brackets around the letters UPDATE indicate
that you do not have to type the entire word.

)AUTO (UPDATE)

x U BRARIAN/iX Administrator's Guide

If there are several elements, you can select any one or
none of them. In the following example you can select
BATCH, CONRRM or MEMO, or none

> COMP RESS [filelist]

[;CONF[RM]
[; MEMO]

[; BATCH]

When brackets are used, you cannot enter a value in the
inner brackets unless you enter a value (wildcard or
literal) in the outer brackets.

An ellipsis indicates that the previous bracketed element
can be repeated or that elements have been omitted.

An axnpersand indicates that the comrx~ d cont inues on
the next line

The white flag symbol indicates that the text pertains to
LIBRARIAN running under the MPE operating system.
The gray flag symbol indicates that the text pertains to
LIBRATHAN runxung under the UNIX operating system.

The striped flag symbol indicates that the feature being
described is only available with LIBRARIAN/iX — Plus.

This symbol identifies LIBRARIAN comxx~ds that have
no equivalent under the UNIX operating systexxL

File Naming Conventions
In specifying files, LIBRARIAN' commands use the following wildcard

© Zero o r more alphabetic and/or numeric characters. Used

conventions:

alone, denotes all members of a set.

Zero or more alphabetic and/or numeric characters. Used
alone, denotes all mexnbers of a set.

¹ Sin gl e n u meric character.

? Sin gl e a lphabetic or numexic character.

In addition, a slash (/), a single period and slash (./), a double period
and slash (../), or a tilde and a slash (-/) immediately preceding a
f ilename indicate a UNIX fi le.

Preface xi

Related Documentation
Along with this manual, you can refer to the following documentation by

The LIBRARIAN/iX Reference Guide provides information on
LIBRARIAN functions, including complete command syntax and

OCS.

reference material for all LIBRARIAN features.

The LIBRAIUAN/IX User's Guide contains instructions on how to
perform LIBRARIAN functions. It also includes detailed descriptions
of the MPJCE facility and the XEQ macro language.

Online help contains the contents of all LIBRARIAN manuals. You
can access online help with the HELP command or pressing Ft (He1p)
in menu mode.

Client Services
LIBRARIAN is supported by OCS Client Services, which is dedicated to
providing ti melyand accurate information and solutions. For fast,
accurate answers, we znaintain a telephone hotline that includes
emergency after-hours service. You can count on OCS to isolate any
problems quiddy and provide conscientious support and a fast response.

Operations Control Systems hotline numbers:
Phone (415) 493-4122
FAX (415) 493-3393

Your Comments
We value your comments. As we write, revise, and evaluate our
docuznentation, your opinions are the most important input we receive.
Please use the Reader's Corrunent Form at the end of this guide to tell us
what you like and dislike about and of the OCS manuals.

xii L IBRARIAN/IX Administrator's GuIde

Introduction

LIBRARIAN is easy to iznplement, learn, and use. Because the needs of
companies and organizations change over time, LIBRARIAN
encompasses functionality to xneet the file management needs of a wide
range of development environments.

This chapter will give you an overview of typical file management
policies and objectives and will show you how LIBRARIAN can be
configured to handle a few different file management scenarios.

Topics discussed in this chapter include:

a Fi le Management Objectives

• Fil e Management Rules

• Ex aznples of FileManagement Rules

If you are already familiar with basic LIBRARIAN concepts and know
how to design file rnanagexnent policies and procedures, you can use
this chapter as a checklist to help you impleznent LIBRARIAN, or you
can skip this chapter and go straight to Chapter 2, "Getting Started".

Nofe

File Management Objectives
File management objectives vary considerably between organizations.
Some MIS shops allow programmersto perform their own testing and to
move the tested files into production; others require independent testing
and move to production. Some organizations incorporate a policy in
which all changes are authorized and tested, others require absolute
prevention of unauthorized changes, Some auditors require positive
evidence and pexiodic verification of source/object synchronization;
others accept reasonable assurance through procedural controls.

LIBRARIAN is designed to accommodate these differences in file
management objectives, With LIBRARIAN, you can manage the
development cycle rigidly or loosely, depending on your needs. Because
of this flexibility, it is essential to identify and define your objectives
before you begin to impleznent the product.

The following section lists some typical file management objectives. Use
this list as a starting point for evaluating your own objectives. This list is
by no means exhaustive Create a list of your own file rnanagernent
objectives so you can refer to them as you define your file management
rules in the LIBRARIAN database.

Introduction 1- 1

Typical File Management Objectives
LI B R A R Y p r ov ides a robust set of features that allow you to achieve a
wide range of objectives. Table 1 — I lists typical file management
objectives and the corresponding LIBRARIAN features that help you
achieve the objectives.

Table 1-1 UBRARIAN Features Related to Objectives

File IVIanagement Objecfive

1. Improve efficiency and
convenience

2. C o ntrol copies of source.
object, jobstreams, etc.

based on application

3. Require approvol of changes

Require testing of changes

5, P revent overlapping changes

6, Synchronize source/object

7. Enforce separation of duties

8. Require independent testing

9. R estrict access to master files

10. Associate work with project or

11. Maintain backup copies of old

Corresponding UBRARIAN Features

UBRARIAN provides mass file movements.
customized file movement commands, file push
movements across accounts and system
boundaries, complete audit trail, and automated
maintenance.

Define files in a master library.

Define CHECKIN step requiring an approval presrep.
Authorize specNc users to perform the APPROVE
step.

Define rules requiring a step to document testing
before allowing checkin.

Assign serial access control to files.

Use MAKE tocompile changed source
automatically. use VERIFY opfiion on checkin and fite
distribution,

Authorize different users to perform specNc steps.

Authorize specNc users to perform testing.

Authorize programmers only for steps within specNc
appl)catlons.

Require project codes for all steps in the route;
authorize programmers for specNc projects.

Use retention feature on checkin.

service request

verslo Ils

12. Control versions on remote
systems

deveioping next release

of individual programs

13. Provide audit trails

14. Review specNc file changes

15. Maintain current release while

Use UBRARIAN to distribute software; aucfit trail tracks
versions.

UBRARIAN automatically maintains an audit trail of
all fOe movements.

Use IJCOM PARE and PRINT;ANNOTATE to compare
file versions and display differences.

Use branch and merge; consider separate
maintenance ond development routes.

Use the revision control facility,

Use UBRARIAN versionstomping facilNes.

16, Maintain concurrent revisions

17. Tracking versions

1-2 U BRARIAN/iX AdministTator's Guide

File Management Rules
Once you have identIfied your file management objectives, as described
in the preceding section, you will be ready to define file management
rules to achieve those objectives.

Begin by identifying the files for the library and defining how, where, and
by whom files are moved in the process of xnaking software changes for a
single application.

IVIaster Library Files
The xnaster library for an application includes all of the files that
LIBRARIAN manages for that application. These 6les are called master
files. Master files are the o8icial or control copies of files to be managed.
Copies of xnaster files in other locations are tracked by LIBRARIAN as
secondary copies. Your file xnovement rules define how copies of master
files are checked out and modified, and how they eventually replace the
xnaster files in the library through controlled file movexnents. For detailed
information refer to Chapter 3, "Master Library".

Diagram File Movements
Decide how and where changes are made to 61es within the application.
Identify all of the processes or cydes for the application. These cycles are
defined to LIBRARIAN as routes. For example, you could identify routes
for maintenance, for development, for distributing data, etc. You could
have altexnate routes for a given group of fi les, depending on whether the
6le is accessed for maintenance or development, or whether a correction
is a routine or exnergency procedure.

Next, identify the specific file movexnents that coxnprise the cycle for each
route. For example, most software xnaintenance cycles begin by copying
the master 6le to a development location. Then, the files are moved to a
secured area for testing. Most maintenance cycles end by moving the
modified file(s) back into the xnaster library. Each of these file movements
is called a step. Steps are de6ned in the rules database.

Soxne steps require previous approval by a manager, or sign o8 by a user
or tester. These approvals and sign o8s are also considered steps in

To help visualize the sequence of file movexnents and approvals in the
cyde, we recommend drawing a flow diagram showing the sequence of
steps and the various locations that are used for modi6cation testing.
Several examples of this diagramming technique are included later in this
chapter (see Figure 1 — 1).

LIBRARIAN.

Introduction 1- 3

identify Rules for File IVlovements
Once you have identified and mapped out the steps and routes for your

development cycle, you are ready to identify rules for performing
individual steps. To do this, first define what files can be znoved, how the
files should be znoved, who can move the files, and what external events
are required (when). The following list highlights exaznples of
LIBRARIAN rules you can apply to a step:

• Sc o pe Restriction — Limit the file movement to a subset of the
application's files, or to files in a particular location.

• D e stination Restriction — Define the destination location of moved
or copied files perforzned by this operation.

• Copy, Move, or Null Operation — Use
o COPY to copy, but not purge the original files,
o MOVE to copy and purge the original files,

0 NU LL to record an event, but not physically move files.

• Pr e requisites — Define one or more steps that must be performed
on a file prior to performing this step (often, but not necessarily, an
approval step).

a Retain Backup Copies — Rename existing destination files for
backup prior to the move or copy operations or, during checkin,
retain saved changes in a delta file.

• A l low New Files to be Introduced — Enforce naming conventions.

• A u t horized Users — Identify specific users who can perform a
step.

• R ead or Write Copy — Only copies with write mode access can
replace the original in the master library.

• R e quire Project Mentification — You can associate all file activities
with projects (applies to all steps in a route).

This is only a partial list of step considerations. Many other features or
operations are possible by combining LIBRARIAN options, As you
become more familiar with LIBRARIAN, you wil l find more features that
you want to implement. The examples in this chapter illustrate how sozne
LIBRARIAN features are implemented.

Examples of File Management Rules
It is impossible to define a single, ideal set of file management rules for
every installation, but the following four examples represent typical
impleznentations of LIBRAIGAN.

The first exaznple depicts the most basic environment — a typical
development cyde in a small MIS shop. The remaining exaznples show
znorecompleximplementations of LIBRAPJAN. As you review these
examples, keep in mind that they are intended only as representative
exaznples. You can customize LIBRARIAN to meet your own unique
requirements.

1-4 L IBRARIAN/IX Administrator's Guide

Example 1 — Basic Development Environment

programmers, one day-shift operator, and a manager. The sample
environment is a development route in a typical application The shop's
file management objectives for this route include:

• tr a cking the official copies of all source, object, and job files;

• en sur ing that all changes are made to copies of those files in a
separate development location;

a ensuring that all changes are approved by the manager before
release; and

• av o id ing adding staff or further burdening the operator.

First, identify all of the current production source, object, and job files.
These files are secured as the master library. within the library, group the
files into sit~efined logical fi leset There is no need to change the
MPE/HP-UX directory structure or move files. You can secure files using
normal MPE/HP-UX security.

Next, define the file movement steps for the route. In this example, the
steps for the route are defined as follows:

1 The CHECKOUT step moves source, object, or job files from the
master library into a development location.

2. The APPROVE step allows managers to record their approval on a
file-by-file basis.

3. The CHECKIN step returns approved files to the master library and
automatically creates a backup copy of the old master file(s).

Figure 1 — 1 shows a flow diagram for this route using these three steps.

This example illustrates a shop with a single system and a staff of three

CHECKOUT

PRODUCTlON DEVELOPMENT .

APPROVE

Figure 1-1, Basic Development Route

You can define the CHECKOUT step to create test copies of the master
files even though the master library is secured. LIBRARIAN keeps track
of these copies and can prevent multiple programmers from checking out
copies of the same file simultaneously

Introduction 1- 5

You can define the APPROVE step to xnark the file(s) as approved, and to
restrict use of this step to the manager only.

You can define the CHECKIN step to allow programmersto push
approved copies from the test area into the master library, without
logging in to the master location. A backup copy of the old znaster file can
be archived automatically on disk, and it can be compressed
autoznatically to save disk space

Example 2 — Separate QA Function
The second example illustrates a development route for a mediuxn sized
shop with tightly controlled procedures. The staff includes a xnanager, six
programmers, two operators, and a quality assurance (QA) analyst. Due
to the complex nature of their applications, this shop insists on a formal
quality assurance process for every change, and managexnent approval of
the results before any new or changed software can be incorporated into
production.

However, this shop also needs to allow for quick emergency fixes by
programmers without the delays that normally accompany the QA
process. Furthermore, a complete and reliable audit trail must be
maintained for these quick 6xes.

Define the file znovement steps for the route. In this exaznple, the steps for

1. The route begins with the CHECKOUT step, as defined in Example 1.
The master files are secured, but programmers can copy 61es easily to
the development area for modification. The master files have serial
access control, permitting only one copy at a time to be modified to
replace the master file. This prevents lost work due to overlapping
changes, Other copies are available with read — znode access.

2. The SUBMIT step is used by the programmers to move znodi6ed
source, object, and job files into the QA area for testing,

3. The GET-CI.TRREÃI' step copies the latest versions of files from the
master library to the QA area in read — mode. This step keeps the QA
environznent up — tubate with a complete set of software.

4. The REJECT step is used by the QA analyst when prograxn testing
fails. It moves rejected files back to the development area.

5. The TESTOK step is used by the QA analyst to indicate that a change
passed system tests. This step helps the manager maintain the status
of work on various programs

6. In this example, the APPROVE step operates on files in the QA
location. The APPROVE step can be used only after the file passes the
TESTOK step

7. The CHECKIN step znoves approved files from QA to the master
library.

this route are de6ned as follows:

1-6 L IBRARIAN/IX Administrator's Guide

8. The FIX step moves files directly from the development area to the
master library for emergency fixes. This step is configured with the
PUSHREAD option, enabling it to be used if a wri t~ m ode copy of the
file exists previously when checked out. When this step is executed,
any writmmode copies are flagged so the user is warned of an
overlapping change the next time the file is moved.

Figure 1 — 2 shows a flow diagram for this route using these eight steps.

GETCURRENT

TEsroK
CHECKOUT

PRODUCTION DEVELOPMENT

APPROVE
REJECT

CHECKIN

Figure 1-2, Separate QA Route

LIBRARIAN uses steps to accomplish separation of duties, The steps
operate on logical groups of files, enabling users to move or copy groups
of files without specifying file names.

LIBRA1GAN automatically maintains a complete audit trail. Therefore, no
additional effort is required to monitor emergency fixes. The manager
simply runs a SHOWLOG report listing all uses of the FIX step.

Example 3 — Networking and Source/Object
Synchronization

This example illustrates the use of separate computers for production and
development. Many applications run on remote systems. The master
library contains the production source, object, and jobstreams, but the
executable object and jobs are distributed to the appropriate remote
systems. An important objective is ensuring that all of the remote sites are
running the same code; object files in the master library and on all remote
systems must be generated from the correct source files in the master
library.

In this example, the steps for this route are the same as Example 2, with
the following exceptions:

1. A new step, called RELEASE, is defined to distribute object and job
files to the remote sites. This step copies files to all remote sites and
produces an audit trail to verify that the copies were successful.

2. A macro called SUBMIT invokes the MPJCE utility to recompile
programs automatically as they are moved into the QA area, ensuring
source/object synchronization at that point.

Introduction 1- 7

3. The CHECKIN step is configured to require that the source and object
files are moved together, and that files cannot be checked in if their
timestamps have changed since TEST-OK approval was done in the

4. The remainder of the steps function as they did in Exaznple 2, except
that they have been de6ned to work in a network. The CHECKOUT,
GET-CURRENT, CHECKIN, and FlX steps operate between the
production and developznent machines. The RELEASE step operates
between the production system and the reznote sites.

With LIBRARIAN, you can impleznent these additional steps with
minimal effort; they can even be performed in batch jobs.

Figure 1 — 3 shows a flow diagram for the route using these steps

Automatic recompiling of source for source/object synchronization is
accoznplished by running MAKE regularly to automatically create and
stream coznpile jobs for source files that moved into the test area. No
special steps are required to accommodate the dual — znachine
development environment or the remote sites. LIBRARIAN al lows steps
to be defined across machines. The result is transparent to the user.

QA area.

PRODUCTION DEVELOPMENT

REJECT
CHEC KIN

PROD MACHINE DEVEL MACHINE

RELEASE

Figure 1-3, Network Route

1-8 L IBRARIAN/IX Administrator's Guide

Example 4 — Multiple Version Management
This example illustrates an application with two routes used
concurrently: one route for a long — term development project, and one
route for maintaining the current version during the development period.

In this example, the steps for the routes are defined as follows:

1. The maintenance route for the current version (2.0) has five steps.
CHECKOUT2, SUBMIT2, REJECT2, APPROVE2, and CHECKIN2 are
the same steps as the CHECKOUT, SUBMIT, REJECT, APPROVE, and
CHECKIN steps described in Example 2,

2. The development route for the new release (3.0) includes five steps.
The SUBMIT3, REJECT3, and APPROVE3 steps are the same as the
SUBMIT, REJECT, and APPROVE steps described in Example 2.

3. The CHECKOUT3 step selects the latest version of the software from
the master library. The step is defined with a primary search location
and an alternate search location. If the file to be checked out is not
found in the 3.0 library, it is retrieved from the 2.0 location.

4. The CHECKIM3 step replaces files in the release 3.0 master library if
they were checked out of 3.0, or introduces new files to the 3.0 master
library if they were checked out of release 2.0. This cycle ensures that
programmers do not work on the old versions of files if files have
already been rnodi6ed for the new version.

Figure 1-4 shows a flow diagram for the routes containing the steps listed

This development route implements theforward versioning feature.
Defined file movements search through two or more alternate locations

above.

for the current version of a file.

SUBMIT 2

CHECKOUT 2 REJECT 2

MASTER
1.0

CHECKIN 2MASTER
2.0

MASTER
3.0 CHECKOUT 3

SUBMIT 3

REJECT 3

CHECKIN 3
APPROVE 3

Figure I -4. Version Control Routes

I ntroduction 1 - 9

Notice that LIBRARIAN allows you to manage this rather complicated,
but not uncommon, environment with minimal effort. With forward
versioning, you can maintain the integrity of prior versions while
building new versions, without replicating files that did not change.
Users always get the correct version of a file for maintenance or
development.

1 - I 0 LIBRARIAN/IX Administrator's Guide

Getting Started with Basic Rules

After installing LIBRARIAN, you are ready to define a change control
cycle and begin controlling and recording file movements. This chapter
provides information on how to define a basic set of rules using the
Shortcut util i ty.

Topics in this chapter include:

• Bas ic Setup

• Del e t ing an Appl ication

• Cu st o miz ing the System Profile

• Creating a LIBRARIAN Manager

• Wha t Next?

Before proceeding, you need to install LIBRARIAN on all licensed sys­
tems by using the installation instructions provided with the product
tape.

Note

Basic Setup
The Shortcut utility is designed to help you quickly implement the basic
LIBRARIAN features, induding checkout/checkin, serial access control,
f ile retention and compression, audit trails, and more. After running
Shortcut, you can use the LIBRARIAN screens to fine-tune the basic
environment, and take advantage of additional LIBRARIAN features.

With Shortcut, you will be able to start using LIBRARB&1'immediately.
After answering a few questions about your environment, the program
will ask if you want to proceed with loading this data into the
LIBRARIAN database. Once the data is loaded, you can begin to use
LIBRARIAN. It enables you to move and copy files, control changes to
files, and provide extensive audit reporting.

The entire process of setting up a LIBEVDGAN implementation for an
application (i.e., a set of logically related files and rnovernent rules) takes
only a few minutes with LIBRARIAN's Shortcut.

G effing Started with Basic Rules 2 -1

Running Shorl cut

rLIB

To run Shortcut, login and run LIBRARIAN.

To access LIBRARIAN from MPE, type.

To access LIBRA&AN from UNIX, type:

HP-UX[1] ocslib if path is set,

otherwise

HP-UX[1] $OCSLIBDIR/ocslib

where $OCSLIBDIR is the name of the directory where the

Enter LIBMGR when prompted for a user ID, If this is the first time you
are using UBRARIAN, you will be prompted to assign a password.
Please note that user IDs and passwords are case-sensitive in

LIBRAIRIAN client software is installed.

LIBRARIAN.

Note LIBMGR is the only user defined to LIBRARIAN at the time of
installation. See Chapter 5, "Users and Authorizations", for a
discussion of how to add new users and assign special capabilities.

The LIBRARIAN Main menu appears after you successfully provide a
user name and password. Select Admin f rom the menu bar and select
Shortcut from the pull-down menu (see Figure 2 — 1).

Shortcut gives you explanations at every step and provides you with
additional online help.

If you are using Shortcut for the first ti me, we recommend that youNote
press F1 for each instructional window dur ing the Shortcut dialog.

2-2 U B RARIAN/IX Administrator's Guide

IKS/LIBRealirN far IrPE/ia

Ada in

Shor tel
I I I

Figure 2-1 Admin Menu from the UBRARIAN Main Menu

Function keys defined for Shortcut are described below in Table 2 — 1.

Table 2-1 Shortcut Function Keys

Function

Return
Ff Help

F2 Restart part

F3 Previous part

Accepts default answer to a prompt shown in [brackets].

Displays context-sensitive help.

Restarts from beginning of current part (available only when function key label
is displayed).

Returns to beginning ol previous part (available only when function key label is
displayed).

Displays location of additional information.

Refreshes the display.

Starts over from beginning of Shortcut.

Terminates program without saving data.

F4 Refer to

F6 Refresh

F7 Slart over

FB Exit

Shortcut will guide you through setting up change control for an
application, as summarized below.

Identify An Application
Applications provide the organizational framework for f ile management
with LIBRARIAN. They let you organize your files into separate master
libraries, and define different change control rules and versions for those
files. Before using Shortcut, select an application that you would l ike to
start with.

G etting Started with Basic Rules 2 - 3

Create a one- to four-letter Application ID that you wil l later associate
with a library of files, along with a set of file movement commands. For

example,if you are working with a payroll application, the ID might be
PAY,

Define the Application Library
A library is a collection of files that you want to control for an application.
To identify the files that make up your library, use the following f ormat:

system file.group. account

system:/path/file

You can use wildcards.

Define Steps
Shortcut automatically creates fi l movement and approval commands
called steps. First, you need to define the destination location for a
checkout step by selecting an option from the menu that Shortcut
displays. You can then choose additional steps you need to copy/move
files and/or record approvals.

The names of the steps you choose will have the application ID as a prefix
and a dash followed by an abbreviated step name. For example, a payroll
application with (PAYj might include the following steps

PAYOUT
PAY-NEW
PAY-IN
PAY — OK
PAY-TESTOK
PAY — TEST
PAY — FAIL

*PAY — READ

(optional steps)

You can add, modify, or delete the steps at any time using the Steps (STj
screen which you access from the Screens...Steps from the Admin menu.

Checkout files to development
introduce new files from development
Checkin files to library
Approve files
Approve files to be checked in from test area
Move files from development to test area
Move files back to development from test area
Copy files in read — mode

2-4 U BRARIAN/iX Adminisfrcitor's Guide

identify Users
Identify the users authorized to use LIBRARIAN, and the specific steps
each user is permitted to perform.

Review and Load Data
You will now be given an opportunity to review the information you just
provided. You can then instruct Shortcut to load this data into the
LIBRARIAN database (or exit without saving).

Troubleshooting
If a connection error occurs when the library is being loaded with MPE
files, it means that LIBRARIAN could not link to a remote system that
you specified when you identified your library. But don't worry, you
won't need to start over. The most f requent reason for a network linking

problem is that LIBRAjRIAN is not correctly installed on the remote

Verify it by checking the $STDLIST files for the installation jobs, or try
installing again. Logon security may also cause a linking error. Check
remote passwords on the NC screen. If you are using third — party
security software on a remote system, the LIBRARIAN logon may have to
be configured in that software's database. A less common reason has to
do with the configured buffer size for X25 networks. If you are using a
X.25, you may need to change the default buffer size to 138 words on the
Network Con6guration (NC) screen in LIBRARIAN.

lf you can correct the problem,try loading the library again with the
AUTOUPDATE comn~d or the AUTOUPDATE option from the Admin
menu If a failure still occurs, contact OCS for assistance,

If a connection error occurs when the library is being loaded with UMX
files, make sure that LIBRARIAN has been installed properly on the
UNIX system.

machine.

Deleting an Application
If the application you set up with Shortcut is not what you want, or you
created an application for evaluation purposes and have completed the
evaluation, you can easily delete your library definitions and file
movement rules from the database. Use the following steps to delete an
application

G etting Started with Basic Rules 2 - 5

1. Invoke LIBRARIAN, as mentioned in the begiruung of this chapter.

2. From the LIBRARIAN prompt, type:

DELETE application

where application is the application ID you specified in Shortcut. You
will be prompted to confirm the deletion.

Setting Password Security

Maximum bies

The LIBRARIAN Manager can specify the following password

requirements for new and current users. Use the SP screen to specify
these password requirements, as indicated below:

Aging (Days Valid)
Required. Length 3.

The number of days passwords are valid.

Passwords can expire between 1 and 500 days. The default expiration
period is 999 days, indicating that user passwords will not expire.

Minimum length
Required. Length 8.

The rninimurn number of characters required for each LIBRARIAN user
password.

You can set passwords to have a rnirumurn length of 1 to 8 characters The
default rninirnum password length is 1 character.

Required. Length 2.

The maximum number of times a user can attempt to enter a valid
password.

If a user exceeds this number of attempts and the "Disable user after
~c i mum t r ies?" field is set to "Y", LIBRARIAN wi l l d isable the user ID.
The LIBRA;RIAN Manager wiH then have to re-activate the user with on

You can set the maximum number of attempts to a value between 1 and
16. The default is 3 attempts,

US screen.

Disable user after maximum tries'P
If this field is set to "Y", when the user exceeds the maximum number of
attempts to enter a valid password, LIBRARIAN wi l l d isable the user ID
by setting the active flag to "N". The LIBRARIAN Manager can
re-activate the user on the US screen.

2-6 L IBRARIAN/IX Administrator's Guide

File Edi t T e rminal C onnection ~Otions W indow He lp

S Y S T E n P R O F I L E SP V ,Z . 93

Transaction Log Records Aging Pol icg
Logg ing [In Bagel

Au tirCoo press
Retained Fi les

F l ush
Po I icg

PF EXPRESS LI BR ARI Ail Bate Forest
Access En abled Fi le Creator I n put/Disp lag Separator

XC~ D
Sil/root capabi I i tg required for L i b rar ian Reneger?
Al lou route changes for read node secondaries?

P a s s a o r d s
Aging (dogs ual idl ~ it ini au m LengthP i tariaua tr ies <+

Disable user after noxious tries?

Figure 2-2. System Profile (SP) Screen

Customizing the System Profile
Default parameters are defined in the SystemProfile when you install
LIBRARIAN. These parametersaffect the maintenance and audit trail
logging for your entire installation. Use the System Profile (SP) screen to
review and customize these parameters (see Figure 2 — 3). If you prefer,
you can leave thexn as they are and customize them later.

To access the System Profile (SP) screen, type SP at the command line
prompt or select SP System Profile from the Admin...Screens...Config

The System Pro6le (SP) screen displays default values, as shown in
Figure 2 — 3. If you require help, press FS (HELP) or refer to Chapter 5,
"Screens", in the LIBRARIAN/iX Reference Guide.

menu.

G etting Started with Basic Rules 2 - 7

S Y S T E It P R O F I L E SP V.1.88

Transaction Lag Records Aging Policg
Logging (In Gags)

Aat~ a p r es s F l us h
Retained Fi les Pul i c g

PF IRPRESS LIR HARIAH — — ­ Gate FtmTmt t
ACCeSS Enabled F i I e C reator I npu t /D lap lug Separatur

K~ Z3

Stt/root cepab»itg required for Litmte ian nanagert
Al lou rtajte chatges for rend made secondaries?

