LIBRARIAN/iX™

Administrator’s Guide

Version 4.00
May 1998

N N NN

AT4

Quality ¢ Innovation ¢ Service

LIBRARIAN/iX Administrator’s Guide
Version 4.00

Copyright © 1988-1995 by Operations Control Systems, Inc.
All Rights Reserved. Printed in the US.A.

Restricted Rights Legend

The information in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. OCS does not warrant that this
document is error-free.

This manual contains proprietary information that is protected by copyright. No part of this
document may be copied, reproduced, or translated to another language without the prior
written consent of OCS.

LIBRARIAN™, LIBRARIAN/iX™, and OCS/LIBRARIAN™ are trademarks of Operations
Control Systems, Inc.

All other company and product names used in this publication are trademarks or registered
trademarks of their respective companies or organizations.

Table of Contents

Preface

Purposeof ThisManual i ... vii
7 X T 5T Vo vii
How This Manual is Organizedcociiiiiiiiiiiiii o, vii
L0’ =y a s o - U O viii

File Naming ConvenHonso iiiiiiaieiinananns ix
Related Documentation iiiint it a e isrinrrenennns X
[175 e = T U X
o101 o) 111t = o - S X

Chapter 1: Infroduction

File Management Objectiveso i 1-1
Typical File Management Objectives, 1-2
File ManagementRulesc..oiiiiiiiii i, 1-3
Master Library Filesco i i e 1-3
DiagramFileMovementso, 1-3
Identify Rules forFile Movementsooiiiaaana... 14
Examples of File ManagementRulesl 1-4
Example 1 — Basic Development Environment 1-5
Example 2 — Separate QA Function 1-6
Example 3 — Networking and Source /Object Synchronization 1-7
Example 4 — Multiple Version Management . _....................... 1-9
Chapter 2: Getting Starfed with Basic Rules
Basic Sebup ... e 2-1
RunningShortcut ... 2-2
Identify An Applicationl 2-3
Define the Application Librarycooo i 2-4
DefineStepso.ooinii i e e e e 24
Identify Usersot i 2-5
ReviewandLoadData....... ool 2-5
Troubleshootngc.vi ittt it 2-5
Deletingan Applicationcoo i i e -5
Setting Password Securitycoiiiiiiiiiiiiiiiiiiiiaiiiiaa. 2-6
Customizing the System Profile ol 2=7
Creatinga LIBRARIANManagerooiiiviiireeiiiniiiiiineanans. 28
What Next? .ot et i e e e, 2-8
Chapter 3: Master Library

Defining an Applicafionoviiiviiiniii i i e 31
Applications (AP)ScreenFields ool 32
Definingalibrary it e e e 33
Defining Filesets it 33
AccessModeand Controll e e 33

Table of Contenfs i

AccessMode e 34
AccessControl ... i 4
How Access Control and AccessModeWork_..... 34
Defining Filesets it e 3-5
Filesets (FS)ScreenFields i i 36
Defining a Fileset Hierarchy oL, 3-6
Fileset Components (FC) SaeenFields 36
Defining Physical FileMembers0 i iiiniiiiiininn, 3-7
Auto Filesets (AF)Sereen Fields, 3-9
Using AUTOUPDATE for New Master Files 3-9
Using the Files in Filesets (FF) Screen 310
Files in Filesets (FF) ScreenFieldscovviieiiiiao 311
Customizing File AccessRulesooiiiiiiiiiin e, 3-11
File Access (FA)ScreenFieldsoiiiiu, 312
Reviewing Library and File Information 312
Deleting Library and File Information oo, 313
SUDUENATY . . et vei i i e et 3-14
Chapter 4: File Movement Rules

Stepsand Routes e 4-1
DefiningaRouteco0iiiiiiiiniiiiiiiiii i 4-2
Defining BasicStepData it e 4-3
StepIdentificaiont i e e 4-5
StepOperation ... e e &6
Source and Destination Locations e 47
Source Localom v vi ittt et e e e ey 47
Destination Localiont iiiiiiiie i iiieiie i 4-7
Equal (=) vs. At (@) e 47
Wildcards e 4-7

Edit Masks for UNIX Pathnameso aian,, 4-9
Prerequisites i i e e e 4~10
Prestep ... e 410
Alternate Prestepsouiiiiiiiiiiiiii i i 4-10
Multiple Frerequisites /Date Prerequisite0u0.. 4-10

Step Descriptioncoo i i e 41
Defining Options forStepso iiiiiiiiiiiiiiiiiiiiiiiies 412
File EXpirationo it 413
Step Parameters (Defaults and Allowed Overrides) 4-13
Example of aStep Definitionoioviiiiiiii i 4-15
Defining Rules for IntteducingNew Files, 4-16
Defining Step Refinements and Exceptionsc.oeuvieiuiaoan.. 4-18
Reviewing File MovementRuleso, 4-19
SeqUENCE SUIUIMATY - . oo i ottt i it e et rena s s a et 4-19

Chapter 5: Users and Authorizations

Defiring Users oo v vt itii i it i vt 5-1
Assigning User Capabiliiesc.0viiiiiiiiiiiiien, 5-3
Authorizing Users for Defined Stepso o... 54
Reviewing UserDataco.iiiniiniiiiiiiii i ciicviaiananan 5-6
SegUENCE SUDMINATYt ot et ae et r st ber b ne e 56
Deleting orInactivatingUsers i, 5-6

LIBRARIAN /iX Administrator’s Guide

Chapter é: Projects

Defining Project Managers i, &1
Creating Projectsottt i e e 62
Defining Project Hierarchies 6-3
Authorizing Projects e 64
Changing ProjectStatus e &5
ReviewingProjects e 6
Flushing Project Transaction Records &6
Using Projects in LIBRARTIAN 67
ProjectFilesets0oiviiiiiiniini e 67
Distributing Filesby Project ... -7
Chapter 7: Versions
VersionManagementt e 7-1
Working with Versions oo i i 7-3
Creating VEISIOTIS0vuitiiineitiiii it iaiii s iiaaaaaanns 7-3
Referring to Versions in LIBRARIANol 7-3
Changing Version Status0iviiiiii i e 74
Deleting Versions ...t 74
Using Forward Versioningot i, 7-5
How Forward Versioning Worksco00ciiviinianianenns. 7-5
Setting Up Forward Versioning 7-5
Muldtiple SearchLocaBonso iiiiiaiaiinaniana.. 7-6
Using Forward Versioning for File Distribution 7-7
Concurrent Maintenance and Development_ 7-7
Using Forward Versioning with Vendor Software -7
2 78
Reviewing Version and Tag Information 7-9
VersioR Reports i s i e 7-10
Chapter B: Reporis
Generating Reports it &1
MenuMode ... e 81
CommandMeodeo 82
FileInquiry Scareem ...t 8-2
Project Inquiry Sareenoovviii it e 8-3
File Iformation Using VERIFYoiiiiiiiiiiiiiiiiiaiiiiiinnns &3
VersionInquiries i e 85
Step/Project INQUINIES ot e &5
Using the SHOWLOGReport Writerl 88
Chapter 9: Housekeeping
Flushing Expired Filescoiiiiiiiiiiiiiiiiiiiiniiiiiaannns 81
Flushing Expired Transactions from the Audit Trail (LIBLOG) 9-2
LIBRARIAN Databases = Capacity Management 9=2
Changing Database Passwordsoo i 9-2

Changing Network Configuration and Remote System Logon Information . 93

Table of Contents i

Appendix A: Automatic Decompression
Enabling Automatic Decompression
Add PH Capability to Application Programs
SetUp Group/Public SLor XLo e iaraearanen s,
Allocate DCMPRSS.COMP.OCSLIB o i e e e
Error Conditionsvveiiiiiiia i it e

Appendix B: LIBRARIAN Utility Program
OPeration .. .o it e e
Changing the System [Din LIBDB (Opton1)
Changing the System ID for an Application (Option2)
Unload Database toa File (Option 3)....... ..ot
Load Database from aFile (Option4) i ...
Exiting the LIBRARIAN Utility Program

Appendix C: LIBRARIAN Configuration Progrom
Configuration Program MPE) ...,
Updating the Configuration File (Option1}
Changing LIBDB/LIBLOG Passwords (Option2)
Changing SERVER Logon/Passwords (Option3)ooo.
Exiting the LIBRARTAN Utility Program,
Configuration Program (UNIX) iiiiviniiiinreenanennnanen

Glossary

Index

iv

LIBRARIAN /iX Administrator’s Guide

List of Figures

Figure 1-1. Basic Development Routeot 1-5
Figure 1-2. Separate QARouteo i 1-7
Figure 1-3. NetworkRoute o 1-8
Figure 1-4. Version Control Routes o oot 1-9
Figure 2-1 Admin Menu from the LIBRARIAN MainMenu 2-3
Figure 2-2 System Profile (SP)Screenooiiiiiiiin 2-8
Figure 3-1 Applications (AP)Screen............ ... 32
Figure 3-2. Filesets (FS)Screenoiiiiiiiiiiiiiivannnne, 3-5
Figure 3-3. Fileset Components (FC)Screencoviveiaiinnn. 37
Figure 3—4. Auto Filesets (AF)Screent 38
Figure 3-5. AUTOUPDATECommand ..., covviiviiniinneiann., 3-10
Figure 3-6. Filesin Filesets (FF)Screencovvniiiieninnnns 31
Figure 3-7. File Access (FA)Screencooiviiiiiiiiininnn, 3-12
Figure 3-8. Associated Master Filesets 3-13
Figure 4-1. Sample RouteFlow Diagramc.cooiiiit 42
Figure 4-2, Routes (RT}Screen 43
Figure 5-1. Users (US)Saeencovvriiiniiin e, 51
Figure 5-2. User Capabilities (UC)Screenccoovieirrenoia... -3
Figure 5-3. Step Authorizations (SA)Screenc..covvivevneniea., 54
Figure 6~1. Projects (PT)Screen oiiiiiiiiiiiiiioinannas 6-2
Figure 6-2. Project Authorizations (PA)Screenc.0o0hivs 64
Figure 6-3. Project Status Change (PS)Screenooiiviiiinnt 65
Figure 64. Project Inquiry PI)Sereenl 6
Figure 7-1. Sample Versionso.oiiiiiiiiiiiiii . 7-2
Figure 7-2. Forward Versioning (FV)Screent 7-6
Figure 7-3. Alternate Search Locations for New Release 76
Figure 7~4. Concurrent Maintenance and Development 7-7
Figure 7-5. VERIFY MeNuciiiiiiiuineiiirereraronoanions 7-9
Figure 7-6. VERIFY Display with Version Data (Format 7). 7-9
Figure 7-7. VERIFY Display Showing Tags (Format 16} 7-10
Figure 8-1. FileInquiry (FI)Screenc.coiiiiiaiiiannnnn. 82
Figure 8-2. Project Inquiry (P)Screen 8-3
Figure 8-3. VERIFY Menuot 84
Figure 8-4. VERIFY Display (Format9)o, 84
Figure 8-5 VersionsDisplayciiiiiiniiiiiaiinen 85
Figure 8-6. Help Information for AP-OUT Stepoooiiivan 86
Figure 8-7. Help Stepsvoviiiiaii i iaan s 87
Figure 8-8. Help Projectscovtivinenininiineannnanarinnonannns 87
Figure 8-9. Initial SHOWLOGDDisplayc.ovoviiiiiiaiinnnnnnns &8
Figure 8-10. SHOWLOGDisplayc.ooviviiinnereicainonannen. 8-10
Figure 8-11. SHOWLOG Summary Reportcc.oovenienininiiianean. 810
Figure B~1. LIBRARIAN Utility Functons Menuocovvinin, B-1
Figure C-1. LIBRARIAN Configuration Funcions Menu -1

Table of Contents v

vi UBRARIAN /X Administrator’s Guide

List of Tables

Table 1 - 1. LIBRARIAN Features Related to Objectives 1-2
Table 2—-1. Shortcut Function Key o i iau.n. 2-3
Table 3—1. Library Information in StandardReports 3-13
Table 3=2, Data Entry for Master Libraries_ 3-14
Table d= 1. Step THPeS .. i ittt it et et s it a i c e e 4=6
Tabled=2.Special Wildeardscooi i e 4-8
Table 4=3. File Movement Information on Standard Reports 4~19
Table 4—4. Data Entry for File MovementRules 4-19
Table 5—1. UserDataReports i, 5-6
Table 5~2. Data Entry for User Authorizationsc.cooivoeoaun.. 5—6
Table 7—1. Version Information in Standard Reports 7—-10
Table 8—1, SHOWLOG Commands SUmMATY . ..vvrvririnrririnriarnins §-9

Table of Contents vii

viii LIBRARIAN /iX Administrator’s Guide

Preface

Purpose of This Manual

The LIBRARIANAX Administrator’s Guide describes how to setup and
maintain LIBRARIAN. It is the companion piece to the LIBRARIAN/X
Reference Guide and the LIBRARIAN/iX User’s Guide.

Audience

This manual is written for personnel responsible for setting up and
maintaining the LIBRARIAN database of rules. Knowledge of basic
operating system concepts and terminology is assumed. No previous
knowledge of LIBRARIAN is required.

How This Manual is Organized
The LIBRARIANAX Administrator’s Guide chapters are organized as

follows:

Preface
Chapter 1

Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6
Chapter 7
Chapter 8

Chapter 9

The chapter you are now reading: how to use this guide.

“Introduction”: an overview of typical file management
policies and objectives and how to configure LIBRARIAN.

“Getting Started with Basic Rules”: applying the Shortcut
program to get started using LIBRARTAN.

“Master Library”: master library concepts and how to
define a library in the database.

“File Movement Rules”: how to define rules to determine
how users obtain copies, replace master files with
revisions, and perform other file operations.

“Users and Authorizations”: how to define the user
profiles and capabilities that identify LIBRARLAN users
and what they are allowed to do.

“Projects”: how to set up and maintain projects with
LIBRARIAN.

“Versions”: discusses the LIBRARIAN version
management and forward versioning capabilities.

“Reports”: how to generate reports and online inquiries;
description of SHOWLOG commands.

“Housekeeping”: periodic operations to keep LIBRARIAN
running efficiently.

Preface

Appendix A
Appendix B
Appendix C

Glossary
Index

Conventions

“ Automatic Decompression”: how to automatically
decompress files when users access them.

“LIBRARIAN Utility Program”: how to use the
LIBRARIAN Utility program (LIBUTILP).

“LIBRARIAN Configuration Program”: how to use the
LIBRARIAN Configuration program (CONFIGP).

A Glossary of Terms is provided at the back of this guide.
An index of LIBRARIAN topics at the end of this guide.

We use the following conventions throughout this guide.

COMMANDS

KEYWORDS

italics

punctuation

{}

[1

All commands appear in bold capital letters. If a
command can be abbreviated, the optional portion of the
command is enclosed in brackets ([]). A blank space
must separate the command from the parameter list.

Keywords and parameters (shown in bold capital letters)
must be entered exactly as specified.

Words or characters in italics represent variables or
arguments that you must replace with an actual value. In
the following example, you must replace fifeset with the
name of the file you want to copy.

>COPY fileset

Halics are also used to introduce new terminology or for
emphasis.

Enter punctuation exactly as shown. (Refer to specific
instructions for brackets and braces, below.)

Braces enclose required elements. When there are several
elements within braces, you must select one element. In
the following example, you must select one of
PROCEDURES, PROJECTS, or STEPS.

PROJECTS

~HELP { PROCEDURES
STEPS

Brackets enclose optional elements. In the following
example, brackets around the letters UPDATE indicate
that you do not have to type the entire word.

>AUTO(UPDATE)

x UBRARIAN/IX Adminisiratar’s Guide

au

J

Ty B

MPE only

If there are several elements, you can select any one or
none of them. In the following example you can select
BATCH, CONFIRM or MEMQ, or none.

>COMPRESS [fifelist]

[;BATCH]
[;CONFIRM]
[:MEMO |

When brackets are used, you cannot enter a value in the
inner brackets unless you enter a value (wildcard or
literal) in the outer brackets.

An ellipsis indicates that the previous bracketed element
can be repeated or that elements have been omitted.

An ampersand indicates that the command continues on
the next line.

The white flag symbol indicates that the text pertains to
LIBRARIAN running under the MPE operating system.

The gray flag symbol indicates that the text pertains to
LIBRARIAN running under the UNIX operating system.

The striped flag symbol indicates that the feature being

described is only available with LIBRARIAN /iX-Plus.

This symbol identifies LIBRARIAN commands that have
no equivalent under the UNIX operating system.

File Naming Conventions
In specifying files, LIBRARIAN commands use the following wildcard

conventions:

i) @
B .

Zero or more alphabetic and/or numeric characters. Used
alone, denotes all members of a set.

Zero or more alphabetic and/or numeric characters. Used
alone, denotes all members of a set.

Single numeric character.
Single alphabetic or numeric character.

In addition, a slash (/), a single period and slash (./), a double period
and slash (../), or a tilde and a slash {~/) immediately preceding a
filename indicate a UNIX file.

Preface

xi

Related Documentation

Along with this manual, you can refer to the following documentation by
QCS.

The LIBRARIAN/iX Reference Guide provides mformation on
LIBRARIAN functions, including complete command syntax and
reference material for all LIBRARIAN featuires.

The LIBRARIANY/iX User’s Guide contains instructions on how to
perform LIBRARIAN functions. It also includes detailed descriptions
of the MAKE facility and the XEQ macro language.

Online help contains the contents of all LIBRARIAN manuals. You
can access online help with the HELP command or pressing Fi1 (Help)
in menu mode.

Client Services

LIBRARIAN is supported by OCS Client Services, which is dedicated to
providing timely and accurate information and solutions. For fast,
accurate answers, we maintain a telephone hotline that includes
emergency after-hours service. You can count on OCS to isolate any
problems quickly and provide conscientious support and a fast response.

Operations Control Systems hotline numbers:
Phone (415) 4934122
FAX (415) 493-3393

Your Comments

We value your comments. As we write, revise, and evaluate our
documentation, your opinions are the most important input we receive.
Flease use the Reader’s Comment Form at the end of this guide to tell us
what you like and dislike about and of the OCS manuals.

xii LIBRARIAN/iX Administrator's Guide

Infroduction]

LIBRARIAN is easy to implement, learn, and use. Because the needs of
companies and organizations change over time, LIBRARIAN
encompasses functionality to meet the file management needs of a wide
range of development environments.

This chapter will give you an overview of typical file management
policies and objectives and will show you how LIBRARIAN can be
configured to handle a few different file management scenarios.

Topics discussed in this chapter include:
= File Management Objectives

® File Management Rules

e Examples of File Management Rules

Note If you are already familiar with basic LIBRARIAN concepts and know
how to design file management policies and procedures, you can use
this chapter as a checklist to help you implement LIBRARIAN, or you
can skip this chapter and go straight to Chapter 2, "Getting Started”.