Figure 2-3 System Profile (SP) Screen

Creating a LIBRARIAN Manager
The LIBRARIAN Manager is responsible for defining libraries, file
movement rules, and authorizing users to performLIBRARIAN
operations. LIBlVJUAN Manager capabilities are very powerful; they
assign access to all data, all files, and all file rnovernents on all systems.
The LIBRARIAN Manager can perform all LIBRARIAN operations,
although the LIBRARIAN Manager capability can be restricted to users
with SM capability (under MPE) or root capability (under LTNDC) on the
System Profile (SP) screen.

LIBRARIAN is provided with a single predefined LIBRARIAN Manager
user — LIBMGR, Initially, there is no password assigned to LIBMGR.

You need the LIBMGR user to access UBRARIAN for the first time.
Before you load file rnanagernent rules, you can define your own
LIBRARM.'4 Manager and delete the predefined LIBMGR user and
capability data.

To create a new user with LIBRARIAN Manager capabilities, first define a
user and password on the Users (US) screen. Then, assign LIBRARIAN
Manager capability to that user on the User Capabilities (UC) screen.

What Next?
Now that you have described your application and defined the file
movement rules to LIBRARIAN using Shortcut, you are ready to use
LIBRAEGAN to manage software files and control changes.

2-8 L IBRARlAN/iX Administrator's Guide

Refer to Chapter 2, "Getting Started", in the UBRARIAN/iX User's Guide

The remaining chapters of this guide provide details of LIBRARIAN
setup to help you understand and tune the rules that Shortcut created for
your environment. Advanced options are also discussed.

for information on how to use LIBRARIAN.

G effing Started with Basic Rules 2 - 9

2-10 U BRAR)AN/iX Administrator's Guide

Master Library

This chapter describes master library concepts and how to define a
library. Topics include:

• De f ining an Application

• De f ining a Library

• De6ning Filesets

• Cu s tomizing File Access Rules

a Reviewing Library and File Information

• De le t ing Library and File Information

• Su mmary

The first step in setting up an application is to define the master library.
For each application, you need to identify the files that belong to the
library and organize them into a hierarchy of filesets, if desired. Use the
data-entry screens to de6ne the library. If you used Shortcut to define an
application. The application consists of only a single application fileset.
You can use the screens discussed in this chapter to create a hierarchy of
subsets for that application fileset.

You should begin by using default values until you become more familiar
with the product. Later, you can fine tune LIBRAIGAN to meet your
specific needs.

Defining an Application
Applications are the highest organizational unit in the LIBEVQKAN
system. The library master files for an application are defined as a fileset,
or Eileset hierarchy, as discased below. The file movement rules of the
application are associated with the library through the application name.
In addition, the application's projects (if used) are associated with the
application name,

Use the Applications (AP) screen to define the name of your application
and associate a fileset with that application.

M aster Library 3 - 1

Figure 3 — 1 contains a saxnple application definit ion for MFG. The
application fileset is MFG-FILES.

A PPL I C A T t o i l s

App I i cat i m

Appl lect im Pl I eeet

21ERHK~

App I I cet I ÃI Nese
Oe I tes

Nueber I eg
Vssh4o ig nore r I I e

Aescr I pt lm

Figure 3-1 Applications (AP) Screen

Applications |'AP) Screen Fields
This section describes the fields on the AP screen, enabling you to define
an application and associate your library with it.

Application

Application Name

Deltas (Yes/No)

Deltas (Ignore File
Numbering)

Description

Application Fileset

A uxuque identifier for the application consisting of a
xnaximum of four characters. The application can
include alphabetic, numeric, hyphen (-), and
underscore () characters.

Highest level fileset in the appbcation. It includes all
filesets and files in the application. If the fileset does
not already exist, it is created automatically with serial
access control and write mode default access. You can
override these values later with the Filesets (FS) screen,
or you can override them on a file-by-file basis with
the File Access (FA) screen, as descxibed on page 3 — 11.

Provides space for a longer application name for
documentation purposes.

Specifies whether to use delta files or generation files

Specifies whether file numbering is significant
when determining deltas. This field is applicable only
if you specify Y in the deltas Yes/No field.
A description of the application for documentation
purposes (optional).

for text files

3-2 U B RARIAN/iX Administrator's Guide

Defining a Library
An application's library is the collection of all fi lesets associated with it .
Each application must have a mirumum of one fileset. The following are
some of the reasons for defining mult iple filesets for an application

• Con venience — Filesets are groups of files likely to be used together.
You can specify fileset names in LIBRARIAN commands to perform
steps on groups of files. If you require subgroups, create as many
levels as needed for ease of reference. Users can create their own user
filesets for ad hoc file movements, as described in Chapter 6, "User
Filesets," in the LIBRARIAN/iX User's Guide.

group of files. Create subgroups to define different access control and
default access modes.

• Fi l e movement rules — Steps are defined to apply to specific filesets.
Create filesets for groups of files for which different rules apply.

• Acc ess control — Filesets establish default access rules for the entire

Defining Filesets
First, you de6ne fileset names with defaults for file members, then you
create a 6leset hierarchy. Once the hierarchy is defined, you can add
individual fi les as members of each 6leset.

Access Mode and Control
When defining a fileset, you specify a default access mode and an access
control level that are assignedautomaticallyto all physical files added to
the fileset. These access requirements determine the type of copies users
can obtain in LIBRARIAN operations, You can override these defaults
later on a file-by-file basis.

M aster Library 3 - 3

Access Mode
LIBRARIAN assigns an access mode to every copy of a master file. A
secondary copy's access xnode deterxnines if it is allowed to replace its
master through a checkin step. The two access modes are:

W (Write)

R (Read)

file.
Indicates that a secondary file can replace its xnaster

Indicates that a secondary file cannot replace its master

access control levels:

file.

Access Control
The master file's access control level deterxnines how many read and
write xnode secondary copies are allowed, The following are the four

S (Serial) Only on e secondary file at a time can have write mode
access, but unlixnited read mode copies are allowed.
Provides protection against concurrent modif ications.

R (Read) Only re ad mode copies are allowed. These copies

M (Multi-Write) U nl i m i ted read and write mode copies are allowed. No
protection exists against concurrent modifications. Two
or xnore programmers can work on a file. One
programmer's changes could replace another
prograxnmer's changes in the master library.

X (Exclusive) The master file cannot be copied.

cannot replace the xnaster file.

Most development and maintenance enviroxunents use serial access
control because it protects against sixnultaneous changes done by two or
more people.

How Access Control and Access Mode Work
In a development route, a file is checked out from a master library wi th
write-mode access. As the file xnoves through a route, this access is
transferred automatically to the next destination copy, unless otherwise
specified.

For example, if a CHECKOUT step assigns write-mode access, then the
step which moves files to QA would pass along the write mode access.
This enables the CHECKIN step to replace the master file in the QA copy.
If the CHECKOUT step assigns read-mode access, then the CHECKIN
step cannot be perforxned.

LIBRAjRIAN Managers and Application Managers can change a file's
access mode with the SET function. They can also replace a master file
with a read mode secondary copy by using the PUSHREAD paraxneter
with a step, or the COPY or NtOVE commands. In fact, an emergency step
could be configured to automatically invoke this parameter f or
authorized users.

3-4 U B RARIAN/iX Administrator's Guide

control in LIBR/QUAN.
The following is an exampleof how to use access mode and access

1. The ABC file has serial (S) access control and write mode (W) default

2. The user checks out a copy of the ABC file without specifying read
mode or write znode. LIBRARIAN automaticallyassigns write Inode
to the copy.

3. The secondary is copied to a test location. The command does not
specify access mode, but LIBRAIUAN automaticallytransfers write
mode to the secondary in its new location.

4. A second user tries to check out a write mode copy of ABC.
LIBRAlRIAN does not allow this additional copy, but the user can
obtain a read mode copy.

access. There are no secondaries of ABC at this time.

Defining Filesets
Use the Filesets (FS) screen to create filesets by defining the logical fileset
nazne and the default access parameters for fileset members Figure 3 — 2
shows the fileset definition for a fileset called SOURCE-FILES.

F I L E S E T S FS V.1.88

F 1 i eeet

ggggggg~

Befit t
Access Central

De foal t
Language

8 - t88tE
1 — CDB%/IIPB

2 — PASCAL.
8 — FWTANt
4- C
5 — SPC/TAt8tSACT/TENT
6­
7 — JCL/1IPE
8 — BASIC

De foal t
Access Node

Doser l pt i os

M C3WW I I W W
Figure 3-2. Fiiesets (FS) Screen

Master Library 3-5

Filesets (FS) Screen Fields
This section describes the fields on the FS screen for defining a fileset.

A unique name consisting of a rnaximurn of 16
characters, Do not use a fileset name that was
previously defined for another application.
Some sample fileset names are

Fileset

AP-OBJECT
SALES-SOURCE
PAYROLL
CHECK-WRITING

Default Access Control

Default Language

Default Access Mode
added to this fileset,

files added to the fileset.
The access control level to automatically assign

The access mode toautomaticallyassign files

The default language toautomaticallyassign
files added to the fileset. Language controls
source code connotation.

A description of the filesetDescription

Defining a Fileset Hierarchy
Filesets are the logical components of your library. You can also define
hierarchical relationships between these components. The number of
levels in the hierarchy depends on your own needs.

Begin with the highest level fileset, which is the application fileset. If you
draw a tree diagram for your library, begin with the application fi leset at
the top of the tree.

Use the Fileset Components (FC) screen to define the fileset hierarchy.
Enter the name of a fileset and the name of one of its component filesets.
Figure 3 — 3 illustrates the definition of SOURCE-FILES as a component of
MFG-FILES.

Fileset Components (FC) Screen Fields
This section describes the fiields on the FC screen for defining your f i leset
hierarchy.

Fileset A logical fileset name previously defined on the
Filesets (FS) screen.

A fileset to be treated as a subset of the fileset
defined in the Fileset field above.

Component

3-6 U B RARIAN/IX Administrator's Guide

F ILE S E T C O II P O H E N T S F'C V. i . 80

Fi lesei

Figure 3-3. Fileset Components (FC) Screen

Defining Physical File Members
Next, add files to the logical filesets.

Logical fileset organization is independent of MPE or UNIX directory
structures and system boundaries, A fileset can include any collection of
files, regardless of the file type or location. This ability to group files
logically provides flexibility in creating file structures that reflect your
speci6c needs. Create filesets for subgroups you want to manage as a
unit, or that have something in common,

For example, you could create a fileset that includes these source files
from various groups, accounts, and systems for an accounts payable
application:

SYSA:AP@S.JOB.PROD
SYSA SPNS.SOURCE1 PROD
SYSB'SPNS.SOURCE1.PROD
SYSB: U STAP SF ILK. COMP
SYSB:APFILO,SOURCES P
SYSB:GLFIL¹¹ .SOURCE AP

sysa:/prod/job/ap*s
sysa:/prod/source1/sp*s
sysb./prod/source1/sp s
sysb:/comp/sfile/Iistap
sysb:/ap/source/apfilo
sysb:/ap/source/glfil[0 — 9] [0 — 9]

Another fileset could include the object code corresponding to these
source files. Or, you might want the source and object files together in a
single fileset.

Master Library 3 -7

Use the Auto Filesets (AF) screen to identify the general location of files
that belong to a fileset. By using wildcards in the descriptor, you can load
multiple files at the sazne time. You can use the INclude/EXclude field to
refine your fileset definition.

Note Auto filesets are not only used to initially 1oad your library with fi les,
they are also used later by LIBRARIAN when new files are introduced
to determine the filesets to which these new files should belong.

To add files that cannot be described by a single wildcard descriptor, you
can add any number of different descriptors to identify the different file
locations. Later, you can use the Auto Fileset Update (AUTOVPDP)
program to add previously unknown files to the fileset, based on the
saved auto fileset descriptors (see "Using AUTOUPDATE for New
Master Files", 1ater in this chapter.). As new master files are introduced
through checkin steps with the AUTOUPDATE function, they are added to
the appropriate filesets automatically. Type AUTO in the upper — left box
(ULB) on the AF screen to run AUTOUPDATE immediately.

Figure 3-4 shows the use of the AF screen to define the location of fi1es
that belong to the SOURCE-FILES fileset.

A UT O F I L E S E T S V. 1.88

hester Fi l eeet Ittc lode/Elle fude

Auto F I leset Oescr I pter

Enter ggg in the selection field 0tpper left) tn rnn AutoUtntete.

Figure 3-4. Auto Filesets (AF) Screen

3-8 L IBRARIAN fiX Administrator's Guide

Note Remember. You are only defining master files. Secondary files are
always linked to a master in the library, and are indirect numbers of
filesets to which the associated master belongs. To link secondary fi les
already in progress prior to installing LIBRAI?JAN to newly defined
masters, refer to Appendix A, "Applications in Progress".

Auto Filesets (AF) Screen Fields
This section describes the fields on the AF screen for defining the files
that belong to a fileset

Master Fileset

System

INclude/EXclude

the fileset.

The name of a fileset as defined on the Filesets
(FS) screen,

Indicates whether files identified by the
descziptor should be included or excluded from

The system where the files are located. If no
system is specified, LIBRARIAN defaults to the
current system.

The general location of files associated with the
fileset defined in the Master Fileset field.

Auto Fileset Descriptor

Using AUTOUPDATE for New Master Files
You can run the Auto Fileset Update (AUTOUPDP) program at any time to
introduce new files as masters. This program uses wildcard fileset
descriptors entered through the Auto Filesets (AF) or saved on the Files
in Filesets (FF) screen (described below) to locate the appropriate files on
disk and load their filenames into the database to begin tracking them as
master files. Run the program by typing AUTOUPDATE. Alternatively, you
can type AUTO in the upper left box on the AF screen to run
AUTOUPDATE. Figure 3 — 5 shows the AUTOUPDATE command for the
SOURCE-FILES fileset.

M aster ljbrary 3 - 9

Enter the update level desired:

I . Applicahon
2. F i leset
3. Al l Application Filesets

Option (RETURN to Quit): 2
Fileset: SOURCE-FILES

ABC I QQQS.SOURCE.ABCPROD,SYS12
ABC2000S.SOURCE.ABC PROD.SYS12
ABCXOQS,SOURCE,ABCPROD.SYSI 2
LINKI OOS,SOURCE.ABCPROD.SYS12
LINKBOQS.SOURCE.ABC PROD.SYSI 2
MFG080S.SOURCE.ABC PROD,SYS12
M RP025S.SOURCE,ABC PROD.SYS I 2
MRP035S.SOURCE.ABC PROD.SYS12
POI 0 I QS,SOURCE.ABCPROD.SYS12
RPTI QOS.SOURCE.ABCPROD.SYS'I 2
RPT500S.SOURCEABC PROD.SYS12

added to file set SOURCE-FILES
added to file set SOURCE-FILES
added to fil set SOURCE-F1LES
added to file set SOURCE-FILES
added to file set SOURCE-FILES
added to fiie set SOURCE-FILES
added to file set SOURCE-FILES
added to file set SOURCE-FILES
added to file set SOURCE-FILES
added to file set SOURCE-RLES
added to file set SOURCE-RLES

11 files updated,

Figure 3-5. AUTOUPDATE Command

Using fhe Files in Filesets (FF) Screen
The Files in Filesets (FF) screen provides an alternatemethod of adding
master files to library filesets. This screen is recommended when you
need to add specific individual files to filesets without using wi ldcards.
You can also use the FF screen to delete files from filesets.

The Files in Filesets screen combines most of the features of the AF screen
with an immediate auto update. It is only practical when adding small
numbers of files, since you must wait for Eilenames to be added to the
database prior to proceeding to the next fileset descriptor.

When you press ENTER, LIBRARIAN explodes the descriptor to load the
database with information for all existing files that match the descriptor.
The files are listed on the screen as they are processed. If you do not want
the Eiles to be listed on the screen, use the SHOW FILES function key (set
2) to turn the file display off
To load file information in batch or all at once, set both Auto Fileset Add
and Defer Explosion to Y. Descriptors are loaded in the database, but files
are not added to Eilesets until you run the AUTOUPDP program by using

Figure 3-6 shows the use of the FF screen where files are added to the
sample SOURCE-FILES fileset

AUTO UPDATE.

3-10 U BRARIAN/iX Administrator's Guide

F I L E S I N F I L E S E T S FF V 1.88

Fi lesel i~~ 'ggggj ~ Aett r f 1 ieset Add Ll Befer Explesim $

Fiie 8eset 1 tet.~ tee

fileset,

Fileset

SysterII

Defer Explosion

Auto Fileset Add

Figure 3-6. Files in Filesets (FF) Screen

Files in Filesets (FF) Screen Fields
This section describes the fields on the FF screen for adding files to a

The logical name for a set of files, as defined on the
Filesets (FS) screen.

Indicates if the fileset descriptor wil l be added as an
auto fileset descriptor (see AF screen) for later
automatic fileset updates. Default: N. To add descriptor
as an AF record, set to Y.

Indicates w'hen to perform the explosion for this fileset.
Default: N. To defer explosion until the AUTOUPDP

program runs, set to Y. Make sure the Auto Fileset Add
field is also set to Y.

System where the file is located. If no system is
specified, LIBRARIAN defaults to the current system.

The file descriptor, identifying the location of files in
this fileset.

File Descriptor

Customizing File Access Rules
When you assign files to filesets, LIBRARIAN assigns access rules to each
file based on the default access parameters for the fileset. Use the File
Access (FA) screen to review or customize the access parametersfor
individual master files. For example, if you assign serial access control to
the fileset, but want some files in that fileset to have exclusive access, use
the FA screen to change the access control for those files. You can add a
one line text description for each file, as well.

M aster Library 3 -1 1

Figure 3 — 7 shows the FA screen containing file access information.

F IL E A C C E S S FA V, 1.88

item
• tlag' I ' • I I

Itester F I le3%

Access
Central

Def cut t
Access ttmde Ltetguege

e — IAIIE
1 — CHIDL/IIP6
Z — PASCAL
3 — FTNITAAtt
0 — C
s — SPL/TAAIIMCT/mar
6­
7 — JKl/1PE
e — AttsicDescript ice

"5KRP...,MC3MM
Figure 3-7, File Access (FA) Screen

File Access t,'FA) Screen Fields
This section describes the fields on the FA screen for reviewing and
tuning the access parameters for specific files.

System

Language

Master File

Access Control

Default Access Mode

annotation.

The system where the file is located. If no
system is specified, LIBRARIAN defaults to
current system.

The name of a file that is part of the library.

The access control level for the xnaster file
(eXclusive, Read, Write or Multi — write).

The default access mode when copying files if it
is not specified when performing a step.

Controls the commenting style used in source

A description of the file.Description

Reviewing Library and Fife Information
You can review detailed inforxnation about any group of fi les with the
VERIFY function in LIBRAjRIAN. Soxne possible uses of this command
include displaying the:

• as sociated Master file (or Delta file) — Format 3

• associated Master fileset(s) - Format 4

• lo c a t ion of Write mode copy — Format 9

3-12 U BRARIAN/iX Administrator's Guide

Figure 3-4 shows the master fileset information displayed by VERIFY
format 4.

LIBRARIAH VERIFY (Al I F i les/nester Fi lesets)

!-denotes mmbership via the ouster

File rUpe Itoster Fileset
File

PEMUIH: ABC188OS SOURCE. LI BPROO

PENH!In: ABC288BS. SOURCE. LI BPROO

PEHSUIR: AIK3880$. SOURCE. L IBPROO

sputnik:/opt/ocs/ocs I ib/I ibprod/
ebc t888. c

sputnik:/opt/ocs/ocs I ib/I i bprod/
ebc2888. c

sputnik: /opt/ocs/ocs I ib/I ibprod/ n

n

n

n H F ~ I lE S
HPE-SIHHKE

n RF ~ I LES
HPE-SUUIKX

n HFA-FILEs
HPE-SOUIKE

~ ILES
UH IH-SOURCE

HF ~ILES
UHIH-sOURCE

~ I LE s
UHIH-SOUIKE

ebc3888. c

FigUre 3-8. Associated Master Filesets

You can also review detailed historical data for a specific file through the
File Inquiry (FI) screen. Refer to Chapter 5, "Screens" in the
UBRARIAN/iX Reference Guide.

Table 3-1 lists LIBRA~ r ep or t s providing important information on
library structure and fileset membership.

Table 3-1. Library Information in Standard Reports

Desc!!plion

RFE10/20 F i leset Explosion Shows application hierarchy and physical
files.

Shows status of master and secondary files
in each fileset,

RFD10 File set Status

RFD20 Mast e r File Status Shows status of master files in each fileset.

RAF10 Auto F i leset Explosion Sho ws hierarchy and fileset descriptors for
each fileset.

Deleting Library ancI File Information
Break the relationship between two fi lesets by using FIND and DELETE on
the Fileset Components (FC) screen,

Break the relationship of one or more files within a fileset by using FIND
and DELETE on the Files in Filesets (FF) screen. Delete files collectively by
using wildcards and pressing DELETE twice.

Delete a fileset by using FIND and DELETE on the Filesets (FS) screen. You
can also use DELETE on this screen to delete all of the filesets components
and member files. Mass deletion is not recommended if you have files or
filesets belonging to znore than one application.

M aster Library 3 -1 3

Delete the data for an entire application's files and file movements by
using FIND and DELETE on the Applications (AP) screen, or use the

Delete database information for files that no longer exist on disk by
running the File Exception Report (RFX10) to identify nonexistent files,
then use the CLEANDB command to delete the data for those files.

DELETE c omrt~d .

Summary
Table 3 — 2 summarizes the sequence for defining the master library for an
application. Repeat this sequence for each application. Page references
indicate the location where each activity is discussed in this chapter.

Table 3-2. Data Entry for Master Libraries

1. Define an Application
(Figure 3-1)

2. Define Filesets (Rgure 3-2)

3. Define Fileset Hierarchy
(Figure 3-3)

4. Identify Physical Members of
Filesets (Rgures 3-4, 3-6)

5. Load Database with Master
Filenames (Figures 3-5)

6. Customize Data for Specrfic
Files (Figures 3-7)

* Asterisk indicate optional activities

Filesets

File Access

AutoUpdate

Applications

Fileset Components

Auto Filesets, Files in Filesets

~AF

~FS

~ AF ~ FF

~
AUTO

FA

Note Be sure to completethe data entry for an application library before
proceeding to Chapter 4, "File Movement Rules".

3 — 14 LlBRARIAN/iX Administrator's Guide

File Movement Rules

This chapter describes how to use the screens to define or tune rules for
users to obtain copies, replace master files with revisions, and perforzn
other file operations. The following topics are discussed in this chapter:

• Steps and Routes

• Defining a Route

a Defining Basic Step Data

• Defizung Options for Steps

• Example of a Step Definition

• De f in ing Rules for Introducing New Files

s De f ining Step Refinements and Exceptions

a Reviewing File Movement Rules

• Su znrnazy

Steps and Routes
File movement rules including dependencies for an application are
defined in LIB~ ~ as rout es and steps.

A step defines the znovernent of files from one location to another. The
step is the basic unit of the Eile movement systezn. Steps are grouped into
routes. Steps are executed in LIBRARIAN as cornzzmds.

A route reflects a cycle of specific file movements and checkpoints. A
route is made up of a series of steps that move/copy files or record an
event. The steps must occur in a particular order.

F ile Movement Rules 4 - 1

Routes can include:

• maintenance for a current release

development of a new release

• di s t r ibut ion procedure for updating data and/or program files

• co n t rol of programs for demortstration or test purposes

Steps can include:

• copying files from the library to a prograxxuner's work group for

• co p y ing new vendor files to all systems in a network

a approving modified files

• xnoving modified files from a programxner's work group to the QA
account for testing

• mo ving tested and approved source and object code into the library

• in t r oducing a new file into an application

xnodification

Defining a Route
You should determine the routes and steps you want to define for an
application. We recomxnend that you create flow diagrams to show how
files are moved and copied from one location to another,

Figure 4 — 1 is a flow diagraxn for a basic development route consisting of
three steps. In this route, programmers use the MFG — OUT step to obtain
write mode copies of 61es from the master library After prograxxuners
incorporate their changes, the manager uses the MFG-APPROVE step to
approve the modified secondary files. Then, operators use the MFG — IN
step to move the approved files back to the library

MFG APPUCATION

UBPROD Account
SOURCE and

OBJECT Groups

U BDEVEL Account
UNDA and FRANK

Groups , MFG

Library
(Master Files)

Development Areas
(Secondary FBes)

coMPo NENT FILESET

Figure 4-1. S a mple Route Flow Diagram

4-2 L IBRARIAN/iX Administrator's Guide

First, assign a route nazne to describe a file znovement cycle for the
application. Use the Routes (RT) screen to assign a route name up to
twelve characters. You can also add a description. Each route belongs to a
specific application.

Note Q To re q u i re that all file znovements within this route be linked to
projects, set the Project Required field to Y. For more information about
projects, refer to Chapter 6, "Projects"

Figure 4 — 2 shows the definition of the DEVELOPMENT route in the MFG
application. This sample route does not require projects to be specified.

R OU T E S RT V.1.88

project
Route Rpp I i cnt i an

Descript ion

',:,.PZtS, . : ,XlSNiE' :DEtZK, .~ «-%XP;:.

Figure 4-2. Routes (PT) Screen

Defining Basic Step Data
Step definit ions are the key to your LIBRARIAN impleznentation. A route
can have as many steps as necessary to complete a cycle. The step
definition identif ies the type of operation, the files to which the step
applies, and step options that control its behavior.

You perform a step by using the step name as a command. In menu
mode, you can select the desired step frozn a znenu by selecting the Steps
option from the File menu.

If you type a step nazne at the LIBRARIAN proznpt, LIBRARQ&l
perforzns the named step, using the defined step parameters. For more
information see the PERFORM cozzunand in Chapter 1, "Comzn-tnds", in
the LIBRARIAN/iX Reference Guide.

F ile Movement Rules 4 - 3

Step definitions can be specific or general.

• l f s t ep definit ions are very general, you need to specify more
information when performing the step in LIBRARIAN.

• If s tep definitions completely define all allowed files and options, you
do not need to specify much detail when performing the step in
LIBRARIAN.

Note When a user requests a step that exists in more than one route and/or
application, an "ambiguousstep name" message is issued, and a menu
of steps is displayed, This menu of steps is alphabetically sorted and
only displays steps the user is authorized to use.

Use the Steps (ST) screen to define steps (Figure 4 — 3). There are many
options available when defining steps. Basic step i nformation is described
in this section, followed by advanced options in the next section.

S T E P S ST V. I. 88

Step Anete App l Ser t A c t lee Nester F I I eeet
~ i~ i ~ .)lli3gig[gg.tXI g ei (step scop) 3Xgggg~

s888cE T (N)es te / (S)~
' l l

3 (C)opg/(N)cue/(N)ut I

DESTIHATIAN T e i (I I)ester/(S)ecetxhtr
) t I

Preste — Al ternete Preste

Press li Next Fkajs. then g tn ac(lgere Step Opt itnts

WWM W
Figure 4-3. Steps (SYi Screen

When a user requests a step that exists in more than one route and/or
application, an ambiguous step name" message is issued, and a menu of
steps is displayed. This menu of steps is alphabetically sorted and only
displays steps the user is authorized to use.

4-4 U BRARIAN/iX AdministTator's Guide

Step Identification

Steps (ST) screen:

Step. Route.Appl

Information for identifying steps indudes the following fields on the

Sort

Active

This unique combination of step, route, and application
identifies a step. If the step name is unique, you can
perform the step without specifying the route and
application. To minimize effort, do not use the same
step name in more than one route or application. For
example, instead of using a CHECKOUT step in
several applications, you could define AP-OUT,
GL-OUT, PAY-OUT, etc. as unique stepnames.

A unique number (l to 99) for each step within a route,
used for sorting. This number determines the order in
which steps are listed on reports. The step number
does not enforce sequences for performing steps
Presteps, discussed below, are used to enforce
sequence.