File Management Objectives

File management objectives vary considerably between organizations.
Some MIS shops allow programmers to perform their own testing and to
move the tested files into production; others require independent testing
and move to production. Some organizations incorporate a policy in
which all changes are authorized and tested; others require absolute
prevention of unauthorized changes. Some auditors require positive
evidence and periodic verification of source/object synchronization;
others accept reasonable assurance through procedural controls.

LIBRARIAN is designed to accommodate these differences in file
management objectives. With LIBRARIAN, you can manage the
development cycle ngidly or loosely, depending on your needs. Because
of this flexibility, it is essential to identify and define your objectives
before you begin to implement the product.

The following section lists some typical file management objectives. Use
this list as a starting point for evaluating your own objectives. This list is
by no means exhaustive. Create a list of your own file management
objectives so you can refer to them as you define your file management
rules in the LIBRARIAN database.

Infroduction 1-1

Typical File Management Objectives

LIBRARIAN provides a robust set of features that allow you to achieve a
wide range of objectives. Table 1-1 lists typical file management
objectives and the corresponding LIBRARIAN features that help you
achieve the objectives.

Table 1-1 UBRARIAN Features Related to Objectives

File Monagoment Objective Comesponding LIBRARIAN Features
1. Improve efficiency and UBRARIAN provides mass file movements,
convenience customized file movement commands, fike push
maovements across occounts ond system
boundaries, complete audit rail, and autornated
maintenance.
2. Confrol copies of source, Define files in a master litrary,
object, jobstreams, gic.

J. Require approval of changes Define CHECKIN step requiring an approval prestep.
Authorize specific users Yo perform ihe APPROVE
step.

4. Require testing of changes Define rules requiring a step to docurnent testing
before allowing checkin.

5. Prevent ovedgpping chaonges Assign senal access control to files.

6. Synchronie source/bject Use MAKE to compile changed source
automdatically, use VERIFY option on checkin and file
distribution.

7. Enforce separation of duties Authonize different users to perform specific steps.

8. Require independent testing Authomze specific users ta perform testing.

9. Resirict access to master files Authorize programmens only for steps within specific

based on application appications.

10. Associate work with project or Require project codes for all steps in the route;

sehvice request authcorize programmer s for specific projects.

11, Maintain backup copies of old | Use “retention” feature on checkin.

versions

12. Conirol versions on remote Use UBRARIAN to distribute software: audit frall fracks

systerms versions.

13. Provide audit trails UBRARIAN automatically maintaing an audit frail of
all fie movements.

14, Review specific fileé changes Use L'COMPARE and PRINT ;ANNOTATE to compare
fie versions and display differences.

15. Maintain cumrent release while Use "branch and merge”; consider separate

developing next release maintenance ond development routes.

16. Maintain concument revisions Use the revision control facility,

of individual programs
17. Tracking versions Use LIBRARLAN version sramping facilities.

1-2 LIBRARIAN/X Administrator’s Guide

File Management Rules

Once you have identified your file management objectives, as described
in the preceding section, you will be ready to define file management
rules to achieve those objectives.

Begin by identifying the files for the library and defining how, where, and
by whorm files are moved in the process of making software changes for a
single application.

Master Library Files

The master library for an application includes all of the files that
LIBRARIAN manages for that application. These files are called master
files. Master files are the offidial or control copies of files to be managed.
Copies of master files in other locations are tracked by LIBRARIAN as
secondary copies. Your file movement rules define how copies of master
files are checked out and modified, and how they eventually replace the
master files in the library through controlled file movements. For detailed
information refer to Chapter 3, “Master Library”.

Diagram File Movements

Decide how and where changes are made to files within the application.
Identify all of the processes or cycles for the application. These cycles are
defined to LIBRARIAN as routes. For example, you could identify routes
for maintenance, for development, for distributing data, etc. You could
have alternate routes for a given group of files, depending on whether the
file is accessed for maintenance or development, or whether a correction
is a routine or emergency procedure.

Next, identify the specific file movements that comprise the cyde for each
route. For example, most software maintenance cycles begin by copying
the master file to a development location. Then, the files are moved to a
secured area for testing. Most maintenance ¢ycles end by moving the
modified file(s) back into the master library. Each of these file movements
is called a step. Steps are defined in the rules database.

Some steps require previous approval by a manager, or sign off by a user
or tester. These approvals and sign offs are also considered steps in
LIBRARIAN.

To help visualize the sequence of file movements and approvals in the
cycle, we recommend drawing a flow diagram showing the sequence of
steps and the various locations that are used for modification testing.
Several examples of this diagramming technique are included later in this
chapter (see Figure 1-1).

Infroductfion 1-3

Identify Rules for File Movements

Once you have identified and mapped out the steps and routes for your
development cycle, you are ready to identify rules for performing
individual steps. To do this, first define what files can be moved, how the
files should be moved, who can move the files, and what external events
are required (when). The following list highlights examples of
LIBRARIAN rules you can apply to a step:

® Scope Restriction — Limit the file movement to a subset of the
application’s files, or to files in a particular location.

® Destination Restriction —Define the destination location of moved
or copied files performed by this operation.

a Copy, Move, or Null Operation — Use
o COPY to copy, but not purge the original files,

o MOVE to copy and purge the original files,
o NULL to record an event, but not physically move files.

® Prerequisites — Define one or more steps that must be performed
on a file prior to performing this step (often, but not necessarily, an
approval step).

Retain Backup Copies — Rename existing destination files for
backup prior to the move or copy operations or, during checkin,
retain saved changes in a delta file.

w Allow New Files to be Introduced — Enforce naming conventions.

® Authorized Users — Identify specific users who can perform a
step.

® Read or Write Copy — Only copies with write mode access can
replace the original in the master library.

® Require Project Identification — You can associate all file activities
with projects (applies to all steps in a route).

This is only a partial list of step considerations. Many other features or
operations are possible by combining LIBRARIAN options. As you
become more familiar with LIBRARIAN, you will find more features that
you want to implement. The examples in this chapter illustrate how some
LIBRARIAN features are implemented.

Examples of File Management Rules

It is impossible to define a single, ideal set of file management rules for
every installation, but the following four examples represent typical
implementations of LIBRARIAN.

The first example depicts the most basic environment — a typical
development cycle in a small MIS shop. The remaining examples show
more complex implementations of LIBRARIAN. As you review these
examples, keep in mind that they are intended only as representative
examples. You can customize LIBRARIAN to meet your own unique
requirements.

14 LIBRARIAN/IX Adminisirator's Guide

Example 1 — Basic Development Environment

This example illustrates a shop with a single system and a staff of three
programmers, one day-shift operator, and a manager. The sample
environment is a development route in a typical application. The shop's
file management objectives for this route include:

® tracking the official copies of all source, object, and job files;

8 ensuring that all changes are made to copies of those files in a
separate development location;

8 ensuring that all changes are approved by the manager before
release; and

® avoiding adding staff or further burdening the operator.

First, identify all of the current production source, object, and job files.
These files are secured as the master library. Within the library, group the
files into site-defined logical filesets. There is no need to change the
MPE/HP-UX directory structure or move files. You can secure files using
normal MPE/HP-UX security.

Next, define the file movement steps for the route. In this example, the
steps for the route are defined as follows:

1. The CHECKOUT step moves source, object, or job files from the
master library into a development location.

2. The APPROVE step allows managers to record their approval on a
file-by-file basis.

3. The CHECKIN step returns approved files to the master library and
automatically creates a backup copy of the old master file(s).

Figure 1-1 shows a flow diagram for this route using these three steps.

CHECKOUT

DEVELOPMENT |

Figure 1-1. Basic Development Route

You can define the CHECKOUT step to create test copies of the master
files even though the master library is secured. LIBRARIAN keeps track
of these copies and can prevent multiple programmers from checking out
copies of the same file simultaneously.

Infroduction 1-5

You can define the APPROVE step to mark the file(s) as approved, and to
restrict use of this step to the manager only.

You can define the CHECKIN step to allow programmers to push
approved copies from the test area into the master library, without
logging in to the master location. A backup copy of the old master file can
be archived automatically on disk, and it can be compressed
automatically to save disk space.

Example 2 — Separate QA Function

The second example illustrates a development route for a medium sized
shop with tightly controlled procedures. The staff includes a2 manager, six
programmers, two operators, and a quality assurance (QA) analyst. Due
to the complex nature of their applications, this shop insists on a formal
quality assurance process for every change, and management approval of
the results before any new or changed software can be incorporated into
productior.

However, this shop also needs to allow for quick emergency fixes by
programumers without the delays that normally accompany the QA
process. Furthermore, a complete and reliable audit trail must be
maintained for these quick fixes.

Define the file movement steps for the route. In this example, the steps for
this route are defined as follows:

1. The route begins with the CHECKOUT step, as defined in Example 1.
The master files are secured, but programmners can copy files easily to
the development area for modification. The master files have serial
access control, permitting only one copy at a time to be modified to
replace the master file. This prevents lost work due to overlapping
changes. Other copies are available with read-mode access.

2. The SUBMIT step is used by the programmers to move modified
source, object, and job files into the QA area for testing,

3. The GET-CURRENT step copies the latest versions of files from the
master library to the QA area in read-mode. This step keeps the QA
environment up-to—date with a complete set of software.

4. The REJECT step is used by the QA analyst when program testing
fails. It moves rejected files back to the development area.

5. The TESTOK step is used by the QA analyst to indicate that a change
passed system tests. This step helps the manager maintain the status
of work on various programs.

6. In this example, the APPROVE step operates on files in the QA
location. The APPROVE step can be used only after the file passes the
TESTOK step.

7. The CHECKIN step moves approved files from QA to the master
library.

1-6 LIBRARIAN/iX Adrinistrator’s Guide

8. The FIX step moves files directly from the development area to the
master library for emergency fixes. This step is configured with the
PUSHREAD option, enabling it to be used if a write-mode copy of the
file exists previously when checked out. When this step is executed,
any write-mode copies are flagged so the user is warned of an
overlapping change the next time the file is moved.

Figure 1-2 shows a flow diagram for this route using these eight steps.

GETCURRENT

CHECKIN

Figure 1-2. Separate QA Roufe

LIBRARIAN uses steps to accomplish separation of duties. The steps
operate on logical groups of files, enabling users to move or copy groups
of files without spedfying file names.

LIBRARIAN automatically maintains a complete audit trail. Therefore, no
additional effort is required to monitor emergency fixes. The manager
simply runs a SHOWLOG report listing all uses of the FIX step.

Example 3 — Networking and Source/Object

Synchronization

This example illustrates the use of separate computers for production and

development. Many applications run on remote systems. The master

library contains the production source, object, and jobstreams, but the
executable object and jobs are distributed to the appropriate remote
systems. An important objective is ensuring that all of the remote sites are
running the same code; object files in the master library and on all remote
systems must be generated from the correct source files in the master
library.

In this example, the steps for this route are the same as Example 2, with

the following exceptions:

1. A new step, called RELEASE, is defined to distribute object and job
files to the remote sites. This step copies files to all remote sites and
preduces an audit trail to verify that the copies were successful.

2. A macro called SUBMIT invokes the MAKE utility to recompile
programs automatically as they are moved into the QA area, ensuring
source/object synchronization at that point.

Infroduction 1-7

3. The CHECKIN step is configured to require that the source and object
files are moved together, and that files cannot be checked in if their
timestamps have changed since TEST-OK approval was done in the
QA area.

4. The remainder of the steps function as they did in Example 2, except
that they have been defined to work in a network. The CHECKOUT,
GET-CURRENT, CHECKIN, and FIX steps operate between the
production and development machines. The RELEASE step operates
between the production system and the remote sites.

With LIBRARIAN, you can implement these additional steps with
minimal effort; they can even be performed in batch jobs.

Figure 1-3 shows a flow diagram for the route using these steps.

Automatic recompiling of source for source/object synchronization is
accomplished by running MAKE regularly to automatically create and
stream compile jobs for source files that moved into the test area. No
special steps are required to accommodate the dual-machine
development environment or the remote sites. LIBRARIAN allows steps
to be defined across machines. The result is transparent to the user.

GETCURRENT

DEVEL MACHINE

Figure 1-3. Network Route

1-8 LIBRARIAN/iIX Administrator’s Guide

Example 4 — Multiple Version Management
This example illustrates an application with two routes used
concurrently: one route for a long-term development project, and one
route for maintaining the current version during the development period.

In this example, the steps for the routes are defined as follows:
1. The maintenance route for the current version (2.0) has five steps.
CHECKOUT2, SUBMIT?2, REJECT2, APPROVE2, and CHECKIN?Z are

the same steps as the CHECKOUT, SUBMIT, REJECT, APPROVE, and
CHECKIN steps described in Example 2.

2. The development route for the new release (3.0) includes five steps.
The SUBMIT3, REJECT3, and APPROVES3 steps are the same as the
SUBMIT, REJECT, and APPROVE steps described in Example 2.

3. The CHECKOUTS3 step selects the latest version of the software from
the master library. The step is defined with a primary search location
and an alternate search location. If the file to be checked out is not
found in the 3.0 library, it is retrieved from the 2.0 location.

4. The CHECKINS step replaces files in the release 3.0 master library if
they were checked out of 3.0, or introduces new files to the 3.0 master
library if they were checked out of release 2.0. This cycle ensures that
programmers do not work on the old versions of files if files have
already been modified for the new version.

Figure 14 shows a flow diagram for the routes containing the steps listed

above.

This development route implements the forward versioning feature.

Defined file movements search through two or more alternate locations

for the current version of a file.

SUBMIT 3

REJECT 3

CHECKIN 3

Figure 1-4. Version Control Routes

Infroduction 1-9

Notice that LIBRARIAN allows you to manage this rather complicated,
but not uncommeon, environment with minimal effort. With forward
versioning, you can maintain the integrity of prior versions while
building new versions, without replicating files that did not change.
Users always get the correct version of a file for maintenance or
development.

1-10 UBRARIAN/iX Administrator’s Guide

Gefting Started with Basic Rules

Note G

Basic Setup

After installing LIBRARIAN, you are ready to define a change control
cycle and begin controlling and recording file movements. This chapter
provides information on how to define a basic set of rules using the
Shortcut utility.

Topics in this chapter include:

® Basic Setup

® Deleting an Application

s Customizing the System Profile
® Creating a LIBRARIAN Manager
= What Next?

Before proceeding, you need to install LIBRARIAN on all licensed sys-
tems by using the installation instructions provided with the product
tape.

The Shortcut utility is designed to help you quickly implement the basic
LIBRARIAN features, including checkout/checkin, serial access control,
file retention and compression, audit trails, and more. After running
Shortcut, you can use the LIBRARIAN screens to fine-tune the basic
environment, and take advantage of additional LIBRARIAN features.

With Shortcut, you will be able to start using LIBRARIAN immediately.
After answering a few questions about your envirorunent, the program
will ask if you want to proceed with loading this data into the
LIBRARIAN database. Once the data is loaded, you can begin to use
LIBRARIAN. It enables you to move and copy files, control changes to
files, and provide extensive audit reporting.

The entire process of setting up a LIBRARIAN implementation for an
application (i.e., a set of logically related files and movement rules) takes
only a few minutes with LIBRARIAN's Shortcut.

Getting Started with Basic Rules

2-1

Running Shortcut

To mun Shortcut, login and run LIBRARIAN,

me To access LIBRARIAN from MPE, type:
'LIB
@m To access LIBRARIAN from UNLX, type:

HP-UX[1] ocslib if path is set,
otherwise

HP-UX[1] $OCSLIBDIR/ocslib

where $OCSLIBDIR is the name of the directory where the
LIBRARIAN client software is installed.

Enter LTBMGR when prompted for a user ID. If this is the first time you
are using LIBRARIAN, you will be prompted to assign a password.
Please note that user IDs and passwords are case~sensitive in
LIBRARIAN.

Note G LIBMGR is the only user defined to LIBRARIAN at the time of
insta]lation. See Chapter 5, “Users and Authorizations”, for a
discussion of how to add new users and assign special capabilities.

The LIBRARIAN Main menu appears after you successfully provide a
user name and password. Select Admin from the menu bar and select
Shortcut from the pull-down menu (see Figure 2-1).

Shortcut gives you explanations at every step and provides you with
additional online help.

Note G If you are using Shortcut for the first time, we recommend that you
press F1 for each instructional window during the Shortcut dialog.

2-2 LIBRARIAN/IX Administrator’s Guide

I, 0CS/[ERA 1N for PE/ix (N

Exit

File User Hacros Tools Info

f Shortcot @
Autoupdete .

Cleundd

Flush
i Flushling

" Versign i
Screens. ..

Figure 2-1 Admin Menu from the LIBRARIAN Main Menu
Function keys defined for Shortcut are described below in Table 2-1.

Table 2-1 Shortcut Function Keys

Key Function

Aetun Accepls default answer to a prompt shown in [brackets).

F1 Help Displays context-sensitive help.

F2 Restar part Reslants from beginning of curment part (available only when function key label
is displayed).

F3Previouspat Retums to beginning of previous part (available only when function key label is
displayed).

F4 Refer to Displays location of additional information.

F& Refresh Refreshes the display.

F? Slart over Starts gver from beginning of Shortcut,

F8 Exit Terminates program without saving data.

Shortcut will guide you through setting up change control for an
application, as summarized below.

|dentify An Application

Applications provide the organizational framework for file management
with LIBRARIAN. They let you organize your files into separate master
libraries, and define different change control rules and versions for those
files. Before using Shortcut, select an application that you would like to
start with.

Gefling Started with Basic Rules 2-3

Create a one- to four-letter Application ID that you will later associate
with a library of files, along with a set of file movement commands. For
example, if you are working with a payroll application, the ID might be
PAY.

Define the Appiication Library

A library is a collection of files that you want to control for an application.
To identify the files that make up your library, use the following format:

systemfile group.account

system:/pathffile
You can use wildcards.

&

Define Steps

Shortcut automatically creates file movement and approval commands
called steps. First, you need to define the destination location for a
checkout step by selecting an option from the menu that Shortcut
displays. You can then choose additional steps you need to copy/move
files and / or record approvals.

The names of the steps you choose will have the application ID as a prefix
and a dash followed by an abbreviated step name. For example, a payroll
application with (PAY) might include the following steps:

PAY-OUT Checkout files to development

PAY=NEW Introduce new files frorn development

PAY-IN Checkin files to library
*PAY-OK Approve files
*PAY-TESTOK Approve files to be checked in from test area
*PAY-TEST Move files from development to test area
*PAY—FAIL Move files back to development from test area

*PAY—-READ Copy files in read—mode
{*optional steps }

You can add, modify, or delete the steps at any time using the Steps (ST)
screen which you access from the Screens...Steps from the Admin menu. _

2-4 LUBRARIAN/iX Administrator's Guide

[dentify Users

Identify the users authorized to use LIBRARIAN, and the specific steps
each user is permitted to perform.