Indicates whether the step is currently active. The
default is Y, indicating the step is active. To deactivate a
step without deleting it, set this field to N.

Limits the scope of the step to the specified fileset,
restricting the files on which the step can operate. The
scope can be the application fileset or any of its subsets.

• If you specify the application fileset, the step
applies to any files tha.t are part of the application.

• If y o u specify a lower-level fileset, the step is
restricted to that specific subset of files.

Forexample, you can limit a step to the fileset
SOURCE-FILES, which is a component of MFG-FILES.
Members of MFG-FILES that are not rnernbers of
SOURCE-FILES are not within the scope of the step
and cannot be processed with this step.

The source location, discussed later in this chapter, can
be used to further restrict the files on which the step
can operate.

Master Fileset

F ile Movement Rules 4 - 5

Step Operation

Move

Each step performs one of the following three types of' operations:

Copy Copies files to another location.

longer exist in the original location.

Does not perform any file movement, but records some
event such as an approval.

Physically moves files to another location, so they no

Null

Use a copy operation to obtain work copies of files for modification. Use a
null operation to approve changes. Use a copy or move operation to send
modified files to QA.

Each step defines a source location and destination location. You specify
whether the files in each location are master or secondary files. This tells
LIBRARIAN wh ich f ile types are valid when authorizing fi les for the
step, and is reflected in the step type w'hich appears in reports. You can use
system variables to define source and destination locations for steps.

Table 4 — j. lists the step types, the typical file movement functions, and
examples of stepnames for each type.

Table 4-1. Step Types

Step
Type D e scription

MS Ma s ter-to-Secondary

SS Sec ondary-to-Secondary

Function Ste p name Examples

Copy

Move
Copy
Null

Move
Copy

OUT, RELEASE, CHECKOUT, GET

TEST, QA, SUBMIT
NEW, APPROVE, OK
TESTED
IN, PUT, CHECKIN
REVISE, UPDATE

SM Se c ondary-to-Master

Master-to-secondary steps are checkout steps. Secondary-to-master steps
are checkin steps. Secondary-t~ onda ry steps are all the steps in

Step operations are restricted by step type. For example,
master-to-secondary steps can copy files, but cannot move them to
another location, Null operations can only be performedon
secondary-to-secondary steps. On secondary-to-master steps, the
secondary file must have write mode access.

between

4-6 L IBRARIAN/IX AdrninistTator's Guide

Source ancI Destination Locations
Source Location
The source location indicates where to locate valid files for the step when
users specify relative pathnaxnes (unqualified 61enaxnes). Use wildcards
as needed to describe valid files for the step. When you execute a step,
LIBRARIAN only authorizes files associated with the master fileset for
the steps that are within the scope of the source location.

When you execute a step, the files you specify are relative to the step
definition and not your current working directory.

Destination Location
Destination locations can be as specific or general as you need. It is a
good practice to xnake the destination as specific as possible so that users
do not have to specify a destination when executing the step. Use
wildcards and edit masks, as described below, to aHow LIBRARIAN to
automaticallydetermine destinations when users perforxn steps.

Equal (=) vs. At (O)
You can use the equal (=) sign in any element of a destination location.
This indicates that 6les created by the step must have the same value as
the corresponding elexnent of its associated master file For example:

Source Location: SYSA :Q.O.DEVEL
Destination Location: SYSA:=.=.QA

Source Localion: sys a : /devel/appl/ /
Destination Location: sysa:/qa/appl/=/=

The at (@) sign in MFE (asterisk (') in T.JNVg carries the elexnent forward
from the source filename to the destination Eilenaxne, by default. The user
can override this.

VNldcards
The equal (=), at (©), asterisk ('), question mark (?), and minus (—) signs
can be used in combination with l iteral characters in the destination to
edit or transforxn the corresponding source filename. See the section on
Edit Masks at the beginning of Chapter 1 in the LIBPVHGAN/iX Reference

The following example w'ould copy files to a destination naxne that has a
T appended to it:

Guide.

Destination location; SYSB:OT

Destination location: sysb: t

When checking a secondary file back into the library using
secondary-to-master steps, LIBRARIAN always replaces the master that it
caxne from. This is true even if the secondary 6le gets xenamed at some
point during the route.

File Movement Rules 4-7

You can use systexn variables to define source and destination locations
for steps. In addition to the wildcards @,?, and 0 for MPE and ; ? , and
regular expressions for UNIX, LIBRARIAN offers special wildcards to use
in source and destination filenames: ! LOGON,! USERID,! OWNER, and
!MSUSER These wildcards restrict the source and! or destination files to
a particular location. As with l i teral elements, the user cannot override
these values. In fact, if the elexnent is omitted, it is automatically fi l led in.

Table 4-2 Specia! Wildcards

Wildcard Wh ere Used D esc r iption

! LOGOS
! LOGIN

Source
Destinahon

! USERlD

! MSUSER

!OWNER

Destinahon

Destination

Destination

Source
Destination

Substitute the user's current login automatically
in an element. For UMX, the login user is
substituted as appropriate, For MP'E, the login
group, account, and systexn values are substituted
as appropriate.

Substitute the current LIBRARIAN user naxne in
an elexnent. For example, if programxners have
their own work groups for secondary files and
their user names are the same as their working
directory, you could define the destination
directory with ! USERID on a checkout step.

Substitute the source file owner. For exaxnple, if
several prograxnmers submit files to QA,
! OWNER can be used in the destination name for
a single REJECT step that returns files to each
programmer's area (e.g., MPE destination:
SYSA:©.!OW&KR..DVL; UMX destination:
sysa:/devel/! OWNER/*).

Substitute the naxne of the LIBRARIAN user who
originally checked out the file. This wildcard is
useful in sending files which fail QA back to the
original programmer's area.
Any MPE system variable that is prefixed by a!,
e.g,!HPGROUP, The value is determined when a
user performsthe step.

!hpvar

4-8 L IBRARIAN/iX Administrator's Guide

Edit Masks for UNIX Pathnames
To carry forward, edit, or replace an element that is at the same level in
both the source and destination 61enames, follow the rules described
above.

Because UNIX pathnames can have varying numbers of path elements
(directories), you can edit (or skip) components at varying levels in the
source filename using the following construct:

/(x [— y]) [edit — mask]

where x and y represent the desired range of components from the source
pathname. x and y are numbers from 1 to ', where ' is the last directory
element of the pathname. If you want a specific element, omit y which is
optional.

The optional edit mask is applied to each element in the range (do not
include the brackets).

For example, the mask/(1 — 2)/devel/! USERID/(4-)/ = applied to the
filename /usr/usr2/master/screens/abc results in the filename
/usr/usr2/devel/milind/screens/abc

You can also use the following wi ldcards in place of x or y:

number of levels in home directory path

number of levels in the current working directory path

one less than the number of levels in the current working
directory path

You can use curly braces, i.e., (x [— y]), to indicate mapping from the
master file name rather than the current secondary file name.

For example,, consider the following step called demo — test:

• So urce files are defined as secondary files:

sputnik./usr/usr2/demo/dev/level1/level2/"

• De s t ination files are defined as secondary 6les:

sputnik:/usr/usr2/demo/test/(5 —) / =

The edit mask (5 — *) is evaluated using the associated master file
path

• Gi v en the following source files:

sputnik:/usr/usr2/demo/src/dir1/dir2/dir3/*

• Th e destination files would be expanded to the following

sputnik:/usr/usr2/demo/test/dir1/dirRldir3/=

File Movement Rules 4-9

Prerequisites
This section describes how to define dependencies for steps.

Prestep
A prestep is a step in the current route that must be perfoxxned
successfully before the current step can be performed on a file

For example, if APPROVAL is a prestep for CHECKIN, the APPROVAL
prestep must be completed before the file can be xnoved back to the
library by the CHECKIN step. If you perforxn CHECKIN for several files,
but some of the specified 6les were not approved with the APPROVAL
step, those files will not be moved with CHECKIN.

Specify a prerequisite step by entering its step name in the Prestep field
on the Steps (ST) screen (refer to Figure 4 — 3).

Alternate Presteps
You can define a prestep and one or two alternate presteps. The
prerequisite will be satisfied as soon as either the prestep or at least one of
the alternate presteps is performed successfully.

For example, files can be copied to the development area froxn the master
location (CHECXOUT step) or froxn QA (REJECT step). You can define
CHECXOUT and REJECT as alternate presteps to the TEST step, which

Multiple Prerequlsites/Dote Prerequisite
To require completion of more than one prestep, create a special composite
prestep with the Composite Presteps (CP) screen as shown in Figure 4-4.
A composite prestep is a list of previously defined steps that must be
coxnpleted to satisfy the prestep. The order in which these steps are
perforxned is not important. Use a composite pxestep naxne in either the
Prestep or the Aiternate-Prestep fields of the Steps (ST) screen.

To prevent a step from being performed before a specific date, enter the
date on the CP screen, then use the composite prestep name in any of the
Prestep fields on the Steps (ST) screen.

moves files to QA

4-10 U BRARiAN/iX Administrator's Guide

C OttPOS IT E P R E S T E P S CP V. I.BO

Canpusi te Prestep Rene

Step Raut e App I

ZXiKHZGEW. jHQKEXIR. ZKR

Oaie Requirenent (Opt iaetu
Prestep List

Interruptians Oc? Ij

IW
> "HR ' 9%RK58

Figure 4-4. Composite Presteps (CP) Screen

Step Description
The description you enter for a step will appear on step reports as well as
on the Steps menu that you access froxn the File menu.

File Movement Rules 4- i 1

Defining Options for Steps
You can define additional step options on the Step Options (STO) screen
(see Figure 4 — 5) to customize the step to meet your needs. Initially, you
can accept the defaults displayed and fine tune the step later.

S TE P O P T I O N S STO V. 1. 80

2KiKi8%% iEHUKlil3%-5S!
Rather i eat ill Required? u!

NPE/iH Onl g: Create: 6raup II Accmett g Crea ter g > ~

Unix Gnlg: mkdir g Permissible ~ thmter ~ 6 ruup ~

EIRRRRIRN Reeds ~

Ei le Expirat ion (OaUs)
Secmmteries ~ Saf e tg Retained ~

Batch llama Camp/Oecmp Retn cata Read/Nri te Orph Vtg PushR ~ternal­
H Y Y Y LIY + + + HY HY + ~ tt osl tt

Rddl timbal Parameters ~i i gggi m

eedKEP'

Create: Group,
Account, Creator

field.

rnkdir Instructs LIBRARIAN to create directories if

LISRARIAN Owner Sets the owner of secondary files LIBERIAN

Figure 4-5. Step Options Screen

Authorization Required? In di c a tes whether or not step authorization via
the Step Authorizations (SA) screen is required
for the step. Default. Y, indicates you must
authorize specific users to perform the step.
Setting this field to N allows all users to
perform this step without authorization.

creates during the step to the LIBRARIAN user
you specify. Otherwise, the user performing
the step becomes the owner.

You can specify that the destination group,

automaticallyby LIBRARIAN if it does not
already exist by entering Y in the appropriate

m Creator You can specify the MPH file creator for fi les
created by the step. If a file creator is not
specified, LIBRARIAN uses the current MPE
user for files created within the login account,
and the default creator from theSystemProfile
(SP) screen for all other files created.

they do not already exist.

Sets the UNIX permissions on destination files.

account, or creator should be created

Permissions

4-12 U B RARIAN/iX Administrator's Guide

Owner

Group

Sets the UNIX owner for destination files.

Sets the UMX group for destination files.

Note When a user requests a step that exists in more than one route and/or
application, an ambiguous step name" message is issued, and a menu
of steps is displayed. This menu of steps is alphabetically sorted and
only displays steps the user is authorized to use.

File Expiration
If you do not want read mode and retained copies to accumulate
indefinitely, you can define an expiration policy (in days) for files created
by the step. The expiration policy determines when the file is eligible to
be flushed by the FLUSH utility.

You can define separate expiration periods for read mode secondaries
and safety retained copies. Write mode copies and master files do not
expire.

If you do not want fi les to expire or to be flushed, specify 999 days. The
default value for retainedfi les is 0 (indicating that the files expire the same
day as created). The default value for read mode secondaries is 999
(indicating that the files do not expire).

Step Parameters t,'Defaults and Allowed Overrides)
For each step, you can specify a variety of default parameters for
LIBRARIAN to use when you execute the step. You can also specify
whether users can override these parameters when performing the step

The list of parameters is located at the bottom of the Step Options (STO)
screen. For each parameter, specify the default for the step (Y or N), and
indicate whether users are allowed to override these defaults when
performing the step (Y or N). Initially, all defaults are set to N to match the
PERFORM comriiand defaults, and all overrides are set to Y.

You can set the defaults for the following parameters in the step
definition:

Batch

Memo

Authorizes the transaction online. Performs the actual
file operation in a batch job.

Prompts for memo text describing the current
transaction to be included with the log record.

Compresses the destination file.

Decompresses the destination file (if compressed).

Compress

Decompress

F ile Movement Rules 4 - 13

Retain

Write

Read

Orphan

Auto update
tracked.

External SRC/DST Indicates that the source/destination 6les for this step

Retains existing destination files being replaced, if

Adds files to appropriate filesets, on
secondary-to-master steps, if any new fi les exist that
match auto fileset descriptors in the database.

Overrides default access mode and assigns read mode
to the secondary.

Overrides default access mode and assigns write mode
to the secondary.

For secondary files, breaks relationship to the master so
it is no longer tracked by LIBR/'DORIAN, if the
destination is a secondary file. For master 61es, breaks
its relationship with the application enabling you to
assign a new application.

Causes files that have changed since they were created
by LIBRAIGAN to result in a violation.

or a related write mode secondary. LIBRARIAN flags
any write mode secondaries associated with the same
master. Used for emergency fix steps.

are external to LIBRARIAN, Files are authorized,
tracked and logged, but no 6les are created by
LIBRARIAN, and no directory search is performed,
Used to document creation of a file by an external
process on remote computers, usually in a macro.

• You c an define a checkout step to automatically decompress files
when the step creates files in a work area (DECOMPRESS default
value is Y).

• You can require users to enter memo text when performing a step
(MEMO default value is Y, and the override is N).

• Yo u can define a checkin step so that replaced master files are always
retained and the new masters are always compressed. (RETAIN
default value is Y, and override is N; COMPRESS default value is Y
and override is N).

Addit ional parameters can be hardmoded at the bottom of the STO
screen. Refer to the PERFORM comri~ d i n Chapter 1 of the
LIBRARlAN/ix Reference Guide for information on valid p arameterswhen
performing a step.

Vertfy

Pushread Allows a read mode secondary to replace its master file

These examples depict how default parameters can be used:

4-14 U BRA,RIAN/iX Administrator's Guide

Example of a Step Definition
Figure 4-6 and Figure 4-7 show a step definition for a secondary­
to-master step called AP-IN. DEVEL,AP.

S T E P S ST V. 1.98

Step Route 4ppl Rr I Rct iue) tester Ei l eeet
sm~ .~ (Step Scope)

S OURCE T iQ (tt)aster/(S)
' ' I

(C)opt)/(tl)oue/(R)ul I

OESTIRRTION T e g Ol)ester/(S)

Presteo — Rl tenmte Prest
ZK~

Press g Rest Ttas)s. then g to configureStep Options

;:.0(4ttOE.. '"8KKTE': ' ";URIS ")'%XI:;:

Figure 4-6. Step Definition on ST Screen

The step is assigned number 5 for sorting purposes. The step is currently
active and speci6c authorization is required to perform this step.

Because the master fileset for this step is AP-FILES, only secondaries
associated with the AP-FILES fileset are processed by this step. Since the
source file type is S (secondary), and the destination type is M (master),
this step is identified on reports as type SM. This step moves Eiles instead
of copying them.

Because the source location is SYSA:O.O,APDEVEL, LIBRARIAN
authorizes only secondaries of AP-FILES that are located in the
APDEVEL account on SYSA. The destination location = . = .= .= shows
that the files are returned to their original master locations.

The prestep AP-TEST must be performed before the AP-IN step.

Retained copies of master files expire in 30 days.

F ile Movert)ent Rules 4- 15

S TE P O P T I O H S STO V. 1. 88

~ ~ .Z R E~ .L
Au thor l zet lal RequlredT tI LIHHARIAH Usher ~

~i H OniH: C reate: 6 rou p2 Account 3
Unix Onig: n a dir g Persissions ~

Fiie ExHiration Ohsjs)
~i es ~ safety Retained gg

Batch t lesa Coop/Oeczy Retn Auto Read/Hri te Orph Vfg PnshR ~t ert s tl­
YH HY ~ Y it H Y itY H Y HY + Src i t OSt tt

Addi t i txta I Paraaeters

.;.EHOHOE-:. 'KRAK , ; - ' . : j%RP

Figure 4-7. Step Options (STO) Screen

The following parameters are automatically invoked for this step:

MEMO Prompts the user for znexno text.

COMPRESS Comp re sses the new master files.

RETAIN Retains the old master files.

AUTOUP DATE

VERIFY

Updates fileset membership automaticallybased on
auto fileset descriptors, for new files or new filesets.

Does not allow files that have changed since they were

The BATCH, READ, WRITE, DECOMPRESS, and ORPHAN paraxneters are
not automatically invoked.

moved to the test area.

Defining Rules for Introducing New Files
Pending production areas are locations where you can introduce new files
as secondaries during the development cycle, These locations are usually
linked to specific steps. Pending production areas can be associated with
any existing secondary step, or you can define a separate step to
introduce new files. Use the Pending Production Areas (PP) screen to link
a pending production area to a step (Figure 4-4),

The fields on the PP screen are used to specify one or more wi ldcard
masks that limit or fi lter names of new files. Untracked files whose names
are not in the scope of these wildcard masks do not qualify as new fi les
and cause an "UNKNOWN FILES" violation. By using wildcards (=,?, ¹ , ' ,
and @) in the Filename field, naming conventions can be enforced, and
paths, groups, and/or accounts in which files can be introduced can be
restricted.

4-1 6 L IBRARIAN fiX Administrator's Guide

P E N 0 I N 6 P 8 0 0 U C I I 0 N A N E A S PP V. I 88

Appl icat ian Aaute (apt lanai) Ste p Name (apt leal)

Pending Production Area
Seq System F i l ename
j))

Pending Itester Edl t Nask
S tern Fr lename
XRml:
Include/Exclude Xl Preexist ing Nester 8 l I ametf? ul

'HAI' ~ e ' ~ i j' INNr - :", M M M M
Figure 4-8. Pend

Pending Master
Edit Mask

ing Production Areas (PP) Screen

Determines the name of the master file associated with
each new secondary. Edit mask characters (=, @,?,',
and, —) can be used to derive the master file nam e
from the secondary filenaxne (see Edit Masks at the
beginrung of Chapter 1 in the LIBRARIAN/iX Reference
Guide). If the derived master filename does not already
exist, LIBRARIAN creates a pending xnaster record in
the database to enforce serial write control and other
authorization checks.

Determines whether users can introduce new files
when a master of the saxne name already exists.
Usually, you do not want new source files to have the
same name as masters that already exist. On the other
hand, object codemay or may not already exist in the
library because these files are usually compiledin the
development or test area without having been checked

Preexisting Master
Allowed?

out.

To incorporate the introduction of new files created by programmers in
development, create a step called AP-NEW by doing the following:

1. Use the Steps (ST) screen to define a null step called AP-NEW.

Programmers perform AP-NEW to introduce new files in the

development area. The source and destination locations for AP-NEW
should be identical to the destination location for AP-OUT.

2. Use the Pending Production Areas (PP) screen to identify AP-NEW as
a step where new files can be introduced, as shown in Figure 4-4 The
new files must be within the fileset and source scope of the step.

3. Use the Steps (ST) screen to modify any subsequent step to have
AP-NEW as an alternate prestep.

File Movement Rules 4-17

4, When a user performs the Ap-NEW step on a file, it is identified as a
pending production file. Untracked files that are not within the scope
of the defined pending production area will be in violation of the
rules (unknown fi les).

Defining Step Refinements and Exceptions
After defining a step, you can refine the way the step works for any
subset of the source location using the Step Refinements/Exceptions (SR)
screen. These refinements and exceptions, which can be based on name,
filecode, or fileset membership criteria, include:

• D i f ferent Operation — An operation (move, copy, or null) different
from the one defined for the step. For example, if a step is defined
to move files, but there is a file that should be copied and not
moved, type the filename in Source Location and enter code C,

• E xclude Files — Files which would otherwise be authorized for the
step can be excluded by entering an E in the type field.

a D i f ferent Destinabon — A different destination for a subset of
file. For example,if a step is defined to copy files to one area but
you have a subset of files that should be copied to a different area,
enter a mask in the Refined Destination Location field.

• M u l t iple Refinements/Exceptions — If you define several
refinements or exceptions for a step (several different entries on the
SR screen), the source locations could overlap. You must specify the
sequence that UBRARIAN checks for a matching refinement.

Figure 4 — 9 is a sample refinement/exception definition for the AP-IN step.

5 T E P R E F I K E K E K T 5 / E K C E P T I 0 K 5 SR V.I.IKI

FH'mmm­mi'hmmm-$4 mme
Soarta Filial ~ — QB — Sarce Flies t ~

EÃi — Saarce ident I tet
' ' l l

(C)apg/(K)ave/OI)at I/(E)xclade$ Exclude fnm caepressitet (V/K) g
Defined Dest lnat lan tttent lan

Saurce File Tgpe 0

Fran PEIIDUIK: d. 0. DPRDD

Ta PE)DR)Ill: . . AP

ST 6labat Settings
C (Capg/Itave) Destitettian File Ttgte 5

Figure 4-9. Step Refinements (SR) Screen

4- I 8 USRARIAN/iX Administrator's Guide

Notice that the check sequence is 0001, indicating this refinement is the
first one LIBRARIAN checks when performing the step.

The source location for the step is SYSA:@.O.APDEVEL. This refinement
applies only to files in the SYS group. For this subset of files only, the
destination location is the PUB group of the SYS account instead of the
SYS group of the AP account Note also that this exception copies the files
instead of moving them

Reviewing File Movement Rules

Title

Step Detail Report

Step Detail Report (with
related data)

You can review the step definitions online with the HELP STEPS or HELP
stepname commands.

LIBRARIAN reports provide important information on defined file
xnovexnent rules, as shown in Table 4 — 3:

Table 4-3. File Movement Information on Standard Reports

Report
Code Description

Overview of all route and step definitions

Complete detailed information about all
routes and steps

Sequence Summary
Table 4-4 summarizes the sequence for defining file movexnent rules for a
route. Repeat this sequence for each route. Use figure numbers to locate
where these activities are discussed. Perform activities 2 through 6 for
each step before defining the next step.

Table 4-4. Data Entry for File Movement Rules

1. Define route (Figure 4-1)

'2. Define composite presteps
(Figure 4-4)

3. Define steps (Figure 4-6)

'4 Define step refineinents and

exceptions (Figure 4-9)

(Figure 7 — 2)

m troduced (Figure ~)

Asterisks indicate optional act%ties

'5. Define alternate search locations

Data-Entry Screen

Routes

Composite Presteps

Step Rerrnements/Exceptions
SR

Forward Versioning

Pending Production Areas pp

QRT

~cp

Steps ~sr

'6. Define how new files can be

File Movement Rules 4-19

4-20 U B RAPIAN/IX Administrator's Guide

Users and Authorizations

Each user in LIBRAtuAN is identified by a user ID and password. All
LIBRARIAN IDs and passwords are case sensitive.

You can either assign special capabilities to users or you can authorize
each user for the steps and projects they are allowed to work with.

This chapter describes how to define user profiles and assign capabilities.
The following topics are covered in this chapter:

• De f i n ing Users

Assigning User Capabilities

• Au t horizing Users to Perform Steps

• Reviewing User Data

• Sequence Summary

Defining Users
To define users to LIBRARl'AN, the LIBRARIAN Manager uses the Users
(US) screen to assign user IDs. User IDs can be independent of system
logons. Users can review and modify their own user information.

Figure 5 — 1 shows user information as defined on the Users (US) screen.

U S E R S US V. I.BR

User Rc t i ee

us ace~ sss~

Figure 5-1. Users (US) Screen
The user information includes the user's name, phone number,
LIBEVQGAN password, and user's lockword (the lockword is optional for
MPE and displays only when you access your own record).

U sers and Authorizations 5 -1

Note The User ID appears in the transaction log for each file xnovexnent. To
have an audit trail that uniquely identifies individual users, assign a
unique User ID to each user (i.e. do not allow users to share the same
User ID).

The ACTIVE flag indicates whether the user record is currently active or
inactive. Use the ACTIVE flag to suspend or reinstate a user's access to
LIBlVQUAN. The LIBRARDQ4 Manager can change this at any time,
When set to M (active), the user can access the system. When the flag is
set to "N" (inactive), the user cannot access the system.

Users can access and maintain their own user information, but cannot
access inforxnation for other users.

Each user can change their own personal password and lockword wi th
the US screen, the USER comxx~d or the User menu. The user password
protects against unauthorized use of LIBRARIAN. You must supply the
correct password to access LIBRARIAN functions. Passwords and
lockwords are encrypted in the LIBRARQQU database.

If your UNIX login user matches your LIBRARIAN user, you will need
not need to supply a password when you run LIBIVuuAN.

Note It is not necessary to assign user passwords during the initial setup.
The Eirst time you use LIBRARIAN, you are proxnpted to assign a
password for your User ID.

If a lockword is present, LIBRARIAN autoxnatically assigns it to any files

When you access this screen, the password and lockword fields display
an astexisk('), rather than their actual contents. You can display the
contents using the SHOW PASSWORD function key. To hide the contents,
press the HIDE PASSWORD function key. Using F2 (Set 2) toggles between
the SHOW PASSWORD and HIDE PASSWORD functions. Users can only
view their own passwords on this screen.

the user creates.

5-2 L IBRARIAN/IX Administrator's Guide

Assigning Vser Capabilities
The LIBRARIAN Manager can assign special capabilities to users through
the User Capabilities (UC) screen. Figure 5 — 2 shows a saxnple user
capability definition in the UC screen.

U SE R C A P A B I L I T I E S UC V. l.00

Appl i cat ionCapon i I i t tj
i0 for L. R. 0. l t Capabil i t i e s)

L — Librar ian Nanager
A — App I icat ion ttanager
P — Project ttonager

0 — Operator
lt — Unrestr icted 0-Camel Access

R — Rule Ada inistrotor

"'rxtt0 ­ .' CIRtttRK; ~4HKTE.," , SMASH : ~ ~
~ g%EF­

0 (Operator)

A (Application Manager) Can perforxn all operations on all files within

Figure 5-2. User Capabilities (UC) Screen

LIBRARIAN is provided with a predefined user name, LIBMGR, which
has LIBRARIAN Manager capability. If you have not already done so,
within LIBRARIAN create your own LIBRARIAN Manager on the US
screen, and then delete the capabilities and user name for LIBMGR.

The following special capabilities can be granted to a user:

L (LIBRARIAN Manager) Can perforxn all operations on all files on all

management rules for the entire system.

assigned applications. Maintains file
management rules for an application.

maintains project status. Authorizes users to
work on projects (see Chapter 6, "Projects")

Can use the SHOWLOG) FLUSH command to
delete transaction log records and

retained Bes.

libraries. It cannot create users or perfoxrn Be
movement operations.

P (Project Manager) Can def i ne projects within an application and

systems. Defines and maintains the file

LIBRARIAN's > RESTORE comxnand to restore

R (Rules Administrator) Can define and modif ies rules, and creates

U sers anci Authorizations 5 - 3

Can use the X commands in LIBRARIAN to
operate on files unknown to LIBRARIAN,
regardless of operating system security. Other
users can use these commands but operating
system security is enforced.

X (X Capability)

Authorizing Users for Defined Steps

lf a step de6nition requires user authorization, LIBRARIAN checks for
user authorization prior to performing the step.

• LI BRARIAN Managers can perform any step in any application.

• Ap p l ication Managers can performall steps within their own
applications.

a General system users require explicit authorization

You can authorize users for specific steps, routes, and/or applications.
Any number of users can be authorized to perform a given step. Because
each step, route, or application is authorized separately, users only need
one user ID for a variety of operations.

Use the Step Authorizations (SA) screen to designate which users can
perform each step. Figure 5 — 3 shows a typical step authorization for a
single step as defined in the Step Authorizations (SA) screen.

S TE P A U T H O R I Z R T I O H S

Step Raute R p p I USer Ac t iue

tat thar ized
Access Hade

f i le taatership
Aequi resent

R ~ Read
H - Hrite

Rttedc He Restrict itet

H ~ User aust IRIT ISIH file
- User auSt ISet file

Figure 5-3. Step Authorizations (SA) Screen

5-4 U BRARIAN/iX AdministTator's Guide

The following are descriptions for the fields on the SA screen

Step Route Appl.

User

Active

Authorized Access Mode

Name of the step, route and application being
authorized. If you want to authorize a user to
perform all steps in a route, use an at (©) sign in
the Step field. If you want to authorize a user to
perform all steps in the application, use an @
sign in the Step and Route fields.

Name of the user authorized to perform the
step.

Specifies whether user is allowed to obtain
write mode files with this step. For example, all
programmers on a development team could be
allowed to check out files in write mode
because their modifications will eventually
replace the current masters. Other users may
need to obtain copies of files but should not be
modifying them, so you would set their
Authorized Access Mode to R (read — mode).

Use this field to suspend or reinstate the step
authorization for a user. This indicates whether
the user is currently authorized to perform the
step. Set this flag to "N" if you want to suspend
the authorization without deleting the record
from the database.

Use to further restrict the use of a step for files
based on ownership. You can restrict users to
files the user owns (e.g,, a user can only submit
his own files) or on files the user does not own
(e.g., a user can only test files checked out and
modified by a different prograrruner). The
owner of a file is the user who created the file
using LIBRARIAN.

File Ownership

Note You can define a step that does not require authorization, Set the
"Authorization Not Required" flag on the ST screen to Y. Steps that do
not require authorization are available for use by any user, without
specific authorization on the Steps Authorization (SA) screen.

U sers and Authorizations 5 - 5

Reviewing User Data
The following offl ine reports contain user data.

Table 5-i . User Data Reports

Report
C ode Trt t e

RUD10 Users Report

RUS10 Step Authorizations Report

Description

Shows complete user profiles.

Shows users who can perform
each step.

Sequence Summary
Table 5 — 2 summarizes the sequence that has been described in this
chapter for defining user information.

Table 5-2. Data Entry for User Authorizations

Data Entry Screen Screen
Code

1. Create user profile records. Optionally
add passwords and lockwords,

(Figure 5 — 1).

2.' Assign special capabilities
(Figure 5-2)

3. Authorize use of steps by specific
users (Figure 5-3)

Asterisk indicates optional activities

Users
~us

~uc

~sa

User Capabilities

Step Authorizations

Deleting or inactivating Users
When a user leaves the company or changes jobs, you will want to delete
that user and all of his/her authorizations from LIBRARIAN. Ho wever,
since the user name may appear throughout the audit trail and file
tracking information, it is generally a better practice to inactivate the user
ID rather than deleting it. To inactivate, simply bring up the user ID on
the US screen and change the Active flag to "N". If anyone attempts to
use this 1D, LIBRARIAN will respond as if the user ID did not exist.

When you are ready to completely delete a user ID, bring up the ID on
the US screen and press the "Delete" function key (F3) You will be

promptedto confirm; then the user ID and all related data, such as User
Capabilities, Step Authorizations and Project Authorizations, will be
deleted

5-6 LIBRARIAN/iX Administrator's Guide

Projects

LIBRARIAN allows you to define projects to associate file movements
with specific service requests, maintenance tasks, or software
development projects. LIBRARIAN automatically tracks files that are
worked on for a project, and identifies the programmer that changed
them. Complete project information is available in standard reports and
in customized SHOWLOG audit trail reports. You can restrict projects so
that only authorized users are allowed to work on them. You can also
require that all file movements be associated with a project.

This chapter describes how to set up and maintain projects with
LIBRARIAN. The following topics are included:

a De f in ing Project Managers

• Cr e at ing Projects

• Au t h o r iz ing Projects

a Ch anging Project Status

• Re v iewing Projects

• Flushing Project Transaction Records

• Us ing Projects in LIBRARIAN

• Pr o ject Filesets

• Di s tributing Files by Project

Defining Project Managers

Application managers and the LIBRARIAN Manager can create and
manage projects, and can assign Project Manager (P) capability to other
users. Use the User Capabilities (UC) screen described in Chapter 5 to
assign Project Manager capability.

Project Managers can create projects, maintain project status, and
authorize users to work on projects. Project Managers are automatically
authorized to work on any project they define.

Creating Projects
To create projects, you can use either the Projects (Pp screen or the
PROJECT comrt~d . T h is section covers the procedure for using the PJ
screen, To use the PROJECT command, see Chapter 1, "Commands", in
the LIBRARIAN Reference Guide.

Figure 6 — 1 is a sample project definition for the REPT-MODS project. This
project is used for modifying budget and expense reports in the DEVEL
route of the FIN application. Note that project authorization is required.

P R O J E C T S PJ V. t .88

itppl ication Praject teeae

KR RQCZ9M

Route itl les

P roject Description ' • i •

Pre ject
ituthar i tet i an P roj e c t Dote

Required? tleneger Open? Bequesteti Prier i tg Est I cate

XK~ 5 R K K 2EI

Requc4t ~ ~ Qspart t earn

C~3WWW
Figure 6-1. projects (pJ) Screen

The PJ screen contains the following fields:

Application Application to which the project belongs.
Project Name Project name that users specify in LIBRAIRIAN

transactions or select from a project menu. For each
project, LIBRAI?JAN automaticaHy creates a user
fileset with the same name as the project,

The specific files you work on for a project are
automatically added to the project fileset on
checkout steps and other steps that introduce new
files. Files can also be added manually with

Route Alias Associates a project with a route. The project name

FMAINT commands.

can be used as an alias for that route in
LIBRAEGAN operations. Projects can be defined for
all routes in the application by specifying an at (@)
sign in place of the route.

description appears on project menus and reports.
Project Description A fr e e form description of the project. This

6-2 U B RARIAN/iX Adiriinistrator's Guide

Project Authorization, A f l a g that determines whether users require
Required? specific authorization to work on a project.

Project Manager

Open?

Assigns a project to a specific Project Manager who
can change project data and status information. The
Project Manager can associate files with the project
without specific authorization.

Allows you to define a project and reserve it for
later use by setting the Open flag to "N". Set the flag
to "Y" if you want the project to be available as soon

Date Requested, Used for project documentation. It has no effect
Priority, Estimate, on LIBRARIAN file processing.
Requestor, Department

as it is defined.

Defining Project Hierarchies
To create project hierarchies, use the FMAINT RELATE comn~d t o re late
project filesets to other project filesets As a result, when you check out
files that belong to a project, these files automatically belong to any
parent project fileset. You can then perform checkins, approvals and/or
distribution by referring to parent project filesets.

Transactions are logged under the parent fileset. When you refer to them
in commands, however, the last project for the file reflects the actual
project name at the time of checkout.

projects b -3

Authorizing Projects
If the project requires project authorization, the Project Manager or
Application Manager must authorize users to work on the project. Any
number of users can be authorized to work on a project. Project Managers
are autoInatically authorized to perf'orm work for their own projects
without requiring special authorization.

Vse the Project Authorizations (PA) screen to authorize users to work on
projects. Figure 6-2 is a sample project authoxization for setting up a user,
Frank, to work on the REPT-MODS project in the FIN application.

P R O J E C T R U T H O R I Z R T I O tt S V.t.tOt

Rppt ication Project User

Figure 6-2. Project Authorizations (PA) Screen

6-4 L IBRARIAN/IX Administrator's Guide

Changing Project Status
Use the Project Status Change (PS) screen to review and xnodify project
status. Figure 6-3 shows asamplePS screen.

P R O J E C T S T A T U S C H A N 6 E PS V I .OO

Appl Project Noae Project Description

gQ[/ ~ i~i Report aodif icat lans for nea budget and expense
el l neat ioii purposes

user Status ~ggg +~
current Project Status: OP

Docuaen ted

Project Reneger PAT

s Valid Operations i

f2
x f3
x f l

f5
f6

~ PJ
ENTER

OPEN
CLOSE TO CHECNDOT
CLOSE
RKDPGl
FLI5H
DELETE PROJECT
CHAN6E USDI STATUS

OP ­ Opened
CC ­ Closed to CHECNDUT steps
CL — Closed to all steps
RO ­ Reopened
FP ­ F iusb Pending
FL ­ F I usned

' 'FXHD:.; .' ~ ." IXSSE': : CO5E-"': JIEOPEO ':FCX58 ' ':: jfEOT-'„. „-EIIXK ~

Figure 6-3. Project Status Change (PS) Screen

Possible project status values are:

DC

OP

CC

Docuxnented (project was defined but not opened)

Opened

Closed to Checkout (project can be used, but not for
xnas ter-to-secondary steps)

Closed to All StepsCL

RO Reope n ed

FP Flus h Pending

F L Flushe d

If you want to deactivate a project temporarily,use F4 (CLOSE). To
reactivate a closed project, use F5 (REOPEN).

To flush the transaction log records for the project and project fileset, use
F6 (FLUSH). The project status will change to "Hush Pending". After
flushing the project's log records with the FLUSHLOG utility, the project
status changes to "Flushed". You can delete a project with a "Flushed"
status on the Projects (PJ) screen, if you wish.

P rojects 6 -5

Reviewing Projects
Use the Project Inquiry (PI) screen to review all of the projects for an
application.

You can select a specific project status, or one of the following status

AL A ll Pro j ects

Al A ll In ac t ive Projects

AC All C l osed Projects

AA A ll A cti v e Projects

AO A ll O p en Projects

Figure 6-4 shows a sample project inquiry for all projects in the FIN
application. The same information is also available offline in the Project
Detail Report (RPJ10).

groups:

P RO J E C T I N Q O I R V PI V. I .88

Appl iCatim /gal Select Status gij

project Naee Sl e Rau t e 10 ttaoagar Opened

R EPT~ OP e REVE L PRT 8 I/ t8/94

P roject D a t e Date Date
C 1 ased F iushed

e Project Rutnorieatica Required

' "FIRD"­', ': 'REITT-.:-'I i SVIEV.=.:. ."REBK%

Figure 6-4, Project inquiry (Pl) Screen

Flushing Project Transaction Records
Transaction records for projects are protected from being flushed, when
you run the FLUSHLOG uti l i ty. Project audit trail records are saved until
you change the status of a project to "Flush Pending" on the Project
Status Change (PS) screen. The FLUSHLOG utility flushes log records for
projects providing the project status is "Hush Pending". A f ter running
FLUSHLOG, the project status changes to "Hushed". Once flushed, you
can delete the project record on the Projects (PJ) screen.

&-6 L IBRARIAN/iX Administrator's Guide

Using Projects in LlBRARIAN
When projects are defined for a route, you can associate files created by
steps within that route with a specific project. If the route de6nition
requires project identification, you xnust associate the work with a project
Once a secondary file has been associated with a project, it cannot be
changed in a subsequent step — you must wait until the route has
completed (i.e., the 6le checked in).

When you perform a step, you select a project from a menu of the open
projects you are authorized to w'ork on. If projects are optional for the
route, you can select the "no project" option from the list.

Additionally, you can specify the project on the coxnxnand line by
substituting the project name for the route when performing a step. For
example, to perform the AP-OUT step f' or the REPT-MODS project, type:

Project Filesets
Associated with every project is a 6leset containing the xnaster 61es that
are checked out under that project. This is known as a projectfileset.

Filenames are automatically added to the project 61eset when files are
checked out or new files are introduced for the project.

When you use either the CLEANDB or PURGE command to remove the
last master, related secondary, or retained 6le, the master 6lename will
autoxnatically be removed from the project fileset.

Additionally, if you use either the MOVE or RENAME command to rexnove
the last master, related secondary, or retained xnaster associated with a
project, the old filenaxne will automatically be removed and the new one
will be added.

Note Steps will automaticallylocate secondary file(s) in the step source
location if you specify the project or project fileset.

Distributing Files by Project
You can imply the files associated with a. project when performing a step
by specifying the project naxne, rather than files. The syntax is:

>step. project
Alternatively, you can oxnit the project name and select your project from
the project menu when projects are defined. In xnenu xnode, this is the
only alternative.

P rojects 6 - 7

Subset selection by project selects only files associated with a particular
project. This parameter must follow all file references, including
destination locations, if specified. PROJECT is valid for all commands.
The syntax is

hlelist; PROJECT=proj

If you use a step to copy files in read — mode (e.g., move — to — production),
LIBRARIANautomaticallycopies the appropriate revisions of the files
associated with the project that you specify However, if you do not use a
step for file distribution (e.g., COPY), then use the project fileset as well as
the PROJECT parameter.

6-8 L I8RARIAN/iX Administrator's Guide

Versions

LIBRARIAN is a powerful configuration rnanagernent tool that allows
you to create baselines for your applications at specific strategic points in
time. This chapter describes how to manage versions of applications
within LIBRAiRIAN. Topics discussed in this chapter include:

• Version Management
• Wo r k ing wi th Versions

• Us ing Forward Versioning

• Tags

• Re v iewing Version and Tag Information

Version Management
A version is a collection of files in an application at a selected point in
time, corresponding to a particular release or configuration of the
software. Establishing versions for your applications lets you:

• managethe files in a version as a single entity,

• gr o up different kinds of related files (for example, source code,
executables, graphics, documentation, etc.),

• tr ack changes to applications, and

• di s tribute versions easily and quickly.

Versions are often used to identify a software release. In a development or
maintenance environment, several versions of an application often
coexist. LIBRAMAN's version management capabilities allow you to
define a version for an application at any point in time with a name you
provide. You can then easily distribute or branch-off development of any
existing version.

When you create a version, the current revision of each file in the
application's master library is stampedwith the version identifier.
Members of a version can be retrieved individually or as a whole, even
when newer revisions or versions are introduced. You typically retrieve
files from previous versions for modification, distribution, or restoration.

Nate Versions apply to an entire application; revisions refer to changes made
to individual f i les within an application.

Versions 7-1

The initial revision of each file in an application comprising a version is
the base revision or root revision of that file. The version count (VCOUNT)
for the base revision is 0, each ti me you check in a revision this counter is
incremented by 1. Base revisions are protected f rom being flushed until
you specify that the version is obsolete. Refer to Chapter 4, "Revisions",
in the LIBRARIAN/iX User's Guide for more information about managing

LIBRAIRIAN version rnanagernent allows you to describe and reference
all files comprising an application at a specific point in time. With
versions, revisions associated with the version make up a baseline and are
protected as a collection of files.

Figure 7-1 shows two versions of a sample application that includes five
files. The first version is called REL-1.

revisions to files.

VCOIK~
2

VCOUNY= vcoUNr=
1

VCOUNir VCOUMI= V COUN'
0 0 — ~ REL-2

REL-I0

FILE A Fl!E 8 FILE C FILE D FIICK E

Figure 7-1, SampleVersions

During the revision process, file A is modified three ti mes, and three
generations are retainecL File C was modified once, and file D was
modified twice. Files B and E were not modified.

When new version REL-2 is created, LIBRARIAN locates and marks the
most current revision of each file in the application. These files comprise
the new base version and the VCOUNT is set to O. Because files B and E
were not modified, they are rnernbers of both REL-1 and REL-2. Files that
are members of current and previous versions cannot be flushed unless
all versions to which the file belongs are obsolete. The version created is

Base revision files for REL-1 remain protected These files are kept until
you specify the version as obsolete by using the OBSOLETE parameter of
the VERSION command. Any revisions expired or associated with an
obsolete version are flushed using the FLUSH utility.

REL-1 and the current version is REL-2.

7-2 L IBRARIAN/IX AdministTator's Guide

Working with Versions
LIBRARIAN tracks the various versions of applications with user defined
version IDs. When you create a version, LIBRARIAN prefixes all revision
identifiers with the new version ID. For example, REL2:0 indicates the
base revision of REl2. If no version has ever been defined for an
application, the version ID is an asterisk (').

Creating Versions
Create the first version when defining the file library for the application,
and before the first file is checked out of the library Record the version
using the VERSION command. If your files are not ready for release, you
could call the initial version a pre — release.

For example, stamp every master file in the PAYR application with the
version ID PREREL-1 by typing:

>VERSION PAYR;ID= PREREL-1;DESCRIPTION= prerelease 1

You can also create a version by selecting the version option from the

You should create versions of an application when releasing the entire
application into production, or when creating a baseline for future
development.

Admin menu.

Referring to Versions in LIBRARIAN
A user with LIBEVGGAN Manager, Application Manager, or Operator
capability can use the RESTORE comn~d t o restore a previous revision
of a single file or a version of an entire application from the library. In
menu mode, you can specify a version in dialogs that restore and/or copy
files by pressing the "Revision Criteria" function key, These options are
also available in comzriand mode, For example, the following comm'md
restores the revision of a file that was part of the REL — 2 version baseline:

>RESTORE REL-2 OF DREPPUB.FIN

> RESTORE REL-2 OF /apps /finance/pub/drep

In addition, all of the LIBRA1GAN comm'inds that perform fi le
operations can use version references, All references to previous versions
retrieve the base revision unless the VCOUNT is included or revision ID is
specified The following comri~ d c o p ies the version REL-5 files, using
baseline to a test:

>COPY REL-5 OF %PAYFILES TO =.TEST5

> COPY REL-5 OF %PAYFILES TO ./test5/=

V ersions 7 - 3

If you are retaining intermediate revisions of files, you can retrieve them
by referencing the version and the VCOUNT or revision ID. For example,
the following command copies the second revision of PAYTAB.PUB.FIN
in REL-2:

>COPY REL-2 OF PAYTAB.PUB.FIN,VCOUNT=2

> COPY REL-2 OF /fin/pub/paytab; VCOUNT=2

You can check out or distribute a version using defined steps. For
example:

>PAYR-DIST REL-2 OF '%%dPAYROLL

Changing Version Status
You might want to dedare some versions obsolete and flush retained base
version files.

Make a version obsolete by using the OBSOLETE parameter of the
VERSION command or selecting the Version option from the Admin
menu. For example, make the first pre-release version of the PAYR
application obsolete by typing:

>VERSION PAYR;ID=PREREL-1;OBSOLETE

Return an obsolete version to its previous status using the UNOBSOLETE
parameter of the VERSION command. For example,unobsolete the first
pre — release version of PAYR1 by typing.

>VERSION PAYR;ID=PREREL-1;UNOBSOLETE

Note You cannot make a version obsolete if an active older version exists;
you cannot reinstate a version if an obsolete newer version exists.

Deleting Versions
It is not necessary to delete flushed versions. It is recommended that you
keep old version records as an audit trail of the application's version
history.

To delete a version, use the DELETE parameter of the VERSION command.
For example, delete the pre — release version of the PAYR application by
typmg:

>VERSION PAYR;ID=PREREL-1;DELETE

A version must be marked as obsolete and the files flushed using the
FLUSH utility prior to deleting the version using the DELETE parameter

Note

of the VERSION command.

7-4 L IBRARIAN/IX Administrator's Guicfe

Using Forward Versioning
LIBRAIGAN provides an alternate method for managing successive
releases of an application called Forward Versioning, This method requires
storing each major version of an application in a separate location. Files
are checked out from the old location, modified, compiled, and checked

Thus, the new location is graduaHy built up until the new version is

completeand ready for distribution to one or more production locations.
Each version can include all of the files in the application, or you can
choose to include only the programs that have changed.

How Forward Versioning Works
When you use a checkout step that has forward versioning rules
associated with it, LIBRARIAN fi rst attempts to check out file(s) from the
new version location. This location is specified as the source location on
the Steps (ST) screen,

If the file(s) do not exist in that location, then LIBRARIAN searches for
the file(s) in the alternate (old) version location(s) as defined on the
Forward Versioning (FV) screen. Pending master records are created for
files that are checked out from an old location, so that they will
automatically be moved to the new location on check — in.

Setting Up Forward Versioning
You define forward versioning rules for the checkout
(master — to — secondary) step using the ST and FV screens. No
modification to the checkin step is required. To set up forward
versioning, do the following.

1. Def ine both the old and the new master version locations within the
same application. Further, make sure that these locations are in the
scope of the step fileset. Then, use SHORTCUT, or use the Auto
Filesets (AF) screen followed by running AUTOUPDATE.

2. Set up the checkout step using SHORTCUT or the Steps (ST) screen to
copy files from the new version location to the development area, even
though no files exist yet in the new location.

3. Def ine forward versioning rules for the checkout step on the Forward
Versioning (FV) screen. Enter the old library location(s) as alternate
search location(s). See Figure 7 — 2 for an example.

into the new location.

Versions 7-5

F OR R R R O V E R S I OR IH G FV V. I .OO

Step Route App I

gl3@~ .RE ~i

Preeleus Versien Seerch Locations

:~RZHE

+FW A$%E

Figure 7-2. Forward Versioning (FV) Screen

MuNple Search Locations
It is possible to define Inultiple alternate search in multiple locations for a
single checkout step. The sequence of alternate location checking is
determined by the sequence number specified on the FV screen. Using
this approach, it is possible to set up a "base release" location, then
separate locations for each subsequent "minor" or "part ial" release. The
FV checkout searches each location in turn until it finds the requested
file(s), always retrieving the latest version of the file(s). This is illustrated
in Figure 7 — 3.

D -IN

FINREL i.2
EV-OUT primary search

DEV-OUT search 2
DEVEL

DEV-O search 3

RNREL I

Figure 7-3. Alternate Search Locations for New Release

A new FV location must be added and the ST source location changed
every time a new release account is created. To establish a new "base
release," simply check out the entire application and check it in to a new
directory, purge all the old directories, and start the process over.

7M U B RAR[AN/iX Administrator's Guide

Using Forward Versioning for File Distribution
Distribution steps (master — to — secondary, read mode) can also make use of
forward versioning. In the multi — account FV model described in the
preceding section, an FV step can be used to distribute the entire
application's executable files, and will always select the most current

Concurrent Maintenance and Development
Forward Versioning can be used to support concurrent, or overlapping
maintenance and development. In the scenario described above, the FV
checkout is used for development, creating a new library location with
the changed modules only. To allow maintenance of the old version while
development is taking place, set up a second checkout — checkin process,
possibly in a different route, to check — out from and check-in to the old
location.

version of each file.

RELI-OUT

REL1-IN

REI2-OUT (2)
REI2-OUr (1)

REL2-IN

Figure 7-4, Concurrent Maintenance and Development

With this process, it is possible for one programmer to maintain a given
program through the maintenance route while another p rogrammer
enhances the same program for the next release through the forward
versioning route. Both copies of the file are write mode secondaries,
Unlike the "emergency fix" (PUSHREAD) approach to this situation, there
is no notification or exception logic when either secondary is checked in.
Such notification and lock can be achieved with a macro, if desired.

Using Forward Versioning with Vendor Software
Forw'ard Versioning is useful for managing custom changes to
vendor-supplied software by allowing you to keep the vendor's original
source physically separate from your customized changes.
To accomplish this, set up forward versioning as described above and
restore the unmodified vendor source into the old location. Use the FV
checkout to make local changes, checking in to the nehru location. Under
this scheme, programmers do not need to know whether a given program
has been customized or not. If it has, it will be checked out from the negro
location; if not, they will get the original vendor source from the old
location.

V ersions 7 - 7

To install a new vendor release, restore files into the old location or restore
into a separate location and checkin to the old location. Check out each of
the customized files from the new location, integrate vendor changes, and
check in.

Tags
In addition to identifying entire applications with version identif iers, you
can assign a tag to any set of files within an application for future
reference. One example of using tags is to identify a subset of an
application's files that make up a patch for distribution.

To assign a tag to a group of master files, use the SET TAG comrr~d or
select Set..Tag from the File menu. For example:

>SET ABCO.SOURCE. PROD; TAG=PATCH201

>SET /prod/source/abc; TAG=PATCH201

Regardless of how many times these files are revised in the future you
can always refer to the correct revisions that made up this patch by
typing (or using the revision criteria option in menu mode):

>A-OUT ABC100,ABC200;TAG=PATCH201

LIBRARIAN checks out the tagged revision of each file, branching if
necessary. See Chapter 4, "Revisions", in the L1BRAlUAN/iX User's Guide.

You can display the tags for files using the VERIFYcomas , format 16,
"Revision Information".

7-8 U B RARIAN/iX Administrator's Guide

Reviewing Version and Tag Information
You can review version and tag information by using the VERIFY
command. For example,to view information for the files in the ABC
application, type:

)VERIFY %ABC

VERIFY produces the menu shown in Figure 7 — 5.

L I B R A R I A N V E R I F Y N E N U

6 Fi les 8 Ikaonen 6 Rasters 8 Senantarias 8 Retained 8 D elta

[81] l k : t laII Rodi fication Tiaestaep. Fi lecode..., . ,
[eZ] L i e Nodificntion Ti~ t ~ . ~ Sta~ us'..".,"..'

all f i l es
all files
al I fl les
all files
all f i l es
all f i les
all files
• aster fiies onlg
• aster fl les onlg
sas ters/secanclar i es
~a nbe I es eel g
ssctsnbe i as onl g
stnnanbe ice on i g
retalrad f i les onlg
ratalred fi los onig
all tracked fl les
tester fl les onlg
easter fi les onlg

[83] Associated Nester File (or U olte Flic).. . , . . .
[IH] Associated Nester Fi leant(s)... , . . .
[85] Associated Project(s).
[86] Associated User Fi least (s)... ,
[87] Version Ins t I on.
[88] N ester Fi le Counters...
[89] L ocation of lb its-I@de Copg....
[18] Preuiea Versiae (Benereted Fi les)...
[11] I bater . Access Node. Esp lrat im. Escapt l tats...
[12] Lest Step.
[13] S tep Ri st erg.
[14] O r i g ina I Fi le Hase.
[15] Bate Retained. Expiration Bate....,......., ..
[16] R e uisl on Inforsat ion/Tng.... , . . . ,.
[I?] Neo is i on Historg.
[18] Lnnliunge/Oescr i p 1 im.
[19] R otten io LIBIHNIIAH proapt (or O)
Forest ibadntr [.LP]?

Figure 7-5. VERIFY Menu

Format 7 displays version information. Format 16 displays tag
information.

Figure 7W shows format 7, version data, for the PAYR application.

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ \ $ $ $ $ $ $

LIBIHHIIAN VDIIFV (Al I Fi les/Version Onto)

Fi le ctrrant
Tgpe VersionFl le

POSUIN:INICt IHNI. SOURCE. LIBPBOO
PEINiUIN: AOCztMS. SOURCE. LIBPBOO
PDNIIN: ABC381HIS. SOURCE. LIBPROO
sputnik:/apt/ocs/ms I I b/I ibprod/
ebc IINNI. c

abcztHN, c
sputn Ik:/ opt/ocs/ocs I lb/I lbprod/

sputnik: input/ocs/ocsI ib/i ibprod/

V.z.tNI
V.2.88

8 V. 2 . 88
N V . 2 . 88

8 V . 2 .88

8 V . z .(HI

Version
Created

V. 1.88
V.2.88
V. 1.88
V. I.IHI

V.2.88

V.z.INI

e z
3

e z
e

2

2
ebc3%NI. c

Figure 7-6. VERIFY Display with Version Data (Format 7)

Versions 7-9

Figure 7 — 7 shows the tags for the ABC application using format 16.