Review and Load Data

You will now be given an opportunity to review the information you just
provided. You can then instruct Shortcut to load this data into the
LIBRARIAN database (or exit without saving).

Troubieshooting

R If a connection error occurs when the library is being loaded with MPE

M files, it means that LIBRARIAN could not link to a remote system that
you specified when you identified your library. But don’t worry, you
won't need to start over. The most frequent reason for a network linking
problem is that LIBRARIAN is not correctly installed on the remote
machine.

Verify it by checking the $STDLIST files for the installation jobs, or try
installing again. Logon security may also cause a linking error. Check
remote passwords on the NC screen. If you are using third-party
security software on a remote system, the LIBRARTAN logon may have to
be configured in that software’s database. A less common reason has to
do with the configured buffer size for X.25 networks. If you are using a
X.25, you may need to change the default buffer size to 138 words on the
Network Configuration (NC) screen in LIBRARIAN.

If you can correct the problem, try loading the library again with the
AUTOUPDATE command or the AUTOUPDATE option from the Admin
menu. If a failure still occurs, contact OCS for assistance.

@ If a connection error occurs when the library is being loaded with UNIX
= files, make sure that LIBRARIAN has been installed properly on the
UNIX system.

Deleting an Application

If the application you set up with Shortcut is not what you want, or you
created an application for evaluation purposes and have completed the
evaluation, you can easily delete your library definitions and file
movement rules from the database. Use the following steps to delete an
application:

Getting Started with Basic Rules 2-5

1. Invoke LIBRARIAN, as mentioned in the beginning of this chapter.
2. From the LIBRARIAN prompt, type:
DELETE appfication

where application is the application ID you specified in Shortcut. You
will be prompted to confirm the deletion.

Setting Password Security

The LIBRARIAN Manager can specify the following password
requirements for new and current users. Use the SP screen to specify
these password requirements, as indicated below:

Aging (Days Valid)
Required. Length 3.

The number of days passwords are valid.

Passwords can expire between 1 and 500 days. The default expiration
period is 999 days, indicating that user passwords will not expire.

Minimum length
Required. Length 8.

The minimum number of characters required for each LIBRARIAN user
password.

You can set passwords to have a minimum length of 1 to 8 characters. The
default minimum password length is 1 character.

Maximum tries
Required. Length 2,

The maximum number of times a user can attempt to enter a valid
password.

If a user exceeds this number of attempts and the “Disable user after
maximum tries?” field is set to “Y”, LIBRARIAN will disable the user ID.
The LIBRARIAN Manager will then have to re-activate the user with on
US screen.

You can set the maximum number of attempts to a value between 1 and
16. The default is 3 atternpts.

Disable user after maximum tries?

If this field is set to “Y”, when the user exceeds the maximum number of
attempts to enter a valid password, LIBRARIAN will disable the user ID
by setting the active flag to “IN”. The LIBRARIAN Manager can
re—activate the user on the US screen.

2-6 LIBRARIAN/IX Administrator’s Guide

File Edit Terminal Conneclion Qptions Window Help

] SYSTEHW PROFILE S v.2.03
Trensaction Log Records Aging Policy Auto-Compress Flush
Logging [in Daysi Retained Files Policy
Y| v| o |
PF EXPRESS LIBRARIAN ~ = = Date Forpat - - -
Rccess Enmabled File Creator Input/Vizplay Separator
] b

SN/root copability requived for Librarjan Menager?
Al low route changex for read mode seconderies?

---------- Passpords —----—-——-—---
Roging (doys velid) O Ninioun Length Mavimum tries SJ

Dissble urer after saxipm triez? J

Figure 2-2. Systemn Profile (SP) Screen

Customizing the System Profile

Default parameters are defined in the System Profile when you install
LIBRARIAN. These parameters affect the maintenance and audit trail
logging for your entire installation. Use the System Profile (SP) screen to
review and customize these parameters (see Figure 2-3). If you prefer,
you can leave them as they are and customize them later.

To access the System Profile (SF) screen, type SP at the command line
prompt or select SP System Profile from the Admin...Screens...Config
menu.

The System Profile (SP) screen displays default values, as shown in
Figure 2-3. If you require help, press F5 {HELP) or refer to Chapter 5,
"Screens”, in the LIBRARIAN/X Reference Guide.

Getting Started with Basic Rules 2-7

[SYSTENM PROFILE

P v.1.09

Trensection Log Records ngh;g Pelicy Ruto—Compress Flush

Logging (In Deys Relained files Policy
b G| i o |
PF EPAESS LIERRRIAN = - - Date Foradt ~ - -

fcress Emabled File Creatar Input/Tisplay Sepsrotor
2 V]

S/root cepahility required for Litearlan Haneger? ﬂ
Atlos route changes for rend mode seconearisx?

Figure 2-3 System Profile (SP) Screen

Creating a LIBRARIAN Manager

What Next?

The LIBRARIAN Manager is responsible for defining libraries, file
movement rules, and authorizing users to perform LIBRARIAN
operations. LIBRARIAN Manager capabilities are very powerful; they
assign access to all data, all files, and all file movements on all systems.
The LIBRARIAN Manager can perform all LIBRARIAN operations,
although the LIBRARTAN Manager capability can be restricted to users
with SM capability (under MPE) or root capability (under UNIX) on the
System Profile (SP) screen.

LIBRARIAN is provided with a single predefined LIBRARIAN Manager
user—LIBMGR. Initially, there is no password assigned to LIBMGR.

You need the LIBMGR user to access LIBRARIAN for the first ime.
Before you load file management rules, you can define your own
LIBRARTAN Manager and delete the predefined LIBMGR user and
capability data.

To create a new user with LIBRARIAN Manager capabilities, first define a
user and password on the Users (US) screen. Then, assign LIBRARIAN
Manager capability to that user on the User Capabilities (UC) screen.

Now that you have described your application and defined the file
movement rules to LIBRARIAN using Shortcut, you are ready to use
LIBRARIAN to manage software files and control changes.

2-8 LIBRARIAN/IX Administrator's Guide

Refer to Chapter 2, “Getting Started”, in the LIBRARIAN/iX User’s Guide
for information on how to use LIBRARIAN.

The remaining chapters of this guide provide details of LIBRARTAN
setup to help you understand and tune the rules that Shortcut created for
your environment. Advanced options are also discussed.

Getting Started with Basic Rules 2-9

2-10 UBRARIAN/iX Administrator’s Guide

Master Library 3

This chapter describes master library concepts and how to define a
library. Topics include:

® Defining an Application

& Defining a Library

® Defining Filesets

& Customizing File Access Rules

® Reviewing Library and File Information
@ Deleting Library and File Information

@ Summary
The first step in setting up an application is to define the master library.
For each application, you need to identify the files that belong to the
library and organize them into a hierarchy of filesets, if desired. Use the
data-entry screens to define the library. If you used Shortcut to define an
application. The application consists of only a single application fileset.
You can use the screens discussed in this chapter to create a hierarchy of
subsets for that application fileset.

You should begin by using default values until you become more familiar
with the product. Later, you can fine tune LIBRARIAN to meet your
specific needs.

Defining an Application

Applications are the highest organizational unit in the LIBRARIAN
system. The library master files for an application are defined as a fileset,
or fileset hierarchy, as discussed below. The file movement rules of the
application are associated with the library through the application name.
In addition, the application’s projects (if used) are associated with the
application name.

Use the Applications (AP) screen to define the name of your application
and associate a fileset with that application,

Master Library 3-1

Figure 3-1 contains a sample application definition for MFG. The

application fileset is MFG-FILES.
[LLERARLAH]
[APPLICRTIDNS AP V.1.89
Rppl ication
i G |

FG-FILES

Rpplication Flieset Applicetion Mone YesMo Igaore Flie

wnufsclur-ing applicntian

—— Deltas

Nuadrering
2

h1any factueing |

Descript fan

Figure 3-1 Applications (AP) Screen

Applications (AP) Screen Fields

This section describes the fields on the AP screen, enabling you to define
an application and associate your library with it.

Application

Application Fileset

Application Name

Deltas (Yes/No)
R Dettas (Ignore File
PE Numbering)
Description

A unique identifier for the application consisting of a
maximum of four characters. The application can
include alphabetic, numerie, hyphen (-), and
underscore (_) characters.

Highest level fileset in the application. It includes all
filesets and files in the application. If the fileset does
not already exist, it is created automatically with serial
access control and write mode default access. You can
override these values later with the Filesets (FS) screen,
or you can override them on a file-by-file basis with
the File Access (FA) screen, as described on page 3-11.
Provides space for a longer application name for
documentation purposes.

Specifies whether to use delta files or generation files
for text files.

Specifies whether file numbering is significant

when determining deltas. This field is applicable only
if you specify Y in the deltas Yes/No field.

A description of the application for documentation
purposes (optional).

3-2 UBRARIAN/X Administrator’s Guide

Defining a Library

An application’s library is the collection of all filesets associated with it.
Each application must have a minimum of one fileset. The following are
some of the reasons for defining multiple filesets for an application:

a Convenience — Filesets are groups of files likely to be used together.
You can specify fileset names in LIBRARIAN commands to perform
steps on groups of files. If you require subgroups, create as many
levels as needed for ease of reference. Users can create their own user
filesets for ad hoc file movements, as described in Chapter 6, “User
Filesets,” in the LIBRARIAN/X User’s Guide.

& Access control — Filesets establish default access rules for the entire
group of files. Create subgroups to define different access control and
default access modes.