LIBRNIIAN VERIFY Olasters-sacaniks.les/Rev isim Infmsat im)

Latest Revision/TagFile

PENiUIR: IBIC 1888S.SDINCE. LI BPROO

PEXSOIK: ABC2888S. SOURCE . L IBPBOO
PDIBUIN: ABC38885. SOIBICE. LIBP1881

sputnik-./apt/ocs/acs I ib/ I ibprodl

sputnik i/apt/ocs/acs I i b/I I bprsd/

sput n I k-/apt/acs/acs I ib/ I ibprnd/

V.2.88-1
PATTSI-281
V.2. 88: 2
V.2.88: 1
PATT3I-281
V.2.IBii2

V.2.88i3
PATQMIf-28 I
V.2. 88:2

abc1888. c

abc2TBBI. c

abc31MBI. c

Figure 7-7. VERIFY Display Showing Tags (Format 16)

Version Reports
Version information is available in standard LIBRARIAN reports, as
shown in Table 7-1.

Table 7-1. Version Information in Stanclard Reports

Report Repo r t Title Descitpttori

RFN10

RFN20

FLUSH

RAV10

RFD10

RFD20

RGF10

filenazne.
Pre-Fiush Notificatio

Pre-Flush Notification F i l es that will be flushed by filename.

Flush Utility Detail

Application Version Ver s ions for an application.

Fileset Status

Master File Status

Generated Files

Files that wete flushed.

Files that will be flushed by user and by

RRH10

RVD10

Revision History

Version znembership for specific files.

All master files and associated files.

Cmss reference of retained generations and
original filenames.

Shows history of file revisions with
timestamps.

Shows detailed information on all files in aFile Version
veislorL

7-10 U B RARIAN/IX Administrator's Guide

Reports

LIBRARIAN's reports and online inquiries allow you to review the rules
you have defined, file status and history information, and the audit trail

This chapter describes how to generate reports and online inquiries.
Topics discased in this chapter include:

• Ge nerating Reports

a Fi le Inquiry Screen

• Project Inquiry Screen
• Fi le Information Using VERIFY

• Version Inquiries

• Step/project Inquiries Using HELP

e The SHOWLOG Report Writer

records.

Generating Reports
You can review your rules at any time by generating standard reports.
These reports reflect the rules you defined for the library, file movements,
and user authorizations, in addition to the current status of files, filesets,
projects, versions, and listings of files ready to be flushed,

Menu Mode
You can generate any of the standard reports by selecting Files...,
Versions..., Rules..., or Log... from the Info menu Select the report you
want from the appropriate menu. Some reports will require answers to a
series of prompts.

Reports 8 - 1

Command Mode
You can also generate any of the standard reports directly from the
L IBRARIAN prompt. Type the report name and press ~ R. Fo r
example:

>RFX10

In addition, you can generate standard reports from report jobstreams,
and redefine the output device and priority,

For more information on reports, refer to Chapter 6, "Reports", in the
LIBRARIANAX Reference Guide.

File Inquiry Screen
The File Inquiry (FI) screen provides complete status information for a file
or fileset, including the access mode, related master or secondary files,
historical totals for read mode and write mode access, version
membership information, most recent transaction information, and dates
of file creation, retention, and expiration. To access this screen, select
Files... from the Info menu and select the FI option. From the comnmnd
line, type FI followed by ENTER.

Figure 8-1 shows a file inquiry for a master file on one system with a
write mode copy in development. This information is also available with
the VERIFY command.

FI L E I N Q U I R V FI V. I . IRI

F I les In F I l e eet ~$ ~ ~ IDI
tee F I ieneee

I ' ' ' ' I
- •

F I I e Ic e I R e
Tee Cntr I bode

— Ctrrent Tote l­
Reed Ie i to Reed Wite

Associated booter Fi le IDI
Current le i t~

I

Version Creotod Current Version VCnt RCnt Loo t St .Rte/ P ro ect .g l
1 C • I

Recision

Lest stat F I le Eeplret leo Dote Dote Dote Dote T lm

Figure 8 — 1. File Inquiry (Fl) Screen

8-2 L IBRARIAN/IX Administrator's Guide

Project Inquiry Screen
Project inquiries provide information on the status of projects for an
application. Figure 8 — 2 shows a project inquiry for all projects in the MFG
application.

P R O J E C T I N B U I A V PI u, 1.88

BP e NFS-iNI NT
BP • ~ TNT
CC s NP&tIAI NT

Appl icat ion g ag Select Status •

ProJect Naca St s R oute ID Re neger Opened

LIBNiR 12 / '15/93
LI81$8 12/ 15 /93
LIBNSR 12/ 1 5 /93 8 1/tpt/94

ProJect Ba t e Bate Bate
C I used F lashed

SR 1584
SR 1572
SR1598

e ProJect Author i eat im Required

WWWW
Figure 8-2, Project Inquiry (Pl) Screen

To access this screen choose Projects... from the Screens menu, from the
Admin menu, Or enter PI On the COIIunand line.

FiIe Information Using VERIFY
The VERIFY comrI3and offers extensive information about files. You can
review information such as who last checked out a file, when it was last
checked out, where it was copied, and which step was performed. When
issuing VERIFY, specify the files or filesets to review. For example:

)VERIFY %MFG-FILES, F©.PUB.FIN, JCF.JOB.FIN

VERIFY displays a menu of formats. Each format includes different

(or LP) parameter to send the information to another device. Figure 8-3
information. You can review the information online or use the OFFUNE

shows the VERIFY menu.

Reports 8-3

L I B R A R I A N V E II I F Y n E N U
a \ a a a a aa a a \ a a a a a a a \

a aaa a a aa a a a a a a a a a aaa a a a
6 Fi les 8 Unknoen 6 Nasters 8 seconbtries

[81] A ctual ltodification Tiaestaop. Filecode... . . .
[82] L I B Ilodificalion Tiaestaap. Lock Status... . . .
[83] Associated Baster File (or Delta File). . . , . . .
[84] Associated Nester Fileset(s). ,
[85] Associated Project (s) .
[86] Associated User Fi least(s).. , .
[BZ] Version Ins t i o n.
[88] Nester Fi le Counters
[89] Locat ion of Nri le-Node Copg.................
[IB] Previms Vers i axt (Generated F i les)...., „ . . .
[11] Donar, Recess Node, Expirat ite. Except ilats...
[12] La st Step.
[13] St ep Historg.
[14] Or iginal File Naca.
[15] Date Retained, Expiration Data... ,
[16] Reals l on Informt ion/Tag.................., ..
[17] Revision Nistorg.
[18] La ngtxxle/Descript lm.
[19J Bet~ t o L IBRARIAN praept (or 'D')
Forest Ibaber [.LP]3

Figure 8-3. VERIFY Menu

When you enter a format number, the requested inforznation appears.
You can continue to choose different formats for the same files until you
type Q to quit and return to the LIBRARIAN prompt. Figure ~ is a
sample display of master files and the location of their assodated write
mode copies (format 9).

8 Retained 8 Delta

oil f i l es
a ll f i l es
a I I f l les
a ll f i l es
all f i l e s
a ll f i l e s
at I flies
• ester fl les onlg
• aster fi les onlg
ass ters/seconder i es
soaxxbr I es onl g
secnntbn les onlg
seaxtdte i es on I g
retained files anlg
retained files onig

• aster files onlg
• aster files onlg

al I tracked flies

a aaa a a a a a a a a aa aa a a a a aa a a a a a aa a a a a a a a a a a a a aa a a a a a a

LIINNNIIINI VGIIFV (Itester Files/Current llrlte-Ibad Copg)

Oaf

tdtctINNi.c

Fi le

PGKUIN: INIC IINNIS.SINNICE.LIB%HI
PGKUIN: INN2INNIS.SINNKE. LIBPBDD
PENGUIN:ABC38INIS. SINNICE. LIBPBDD
sputnik:lop I/ocs/ocs I ib/I lbprod/

sputnik:/opt/ocs/ocs I lb/I lbpradl
abc2$NI. c
sputnik:/apt/ocs/ocs I lb/I Ibprod/

S N PGSUIN-ABCIBBBS 9EBUNICA.LIKKVEL
5 N PENGUIN:ABC28885.9GNNIICR.LIBU6%L
S N PENGUIN:NIC3INNIS.VGNNIICR.LI mVa.
5 N stnttnik:/opt/ocs/aml lb/I lbdauel/

5 8 sputnik:/opt/ocs/tns I lb/I ibdaoel/

S 8 sputnik:/ opt/ocs/mal ibl I lbdeoe I/

A/C 8/N Current Nrittr4tode Copg (or Cop>es)

pau I /abc IINNI. c

debbg/abc2NNl.c

paul/abc3INNI. cIkc3HB. c

Figure 8-4. VERIFY Display (Format 9)

8-4 U BRARIAN/iX AdministTator'5 Guide

Version Inquiries
The VERSION command (available from the Admin menu) provides
information on all of the versions for an application, including current
status and baseline dates, The following shows a version inquiry for the
Ap application. The same information is available offline in the Versions
Report (RAV10).

• VERSIONS FOR IPPLICRTIGR RF6

Seq Rescript i on

4 Field release of IF6 Rel 2,Ã l C1 81R 81/85/94
3 %'6 Reiease 2.88 PREV 12/15/93
2 Field release of IFB OBS 83/'IS/93 8 1/ 18/94
1 Inl llal re lease of t66 FLSR 12/81/92 12/28/93

Stat Created Qssolete

V2.81

V1.81
V 1 . 88

Figure 8-5 Versions Display

Step/Project inquiries
You can review step and project information online with the HELP
command, using the stepname as its parameter, you can request
information on the defined defaults, allowed overrides, and other step
information. You can also obtain this information for steps by pressing Fl
on the Steps menu (accessed from the Pile menu) or for projects by
opening the Projects Inenu available froxn the Settings window (accessed
from the User menu).

Reports 8-5

Figure 8 — 6 shows the step information windows for the AP-OUT step.

)HELP AP-OUT

Step: AP-OUT . D EVELOPMENT,DEIVIO GLOBAL VALUES

Move Exp Exp
hm ~ ~

10 MS DEMO-FILES C> . Q.TPUBPROD.SYSA COPY 0 0

~T ~ ~ E2 HLc Set

=.! USERID .TPUBDEV .SYSA

Desc: This step copies files from produclion to development

Step: AP-OUT . D EVELOPMENT. DEMO P R EVIOUS VERSIONLOCATIONS

Previous Version Locations will be searched in the following order:

010 = .= .TPUBUB,SYSA

Step: AP-OUT ,D EVELOPMENT .DEMO

There are no step refinements.

Step: AP-OUT .D EVELOPMENT .DEMO

No presteps are documented for this step.

Step: APWUT .D EVELOPMENT, DEMO P E NDIN& AREAS

There are no pending production areas associated with this step.

Step: AP-OUT . D EVELOPMENT .DEMO D E FAULTS

Defautt parameters for the step are configured as follows:

ONUNE, MEMO!, NO COMPRESS, NO DECOMPRESS NO RETAIN. NO ORPHAN

Note: ! means that you cannot override the default when you perform. this step.

Rgure 8-6. Heip Information for Ap-OUT Step

RERNEMENTS

8-6 L IBRARIAN/IX Administrator's Guide

With the HELP STEPS cornI11and, you can review' a list of the steps you
are authorized to perform and information about the step, as shown in
Figure 8 — 7.

IZED STEPS
User ID: INN Naca: ltaNeell Snort

. UF~ I N T

. IIF~ I N T

. IlF~ I N T

. IIF~ I N T

. Nf&&llNT

Step .Haute .Appl Itoue Ty Fna Lacatian Ihnht

UF &OUT

NFtiEIHIDIT
KF&4K
NF6ESIN

UF6-TEST . KF&fllINT
NF ~AIL , ~ INT
NF6-TESTIDI . IF&fSINT
NF6-IN . lF &t 5 t INT
NF&f'IN , ~ I NT

E nter %1P tete the nme of the Step far further in f~ t l te t .

Its PBKUIN: O. 8, L IDPRDD A/N
SS PENiUIN: e. IUsBIID, LIINKVEL Ml
l ls sputnik:/apt/ocs/ocsi ih/I lbprott/o R h l
SS PENiUIN: O. O.I.I DDEVEL R/tl
S tl sputnik:/opt/ocs/ocs lib/I ibdeuel/ R / N

Ss PB6UIN t O.e. LI DDEVEL Rhl
Ss PBNNIIN: e.e. LIDTEST R/N
ss PBNDIINte.e.LIDTEST R/ll
sU PBNDIIN:O.O.LIDTEST R/N
SU PBNiUIN t O.e. L IDDEVEL Ml

I USED ID/ e

Figure 8-7, Help Steps

In addition, you can use the HELP PROJECTS command to review an
online list of which projects you are authorized to work on, as shown in
Figure 8-4.

IZED
User ID: IIAN Naca: limael I Sar t

Appl ProJect St Pro Ject Descript ion

UF6 SR I564
SRI572
sR t5i98

UP Add DICIQ~ NIVS to NFUI888 REPIDIT
UP Ftx bounty' uiolet ion problett in ID62$NI at t.832
IX Fix str thy ouerf les problee in AN tnstsect inn

Etut of ProJect Autletrizet ion I ist.

Figure 8-8. Help Projects

Reporls 8-7

Using the SHOWLOG Report Writer
SHOWLOG is a flexible report writer that allows you to select and report
transaction data from the LIBLOG audit trail database. By using
SHOWLOG, you can review transaction history information selectively in
a variety of formats.

In addition to reporting capabilities, SHOWLOG offers several other

• ED)TMEMO allows you to edit memos entered when performing
steps.

• UST allows you to create a listfile of files in selected transactions.

• FLUSH flushes selected log records.

Access SHOWLOG froxn LIBRARIAN with the SHOWLOG coma~ d or
select Log... from the Info menu and then select SHOWLOG.

SHOWLOG initially displays default selection criteria and default report
settings, followed by the SHOWLOG prompt, as shown in Figure W9.
The default is to include all transactions in the database. The default
report settings are the concise format, unsorted order, and an online
display.

functions:

APPLIGITI Ql: •

PSLEET ­ •

IKN TEKT
FILE(S) -' Nastier *

RtllTE
U SDt(S): •

STEPS%­ •

ILUTE(S): •

TITLE: SNMIK Truism:t I tlt Aapar t
otLIItE CSCISE $66ATEG

Figure 8-9. Initial SHOWLQG Display

LTse SHOWLOG commands listed in Table 8 — 1 to specify the transactions
you want to review and the way you want them presented. For znore
information, refer to Chapter 4, "SHOWLOG Commands" in the
LIBRAtVAN/iX Reference Guide.

8-8 L IBRARIAN/iX Administrator's Guide

Table B-l . SHOWLOG Commands Summary

Command

Seleclion Criteria

SHOWLOG>SE [LECT]

Function

Extracts only those transaction records which match the
specified selection criteria.

Report Forrnal

SHOWLOG>FO[R MAT]

SHOWLOG>U [Si]

Output Definffion

SHOWLOG>OU[TPUT]

Changes re port format,

Creates a ilistfile containing the names of files involved in
selected transaclions.

Sets the report output ~ on to o f f line or online.

SHOWLOG>SO[RT]

Report Sefflngs

SHOWLOG>GE[TJ

SHOWLOG>SA [YE]

Sets up the report sort sequence.

Processes commands *am a file.

Saves current report settings and selection criteria in a
f il .

SHOWLOG>GO Generates report using current report selection criteria
and settings.

SHOWLOG>SUB[SET] Selects a subset of currentty extracted transactions for
reporting.

Resets the current subset.SHOWLOG>UN[DO]

SHOWLOG>EX[rTJ

SHOWLOG>HE[LP]

SHOWLOG>FL[USH]
transachons.

Terminates an active SHOWLOG session, ond returns you
to the L]BRARIAN prompt,

Deletes all log records associates with extracted

Access' the online help for informafion about using
SHowLQG.

Edits the previous command entry.

Resets selection criteria and/or report seffings to default

SHOWLOG>RED [O]

SHOWLOG>RES [ET]
values.

Displays selection criteria and report sethngs.

Sets a tNe to appear on dl pages of a report.

SHOWLOG>SH [OW]

SHOWLOG>Ti[TLE]

Reports 8-9

The following sequence of comInands selects transactions for all steps
perforIned by any user in the MFG application between December 1st
and 31st 1993, and selects the Summary format, sorted by date and user,
with a new tit le.

SHOWLOG>APPLICATION MFG
SHOW LOG>12/1/93 — 12/31/93
SHOWLOG>SUMMARY
SHOWLOG>SORT DATE, USER
SHOWLOG>TITLE MFG Activity 12/1/93 through 12/31/93

Figure 8-10 shows the SHOWLOG display after you issue the above
comIIUInds.

%PLICATION: ~
PSLKCT : •
I IDBI TENT : •
FILE($) : Nes ter e

INNTE
USER($)

STEP/1381: a
BATE(S) - 12/81/93-12/31/93

TITlE % % Act iui tg 12/I/93 through 12/31/93
ONLINE SttutABV SOATEO BV BATE USER

Figure 8-1 0. SHOWLOG Display

After setting the selection, format, and output criteria, generate the report
with SHOWLOG>GO. The report displays on the screen or is sent to the
defined offline device.

Figure 8 — 11 contains a sample SHOWLOG summary report.

LIBQNIIAN NF6 Ik:t iul tg 12/I/93 through 12/31/93
VEHSIIBI: 1.88 OPEBATINS CINITNB. SVSTEIIS
QBIT SEBINICE- INITE. USER

TINNIQCTION UK FINI 12/N/93 18:88 Tga PF-C
Appl ical iun IFS R oute ~ I NT Step N F~ RU T
User LIBINBI logged in as sputnik:derek on ttIB15

TINNIQKTION LOS FOR 12/14f93 IB:Qi TIBte PU
Applicutlun IFH
User LIQBBI lagged In as sputnik.-~ tet t t tgt5

THAllQKTION UK FUR 12/14/93 18-82
Application IFS
User LIBIABI Logan PDNBIIN:INNI,LIINBIILBEV 17

INANQICTION LO6 FOH 12/15/93 11:e? TIBta PF<
Application IF6 Project SHISH' Step ~
User ~ Logtst PENSU IN: OEHEK. I%A. L IROA; LOEV 29

P8K:
INTE: 8 I/21/pt
T IIN:: 18 :2 9

Status C
Fulled 8
Flies 1

Status C
Felled 8
F i les 1

Status C
Failed 8
Files I

Status C
Failed 8
Files I

Cant iran? (V/N)

Figure 8-11. SHOWLOG Summary Report

8-10 U BRARIAN/iX Administrator's Guide

Housekeeping

this section include:

This chapter covers periodic housekeeping activities that the LIBRARIAN
Administrator typically performs. Other users might performsome of
these activities depending on how you implement LIBRARIAN. Topics in

• Flushing Expired Files

• Flushing Expired Transactions from the Audit Trail (LIBLOG)

• LI BRARIAN Databases — Capacity Management

• Changing Database Passwords

• Changing Network Configuration and Remote System Logon
Information

Flushing Expired Files
LIBRARb&J allows you to set up rules to automatically purge, or "flush",
certain types of files based on age and other criteria:

• Read mode secondaries — can be assigned a retention period by the
step that creates them„or an expiration date through the SET
EXPDATE command, Once expired, these files are eligible to be
purged by the FLUSH utility.

• Retained masters and retained secondaries — (also called "g — files",
either kept as MPE files or as deltas), are purged by the FLUSH
utility only if they meet all of the following criteria;

rr The current date is greater than the expiration date assigned via
the "safety retained days" on the step that created them, or set
by a SET EXPDATE command.

a They exceed the "mirumum number of generations" configured

a They are not "base revisions" (revisions with a zero VCOUNT)
of an active version.

on the SP screen.

Expired Qles, as described above, are purged by the FLUSH
utility — either by issuing the FLUSH command from the command
prompt, or by selecting Flush from the Adrnin pull-down menu. The
FLUSH utility has no parameters; it simply purges files according to the
rules defined and the expiration dates of the eligible files. Prior to
running FLUSH, you may want to use the Pre — Flush Notification Reports
(RFN10 and RFN20) to preview a list of files that will be purged by the
utility. If f i les appear that you do not want to purge, use SET EXPDATE to
set a new expiration date for these files (or set them to not expire).

H ousekeeping 9 - 1

A common strategy with FLUSH is to use both the "safety retained days"
and the "mirumum generations" restrictions to ensure that you have
sufficient history for both frequently and infrequently changed files. In
most installations, it is sufficient to run FLUSH once a month. I f you use
versions, you may want to set the other controls more aggressively, since
base revisions will always be preserved.

Flushing Expired Transactions from the Audit Trail
(LIBLOG)

The FLVSHLOG uti l ity f lushes, or deletes, audit trail transactions that
meet the following criteria:

• Th e t ransaction is older than the Audit Trail "Ag ing Policy" set (in
days) on the SystemProfile (SP) screen.

• If t he transaction was associated with a project, that project has a
status of "flush pending" (FP).

Speciflc log records can also be purged through SHOWLOG, by using the
SHOWLOG cornD~ds to select records, then issuing the FLUSH
command,

LIBRARIAN Databases — Capacity Management
LIBRARDQU uses two TURBOIMAGE databases, LIBDB (rules and flle
tracking information) and UBLOG (audit trail). Datasets in these
databases must be resized to accommodate growth, just like any
TURBOIMAGE application.

The CHECKDB comrr~d is provided to assist with capacity management
by reporting dataset capacities and flagging those that exceed a threshold
percentage full. The comrr~d can be issued directly,

CHECKDB (threshold)

or as an argument to the MA% comrr~ d,

MAIL user;CHECKDB=threshold

In the MAIL comamnd, mail will only be sent to the specified user if there
are datasets that exceed the threshold percentage fulL

9-2 LIBRARIAN/IX Administrator's Guide

Changing Database Passwords
For security reasons, you may wish to change LIBRARIAN database
passwords periodically. Since these passwords are embedded in certain
LIBRARL'QU programs, the programs must be changed whenever the
passwords are changed. To do this, run the program CONFIGP COMP in
the LIBRARIAN account. See Appendix C of this manual for deeds.
CONFIGP changes only the programs; you must change the database
passwords themselves using DBUTIL or some other utility.

Changing Network Configuration and Remote System
Logon Information

LIBRARIAN account (MPE only) and user passwords are used to connect
to remote and receiver systems, and are encrypted in the LIBRARIAN
database. They are maintained on two screens: Network Configuration
(NC) and Systems (SYI. The NC screen maintains default values and SY
specifies connection and logon/login information for individual systems
if they are different from those recorded on the NC screen.

Network addresses, network type (NS, DS, or UMX), and dial-up
information are also maintained on these screens, so they are also used
when adding clients or receivers or changing your network configuration.
See the Reference Guide "Screens" chapter for detailed explanation.

MPE and UNIX dient systems also require passwords to connect to the
LIBRAIRIAN server On MPE clients, this logon and password
information is maintained via the CONFIGP.COMP program. On UMX
c lients, this configuration information is maintained with the corn e d
ocslib — config.

H ousekeeping 9 - 3

9-4 L IBRARIAN/IX Administrator's Guide

Appendix A
Automatic Decompression

LIBRARIAN provides file compression for security and as a means to
save disk space. To usecompressedfiles, it is necessary to first
decompress thexn. This process provides a version of the file that is
identical to the oxiginal uncompressed version, and the file is available for
immediate access. Typically, the Eile decompression process must be
initiated from LIBE4QGAN using the DECOMPRESS command or the
OCSDCMP prograxn. The user initiates this process on an ad hoc basis.

In addition, LIBRA:RIAN provides an automatic method of
decompressing files, as needed. In brief, programs that call the file systexn
routine FOPEN can be trapped by LIB&QUAN to first determine whether
a Eile needs to be decoxnpressed. If a file is stored in compressed format, it
is decompressed prior to the actual call to FOPEN. This feature is virtually
transparent to the application and user.

If the application only needs to read the coxnpressed file, a separate
routine is provided that decompresses the file temporarily.

This appendix describes how to use automatic decompressionwith
LIBRARIAN.

Enabling Automatic Decompression
Use the following steps to enable automatic decompression for each
application program or group of application programs.

Add PH Capability to Application Programs
All programs that use automatic decompression must have PH capability.
A utility called PROGCAPS.COMPOCSUB can add this capability. When
you run this utility, you are prompted for a program name. Program
capabilities are displayed. Type PH (in uppercase) to add PH capability to
the program (lowercase indicates that the capability is absent).

Because of the Privileged Mode and stack requirements, file
decompression is handled by a separate process. A process for the
program DCMPRSS.COMPOCSUB is created when decompression is
necessary; thus the requirement of PH capability.

A utomatic Decompression A- 1

Set UP GrauP/PubliC SL or XL
For compatibility mode programs, set up a Group (;VB=G) or Public
(;UB=P) Segznented Library (SL) for each application group or account
that includes the special FOPEN trap. If no SL is currently being used,
copy SLFOPEN.COMP.OCSLIB to the program group or PUB group
where the application programs reside. Be sure to rename SLFOPEN to
SL. (For temporary decompression, use SLFOPENT.COMP,OCSLIB).
Remember to use the;LIB = parameter of the RUN command.

If your application currently uses a Group or Public SL, add
LIBRARIAN's FOPEN trap to it using SEGMENTER, as shown below:

:SEGMENTER
-SL SL
-USL FOPENU.COMP.OCSUB
-ADDSL OCSFOPEN
-E

If your application currently uses an XL, add LIBRARIAN's FOPEN trap
to it using UNKEDIT, as shown below:

;UNKEDIT
LinkEd> XL XL
LinkEd> ADDXL FOPENO.COMP.OCSUB
LinkEd> E

(Use the USL file FOPENTU.COMP.OCSLIB for temporary
decompression).

Alternatively, copy the OCSFOPEN segment from FOPEN to your
program's USL file, or RL and then PREP your executable program
referencing the USL or RL

Nate Because LIB1VQ&Q4's FOPEN trap cannot coexist in the same SL with
the system FOPEN routine, programs residing in the PUB group of the
SYS account (e.g., EDITOR) must be moved to a new group (e,g.,
PUB2). Make sure that your alternate group has the same capabilities
as PUB.SYS.

For native mode programs, use the XL file XLFOPEN.COMP.OCSLIB (or
XLFOPENT.COMP.OCSLIB to decompress files temporarily when
accessed). Alternatively, use UNKEDIT to add FOPENO,COMPOCSLIB
(or FOPENTO COMP.OCSLIB) to an XL or RL; or link it with other native
mode object files to create an executable program file.

A-2 UBRARIAN/IX Administrator's Guide

Allocate DCMPRSS.COMP.OCSLIB

decompression program, as shown below:
For faster loading, OCS recommends that you allocate the automatic

:ALLOCATE DCMPRSS.COMP.OCSLIB

Now you can enjoy the convenience of accessing compressed files, Once
decompressed, files remain decompressed until compressed again by
LIBRARIAN (unless you use the temporary version.)

Error Conditions
The FOPEN trap and subsequent decompression are designed to be
completely transparent, although you may notice a slight delay when
accessing large compressedfiles. In the event that an error occurs during
decompression, check a JCW called OCSERR to reference the error
number.

• Er r o rs less than 1000 are file system errors encountered during
decompression.

• Errors greater than 1000 are process creation errors (subtract 1000 to
obtain the true CREATEPROCESS error).

For example, error 1001 is CREATEPROCESS error number 1 which
translates to "Caller lacks Process Handling (PH) capabiiity".

If your programs check condition codes and call FCHECX, a file system
error of 560 will be returned for file system errors during decompression,
and 561 will be returned for process creation errors. If FERRMSG is
called, the following error messages are returned:

UNABLE TO DECOMPRESS FILE FOR ACCESS. PSERR ¹¹¹)

ERROR CREATING PROCESS TO DECOMPRESS FILE. (CREATEPROCESS
ERR ¹¹¹)

If your application does not use FCHECK and FERRMSG, check the
OCSERR JCW if the program fails to access a compressed file. This will
help you determine the problem.

A utomatic Decompression A - 3

A-4 UBRARIAN/iX Administrator's Guide

Appendix B
LIBRARIAN Utility Program

A utility is available for miscellaneous functions including globally
changing system IDs. This utility facilitates moving applications or an
entire LIBRARIAN ilnplernentation to a new system.

Operation
The LIBRAR1AN Uti l ity program is called UBUTILPCOMPOCSUB. To use
LIBUTILP, log on as MGR.OCSLIB on the MPE server and type:

IRUN LIBUTILP.COMP.OCSUB

The program presents a menu of options as displayed in Figure B — 1.

IKS/LI IÃNGIW/i X Vers i tm 1 0 0 0 0 (C) Operat i cms Ccevtrol SSstess. Ir I = . I 9 93
LIKITIL LI BR ARIAN Uti l i t y Fu r s t ic ecs

LIHSRIM U ti l i t g F~ i crm

i — ~ 59st es ID io LIHDB
2 — ~ 59stee ID Far ~ Applicatlcm
3 — Mload data base to a File
4 — Load data base FrcaI a F i l e
E - E x i t

Please t9pe desired opticmi I

Figure B-l. UBRARIAN Utility Functions Menu

This appendix describes the options on the utility Inenu.

Changing the System ID in LIBDB (Option 1)
You can use UBUTlLP to copy your LIBRARIAN database to a file, scan
and replace occurrences of the system ID, erase the database, and then
reload it. We strongly suggest that you make a backup copy of LIBDB
before executing this function.

After you have accessed the Utility Functions Inenu, enter 1 to select the
"Change System ID In UBDB" option. You will see the following prompts
(sample responses are included):

Do youhave a current backup of LIBDB? (N/Yj Y

Old System ID: VENUS
New System ID: MARS

U BRARIAN Utility Program B- 1

After you respond to the prompts above, you wil l see messages similar to
the following:

Changing System ID from "VENUS to MARS".

Unloading LIBDB
Erasing LIBDB
Reloading UBDB,.„,.„
Entries changed: 78

Changing the System ID for an Application (Option 2)
You can use UBUTILP to change your system ID for a specific application.

After you have accessed the Utility Functions menu, enter 2 to select the
"Change System ID for an Application" option. You will see the following

prompts (sample responses are included):

Do you have a current backup of UBDB? (N/YI Y

Application: LOUS

Old System ID: MARS
New System ID: (VENUS)

After you respond to the prompts above, you will see messages similar to
the following:

Changing SystemlDfrom MARS to VENUS forAppllcation LOUS .

Unloading UBDB........„...,.
Erasing UBDB „...,............
Reloading UBDB...............
Entries changed: 78

Unload Database to a File (Option 3)
You can use UBUTILP to unload the database to a file.

After you have accessed the Utility Functions menu, enter 3 to select the
"Unload data base to a file" option. You will see the following prompt

Unload data base (LIBDB):
Comment: THIS IS A UBDB UNLOAD TO BINARY FiLE.

Unloading UBDB data base to file UBDBUL. Automatic masters are
ignored.

Note The "Unload data base" prompt requests the name of the database root
file. The unload file will be the name of the root file with a suffix of
ll UL //

After you respond to the prompt above, you will see the following

UBDB unloading complete.

message.

B-2 U BRARIAN/iX Administrator's Guide

Load Database froITI a File (Option 4)
You can use UBUTILP to load the database from a file.

After you have accessed the Utility Functions menu, enter 4 to select the
"Load data base from a file" option. You will see the following prompt

Load data base (UBDB)

Loading LIBDB data base from UBDBUL file

LIBDB data base unloaded on WED, JU. 3, 1992. 941 AM
THIS IS A UBDB UNLOAD TO BINARY FILE.

Loading data,...loading M-USER, 1 entry loadeci WED. JU. 3, 1992, 9;42
AM

After you respond to the promptabove, you will see the following
message:

UBDB load complete.

Exiting the LIBRARIAN Utility Program
To exit the LIBUTILP program, type E at the Utility Functions menu.

L IBRARIAN Utility Program B- 3

B-4 UBRARIAN/iX Administrator's Guide

Appendix C
LIBRARIAN Configuration Program

A utility is available for updating your LIBRARIAN configuration,
changing database passwords, and changing server passwords on dient
systems. Topics in this appendix include:

• Configuration Prograzn (MPE)

a Configuration PrograIn (UNIX)

Configuration Program (MPE)
The LIBRARIAN Configuration program is called
CONF IGP t QMPOCSUB. To use CONFIGP, log on as MGR.OCSLIB and

:RUN CONFIGP.COMP.OCSLIB

The program presents a menu of options as displayed in Figure C-1.

iX5/LIBRNclfH/1X Version 1.OG.OO (C) Operatlcxcs Ccsctral System I rs: 199 3
IXNFIG LIBRARIAN Conf ieccrator

LllRHDlkl Conf igccrator Fccnoticscs

1 — Update Ccscf leer ation Fi l e
2 — ~ LIBDB/LI1LlXi Pamamrds
3 — ~ SERV ER Lccgan/Pasamsrds
E — Exit

Please tcipe desired opt lcxcc •

Figure C-l. UBRARIAN Configuration Functions Menu

Updating the Configuration File t,'Option 1)
Enter 1 to select the "Update Configuration File" option. You will see the
following prompts:

Warning Do not attempt to update your configuration file if anyone is
accessing LIBRARIAN.

LIBRARIAN Configurcrhon Program C- 1

Change Configuration Values (Use // to Remove Value)

Current COMPANY NAME : OCS
New COMPANY NAME

Current SYSTEM ID
New SYSTEM ID

Current EDITOR
New EDITOR

Current HOST ID
New HOST ID

Current BATCH LOGON
New BATCH LOGON

: VENUS

: EDITOR. PUB.SYS

After you respond to the prompts above, you will see the following

Configuration updated successfully!

message:

Changing LlBDB/LIBLOG Passwords (Option 2)

select the Change UBDB/UBLOG passwords option. You will see the
following prompts:

Current UBDB READ password
New UBDB READ password : TOP

Current UBDB WRITE password
New UBDB WRITE password

Current UBLOG READ password
New VBLOG READ password ; FORYOUR

Current UBLOG WRITE password
New UBLOG WRITE password

To change passwords in the LIBDB and LIBLOG databases, enter 2 to

SECRET

EYESONLY

After you respond to the promptsabove, you will see the following

Changing database ~ ords . ..done.

message:

C-2 U BRARIAN/iX Administrator's Guide

Changing SERVER Logon/Passwords (Option 3)
To change the LIBRARIAN server logon and passw'ords in the UBDB
database, enter 3 to select the Change SERVER Logon/Passwords option.
You will see the following prompts:

Current USER
New USER:

Current USER password
New USER password

Current ACCOUNT
New ACCOUNT

Current ACCOUNT password:
New ACCOUNT password

Current GROUP : PUB
New GROUP

Current GROUP password
New GROUP password

: CLIENT

To allow HIPRI login, type HIPRI; otherwise type //

Current HIPRI
New HIPRI : //

After you respond to the prompts above, you will see the following

Configuration updated successfully!

message:

Note In order to use HIP RI for automatic remote logon to LIBRARIAN, MPH
requires that the logon user and account have OP or SM capability.

Exiting the LIBRARlAN Utility Program
To exit the CONFIGP program, type E at the Configuration Functions
menu. You return to the main LIBRAKAN prompt.

L IBRARIAN Configuration Program C - 3

Configuration Program (UNIX)
If you are running a UNIX client, you can configure information about
the MPE server, including passwords for gaining access. In addition, you
can update the ocslib user password that already exists on the client.

You must have superuser capability to run the configuration program.
The following is an example:

HP — UX [1] cd /opt/ocs/ocslib
HP-UX [2] su
Password:
¹ ./ocslib — config

Change Server Login/Passwords (X to remove password)

SERVER NAME [PENGUIN]:
USER [CLIENT]:
USER PASSWORD (not displayed):
PLEASE RE- ENTER PASSWORD TO VERIFY:
ACCOUNT [ocslib]:
ACCOUNT PASSWORD (not displayed):
PLEASE RE-ENTER PASSWORD TO VERIFY:
GROUP [PUB]:
GROUP PASSOWRD (not displayed):
PLEASE RE — ENTER PASSWORD TO VERIFY:
UNIX LOGIN [ocslib]:
UNIX PASSWORD (not displayed):
PLEASE RE — ENTER PASSWORD TO VERIFY:
Configuration /opt/ocs/ocslib/config updated successfully!

C-4 UBRARIAN/iX Administrator's Guide

LIBRARIAN/IX Glossary of Terms

Note Terms that appear in italics in the following definit ions have separate
glossary entries.

Access Control
The attribute of a masterfile that determines how many read/write mode
copies are allowed. The four access control levels are: exclusive, read only,
serial write, and multiwrite.

Access Mode
The attribute of a secondaryfile that determines whether or not it can be
checked in and replace its associated masterfile. A secondary in write mode
can replace a master. A read mode can only replace a m aster through an
emergency checkin that is configured to use the PUSMKAD parameter. A
file's accessmode is determined by access control, user request, step
definition, and default access mode (precedence is in order 1isted).

Aging Policy
A system profile value that indicates how long log records are kept. When
the FLUSHLOG utility is run, audit trail records that are older than the
number of days specified in the aging policy are deleted.

Transactions associated with projects override this policy and are deleted
only when the project status is flush pending.

Alternate prestep
A prestep that can be performed as an alternative to the defined prestep.
Up to three alternatives can be defined for a step.

Annotate
Comments inserted by LIBRARIAN into source listings that indicate
which lines were inserted/deleted for which revision. Date/time, related
project and user who made the change are included.

Application
A site-defined organizational unit including a set of masterfiles that are
being controlled by LIBE4QGAN, a set of steps for file
movement/approval, and, optionally, a set of projects for tracking ftle
changes associated with a particular work activity.

Application Manager
A special user capability assigned to the user responsible for the files and
steps within an application.

Glossary- I

Application fileset
The highest level f i lese for an application.

Approval step
A null step that is required as a prerequisite for a subsequent step,

Authorization
The process of determining which files have been requested in a
transaction and whether or not the rules permit the operation to be
performed on each of these files. Authorization is based on the user who
initiated the request and the current status of each file requested.

AUTOXEQ file
A macro that is executed before the first prompt/main menu appears. A
file called AUTOXEQ that exists in the product account is executed prior
to any AUTOXEQ file thatmight exist in the user's home directory.

Auto fileset descriptors
General locations that describe how masterfiles are assignedautomatically
to masterf i leset. Descriptors can include or exclude files from filesets
using wildcards. When you run AUTOUPDATE, introduce new files with
a pending master, or perform a checkin step with the AUTOUPDATE
parameter turned on, any previously untrackedf iles in these locations get
added to the appropriate master Eilesets.

Automatic yogin 1D
The login used when transactions require automatic logging in to a
remote system.
Autoupdate
The process used to add masterfiles to masterfilesets automatically based
on predefined autofileset descriptors that include or exclude files from
filesets, typically using wildcards. Pending masters and masters not
currently assigned to required filesets are added, typically during checkin,
new steps and/or running of the AUTOUPDATE utility.

Baseline
The master library at a particular point in time. An application manager
establishes a baseline by creating a version, This marks and protects all of
the 61es in an application at that time, so that the application or any part
of the application can be restored to that baseline any time in the future.

Base Revision
A revision that was current at the time a baseline version was created. The
version count (VCOUNT) for a base revision is always zero and cannot be
flushed until the version(s) of which it is a part is made obsolete.

II IIBRARIAN/IX

Branch
A set of revisions that are made as a divergence from the main
development path for a master file. A branch is created automatically
when a previous revision is checked out. A branch can also be forced
from the latest revision if the master is already checked out in write mode,
or the user does not intend to check the file back in on the trunk.
Whenever a new branch is created, a branch counter and leaf counter
(both starting at 1) are appended as a pair to the original revision ID.

Branch revision
A revision that appears on a branch.

Checkin step
Any step which copies or moves a file from a secondary location into the
master library, either retaining and replacing the existing master,
introducing a new one or establishing a new branch .

Checkout step
Any step which copies a file from the master library into a secondary
location, generally for modification by programmers.

Client
An MPE or UNIX implementation of LIBRAIUAN where the LIBRARIAN
data bases reside on a different system, but the user is able to perform all
LIBRAIGAN functions.

Command Mode
In comn~d mode, the user enters LIBlVGGPW commands at a
command line prompt. Users can switch between command mode and
menu mode by pressing the F2 function key.

Component filesets
Filesets that are subsets of higher — level filesets.

Composite prestep
A collection of presteps that must be performedbefore a subsequent step
can be performed, Composite presteps also permit the speci6cation of a
date prerequisite.

Default access mode
The access mode that is assigned to a secondaryfile when neither the user or
step explicitly specify the mode. The access control level for a file
determines which access modes are allowed.

Gjossory- llI

Destination

A privileged (MPE) or hidden (UNIX) file that contains the history of

Delta file

changes made to an associated masterfile.

Deltas
A method for retaining and reconstructing previous revisions of master
files that involves storing only the changes to files over time.

Dependency
A file that make evaluates with respect to some target to determine
whether to invoke some action, such as a compile or link.

The target location when copying or moving a 61e.

Dummy target
A make target that does not correspond to an actual file. Dependencies of
dummy targets are actual files that are always evaluated as targets
themselves to determine whether they are out of date and need to be
rebuilt.

Edit mask
A file expression that uses special editing characters to map one filename
into another; e,g., source to destination name for a copy or znove or
secondary to pending master name for introduction of a new fi le.

Emergency checkin
A checkin that moves a read mode secondaryfile into the library with the
PUSHREAD option. If a write mode copy exists, the owner is notified via a
LIBEVQUAN mail message, and an exception is recorded.

Exception Flag
An indicator that something special has happened related to a file such as
an emergency checkin, merge conflict or previous master revision was restored
at a time when the file was checked out. The exception flag must be
cleared before any further operation on the file is allowed.

Exception message
A LIBRARIAN mail message that indicates that an exception flag has been
placed on a file. This message is sent to the owner of the write mode copy of
the file.

Exclusive access
The access control level that prevents secondary copies of a masterfile from
being made.

Expiration date
The date when after which a file can be flushed using the FLUSH utility.

IV IIBRARIAN/IX

Expired file
A read mode secondary or retainedfile that is eligible to be flushed by the
FLUSH utility.

Explosion
The creation of a list of files by expanding a fileset, listfile, or vari ldcard file
specification for LIBRARIAN to authorize.

External
A file that resides on a system on which LIBRARIAN is not running,
typically an unsupported platform, or system which is not on an
accessible network. LIBRARIAN steps can be used to record movement to
an external location, but cannot physically move the file or verify its
existence. Users are responsible for transferring files (via tape or other
means) for any transaction using the EVKRNAL option.

Fileset
A collection of files identified by a unique name assigned by the Librarian
Manager (masterfilesets) or any user (userfilesets), When requesting files,
filesets can be referenced by preceding the fileset name with a percent
sign (%). Because filesets contain collections of files that are related by
some criteria other than physical location, and can span directories and
systems,they are often referred to as logicalfilesets.

Note: In MPE, a fileset is any set of files that can be referred to using
wildcards in name, group and/or account, LIBRARIAN refers to this as a
physical fileset.

File structure (hierarchy)
The relationship of filesets, subsets and physical files within an
application library.

Flush policy
The system profile policy that determines how many previous file
generations to keep when the FLUSH maintenance utility is run.

FLUSHLOG
The maintenance utility that purges old log records that have aged
beyond the aging policy specified in the system profile.

FLUSH
The maintenance utility that purges expiredfiles and obsolete versions.

Flushed project
When a project is closed and then assigned a status of flush pending, log
records associated with that project get flushed the next time the
F'LUSHLOG utility is run. After FLUSHLOG has been run, the project
status is changed to flush, and the project can be deleted, if desired.

Glossary- V

Flushed version
When a version's status has been changed to obsolete, base revision files that
are a part of that version are flushed if they are not also part of a
subsequent version. After FLUSH has been run, the version status is
changed to flush, and the version can be deleted, if desired

Flush pending
A proj ect status that indicates that log records for the proj ect should be
purged when the FLUSHLOG utility is run.

FMAtM
The facility for creating and znaintaining userfi leset.

Forward versioning
An option on checkout toautomaticallysearch alternate libraries (usually
previous versions) when a masterfile is not found in the expected location
as defined by the checkout step. If the file is then found in an alternate
location, it is brought forward as a secondary of a new pending master for
the primary application.

Generation
Each time a file is checked in, a new generation is created. Previous
generations of masterfiles are stored in the library as retainedfiles (usually
compressed) or as deltas.

Generation count (GCOUNT)
A sequential number assigned to each masterfile generation. The current
GCOUNT is the total number of times a master file has been replaced.
When specifying GCOUNT as an option in a file request, a negative
number indicates a generation relative to the latest generation.

Generic rute
A target-dependency relationship in make that uses wildcards (target) and
edit masks (dependency) to determine what is out of date. Actual target
and dependency names are substituted into the rebuild comn~ d s u s ing
make macros.

indirect file
Also called a listfile, an indirect file is a text file that includes a list of
filenames. This file can be used in LIBRA1UAN coma~ds as a convenient
way of referencing files. Indirect files can be created in a text editor or
through LIBRARLAN's LlV[AlNT facility.

Vl IIBRARIANfiX

INPROGRESS

A parameter used with a checkout step that instructs LIBRARIAN to record
the existence of a write mode secondary without physically copying the file
from the library. This parameter is most often used when LIBRARIAN is
initially implemented and some files are already being worked on or
tested.

Intermediate revision
Master files that are retained between versions. The version count
(VCOUNT) for intermediate revisions is always greater than 0.

Leaf Revision
Each revision on a branch is called a leaf, sequentiaHy numbered from the
start of the branch. Whenever a new branch is created, a branch counter
and leaf counter (both starting at I) are appended as a pair to the original
revision ID.

LIBRARIAN
The program that controls and processes aQ file operations maintaining
an audit trail of activity.

UBRARIAN Manager
A special user capability assigned to the person responsible for configuring
LIBRAIGAN and defining site rules. The LIBRARIAN Manager has
unrestricted access to all UBRARIAN functions for all files.

Ubrary
A library is the repository from which files are checked out, and to which
they are subsequently checked in. Files are also distributed to production
locations from the library. It is the 'official' collection of files that are
under LIBRAIUAN's control. Files in the library are called masterfiles. The
library provides a central point of control for changes to production
source, object and data.

Listfiles
Also called an indirectfile, a listfile is a text file that includes a list of
filenames. This file can be used in LIBRARIAN commands as a convenient
way of referencing files, Listfiles can be created in a text editor or through
LIBRARIAN's L31AINT facility.

LMAINT
The facility for creating and maintaining l istfiles (indirect files),

Location
The group/account (MPE) or directory (UNIX) and system where a file
exists or should be created.

Glossary- Vll

Logical filesef
A meaningful name assigned to a collection of files not bound by physical
boundaries. See filese.

! LOGON,! LOGIN
A special wildcard that can be used in defining step source and
destination locations to indicate that the user's login data should be
substituted as appropriate. For MPE, this wildcard can be used for group,
account and/or system. For UNIX, this wildcard is equivalent to '.' for
current working directory and can also be used for system.

Mail

Macro
A set of LIBRARlAN and operating system comxnands for LIBRARIAN to
execute. A macro control language provides programmatic control
(conditions and loops) and paraxneter substitution, Parameter values can
be systexn&efined or provided by the user via prompts and/or
customized menus. Macros are analogous to MPE comxx~d f i les and
UMX scripts. Multiple macros can be combined in a single procedurefile.
Macros are also referred to as XEQ files.

Macro Control Language
The set of special comxnands and keywords that are used in macros to
control flow of execution (IF... Tf&N...ELSE, REPEAT, WE~E, LOOP,
GOTO) and allow for parameter substitution (tokens preceded by %%).

Mail includes messages that are sent from one LIBRARIAN user to
another, or from LIBRARIAN notifying a user that an exception condition
has occurred that affects that user's work

Make
A utility that automatically rebuilds/recoxnpiles components of an
application when they change. Make reads a makefile that shows
dependencies between application components and evaluates which
components are out of date. Based on which coxnponents are out of date,
make issues only the comxx~ds necessary to bring the application up to
date.

Makefile
A text file that contains make rules. This file can have any name and can
be created and maintained using any text editor %us file includes
farget~ endencyrelationshipsand commands required to bring each
target up to date whenever their dependencies are changed. Ma4 macros
and generic rules can be used to reduce the size and complexityof a

Make macros
A shorthand that sixnplifies creating makefiles. Macro references are
substituted with either user — defined or system — defined values when the

makeEile.

Vill IIBRARIAN/iX

makefile is processed. For example, outmf — date dependency names can be
substituted iri generic command descriptions.

Master file
A file that is part of a defined library and reflects the most current
production version.

IVlaster fileset
A fileset defined by the LIBRARIAN Manager that indudes library Files.

Master library
The hierarchy of masterfilesets and associated masterfiles for an application.

Memo
Text that provides documentation for a transaction. Memos are stored in
the audit trail database and can be reviewed using SHOWLOG.

Menu Mode

functions from a set of pull-down menus. Users can switch to the
comin'md line prompt at any time by pressing the F2 function key.

IVlerge
An option available on checkout steps to combine source code changes
from one or more branches. ConQicting changes are highlighted with
comments in the source code, and should be resolved prior to the next
step. Merge is only available if the delta feature is being used.

!MSUSER
A special wildcard that can be used in defining step destination locahons.
When the step is executed, the wildcard is replaced with the user ID of
the user who originally checked out the file. For MPE, this wildcard can
be used to fill in group or account. For UNIX, this wildcard can appear
anywhere in the path name. This wildcard is typically used to reject files
and move them from a test area back to the appropriate developer's work

The mode oi LIB R arRiAN operation in which uwks select LIBRrGGAN

area.

Multi-write
The access control level that allows multiple secondaryfiles with write — mode
access.

Glossary- IX

New step
A step that introduces a previously untrackedfile to LIBRARIAN as a
secondary file. The file is linked to a pr~x i s t ing masterfile or a pending
master record is created. Rules governing introduction of new fi les on a
step are configured on the PP (Pending Production Areas) screen.

Node
The actual device name associated with a system in a network, This name
may or may not be the same as the LIBRARIAN system ID.

Null step
A step not involving any file movement, A nu11 step is used to reflect
some external action such as an approval. Null steps are used to control
dependencies between steps; that is, they are used as presteps.

Obsolete version
When the LIBRAIUANManager or Application Manager change the status
of a version to obsolete, any retained base revisions associated with that
version will be flushed the next time the FLUSH utility is run, Once a
version is flushed, it can be deleted, if desired.

Operator
A special capability assigned to a user who canflush records in the log
database and can restore previous revisions of files,

Orphan
Any file not curnmtly being tracked by LIBRARIAN or a masterfile not
associated with an application. Orphans can be created by a LIBRARIAN
operation that causes a tracked file to become untracked (unknown to
LIBRAKV&J), or by operations that use the orphan option to create files
in destinations that are not to be tracked.

!OWNER
A special wildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who currently owns the file. For MPE, this wildcard can be used
to fill in group or account. For UMX, this wildcard can appear anywhere
in the path name. This wildcard is typically used to approve files in
multiple developer work areas.

X I[BRARfAN/iX

Parent Fileset
A fileset that includes component filesets.

Pending master file
A file that is being tracked as a master library file, but, because it is new,
does not physically exist in the library yet. The associated secondary is
called a pending productionfile and was introduced through a new step or
through the use of LIBRARIAX's forward versioning feature.

Pending master mask
An edit mask used to automatically derive a pending masterfile name based
on the name of the secondaryfile being introduced through a new step.

Pending production area
Any location(s) defined for a step where previously untrackedfil es can be
introduced as new secondaryfiles. Steps with pending production areas
are considered to be new steps.

Pending production file
A secondaryfile that was introduced using a new step. The masterfile does
not currentIy exist in the library.

Permissions
A UNIX term used to indicate file access rights; a matrix of read, write,
and execute access for owner, group and world,

Physical fileset
A collection of 6les that exist in a particular location, Physical fileset
references include specific filenames, or names using standard operating
system/sheH wildcards.

Prestep
A step that must be completed successfully for a file before the next step
in the route can be performed. Presteps are often null approval steps.

Procedure
A macro that is included in a file with other macros with a procedure
header.

Procedure file
A 61e that contains multiple macros. Each macro has a procedure header
indicating the name of the macro. Procedure files can be loaded and
unloaded while using LIBRARIAN.

Project
A way of organizing transactions and associated 6les with a speci6c work
activity.

Glossary- Xl

Project fileset
A userfileset that is created automatically when defining a project. The
fileset is maintained automatically when files are checked out or
introduced as new files for the project. Files can also be added to this
fileset in advance by a Proj ecf Manager using the FMAINT facility.

Project manager
A special user capabihty assigned to users who can create projects, modify
project status and authorize users to work on projects.

Project menu
Whenever proj ects are associated with a particular route, users are asked to
select the project that they are working on from a menu when checking
files out or introducing new files.

Project status
A flag that determines what activit ies can be associated with a proj ect.

PUSHREAD
A step option which allows a read mode copy to replace a masterfile or write
mode secondary which has not been checked in yet. This option is typically
used for emergency steps.

Read mode
The attribute of a secondaryfile that indicates it cannot replace the master.
Read mode copies expire after a configured period of time and can be
flushed using the FLUSH utility.

Read only
An access control level that only allows read mode copies of a file.

Read step
A step that copies a masterfile to a secondary location in read mode, with no
intention for modification. An expiration policy can be applied, so that
read mode copies created by the step can be cleaned up automatically
with the FLUSH util i ty.

Receiver
A system that can receive files from other systems, but from which
LIBRARIAN transactions cannot be initiated.

Release Step
Similar to a read step, a release step copies files f rom the library to a
production location in read mode. Typically, these files do not expire, and
the previous version is often retained.

XII IIBRARIAN/IX

Retained file
A previous generation of a file saved under a LIBRAIKCV~e n e rated
name "GAAWtitit". Fi les are retained when the retain parameter is used
on a step and the destination file is a tracked master or secondaryfile. Base
revisions are always retained. If deltas are being used, changes to the
previous generations are stored.

Revision
Any set of changes made to a masterfile through a checkin step. Revisions
include all generations of a master file including the most current. Leaves
and branches also make up the set of revisions for a file,

Revision lD
Revisions are identified by version name followed by a colon (:) followed
by version count. If the revision is on a branch, branch and leaf count
pairs are appended delimited with periods (.)

Route
A set of automated procedural controls for managing Eile changes and
distribution. A route consists of a predefined file-movement path that
refiects an established cycle. The route includes steps for all allowab1e
movements of the files for that cycle.

Route Alias
When defining projects, a route alias can be defined to indicate that the
project only applies to a particular route. The project name can be used in
place of the route name when performing a step (i.e., step. project) to
bypass the project menu.

Rule Administrator
Similar to the LIBRAIUAN Manager, the Rule Administrator is a user with
special user capability who can define LIBRAB'IAN rules such as steps and
filesets, but is not automatically authorized to perform LIBRARIAN
functions, and cannot create user authorizations.

S
Scan/Replace
A LIBRA2UAN function that searches files for patterns of text, and
optionally replaces the matches with user — deEined text.