8 File movement rules — Steps are defined to apply to specific filesets.
Create filesets for groups of files for which different rules apply.

Defining Filesets
First, you define fileset names with defaults for file members, then you
create a fileset hierarchy. Once the hierarchy is defined, you can add
individual files as members of each fileset.

Access Mode and Confrol
When defining a fileset, you specify a default access mode and an access
control Jevel that are assigned automatically to all physical files added to
the fileset. These access requirements determine the type of copies users
can obtain in LIBRARIAN operations. You can override these defaults
later on a file-by-file basis.

Master Library 3-3

Access Mode

LIBRARTAN assigns an access mode to every copy of a master file. A
secondary copy’s access mode determines if it is allowed to replace its
master through a checkin step. The two access modes are:

W (Write) Indicates that a secondary file can replace its master
file.

R (Read) Indicates that a secondary file cannot replace its master
file.

Access Control

The master file’s access control level determines how many read and
write mode secondary copies are allowed. The following are the four
access control levels:

S (Serial) Only one secondary file at a time can have write mode
access, but unlimited read mode copies are allowed.
Provides protection against concurrent modifications.

X (Exclusive) The master file cannot be copied.

R (Read) Only read mode copies are allowed. These copies
cannot replace the master file.

M (Multi-Write) Unlimited read and write mode copies are allowed. No
protection exists against concurrent modifications. Two
or more programmers can work on a file. One
programmer’s changes could replace another
programmer’s changes in the master library.

Most development and maintenance environments use serial access

control because it protects against simultaneous changes done by two or

more people.

How Access Control and Access Mode Work

In a development route, a file is checked out from a master library with
write-mode access. As the file moves through a route, this access is
transferred automatically to the next destination copy, unless otherwise
specified.

For example, if a CHECKOUT step assigns write-mode access, then the
step which moves files to QA would pass along the write mode access.
This enables the CHECKIN step to replace the master file in the QA copy.
If the CHECKOUT step assigns read-mode access, then the CHECKIN
step cannot be performed.

LIBRARTAN Managers and Application Managers can change a file’s
access mode with the SET function. They can also replace a master file
with a read mode secondary copy by using the PUSHREAD parameter
with a step, or the COPY or MOVE cormmands. In fact, an emergency step
could be configured to automatically invoke this parameter for
authorized users.

3-4 UBRARIAN/iX Administrator's Guide

The following is an example of how to use access mode and access

control in LIBRARIAN:

1. The ABC file has serial (8} access control and write mode (W) default
access. There are no secondaries of ABC at this time.

2. The user checks out a copy of the ABC file without specifying read
mode or write mode. LIBRARIAN automatically assigns write mode
to the copy.

3. The secondary is copied to a test location. The command does not
specify access mode, but LIBRARIAN automatically transfers write
mode to the secondary in its new location.

4. A second user tries to check out a write mode copy of ABC.
LIBRARIAN does not allow this additional copy, but the user can
obtain a read mode copy.

Defining Filesets

Use the Filesets (FS) screen to create filesets by defining the logical fileset
name and the default access parameters for fileset members. Figure 3-2
shows the fileset definition for a fileset called SOURCE-FILES.

|] FILESETS FS v.1.08
Fliesel
SUURCC=FILLS
8 - NME
1 - m ms
De femnl t Detfan| 1 De faul Z - PaSCAlL
Mress Control Rocess Hode Lenguanye 3 — FORTRAN
4-C
3 a2 1] 2- SPL/TRANSAET/TENT
- POMERMIUSE /TOGMRS
7 - O/MPE
8 - BRSIC

Figure 3-2. Filesets (FS) Screen

Master Library 3-5

Filesets (FS) Screen Fields
This section describes the fields on the FS screen for defining a fileset.

Fileset A unique name consisting of a maximum of 16
characters. Do not use a fileset name that was
previously defined for another application.
Sorme sample fileset names are:

AP-OBJECT
SALES-SOURCE
PAYROLL
CHECK-WRITING

Default Access Control The access control level to automatically assign
files added to the fileset.

Default Access Mode The access mode to automatically assign files
added to this fileset.

Default Language The default language to automatically assign
files added to the fileset. Language controls
source code connotation.

Description A description of the fileset.

Defining a Fileset Hierarchy
Filesets are the logical components of your library. You can also define
hierarchical relationships between these components. The number of
levels in the hierarchy depends on your own needs.

Begin with the highest level fileset, which is the application fileset. If you
draw a tree diagram for your library, begin with the application fileset at
the top of the tree.

Use the Fileset Components (FC) screen to define the fileset hierarchy.
Enter the name of a fileset and the name of one of its component filesets.
Figure 3-3 illustrates the definition of SOURCE-FILES as a component of
MFG-FILES.

Fileset Components (FC) Screen Fields
This section describes the fields on the FC screen for defining your fileset

hierarchy.

Fileset A logical fileset name previously defined on the
Filesets (FS) screen.

Component A fileset to be treated as a subset of the fileset
defined in the Fileset field above.

3-6 UBRARIAN/X Administrator’s Guide

LIBHEARIAH

[] FILESET COHPORMNENTS FC v.1.00
Filesel Cosporeni
SOURLE-FILES]

Figure 3-3. Fileset Compeonents (FC) Screen

Defining Physical File Members
Next, add files to the logical filesets.

Logical fileset organization is independent of MPE or UNIX directory
structures and systermn boundaries. A fileset can include any collection of
files, regardless of the file type or location. This ability to group files
logically provides flexibility in creating file structures that reflect your
specific needs. Create filesets for subgroups you want to manage as a
unit, or that have something in common.

For example, you could create a fileset that includes these source files
from various groups, accounts, and systems for an accounts payable
application:

SYSA:AP@S.JOB.PROD
SYSA:SP@S.SOURCE1.PROD
SYSB:SP@S.30URCE1.PRCD
SYSB:LISTAPSFILE.COMP
SYSB:APFILO.SOURCE.AP
SYSB:GLFIL##.SOURCE.AP
sysa:/prodfjobfap*s
sysa./prod/sourcelfsp*s
sysb:/prod/source/sp*s
sysb:/compy/sfileflistap
sysb:/ap/source/apfilo
sysb:/ap/source/gfil[0—9][0—9]

Another fileset could include the object code corresponding to these
source files. Or, you might want the source and object files together in a
single fileset.

Master Ubrary 3-7

Use the Auto Filesets (AF) screen to identify the general location of files
that belong to a fileset. By using wildcards in the descriptor, you can load
multiple files at the same time. You can use the INclude/EXclude field to
refine your fileset definition.

they are also used later by LIBRARIAN when new files are introduced

Note ﬂ] Auto filesets are not only used to initially load your library with files,
to determine the filesets to which these new files should belong,

To add files that cannot be described by a single wildcard descriptor, you
can add any number of different descriptors to identify the different file
locations. Later, you can use the Auto Fileset Update (AUTQUPDP)
program to add previously unknown files to the fileset, based on the
saved auto fileset descriptors (see “Using AUTOUPDATE for New
Master Files”, later in this chapter.). As new master files are introduced
through checkin steps with the AUTOUPDATE function, they are added to
the appropriate filesets automatically. Type AUTO in the upper-left box
(ULB) on the AF screen to run AUTOUPDATE immediately.

Figure 3—4 shows the use of the AF screen to define the location of files
that belong to the SOURCE-FILES fileset.

—INEENTNEYTE
[] ARUTO FILESETS W V.68
hester Fileset Thc buxte/EXe: [ude
m
Sysien fwto Fllese! Descriptar

sputnik Bideu/spps/raster/source/«

Enter in the seleclion field (upper ieff) to run Aulalipdeie.

Figure 3-4. Auto Filesets (AF) Screen

3-8 LUBRARIAN/IX Adminisirator’s Guide

Note

Remember: You are only defining master files. Secondary files are
always linked to a master in the library, and are indirect numbers of
filesets to which the associated master belongs. To link secondary files
already in progress prior to installing LIBRARIAN to newly defined
masters, refer to Appendix A, “Applications in Progress”.

Auto Filesets (AF) Screen Fields
This section describes the fields on the AF screen for defining the files
that belong to a fileset.

Master Fileset The name of a fileset as defined on the Filesets
(F5) screen.
IN¢lude/EXclude Indicates whether files identified by the

descriptor should be included or excluded from
the fileset.

System The system where the files are located. If no
system is specified, LIBRARIAN defaults to the
current system.

Auto Fileset Descriptor The general location of files associated with the
fileset defined in the Master Fileset field.

Using AUTOUPDATE for New Master Files

You can run the Auto Fileset Update (AUTOUPDP) program at any time to
introduce new files as masters. This program uses wildcard fileset
descriptors entered through the Auto Filesets (AF) or saved on the Files
in Filesets (FF) screen (described below) to locate the appropriate files on
disk and load their filenames into the database to begin tracking them as
master files. Run the program by typing AUTOUPDATE. Altematively, you
can type AUTQ in the upper left box on the AF screen to run
AUTOUPDATE. Figure 3-5 shows the AUTOUPDATE command for the
SOURCE-FILES fileset.