Scope
The attribute of a step that restricts which fi les the user can request. When
copying or moving files, the scope specifies where files come from and
where they can be copied. Steps can restrict by fileset, from location and

Secondaryfile
Any copy of a master file or another secondary file. All secondaries are
linked to a master (or pending master) either directly or indirectly, and are

to location.

in read or write mode.

Glossary- XIII

envirorunent.

Secondarylocation
Any location where secondaryfiles can be created.

Serial write
The access control level that allows only one secondaryfile at a time to have
write mode access, preventing concurrent modifications.

Server
A system that has an implementation of UBRARLAN which includes the
LIBRARIAN databases. Clients access this database and other
LIBRARIAN functions remotely.
Seffings
LIBRAMAN session-level parameters that control the user's working

Special user capability
See user capabilities.

Standard Rule
A make rule that associates specific target(s) with specific dependencies.

Step
A rule governing the copying and moving of files from one location to
another. Steps are the basic building blocks of the LIBRARLAN file
movement and control system. Steps are grouped into routes and are
performed using system ­ and/or site-defined names.

Step parameter defaults
Options that control the behavior of a step, by default.

Step parameter overrides
If allowed, users can override step parameter defaults by specifying desired

Step refinements/exceptions
A step definition that includes rules for altering the destination location
based on the from location, filecode (MPE), and/or fileset membership,
The same criteria can be used to alter the type of movement (copy, move
or null) or exclude files altogether from the step.

Step type
There are three types of steps: master-to-secondary (MS),
secondary — to-secondary (SS) and secondary — to — master (SM). MS steps
are steps that checkout or distribute files. SM steps are steps that check
files in. SS steps encompass all steps in between, such as move to test and
approvals.

System
A unique node within a network identified to LIBRAIUAN with a unique
system ID.

overrides.

XIV IIBRARIAN/IX

System ID
Used to identify systems to LIBRARIAN wi th in a network. Optionally
appears as a prefix to a filename delimited by ' t o i nd icate the
appropriate system.

System Profile
A set of global paz ameters maintained by the LIBRARIAN manager that
control how LIBRARIAN operates. Includes items such as flush policy,
aging policy, date formats, etc,

Tag
A user-defined name for a particular revision of a File or files that can be
used to identify them at a later tizne, even after they have been retained.

Target
Coznponent of a znake rule that is built frown one or more dependencies
using one or more comzz~ds. Object code and executables are examples
of targets.

Tracked file
A file for which there is a record in the LIBRARIAN data base. Tracked
files are masters, secondaries or retai riedfiles and movement operations are
controlled by LIBRARIAN rules. All other files are untrackedfiles,

Transaction
Any LIBRARIAN operation attempted either successfully or
unsuccessfully on a set of files. Except for comzzzands which provide
information, all transactions are logged in the LIBRAIUAN audit trail.

Trunk revision
A revision that is not checked in on a branch.

Untracked file
A file for which there is no record in the LIBRARLVl da tabase. Ad hoc
operations on these files conform to normal operating system security.
Steps cannot be perforzned for untracked files.

User authorizations
The znechanism for determixung who can do what. Authorizations can be
defined for steps and projects. S pecial user capabilities can be assigned so
that specific authorization is not required in some cases.

Glossary- XV

User capabilities
Grants users certain privi leges that transcend standard user authorizations.
These include LIBRARIAN Manager, Application Manager, Project Manager,
Operator, Rule Administrator and X capability. If no special capability is
assigned, authorization is required for steps, and other commands
conform to normal operating system security.

Userfileset
A fi leset created and maintained by a user through the FMAINT user
fileset module. User filesets allow users to group files for their
convenience. Like masterfi lesets, precede user filesets with % when
referencing them in commands.

! USERID
A special wildcard that can be used in defining step source and destination
locations. When the step is executed, the wildcard is replaced with the
user ID of the user performingthe step. For MPE, this wildcard can be
used to fill in group or account. For UMX, this wildcard can appear
anywhere in the path naxne, This wildcard is typically used to check out
file's into the developer' s work area.

UserlD
A unique identifier for a LIBRARIAN user that is password protected.
Users are promptedfor their User ID when initiating the LIBRAS'UV
program.

User password
Used to protect against unauthorized use of the LIBRARIAN system.
Passwords are required and can be changed by the individual users.

Verify
The LIBRARIAN facility for reviewing file information on-line or off — line.

Version count (VCOUN)
The sequential number that tracks the number of generations since the
current version was defined.

Version
All the files in an application, as they were at a specific point in time.

Version ID
The name given to a version by a LIBRARI iN or Application Manager.

Wiidcards
Special characters or tokens used in filenames to request multiple files
that ma~ a pattern, and/or to determine destination locations.

XVI IIBRARIAN/iX

Work-in-progress
Untracked files that were in development and/or test prior to
LIBRAIGAN implementation. These files can be handled using the
INPROGRESS parameter with a checkout step.

Write mode
The attribute of a secondary file indicating that it can replace its masterfile
through an authorized checkin step.

XEQ file
A text file that contains the comrru~ds for a single macro. These macros
are executed by filename.

GIossary- XV I

XVIII IIBRARIAN/IX

=: adm 4-6

?: adm4 — 6

::.. usr 8 — 14

Symbols
I: ref I&,3 — I; adm4 — 7

:: ref1 — 4; usr8 — 14

: —: usr 8-14, 8-15
:=: usr8 — 15
$NP: ref 1-67; usr 3-13
%%: ref7 — 3

default: adm 3 — 12

@: adm4-6
—: adm4-6
': ref 1-6, 1-94, 1-115; usr 3 — 3; adm 4-6
': ref 1-6, 1-94, I — 115; usr 3-3

"Empty ' : usr 9-5
ef3 — I

Access control: adm 3-4
setting default r ef 5 — 16, 5 — 29

Access mode: ref I — 150; adm 3-4

settmg. ref I — 122
setting default ref 5-16, 5 — 29

Accessing LIBRARIAN: usr 2-1
ACCOUNT variable for MAKE: usr 8 — 17
ACTIVATE: ref 1-19
ADJUST: ref 7-7
Adzrun znenu: ref 9-8
Aging policy: ref 141
ALL parazneter for LM>OUTPUT: usr 7-2
ALL parazneter for ~ : usr 8 — 5
ALLOW: ref I — 20; usr9 — 5
Alternate search locations: adm 7-6
ALTPATH variable for ~ : usr 8- 1 8
Annotation: ref I — 29, I — 120; usr 1-4, 4 — 11, 5-1

example of: usr 4-12, 5-2
setting language for: ref 5-18, 5-30

Applications: usr I — 2, 7M; adm 2 — 3, 3-1
autoznated testing. usr 8 — 2
building. ref 8-l
compiling. ref I — 53; usr 8 — I

7 — 3

Authorizations

2 — 1

Auto Filesets

Transactzons

location of: usr 9-7

versions of: adm 7 — I

Background process, UNIX clients: ref IM; usr

Base revision: ref 1%2; adm 7 — 2

default for session: ref I — 95, 1-101, I — 117
defining. ref 5 — 11
deleting: ref I — 36; adm 2 — 5
dependencies in: usr 8-1
example of archiving, usr 7 — 4
file dependencies: usr 8-4
in progress: usr A — I
znenu oF. ref 7 — 17
processing text usr 8-2
rebuilding documents: usr 8 — 2

Applications (AP) screen: ref 5-11
example of: adm 3 — 2

at command: usr 3-19
ATlocation: ref1 — 9; usr3-4
Audit traiL See Transaction reporting;

Audit trial transaction, flushing. adm 9 — 2

projects: adm ~
steps: adm 5-4

AUTHORIZE parameter for LM>OUTPUT: usr

Authorized files: usr 3 — 10
Auto fileset descziptors: adm 3-8
Auto Fileset Update (AUTOUPDATE): ref I — 21,

5 — 9, 5-21; adm 2 — 5, 3-4, 3-9

descriptors: ref 6-13
report of: ref 6 — 13

Auto Filesets (AF) screen; ref 5 — 9, 5-21
example oF. adm 3-4

Auto Filesets (RAHO) report ref 1-21, 6-13
AUTOUPDATE. See Auto Fileset Update
AUTOXEQ files: ref 1-3, 7 — 14

Base version. See Base revision
Baseline, See Versions
BATCH: usr 3-18

Index I

Batch transactions: ref I — 3, I — 13; usr I — 3, 3 — 9,

See also Routes

3-18; adm 4-9
Branches: usr 4 — 3

BRANCH; ref I — 68
merging. See Merging revisions
NOBRANCH: ref I — 70

Building applications: usr 8 — I
Bypassing menus: ref 1-3, 7-14

Capabilities
See also User capabilities
SM: ref 5-64

Capacities, LIBRARQQ4 databases: ref 1-22, 1-55
Capailities. See User capabilities
Caret (~) ref 3 — I
Change control cycle: usr I — 2; adm 2-1

CHECKDB: ref I — 22
Checking

UBRARIAN databases: ref 1-22
LIBRARIAN databases capacities: ref 1-55

previous revision: usr 4-1
simulating. usr A — 2

Checkout/checkin: adm 2-1
CL~ B: ref 1 — 23
CLOSE: ref I — 24
Colon (:): ref I&
Command mode: ref I — 3; usr 2 — 5

switching to: usr 2-5

access restrictions: ref 1-15
comznonly used: usr 2 — 10
editing previous: ref 1-86, 1-87
listing previous: ref I — 50
looping. ref 7-13, 7 — 21, 7 — 24
repeating execution of.. ref 1-37
summ'iry of: ref 1-16

Company name: ref &5
Comparing files: ref 1-109

example of; usr 4 — II
Compiling applications: usr 8-1
Composite Pzesteps (CP) screen: ref 5 — 14

exaznple of: adm 4 — 10
COMPRESS: ref I — 25
Coznpress Exclusions (CE) scram ref 5 — 13
Compressing files: usr 3 — 15

automatic: ref 5-62

Checkout

Datasets

inmacros: usr 9-3

Data, deleting mass: ref 5-93
Database passwords: ref 11-1; adm C — I
Database utility: ref 10-1

LIBDB: ref 12-1
LIBLOG: ref 12M

Date format ref 5-62
Date prerequisites: ref 5-14
DECOMPRESS: ref 1-34
Decompressing files, automatic: adm A-I
Defining rules, Shortcut utility: adm 2 — I
Defining steps; adm 4-4, 4-13
DELETE: ref 1-36
Delete, znass data: ref 5-93
Delta files: usr 1-4, 4-4

associated master: ref I — 142; usr 4-14
integrity of: usr 4-14
maintaining. usr 4-6
purging: usr 4-12
zestozing from; ref I — 102
verifying checksuzn: ref 1-142
vs. generation files: usr 4-4

excluding files frozn: ref 5-13
Concurrent maintenance, example of: adm I — 9
Conditional expressions: ref 7 — 12

Conditional fi les. usr 3-12
Conditional looping. ref 7 — 21, 7-24
CONFIG, changing database passwords: adm 9 — 2
CONFIGP: ref 11 — I
Configuration file: ref 1-2, 11-1

changing. adm C — I
Configuration management usr 1-3
CONFIRM: usr 3-7
Conflicts

exaznple of: usr 4-9
resolving for merge: usr 4 — 9

CONNECT: ref I — 27
CONTII'CUE: ref 7M
COPY: ref I — 29; usr 3-7
Copy steps: adm 4 — 5
Copying files: ref l~
COPYhKM variable for he% : usr 8 — 19
Create projects

PROJECT command: adm 6-2
Projects (PJ) Screen: adm 6 — 2

Customized software: adm 7 — 7
Cycle. See Routes

Commands

i i U B R I A N / iX

concurrent maintenance with: adm 7-7

ECHO: ref 7-9
ECHO parameter for ~ : usr 8 — 5
EDIT: ref 1-38
Edit znasks: ref l — 11; usr 3 — 7

D ependency tree, for ~ : usr 8- 4
Developxnent

in progress: usr A — I
Dial-DS; ref 5-85
Dialogs: ref 9 — 11
Differences between files: usr 5-4
Distribution, forward vexsioning with: adm 7 — 7
DO: ref l — 37
Documenting file movements: usr 3 — 14
DS/3000: ref 5-37
DSLINE: ref I — 27
DLuxuny target usr 8 — Il

for MAKE: usr 8-14
in maczos: usr 9-4
in UNIX destinations: adm 4-9
list of' syznbols: usr 3-4
pathnaxnes: usr 3-8
referring to dif ferent elements: usr 3 — 9

Editing Eiles: usr 3-15
Editor: ref I — 14; usr 3 — 15
Emergency fix rule: adm 1-7
END: Q7-10
Environment variables: ref 1-2
Error messages, security monitor. ref 1-30, 1-57,

Escape key: usr 2-5
Exception report ref I — 23
Exdamation point (!): ref 3-1
EXCLUDE variable for MASK: usr 8-19
Exduded files: usr 3-12
Exdusive access control: adm 3-4
EXIT: ref I — 39
Expiration: ref I — 150, I — 154

defining policy for. adm 4-12
setting. ref I — 118

EXPRESS SUBMIT: ref 1-13

File movement rules

routes: adm 4-1

File transactions: usr 3-1

1~

6-52

Filenames: usr 3 — 2

exdusions: usr ~

conditional: usr 3-12

commands for. usr 3 — 17

access override: adm 3-11

6-54

zefemng to: ref I — 6
Files: ref I — 154

access control: ref 5-16
access mode: ref 1-122, 1-150, 5-16

annotation: ref I — 30, I — 120
applying selection criteria to: ref 3-10
assigning tags: adm 7-8
associated xnaster: ref 1-142
associated projects: Q I — 144
associated user filesets: ref I — 145
associated versions: ref I — 146
authorized: usr 3-10
automatic decompression: adm A-I
checking existence of: usr 9-4

compiling. ref 1-53, 8-1
compressing. ref 1-25

confirming authorized: ref I — ll
copying. ref 1-29
counts: ref 1-147

File dialog: ref 9 — II
File Exceptions (RFX10) report. ref 6 — 29
File Inquiry (FI) screen: ref 5 — 24

example of: adm 8 — 2
File management

objectives: usr I — 5; adm I — I

overview: adm I — I
rules: adm I — 3

File menu: ref 9 — 3

See also Routes; Steps
reviewing adm 4-19

sequence for defining. adm 4-19
steps: adm 4-1

File movements
associating projects: adm 4 — 3
defining rules foz-. adm 4-1

multiple file references: usr 3-6
File naming conventions: ref xv
File operations, batch znode: usr 3 — 18
File security, enhancing. usr 3-15

File Versions (RVD10) report ref 6 — 50
File Versions and Timestamps (RVT10) xeport ref
File Versions and Timestamps (RVT20) report ref

Features: adm 1-2
File Access (FA) screen: ref 5-16

exaxnple of: adm 3 — 12

Index iii

4-6

excluded: usr 3 — 12

destinations: usr 3 — 7

creating listfile of: ref 3 — 10
decompressing: ref I — 34; usr 3 — 15
defining movement rules: ref 5-71
deleting tracking: ref 1-81
description. ref 1-157, 5 — 16

differences between: ref I — 46, I — 109
directly referring to: usr 3 — 2
editing. usr 3 — 15
exceptions: ref I — 96

excluding. ref I — 10
excluding from compression: ref 5 — 13
expiration date: ref 1-10, 1-150, 1-154; usr

expiration policy: adm 4-12
expired: ref I 40
FLUSH policy: usr 4-6
flushed: ref 6-7
forward versioning: adm 7 — 5
generated: ref I — 149
generation count usr 3-4
in last transaction: usr 3 — 3
indirectly referring to: usr 3-3
information about ref 1-138, 5-24; usr 3-21;

adm 8 — 2,8 — 3
language: ref I — 120, I — 157, 5 — 16
last step performed: ref I — 151
last transaction: ref I — 7
locking. ref 1-52, 1-133
lockword: ref I — 121
macros that process: usr 9 — 2
merging revisions: ref 1-70
modified status: usr 3-6
moving. ref I — 56
MPE security: ref I — 88, I — 113
new: ref1 — 70, 5-42, 5-51; usr 4-4; adm 4 — 15
nonexistent ref 1-23
on hold: ref 1-52, 1-133
online inquiry: ref 1-138
original filenames: ref 1-153
ownership: ref I — 124, 1-150
pathnames: usr 3-8
PC transfer, ref 1~, I ~
pending znasters: ref 6-35
previous versions: ref 1-149
printing. usr 5 — I
purged: ref 1-23
purging. ref I& I
purging old versions: adm 7W
referring to: ref 1-5; usr 3-2

sets oF. usr 6-1

referring to by project: usr 3 — 5

referring to by revision: usr 3-3
referring to by step: usr 3-5
referring to znultiple: ref I — 10
renazrung, ref I — 90
replacing text in: ref 1-105; usr 5 — 2
report by znaster: ref 6 — 19
report of: ref 6 — 7, 6 17, 6 — 35
report of expired: ref 6-25
report of generations: ref 6 — 31
report of missing: ref 6-29
report of untracked: ref 6-29
report of versions: ref 6 — 50
retained: adm 4-12
retaining. usr 4-4
revision storage: usr 4-4
revisions: ref1-155, I — 156; usr 3 — 3,4-2
scaruung: usr 5 — 2
searching for text in: ref 1-105; usr 5-2
secondary location: usr 3-4
selecting by date: ref l- l l
selecting by project ref 1-10
selecting by tag. ref l — 10
selecting tracked/untracked: ref I — 11

showing differences between: usr 5-4
showing versions o& usr 4-12
step history: ref I — 152
subset selection: usr ~
tagging, ref I — 128, 1-155; adm 7-8
timestamps: ref I — 99, I — 100, 1-131
tracked: ref I — 11
tracking status: usr 3 — 7
transferring from PC: ref 1-65
transferring to PC: ref I-64
untracked: ref 1-11; usr 3-17
user confirmation. usr W7
VERI''Y: adm 8-3
versions of. usr 3-3; adm 7-1, 7-4
violations: usr 3 — 12

Files in Filesets (FF) screen: ref I — 21, 5 — 21
example oF. adm 3-10

Meset Components (FC) screen: ref 5-19
example of.. adm 3-6

Meset descziptors: ref I — 21
Fileset Explosion (RFE10) report mf 6 — 21
Fileset Explosion (RFE20) report ref 6-23
Fileset Status (RFDIO) report ref 6-17
Filesets: usr 6-1; adm 3-5, 3-14

auto fileset descriptors: ref 6-13
defming. ref 5-29

ad hoc. See User filesets

iv U 8 RARIAN/iX

FOPEN

FM>SERVER usr 6 — 2

master. See Master filesets

defirung hierarchy of: adm 3 — 14
files in: adm 3 — 7
hierarchy of: adm 3-6
information about files in: ref 5-24
logical: usr 3 — 3

members of: ref I — 143; adm 3 — 7
numbered: usr 7 — 2

projects: ref 2 — 12; usr 6-3
referring to: usr W3
report by master: ref 6 — 19
report of: ref 6-17
reporting members of: ref 6 — 21, 6-23
user. See User filesets

Filesets (FS) screen: ref 5 — 29
example of: adm 3-5

FLUSH: ref 1-40, 1-41
Flush, preview of files ready for. ref 6-25, 6-27
Flush Detail (FLUSH) report ref 6-7
Flush policy: ref 5-Ei2
Flushing

expired fi les: adm 9-1
expired transactions. adm 9 — 2

FLUSHLOG: ref 1-41, &39, 6-41, 6-43; adm 6-5,

FM>ADD: ref2 — 3; usr6 — 2
FM>CREATE: ref 2M; usr 6-2
FM>DELETE: ref 2 — 5; usr 6 — 2
FM>EXIT: ref 26
FM>HELP: ref 2 — 7
FM>LIST: ref 2-8; usr 6-3
FM>LhV~ : ref 2 — 9
FM>MARX: ref 2-10; usr 6-2
FM>PURGE: ref2-11; usr 6-2
FM>RELATE: ref 2 — 12; usr 6 — 2

FM>SEVER ref 2 — 13
FM>SHOW: ref 2-14; usr 6-3
FMAINT: ref I~ , 2 — I; adm 6 — 2

accessing. ref 3-7
commands: ref 2-2
exiting: ref 2-6

decompression: adm A — 2
trapping. adm A-2

FORMAT parameter. usr 3 — 22
Forward versioning: adm 7 — 5

example of: adm I — 9
searching mult iple locations: adm 7-6

Jobs: usr 3 — 21

vs. Delta files: usr 4-4

IF/ELSE: ref 7 — 12
Indirect files. See Listfiles
Info menu: ref 9-7
INPROGRESS parameter. usr A — I

HELP: ref 1-43; usr 2 — 6; adm 4 — 19
Help menu: ref 9-10
HELP PROJECTS: adm 8-7
HELP STEPS: usr 3-9; adm 4-19, 8 — 7
Housekeeping. adm 9-1

JCWS
adjusting values in macros: ref 7-7
LIBMATCHES: ref I — 108

setting up: adm 7 — 5
Forward Versioning (FV) screen: ref 5 — 32

exampleof. adm 7-6
Function keys: ref 1-1

transaction status: usr &21

example of: usr 3-20
running LIBRARIAN from: usr 3 — 19

GCOUNT. See Generation count
Generated Files (RGF10) report: ref 6-31
Generation count us r 3-4, 4-4

referring to: ref I — 8
Generation files: ref I — 7, 1%, 1-149; usr 4-4

original filenames: ref 1-153, 6 — 31
report of: ref6 — 31

Getting started: usr 2-1
Global changes to LIBRARIAN database: ref 10 — I
Global search/replace: usr 5 — 2
GOTO: ref 7-11
GROUP variable for MALICE: usr S-18

K
KILL ref l~

Index v

L
Language: ref I — 157

setting: ref 1-120,5 — 16; adm 3 — 12
setting default r ef W29

9 — I

1-102

features: usr IM

Library. See Master library
LIBSCREEN: ref IM9
LIBUTIL: ref 10-I; adm B-I
Line drawing characters: ref I — 2

vi L IBRARIAN/iX

LIBBATCH variable: usr 3 — 19

LAST: usr 3-4
Last transaction

referring to files in: ref I — 7; usr 3 — 3
resetting reference to: ref 1-94
saving list of files from: ref I — 115

LASTNOTO parameter. usr 3-4
LCOMPARE: ref 1~ ; usr 1-5

example of: usr 5 — 5

LIBDB database: ref 12-1
LIBLOG database: ref 12-4; adm 8-8

maintaining. ref 4-6
transaction codes: ref 6 — 3

LIBMGR. See LIBRARIAN Manager
LIBPROMFT variable: usr 2W
LIBRARIAN

accessmg. usr 2 — I
benefits and features. usr 1-1
coxnponents: usr 1-2
concepts: usr 1-1, I — 2
configuring. ref 11 — I; adm C — I
configuring server logon/passwords:
database passwords: ref 11 — I
features: usr I — 5; adm 1-2
terxxunology: usr 1-2

LIBRARIAN Admixustrator, housekeeping.

LIBRARIAN databases: ref 12-1
capacity management: adm 9 — 2
changing passwords for. adm 9 — 2
loading/unloading. adm B — I
monitoring. ref 1-22, I — 55
passwords: adm C — I

LIBRARIAN Manager. adm 2 — 2, 2 — 7, 5-3
capability: adm 2 — 7
creating. adm 2 — 7
deleting. adm 2-8
restricting. ref ~2

LIBRARIAN proxnpt, changing. usr 2-6
LIBRAIVAN/iX Plus: ref I — 29, l~, 1-76,

ref 11-1

i n~ : usr 8- 1 6

See also Transactions

Link: ref I — 24
LISTF: ref IW

Listfiles: usr 7-1
appending to: ref 3 — 3
archiving wi th: usr 7M
creating. usr 7-1
creating with SHOWLOG: ref 4-12
editing. ref 3 — 5
example of: usr 7 — 2
generated by SHOWLOG: adm 8-4
listing files in: ref 3-9, 3-15
maintaining: ref1-51,3 — I; usr 7 — 3
maintaining documentation for. ref 3-4
numbered: ref 3-13
referring to: ref I&; usr 3 — 3
xefreshing content of: usr 7-2
selecting files based on step: usr 7 — 3
selecting files by date: usr 7-2
selecting files for, ref 3 — 10
showing related documentation: ref &16
sorting. ref 3-16
using with STORE: usr 7M

LI'STFXIO: ref I — 23
LISTRZDO: ref I — 50
LM>ALTER: ref 3-3; usr 7 — 3
LhL DOCUMENT: ref 3-4; usr 7 — 3
LM>EDIT: ref3 — 5; usr 7-3
LM>EXIT: ref ~
LM>FMAINT: ref 3-7
LM>HELP: ref 3-8
LM>LIST: ref3 — 9; usr 7M
LM>OUTPUT: ref3-10; usr 7-1, 7 — 3, 7M
LM>REPORT: ref 3-15; usr 7W
LIVL SORT: ref 3-16; usr 7-3
LMAINT: ref I — 51,3-1; usr 7 — I

accessing. ref 2-9
commands: ref 3-2
exiting, ref ~

LOCK: ref I — 52
Locks, status: ref 1-141
Lockwords: usr 3-15

assigning. usr 3 — 15
changing. ref I — 136; usr 2 — 3
setting: ref 1-121

Log records

deleting, ref 4-6
Log reporting. ref I — 130

See also Transactxon reportmg
Logical fileset, referring to: ref 1-6
LOGON wildcard: adm 4-7

inmacros: usr 9 — 4

Macros: ref 7 — 1; usr 3 — 15, 3 — 21, 9-1

Long Pathname (LP) screen: ref 5 — 34
Lookup, step refinement: ref 5-67
LOOP/NEXT: ref 7 — 13
Loops

commands: ref 7 — 13, 7 — 21, 7 — 24

nesting: usr 9 — 5
REPEAT/UNTIL: usr 9-5
WHILE/ENDWHILE: usr 9 — 5

LP parameter. usr 3 — 21

7 — 7

See also Makefiles

variables. See Parameters

suppressing warning: ref 7 — 15
terminating: ref 7 — 10
user capabilities in: ref 1 — 20

Macros menu: ref 9 — 5
MAIL:ref 1 — 55
Main menu: ref 9 — 2
Maintenance, concurrent development wi th. adm

MAKZ: ref l — 53,8-1; usr 8 — 1~3

accommodating new files: usr 8-4
account default for. ref 8-9
acrossmultipleaccounts: usr 8 — 18
applying edit mask to LISTF in: usr 8-8
automatic dependency determination: usr

9 — 5

automatic execution of: usr 9 — 7
AUTOXEQ: usr 9 — 7
checking file existence in: usr 9-4
comments in: ref 7 — 5
conditional expressions: ref 7 — 12; usr 9 — 3
conditional looping. ref 7 — 21, 7 — 24
control language summary: ref 7-6
control options: ref 7 — 15
controlling display: ref 7 — 9
displayingmessages: ref 7-9
edit masks: usr 9-4
editing: ref 7 — 2
entering data on the command line: ref 7 — 15
error handling. ref 7M
example of: usr 9-2
execution of; ref 1-161, 7-1
fi lename substitution in: ref 7-3
files for. ref 7-2, 7-15; usr 9 — 2
jumping to specific location in: ref 7-11
location of: usr W15, 9 — 2
looping for files: ref 7-13; usr 9-4
looping through records in a file: ref 7 — 13; usr

menus in: ref 7 — 17; usr 9 — 3
nesting: ref 7-15; usr 9-6
nesting loops: ref 7-15; usr9 — 6
parameters in: ref 7-3, 7-17, 7-22; usr 9-3
pausing in: ref 7 — 23
procedure files: ref 1-125, 7 — 20; usr 9 — 7
prompting users: ref 7-17
providing custom help for. ref 7-3
reusing parameters: ref 7 — 15; usr 9-6
RUN: ref 7 — 5
signalling end of: ref 7 — 10
spedfying parameter values: ref 1 — 161

suppressing commands/messages: ref 7 — 9

benefits: usr 8-2

makefiles: usr 8-2

conventions: usr 8 — 5

8-16

COBOL COPYLIB: ref 8 — 9
controlling job launching. ref 8-8
controlling job logon: ref S — 5
defining rules for. ref S — 2
dependency tree: usr 8-4
dummy target usr 8-11
edit masks: ref 8-6
example of operation: usr 8 — 3
executing. usr 8-20
files in multiple accounts: ref 8-10
generic rules: usr 8-15
generic values: ref 8-6
group default for: ref 8-9
iterative comznand processing. usr 8 — 12
job logon: usr &4

prompting users for input usr 8 — 19
rules: ref 8-2; usr 8-5
searching for dependencies: ref 8 — 5
targets: usr 8-2
TOUCH command: usr 8-20
types of rules: usr &14