Master Library 3-9

Enter the update level desired:

1. Application
2. Fileset
3. Al Application Flesets

Cption (RETURN fo Quit): 2
Fileset ; SOURCE-FILES

ABC10003 SOURCE.ABCPROD.SYS12 added fo file set SOURCE-FILES
ABC20008.5QURCE.ABCPROD.SYS)1Z added fo file set SOURCE-FILES
ABC30005.5QURCE.ABCPROD.SYS12 added fo file set SOURCE-ALES
LINK100S SOURCE. ABCPROD.SYS12 added to fle set SOURCE-FILES
LINKB0OS.SOURCE.ABCPROD.SYS12 added to file set SOURCE-FILES
MFGGB0S.SOURCE.ABCPROD.SYS12 added to file set SOURCE-FILES
MRPO235.SOURCE. ABCPROD.SYS12 added to fie set SOURCE-FILES
MRPOZSS.SOURCE.ABCPROD.SYSIZ added to file set SOURCE-FILES
PO10105.SOURCE.ABCPROD.SYS12 added to fike st SOURCE-FILES
RPTI005.SOURCE.ABCPROD.SYS12 added to file set SOURCE-FILES
RPT5005.SOURCEABCPROD.SYS12 added to fie set SOURCE-FILES

11 files updated.

Figure 3-5. AUTOUPDATE Command

Using the Files in Filesets (FF) Screen

The Files in Filesets (FF) screen provides an alternate method of adding
master files to library filesets. This screen is recommended when you
need to add specific individual files to filesets without using wildcards.
You can also use the FF screen to delete files from filesets.

The Files in Filesets screen combines most of the features of the AF screen
with an immediate auto update. It is only practical when adding small
numbers of files, since you must wait for filenames to be added to the
database prior to proceeding to the next fileset descriptor.

When you press ENTER, LIBRARIAN explodes the descriptor to load the
database with information for all existing files that match the descriptor.
The files are listed on the screen as they are processed. If you do not want
the files to be listed on the screen, use the SHOW FILES function key (set
2) to tum the file display off.

To load file information in batch or all at once, set both Auto Fileset Add
and Defer Explosion to Y. Descriptors are loaded in the database, but files
are not added to filesets until you run the AUTOUPDP program by using
AUTOUPDATE.

Figure 3-6 shows the use of the FF screen where files are added to the
sample SOURCE-FILES fileset.

3-10 LUBRARIAN/iX Administrator's Guide

[FILES IN FILESETS FF v.1.89

Filesel AuloFilteset ad § Defer Explosion J

ten Flle Descripler
D H/Meusupps/raster /sources = _

Figure 3-6. Files in Filesets (FF) Screen

Files in Filesets (FF) Screen Fields

This section describes the fields on the FF screen for adding files to a
fileset.

Fileset The logical name for a set of files, as defined on the
Filesets (FS) screen.

Auto Fileset Add Indicates if the fileset descriptor will be added as an
auto fileset descriptor (see AF screen) for later
automatic fileset updates. Default: N. To add descriptor
as an AF record, setto Y.

Defer Explosion Indicates when to perform the explosion for this fileset.
Default: N. To defer explosion until the AUTOUPDP
program runs, set to Y. Make sure the Auto Fileset Add
fieldis also setto Y.

System System where the file is located. If no system is
specified, LIBRARIAN defauits to the current system.

File Descriptor The file descriptor, identifying the location of files in
this fileset.

Customizing File Access Rules

When you assign files to filesets, LIBRARIAN assigns access rules to each
file based on the default access parameters for the fileset. Use the File
Access (FA) screen to review or customize the access parameters for
individual master files. For example, if you assign serial access control to
the fileset, but want some files in that fileset to have exclusive access, use
the FA screen to change the access control for those files. You can add a
one line text description for each file, as well.

Master Library 3-11

Figure 3-7 shows the FA screen containing file access information.
TN NN

[FILE RCCESS FA v.1,60

ten Hosier File
g/ deu/npps/rasier/ source/ahe oGl ..

a0 - WINE
1 - OB /RPE
RCCESS Defoul k Z - PRSCAL
Control i Hode Language 3 — FORTRRYN
4-C
S|] g S - SPL/TRANSACT/TERT
6 - PIEFOINISE/TOGMS
7 = JOL/MPE
Bestriplion 8 - BASIC

Daily trensaction extraci

Figure 3-7. File Access (FA) Screen

File Access (FA) Screen Fields

This section describes the fields on the FA screen for reviewing and
tuning the access parameters for specific files.

System The system where the file is located. If no
system is specified, LIBRARIAN defaults to
current system.

Master File The name of a file that is part of the library.

Access Control The access control level for the master file
(eXclusive, Read, Write or Multi-write).

Default Access Mode The default access mode when copying files if it
is not specified when performing a step.

Language Controls the commenting style used in source
annotation.

Description A description of the file.

Reviewing Library and File Information

You can review detailed information about any group of files with the
VERIFY function in LIBRARIAN. Some possible uses of this command
include displaying the:

® associated Master file (or Delta file) - Format 3

® assocated Master fileset(s) - Format 4

® location of Write mode copy - Format 9

3-12

LIBRARIAN/iX Administrator’s Guide

Figure 3-8 shows the master fileset information displayed by VERIFY
format 4.

LIERARIAK VERIFY (RIT Files/Master Filesets)

'-genotes pembership via the aacter

File
File Type naster Filesel
PENGUIN: ABC 18905 . SOURLE . L1 BPROD H NFE-FILES
WPE-SOURCE
FENGUIN : RET2068S . SOURLE . L [BVPROD H MWFeFILES
WPE-SURCE
PENGUEN: RBCEIO0S . SOURLE . L IEPRO0 M MFeFILES
HPE-SIURCE
sputnik: fopt/ocs/ocs) ib/ 1 ibprod/ H
ohc1889D.c WFG-FILES
UNIH-SIURCY
sputnik:/opt/ocs/ocs | I0/1 i bprod/ [}
ahC2000, ¢ WFe-FILES
UNIK-SOURCE
spinfk: Sopt/ocs/ocs | ib/ | i bprod/ H
abhcIH00. WFE-FILES
IN1H~STURCE

Figure 3-8. Associated Master Filesefs

You can also review detailed historical data for a specific file through the
File Inquiry (FI) screen. Refer to Chapter 5, “Screens” in the
LIBRARIAN/iX Reference Guide.

Table 3-1 lists LIBRARIAN reports providing important information on
library structure and fileset membership.

Table 3-1. Ubrary Information in Standard Reports

Report
Code Tille Dascriplion
RFE10/20 Fileset Explosion Shows application hierarchy and physical
files.
RFD10 Fileset Status Shows status of master and secaondary files
in each fileset,
RFD20 Master File Status Shows status of master files in each fileset,

RAF10 Auto Fileset Explosion Shows hierarchy and fileset descriptors for
each fileset.

Deleting Library and File Information

Break the relationship between two filesets by using FIND and DELETE on
the Fileset Components (FC) screen.

Break the relationship of one or more files within a fileset by using FIND
and DELETE on the Files in Filesets (FF) screen. Delete files collectively by
using wildcards and pressing DELETE twice.

Delete a fileset by using FIND and DELETE on the Filesets (FS) screen. You
can also use DELETE on this screen to delete all of the filesets components
and member files. Mass deletion is not recommended if you have files or
filesets belonging to more than one application.

Master Library 3-13

Delete the data for an entire application’s files and file movements by
using FIND and DELETE on the Applications (AP) screen, or use the
DELETE command.

Delete database information for files that no longer exist on disk by
running the File Exception Report (RFX10) to identify nonexistent files,
then use the CLEANDB command to delete the data for those files.

Summary

Table 3-2 summarizes the sequence for defining the master library for an
application. Repeat this sequence for each application. Page references
indicate the location where each activity is discussed in this chapter.

Table 3-2. Data Entry for Master Libraries

Activity Screen Code
1. Define an Application Applications

(Figure 3-1)
2. Define Filesets (Figure 3-2) Filesets
3. Define Fileset Hierarchy Fileset Companems

(Figure 3-3)
4. |dentify Physical Members of Auto Filesets, Files in Filesets

Filesets (Rigures 3-4, 3-5) |_FF
5. Load Database with Master AutoUpdate

Filenames (Figures 3-5)
6. *Customize Data for Specific File Access

Files (Figures 3-7)

* Asterisk indicate optional activities

Note @ Be sure to complete the data entry for an application library before
proceeding to Chapter 4, “File Movement Rules”.

3-14 UBRARIAN/IX Administrator’s Guide

File Movement Rules 4

This chapter describes how to use the screens to define or tune rules for
users to obtain copies, replace master files with revisions, and perform
other file operations. The following topics are discussed in this chapter:

Steps and Routes

Steps and Routes

Defining a Route

Defining Basic Step Data

Defining Options for Steps

Example of a Step Definition

Defining Rules for Introducing New Files
Defining Step Refinements and Exceptions
Reviewing File Movement Rules

Summary

File movement rules including dependencies for an application are
defined in LIBRARIAN as routes and steps.

A step defines the movement of files from one location to another. The
step is the basic unit of the file movement system. Steps are grouped into
routes. Steps are executed in LIBRARJIAN as commands.

A route reflects a cycle of specific file movements and checkpoints. A
route is made up of a series of steps that move/copy files or record an
event. The steps must occur in a particular order.

File Movermnent Rules 4-1

Routes can include:

® maintenance for a current release

development of a new release

distribution procedure for updating data and/or program files
® control of programs for demonstration or test purposes
Steps can include:

w copying files from the library to a programmer’s work group for
modification

m copying new vendor files to all systems in a network

& approving modified files

® moving modified files from a programmer’s work group to the QA
account for testing

® moving tested and approved source and object code into the library

® introducing a new file into an application

Defining a Route

You should determine the routes and steps you want to define for an
application. We recommend that you create flow diagrams to show how
files are moved and copied from one location to another.