Makefiles: ref 8-1; usr &-2
comments in: ref 8-2; usr 8-5

creating. usr 5-5
defining rules: usr W5
delimiters: usr 8-14
edit masks in: usr 8-14
example of: usr 8-6, 8-7, 8 — 9
job cards in: usr 8-13
LISTF variables: usr 8-16
multiple generic dependencies in: usr 8 — 15
rules: usr 8-14

ref 7 — 5

Index vii

MAJCEOUT: usr 8-8

special variables: usr 8 — 16
system variables in: usr 8-20
variable substitution in: ref 8 — 7; usr 8-I2

Mass changes to LIBRARIAN database: ref 10 — I
Master File Status (RFD20) report. ref 6-19
Master fi les: usr 1-2; adm 1-3

associated: ref I — 148
associated delta files: usr 4-14
associated deltas: ref I — 142
associated write — mode secondary: ref I — 148
new: ref5 — 42,5 — 51
ORPHAN: ref I&I
pending. ref I — 70, ~, 5 — 51, 6 — 35
reporting revisions of: ref 6-37

Master filesets: ref 1-143
adding files to: ref 5-21; adm 3-10
defining hierarchy of: ref 5 — 19
deleting. adm 3 — 13
deleting files from: ref 5-21
reporting, adm 3-13

Master library: usr I — 2; adm 1-3, 3-3, 3-14
dehning. ref 5-19, 5 — 21, 5 — 29
deleting. adm 2-5, 3-13
reporting. adm 3 — 13

MASTER parameter. ref I — 70
Matching patterns: ref I — 106
MEMO: ref 1-55; usr 3-15
Memos: ref l — 14; usr 3 — 15

editing. adm 8-4
MENU: ref 7-14
Menu mode: ref 1-3; usr 2M

dialogs in: ref 9-11
steps dialog. usr 2 — 7
switching to: usr 2 — 5
using. usr 2 — 5

Admin: ref 9-8
bypassi n: ref I — 3, 7 — 14; usr 2-4
controlling. ref 7-14
File: ref 9-3
Help: ref 9-10
hierarchy of: ref 9 — I
in macros: ref 7 — 17; usr 2 — 4
Info: ref 9 — 7
Macros: ref 9 — 5
Main: ref 9 — 2
Options: ref 9-13
Revision Criteria: ref 9 — 12
setting parameters: usr 9 — 3

MPE

conflicts: usr 4 — 9

MSUSER wildcard: adm 4-7

suppressing. ref 7-14
Tools: ref ~
User: ref 94
user — defined: ref 7-17; usr 9-3

Merge: usr I&
Merge conflicts

example of: usr 4 — 9
setting language for: ref 5 — 18, 5 — 30

Merging revisions: ref 1-70; usr 4-7

excluding specific changes: usr 4-9
including specific changes: usr 4-7

Messages
audit trail: ref 1-55
controlling: usr 3 — 12
to users: ref I — 55

Modification timestamps: ref I — 131
MODIFIED: ref I — 11; usr ~
MOVE: ref 1-56
Move steps: adm 4-5
Move-to — production: usr I — 3
Movement rules. See Steps
Moving files: ref 1-66

commands: ref 1-3
security: ref 1-113

Multiple search locations: adm 7M
Multiple versions, example o& adm 1-9
Multiple write access controL adm ~

Network Configuration (NC) screen: ref 5 — 37
example of: adm 2 — 5

Networking
buffer size: ref 5-37
changing configuration: adm 9-3
configuring. ref 5-37, 5-69, 5-85
example o& adm2 — 5
linking to remote MPE systems: ref 1-104
logon security: adm 2-5
node names: ref5-69
overrides: ref 5-85
passwords: ref 5-37, 5-85
troubleshooting. adm 2 — 5
X.25: adm 2 — 5

New files: ref l — 70; usr4-4
See also Pendmg master files
added with a step: ref I — 5
rules for. ref 5 — 51; adm 4 — 15

Menus

viii U BRARIAN/IX

Node nazne, Systein — to-Systezn Table (SS) screen:
ref 5 — 69

NOMAKE parameter for MAKZ: usr 8 — 5

NS/3000: ref 5 — 37
Null steps: adm 4 — 5

NOVIOLATIONS: usr 3 — 20

Object code, introducing: ref 5 — 51
Objectives: adm I — I

file management: usr I — 5
Online help: ref I — 5; usr 2W
Online inquiry

files: ref 1-138
versions: ref I — 159

Optionmenu: ref9 — 13; usr2 — 9
OPTION stateznent for macros: ref 7 — 15
Original fiiename. See Generations
ORPHAN parazneter. ref I — 32, I&I

Output, redirecting: ref 6-4
OVERLAY: ref I — 32, 1&2
Owner, setting. ref I — 124, I — 150

OUTPUT: usr 7 — 3

alternate: adm 4-9

Pending master file, report of: ref 6 — 35
Pending Master Files (PF) screen: ref ~
Pending Master Files (RPMIO) report. ref 6-35
Pending Production Areas (PP) screen: ref 5-51

example of: adm 4 — 16

field descriptions: adm 4 — 16
PERFORM: ref l~ ; usr 2 -9 ,3 — 13
PH capability: adm A — I
Pre — Flush Notification (RFN10) report: ref 6-25
Pre — Flush Notification (RFN20) report ref 6-27
Presteps: adm 4-9

composite: ref 5 — 14; adm 4-9
multiple: adm 4-9
Steps (ST) screen: adm 4 — 9

Previous transaction, saving files from: ref 1-115
PRINT: ref I — 76
Printer, escape sequences: ref 1-47, 1-77
PRINIKSC file: ref I-47
Printing files: usr 5 — I

annotated: usr 5 — I

recursion: usr 3-2

in macros: usr 9-3

OWNER wildcard: adm 4 — 7

Parameters
allowing users to override: adm 4-12

step defaults: adm 4 — 12
PARM: ref 7-17
PASSWORD: usr 2 — 3
Passwords

changing: ref 1-136, 5-91
UBRAIUAN databases: ref 11 — I
providmg. usr 2-1
removing. usr 2 — 3
security: ref5-tÃ, 5-65; adm 2-6

Pathnarnes: ref 1 — 6
entering long names on screen: ref 5 — 34

Pattern matching, ref I — 106

Pause in macros: ref 7-23
PC: ref 1~ , 1-65
PCRECEIVE: ref 1~
PCSEND: ref 1-65
Pending master: ref I — 70

Procedures

2 — I

I — 92; usr 6-3; adm 6-7

PRIVATE: usr 6 — 2
Pzivate filesets: usr 6-2
PROCEDURE: ref 7-20
Procedure files: ref 1-125; usr 9-7

executing. ref I — 161
nanung. ref 7 — 20
signalling end of. ref 7 — 10
terzzunating: ref 7-10

Process, running in the background: ref 14; usr

Process ID numbers: ref 1-19, 1-45
Prograzns, coznpiling. ref 8-1
PROJECT: ref I — 78
Project Authorizations (PA) screen: ref 5-40

exaxnple of: adm 6 — 2
field descriptions: adm 6-2

Project Authorizations (RUPIO) report ref 6-47
Project fileset, implied reference to: ref I — 9
Project filesets: adm 6 — 7

finding secondaries: usr &3; adm 6-7
hierarchies: ref 2 — 12
maintaining. usr 6 — 3
updating automatically: ref I — 23, I — 59, 1&2,

using FMAINT with: adm 6 — 2
Project Inquiry (PI) screen: ref 5-45

example of: adm ~,8 — 3
Project manager, assigning capability: adm 6-1
Project Status (PS) screen, example of: adm 6-5
Project Status Change (PS) screen: ref 5 — 54

wildcards: usr 5 — 3

Index ix

6 — 5, 6-6

subset selection: usr ~

Projects: adm 6 — 1,6 — 2
"no project" option: usr 3 — 13
associating files with: adm 6 — 7

authorizingusers for. ref 5 — 40; adm 6-4
changing linkage: ref I — 126
changing status of: ref 5-54; adm 6-5
creating. adm 6-2
default for session: ref I — 97, I — 126
defining: ref I — 78
defining hierarchies: adm 6 — 3
defining manager for: adm 6 — I
example of: adm 6 — 2
hles in: ref 1-144
filesets: usr 6-3; adm 6 — 7
flushing transactions associated with: adm

hierarchies: ref 2 — 12
implied reference to files: usr 3-5
inquiring: adm 8-5
linking f i les to: usr 3-13
list of: adm 6-6, 8-3
list of authorized: adm 8 — 7
menu of: ref 7 — 17
online listing of. ref 5-45
report of: ref 6 — 33
report of users authorized for: ref 6-47
requiring. ref5-57; adm 4-3
selecting from menu: adm 6-7
specifying. adm 6 — 7
status change: adm 6-5

Projects (PJ) screen: ref 5-48
example of: adm 6 — 2

Projects (RPJIO) report ref 6 — 33
Prompt: ref 1-4
Prompts

changing: usr 2-6
controlling. usr 3-12

Public filesets: usr 6-2
PURGE: ref I&I; usr 3 — 7

Recursion

Read — mode access: adm 3-4

PUIILIC: usr 6 — 2

usr 7 — 2

infozmation about files: adm 8 — 2

from coznmand mode: adm 8-2
from menus: adm 8-1
generating. ref 6-4; adm 8-1

project status: adm 8-3
redirecting. ref ~
retained files: ref &-31

See also Generations
SHOWLOG: adm 8-8
suzzunazy of: ref 6-2
transaction codes: ref 6-3
VEPJFY: adm 8-3
vezsion data: adm 8-4

Request status: usr 3-9
RESET (APPLICATION): ref 1-95, 1-101
RESET (EXCEPTION): ref I — 96
RESET (PROJECT): ref I — 97
RESET (ROUTE): ref I — 98
RESET (TIMESTAMP): ref 1-99, 1-100
RESET (") : ref 1-94
R ESEIONZERO parameter for ~ UTPUT :

RESTORE: ref I — 101

RI: ref 1~
R7: ref l~
Read access control: adm 3-4
Read mode secondary, updating: ref 1-134

Read — mode secondaries, housekeeping: adm 9 — I

in pathnaznes: ref 1-6; usr 3 — 2
levels of: usr 3 — 2

REDO: ref 1-86, 1-87
Reflection. ref 1~, 1 ~, l ~
RELEASE: ref 1-88
Releases, multiple: adm 7-6
Reznote logon: ref 1-27

configuring. ref 5 — 37
Remote sessions: ref I — 39
Remote systezns

linking to: ref 1-24, I — 104
logon information: adm 9-3

RENAME: ref I — 90
REPEAT/UNTIL: ref 7-21
Replacing text in files: ref 1-105; usr 5-2

variables: ref I — 107; usr 5-4
Reports

QA function: adm 1-6
QEDIT files: ref I — 77, I — 108; usr 5 — I, 5 — 3
QUIET: ref I — 83
QUIT: ref 1-39

x L IBRARIAN/IX

Retained files
See also Generation files
location of: usr 4-6

file reference: usr 3-3

Rules: adm 1-3

maintaining: usr 4-6
Retained masters, flushing: adm 9 — I
Retained secondaries, flushing: adm 9 — I
Retaining old revisions: usr 4-4
RETRY: ref I — 27, I — 104; usr 3 — 20
Revision Criteria znenu: ref 9 — 12; usr 2M
Revision History (RRH10) report: ref 6 — 37
Revision tzee, exaznple of: usr 4-2
Revisions: usr 4 — I, 4-II

branching. usr 4-1
comparing: usr 4-9
concepts related to: adm 7 — 2
deleting, adm 7M

history: ref 1-156
identifying. usr 4-2
inforznation about r ef I — 138; usr 4 — 12
location of: usr ~
znaintaining. usr 4-E
znergmg. ref I — 70

See abo Merging revisions
printing with annotation: usr 4 — 11
referring to: ref I — 7
reports of: ref 6-37; usr 4 — 15
retrieving: adm 7 — 3
storage of. usr 4 — 4
tagging. adm 7W
tags: ref I — 155
vs. versions: usr 4-1; adm 7 — I

Root xevision. See Base revision
Routes: usr I — 3; adm 1-3, 4-1, 4 — 2

default for session: ref I — 127
defining: ref 5 — 57
examples of: adm 1-4, 4-2
menu of: ref 7 — 17
report of: ref 6-8, 6-10
steps in: adm 4 — 3

Routes (RT) screen. ref 5 — 57

default for session: ref 1-98
file znovement adm 4-1
setting up: adm 2-1
Shortcut utility: adm 2 — I

RUN: ref 1-19, 1~
Running LIBRARIAN: usr 2 — I

SCAN: ref I — 105

appending to lines with match: ref 1-107

Screens

untracked: usr A — I

SCHEDULE variable for MAKE: usr 8 — 17

deleting lines with match r ef I — 107
exaznple of: usr 5 — 3
QEDIT files: ref I — 77, 1-108; usr 5 — I, 5 — 3
replacement variables: usr 5-4

variables: ref I — 107

SCOMPARE: ref 1-109; usr ~

accessing. ref 1-49, 5-3
adding data: ref ~
breaking to UNIX/MPE: ref 5 — 5
carrying data forward: ref 5-5
changing data ref 5 — 5
deleting data: ref 5 — 5
enter key: ref 5-4
exiting. ref 5 — 5
finding data. ref 5-4
function keys: ref 5-5
moving between: ref 5-4
znoving between fields: ref 5-4
security: ref 5 — 3
summary of: ref 5 — I
using. ref 5-4
using online help: ref 5 — 5

Searching files for text ref 1-105; usr 5-2
Secondary files: usr I — 2; adm 1-3

in progress: usr A — 2
indirectly referring to: ref I — 9; usr 3-4
new: ref &5I
not checked out usr A — I
ORPHAN: ref I&I
pattern — matching: usr 5-3

updating with curn' master. ref I — 134
wxite-mode: ref I — 148

SECURE: ref 1-113
Security

MPE: ref 1-88
Setting Passwords: ref 5-64, ~
setting passwords: adm 2M

Security monitoz-. ref 1-91
error message: ref I — 30, 1-57, 1-68

Sequence. See Routes
Serial access controL adm 2 — I, 3-4
Server. ref 1-2

configuring logon/passwords: ref 11 — I
logon: adm C-I
passwords: adm C — I

SET (APPLICATION): ref 1-117
SET (EXPDATE): ref 1-118
SET (LANGUAGE): ref I — 120
SET (LOCKWORD): ref 1-121

Scan

Index xi

SET*: usr 3-3

SET (MODE): ref 1-122
SET (OWNER): ref I — 124
SET (PROCEDURE): ref 1-125
SET (PROJECT): ref I — 126
SET (ROUTE): ref I — 127
SET (TAG): ref 1-128

SET ' (") re f 1-115
Setting parameters using menus: usr 9-3
Setup

applications: adm 2 — 3
defining steps: adm 2M
defining users: adm 2W
deleting. adm 2 — 5
troubleshooting. adm 2 — 5

SETVAR ref 7-22
Shell commands: ref I — 2, 1-3; usr 2 — 5

defining applications: adm 2 — 3
defining library: adm 2A
defining steps: adm 2M
defining users: adm 2W
deleting setup: adm 2 — 5
function keys: adm 2 — 3
runxung: adm 2-2
troubleshooting. adm 2 — 5

SHOW parameter for MAES: usr 8 — 5
SHOWLOG: ref 1-130,4-1, 6-41; adm &4

accessing. ref 4-1
commands suxxunary: adm 8-8
creating listfiles with: ref 4-12
example of: adm 8-10
exiting. ref 4-5
generating reports: ref 4 — 10
getting saved settings: ref 4 — 9
refreshing display: ref 4 — 22
report format r ef 4-7
xesetting repoxt values: ref 4 — 15
resetting subset selection: ref 4 — 26
saving report settings: ref 4-16
selecting subsets: ref 4-24
selection criteria: ref 4-17
setting offiine/online ref 4-13
sort sequence: ref 4 — 23
title for reports: ref 4-25
transaction codes: ref 4 — 2

SHOWLOG>EXIT: ref 4-5
SHOWLOG>FLUSH: ref 4-6
SHOWLOG>FORMAT: ref 4 — 7
SHOWLOG>GET: ref 4-9
SHOWLOG>GO: ref 4-10

xii U BRARIAN/iX

1-7

SHOWLOG>HELP: ref 4 — I'I
SHOWLOG>LIST: ref 4-12
SHOWLOG>OUTPUT: ref 4-13
SHOWLOG>REDO: ref 4 — 14
SHOWLOG>RESET: ref 4-15
SHOWLOG>SAVE: ref 4-16
SHOWLOG>SELECT: ref 4 — 17
SHOWLOG>SHOW: ref 4-22
SHOWLOG>SORI': ref 4 — 23
SHOWLOG>SUBSET: ref 4-24
SHOWLOG> TlTLE: ref 4-25
SHOWLOG>UNDO: ref 4 — 26
SI1VKJLATE parameter for LM>OUTPUT: usr 7 — 3
SM capability, warning message: ref 5-64
Son processes: ref I — 45
Source code, annotation: usr IM
Source/object synchronization, example of: adm

Special characters: adm 4 — 7
Step Authorizations (RUS10) report: ref 6-48
Step Authorizations (SA) scxeen. ref 5 — 59

example of: adm 5-4
field descriptions: adm 5-5

Step Detail (RAZ320) report ref 6-10
Step fileset, implied reference to: ref 1-10
Step Options (SD3) screen: ref 5-76

example of: adm 4-10
field descriptions: adm 4-12

Step Options menu: usr 2-9
Step Refinements/Exceptions (SR) screen: ref

example of. adm 4-19
purpose: adm 4-18

Step Suxnmary (RADIO) report ref 6-8
Steps: usr I — 3; adm 1-3, 2-1, 4-1, 4-3, ~

authorizing users for. ref 5-59; usr 3-9
comxnand line execution: usr 2-9
comxnonly used: usr 2 — 10
copy: adm4 — 5
customizing. adm 4-10
date pxempusite: ref 5 — 14
default parameters: ref 5-76; adm 4-12
defining. ref 5-71
defining advanced options: ref 5 — 76
defining altexnate location for. ref 5-32
defining ambiguous: adm 4-4, 4-13
dependencies: adm 4-9
description: ref 5 — 71
destination location: adm 4-5, 4-6
dialog. ref 9-11; usr 2 — 7
entering description for. adm 4-10
example of executing. usr 3 — 12

Shortcut adm 2-1

System Profile (SP) screen: ref 5-62
exaznple of: adm 2 — 7
SM capability: ref 5-64

Systezn variables: ref I — 1
LIBEDITOR; ref I — 38
LIBPROMPT: ref IM
source and destination: adm 4-6, 4-8

Systexn — to — System Table (SS) screen: ref 5-Ei9
node name: ref 5-69

Systems, znass change of references to: ref 10 — 1
Systems (SY) screen: ref 5-85

examples of: adm 1-4,4 — 2,4 — 15

exceptions ref ~ ; adm 4-18
executing r ef 1-66
explanation of: usr 3 — I
forward vezsioning rules: ref 5-32; ad m 7 — 6
iznplied reference to files: usr 3-5
inquiry: adm 8 — 5
list of authorized: adm 8 — 7
lookup reEinement: ref 5-Ei7
master — to-secondary: adm 4 — 5, ~
znenu of: ref 7 — 17
multiple prerequisites: ref 5 — 14

STORE: usr 7M

variable for MAKE: usr 8 — 17

new files: adm 4 — 15
overrides: adm 4-12
pending production areas; adm 4-15
PERFORM command: ref I — 66
pexforming. usr 2M, 2-7
presteps: adm 4-9
refinements: ref 5-Ei6; adm 4-18
report of: ref 6-8, 6 — 10
report of usezs authorized for. ref &48
request status: usr 3-10
restricting. ref &59
rules for: adm 1-4
rules for new iles: ref 5 — 51
secondary — to — m aster. adm 4-5, 4-6

secondary — to-secondary: adm 4-5, 4-6
sorted list of: adm 4-4, 4 — 13
source location. adm 4-5, ~
Step Options (STO) screen: adm 4-10
Steps (ST) screen: adm 4-4
suznmary of: ref 6-8
tuning. ref 5-66
types of: adm 4 — 5
users authoxized for: adm 4-4, 4-13
using. usr 3 — 9

Steps (ST) screen: ref 5-71
example of; adm 4-4
field descriptions: adm 4-4

Steps menu; usr 2-7

STREAM. ref 1-13; usr 3-9,3 — 19; adm 4-9

Subset selection: usr 3-6, 3 — 7
Suspended process: ref 1 — 19
Switching modes: ref 1-3
System ID, changing globally: adm B — I
System overrides: ref 5-85
Systezn profile, custoznizing. adm 2 — 7

Text

Transactzons

Tools: usr5 — I

for MAKE usr 8-20

definition oF. adm 7M

subset selection: usr 3-4

Tags: adm 7 — 8

setting. ref I — 128

Targets, dependencies: usr 8-2
testing. adm I&

replacement: ref 1 — 105
search: ref I — 105

Third party software: adm 7 — 7
Timestaxnps: ref 1-125, 1-131

compiling based on: usr 8-1
di~ p a ncies: ref I — 140, &-54

from file labeL ref 1-140
LIB%'QUAN: ref 1-141
report of: ref 6 — 52, 6-54
validation: ref I — 140, 6 — 54

znenu oF. ref 9-6
TOUCH: ref 1-131; usr &20
TRACKED parameter. usr 3-18
Tracking, deleting. ref 1-61
Transaction Detail (RTD10) report ref 6-39
Transaction Detail (RTD40) report rjef 6-41
Transaction Suxnxxiazy (RI510) report ref 6-43

aging policy: ref IWI, ~ 2
audit trail: usr 1-3
batch: usr 3 — 18
codes: ref 4-2, 6-3
deleting: adm 8-4
deleting data: ref 4-6

log reporting. ref I — 130
logging, ref 5-62
memos associated with: ref 6-43

files: usr 3-1

Index xiii

purging records of: ref 1-41, 4-6
report of: ref I — 130, 4-1, 4-2, 6 — 39, 6-41, 6-43;

status codes: ref 6-42
status of. usr 3 — 21
using jobs: usr 3-19

U

Trunk: usr 4-2

adm 8-8

UMX
background process: ref l&; usr2 — I
command line options: ref 1-2
commands: ref I — 3
pathnames: ref1 — 12; usr 3-8; adm4-9

UNLOCK: ref I — 133
UNMODIFIED: ref l-11; usr 3-4

User menu: ref 9-4
User passwords: ref I — 20
USERID wildcard: adm 4-7
Users: adm 5 — I

assigning capabilities: ref 5 — 89; adm 5-3
authorizing for steps: ref 5-59; adm 5-4
defining. ref 5 — 91

establishingfor session: ref I — 136
inactive: adm 5 — 2
passwords: adm 5 — 2
project authorization: ref5-40; adm 6-4
report of: ref 6-45
report of authorized projects: ref &-47
report of authorized steps: ref 6-48
reports of: adm ~
sequence for defining. adm 5-6
step authorization: adm 5 — 4

Users (RUD10) report ref 6-45
Users (US) screen: ref 5 — 91

deleting mass data: ref 5 — 93

example of: adm 2M, 5-1

Untracked files: usr 3-17
commands for: usr 3-18

UPDATE: ref I — 134
USE parameter for ~ UT PUT : us r 7-3
USER: ref1 — 136; usr2 — 3
User capabilities: ref I — 20

assigning. ref5-89; adm5 — 3
granting temporary: usr 9-5
list of: adm5 — 3

User Capabilities (UC) screen: ref 5-89
example of: adm 5-3

User fileset inaintenance utility: ref 1~
User filesets: ref I~ , 2- 1 ; usr 6-1

adding files to: ref 2-3
creating. ref 2M; usr 6-2
defining subsets: ref 2-12
deleting files froxn; ref 2-5
disconnecting subsets: ref 2-13
examples of using. usr 6-3
files in: ref 1-145
information about us r 6-3
listing by user. ref 2M
listing files in: ref 2-14
listing subsets oF ref 2 — 14

maintaining.usr &2
making public/private. ref 2 — 10
private: usr 6-2
public; usr 6-2
referring to: usr W3
removmg. ref 2-11

switching. usr 2-3
User IDs: ref 1 — 20

xiv LIBRARIAN/IX

in macros: usr 9-3

V
Variables

for macros: ref 7-17, 7 — 22

LIBBATCH: usr 3 — 19
LIBEDITOR. ref 1-38
LIBPROMFI': usr 2W
list oF. usr 3-21
MAKE; ref 8 — 7
makefiles: usr 8 — 12, 8 — 16
scan/replace: ref 1-107

VCOUNT. See Version count
Vendor software: adm 7 — 7
VERIFY: ref I — 138; usr 3-21, 3-22;

example of; adm 8-4
retrieving files: ref I — 138

VERSION: ref 1-159; adm 8-4
Version count usr 3-4, 4-2

referring to: ref1 — 7
Versions: usr 1-3; adm 7 — I

bringing forward: ref5-32
copying. adm 7-3
defining. ref 1-159; adm 7 — 3
deleting: ref 1-159; adm 7W
example of: adm 7-2
files: ref I — 146
flushing. ref 1-159
forward versioning. adm 7 — 5

adm 8 — 3

User identification: usr 2 — I

identifying: adm 7 — 3
indirect file reference: usr 3 — 3
information about: adm ~
list of: refl — 159; adm 8 — 4
obsolete; ref 1-40; adm 7W
referring to: ref 1 — 7; adm 7 — 3
report of: ref 6-14
report of files in: ref 6 — 50
restoring: adm 7 — 3

status oF. adm 7 — 4
vs. revisions: adm 7-1

Versions (RAV10) report ref 6-14
Video enhancements: usr 5-6
Violations: usr 3-12

XPURGE: ref 1 — 81
XRENAME: ref 1 — 90
X~ : ref 1 -105
XSCOMPARE: ref 1 — 109
xterm. ref 1 — 2
XTOUCH: ref 1 — 131

retained: usr 3-4

WAIT: ref 7 — 23
WHILE/ENDWHILE: ref 7 — 24
Wildcards: ref xv, 1-6

?: adm 4-6,4-7
¹: adm4-7
—: adm4-6,4 — 7
* adm4 — 7
=: adm4-6
for pattern — matching. usr 5 — 3
special: adm 4-7

Work in progress: usr A — 1
simulating checkout usr 8 — 5

Write Mode Secondaries by Path (RSF20) report
ref 6 — 16

Write Mode Secondaries by User (RSF10) report:
ref 6-15

Write — mode secondaries: ref 1-148

X
X commands: usr 3-17, 3-18
X.25: ref5 — 37; adm2 — 5
X-te~ : ref 1-2
XCOMPRESS: ref 1 — 25
XCOPY: ref 1 — 29
XDECOMPRESS: ref 1-34
XEQ: ref 1 — 161
XEQ file. See Macros
XEQLIST: ref 7 — 13
XLCOMPARE: ref 1~
XMOVE: ref 1 — 56
XPRINT: ref 1 — 76

Write-mode access: adm 3-4

Index xv

xvi U8RARIAN/IX