Figure 4-1 is a flow diagram for a basic development route consisting of
three steps. In this route, programmers use the MFG-OUT step to obtain
write mode copies of files from the master library. After programmers
incorporate their changes, the manager uses the MFG-APPROVE step to
approve the modified secondary files. Then, operators use the MFG-IN
step to move the approved files back to the library.

MFG APPLICATION

MEG=-0UT

COMPONENT FILESET

Figure 4-1. Sample Rouie Flow Diagram

4-2 LBRARIAN/iX Administrator’s Guide

First, assign a route name to describe a file movement cycle for the
application. Use the Routes (RT) screen to assign a route name up to
twelve characters. You can also add a description. Each route belongs to a
specific application.

Note ll‘_] To require that all file movements within this route be linked to
projects, set the Project Required field to Y. For more information about
projects, refer to Chapter 6, “Projects”.

Figure 4-2 shows the definition of the DEVELOPMENT route in the MFG
application. This sample route does not require projects to be specified.

b RODTES AT v.1.68
Project
Route fApplicatian Required?
3
Destription

anufacturing develaprenl cycig

- b ST | LA MER
IR
: 5

Figure 4-2. Routes (RT) Screen

Defining Basic Step Data

Step definitions are the key to your LIBRARIAN implementation. A route
can have as many steps as necessary to complete a cycle. The step
definition identifies the type of operation, the files to which the step
applies, and step options that control its behavior.

You perform a step by using the step name as a command. In menu
mode, you can select the desired step from a menu by selecting the Steps
option from the File menu.

If you type a step name at the LIBRARIAN prompt, LIBRARIAN
performs the named step, using the defined step parameters. For more
information see the PERFORM command in Chapter 1, “Commands”, in
the LIBRARIAN/AX Reference Guide.

Fiie Movement Rules 4-3

Step definitions can be spedific or general.

® If step definitions are very general, you need to specify more
information when performing the step in LIBRARIAN.

m Ifstep definitions completely define all allowed files and options, you
do not need to specify much detail when performing the step in
LIBRARIAN.

Note G When a user requests a step that exists in more than one route and /or
application, an “ambiguous step name” message is issued, and a menu
of steps is displayed. This menu of steps is alphabetically sorted and
only displays steps the user is authorized to use.

Use the Steps (ST) screen to define steps (Figure 4-3). There are many
options available when defining steps. Basic step information is described
in this section, followed by advanced options in the next section.

[STEPS ST v.1.00

1 sﬁt fctive Hoster Fileset

(Step Scope)

J (1)xs1er/ (5)econdor

Figure 4-3. Steps (ST) Screen

When a user requests a step that exists in more than one route and/or
application, an “ambiguous step name” message is issued, and a menu of
steps is displayed. This menu of steps is alphabetically sorted and only
displays steps the user is authorized to use.

4-4 UBRARIAN/IX Administrator’s Guide

Step |dentification
Information for identifying steps includes the following fields on the

Steps (5T) screen:
Step.Route.Appl

Sort

Active

Master Fileset

This unique cornbination of step, route, and application
identifies a step. If the step name is unique, you can
perform the step without specifying the route and
application. To minimize effort, do not use the same
step name in more than one route or application. For
example, instead of using a CHECKOUT step in
several applications, you could define AP-OUT,
GL-OUT, PAY-OUT, etc. as unique stepnames.

A unique number (1 to 99) for each step within a route,
used for sorting. This number determines the order in
which steps are listed on reports. The step number
does not enforce sequences for performing steps.
Presteps, discussed below, are used to enforce
sequence.

Indicates whether the step is currently active. The
default is Y, indicating the step is active. To deactivate a
step without deleting it, set this field to N.

Limits the scope of the step to the specified fileset,
restricting the files on which the step can operate. The
scope can be the application fileset or any of its subsets.

@ If you specify the application fileset, the step
applies to any files that are part of the application.

» If you specify a lower-level fileset, the step is
restricted to that specific subset of files.

For example, you can limit a step to the fileset
SOURCE-FILES, which is a component of MFG-FILES.
Members of MFG-FILES that are not members of
SOURCE-FILES are not within the scope of the step
and cannot be processed with this step.

The source location, discussed later in this chapter, can
be used to further restrict the files on which the step
can operate.

File Movement Rules 4-5

Step Operation
Each step performs one of the following three types of operations:
Copy Copies files to another location.

Move Fhysically moves files to another location, so they no
longer exist in the original location.

Null Does not perform any file movement, but records some
event such as an approval.

Use a copy operation to obtain work copies of files for modification. Use a
null operation to approve changes. Use a copy or move operation to send
modified files to QA.

Each step defines a source location and destination location. You specify
whether the files in each location are master or secondary files. This tells
LIBRARIAN which file types are valid when authorizing files for the
step, and is reflected in the step type which appears in reports. You can use
system variables to define source and destination locations for steps.

Table 4-1 lists the step types, the typical file movement functions, and
examples of stepnames for each type.

Table 4-1. Step Types

Step
Type Description Function Stepname Examples
MS Master-to-Secondary Copy OUT, RELEASE, CHECKOUT, GET
S5 Secondary-to-Secondary Move TEST, QA, SUBMIT
Copy NEW, APPROVE, OK
Null TESTED
&M Secondary-to-Master Move IN, PUT, CHECKIN
Copy REVISE, UPDATE

Master-to-secondary steps are checkout steps. Secondary-to-master steps
are checkin steps. Secondary-to—secondary steps are all the steps in
between.

Step operations are restricted by step type. For example,
master-to-secondary steps can copy files, but cannot move themn to
another location. Null operations can only be performed on
secondary-to-secondary steps. On secondary-to-master steps, the
secondary file must have write mode access.

4-6 LIBRARIAN/IX Administrator’s Guide

Source and Destination Locations

Note @

&

&

Source Location

The source location indicates where to locate valid files for the step when
users specify relative pathnames (unqualified filenames). Use wildcards
as needed to describe valid files for the step. When you execute a step,
LIBRARIAN only authorizes files associated with the master fileset for
the steps that are within the scope of the source location.

When you execute a step, the files you specify are relative to the step
definition and not your current working directory.

Destination Location

Destination locations can be as specific or general as youneed. It is a
good practice to make the destination as specific as possible so that users
do not have to spedify a destination when executing the step. Use
wildcards and edit masks, as described below, to allow LIBRARIAN to
automatically determine destinations when users perform steps.

Equal (=) vs. At (@)
You can use the equal (=) sign in any element of a destination location.
This indicates that files created by the step must have the same value as
the corresponding element of its associated master file. For example:

Source Location: SYSA:@.@.DEVEL

Destination Location: SYSA:==.QA

Source Locgtion: sysq:/develfappl/*/*

Destination Location: sysa:/qa/appl/=/=
The at (@) sign in MPE (asterisk (*) in UNIX) carries the element forward
from the source filename to the destination filename, by default. The user
can override this.

Wildcards

The equal (=), at (@), asterisk (¥}, question mark (?} , and minus (-) signs
can be used in combination with literal characters in the destination to
edit or transform the corresponding source filename. See the section on
Edit Masks at the beginning of Chapter 1 in the LIBRARIAN/iX Reference
Guide.

The following example would copy files to a destination name that has a
T appended to it:

Destination location: SYSB:@1

Destinction location: sysb:;*t

When checking a secondary file back into the library using
secondary-to-master steps, LIBRARIAN always replaces the master that it
came from. This is true even if the secondary file gets renamed at some
point during the route.

File Movement Rules 4-7

You can use system variables to define source and destination locations
for steps. In addition to the wildcards @, ?, and # for MPE and *, ?, and
regular expressions for UNIX, LIBRARIAN offers special wildcards to use
in source and destination filenames: ILOGON, 'USERID, IOWNER, and
IMSUSER. These wildcards restrict the source and/or destination files to
a particular location. As with literal elements, the user cannot override
these values. In fact, if the element is omitted, it is automatically filled in.

Table 4-2

Special Wildcards

Wildeard

Whete Used

Descriplion

ILOGON
LOGIN

Source
Destination

Substitute the user’s current login automatically
in an element. For UNIX, the login user is
substituted as appropriate. For MPE, the login
group, account, and system values are substituted
as appropriate.

WSERID

Saurce
Destingtion

Substitute the current LIBRARIAN user name in
an element. For example, if programmers have
their own work groups for secondary files and
their user names are the same as their working
directory, you could define the destination
directory with 'USERID on a checkout step.

IOWNER

Destination

Substitute the source file owner. For example, if
several programmers submit files to QA,
IOWNER can be used in the destination name for
a single REJECT step that returns files to each
programmer s area (e.g., MPE destination:
SYSA:@.IOWNER..DVL,; UNIX destination :
sysa:/devel//OWNER/*),

IMSUSER

Destination

Substitute the name of the LIBRARIAN user who
originally checked out the file. This wildcard is
useful in sending files which fail QA back to the

original programmer’s area.

Destination

Any MPE system variable that is prefixed by a |,
e.g., [HPGROUP. The value is determined when a
user performs the step.

4-8 LIBRARIAN/IX Administrator's Guide

g

u

Edit Masks for UNIX Pathnames

To carry forward, edit, or replace an element that is at the same level in
both the source and destination filenames, follow the rules described
above.

Because UNIX pathnames can have varying numbers of path elements
(directories), you can edit (or skip) components at varying levels in the
source filenarmne using the following construct:

H{x[=y])) [edit-mask]

where x and y represent the desired range of components from the source
pathname. x and y are numbers from 1 to *, where * is the last directory
element of the pathname. If you want a specific element, omit y which is
optional.

The optional edit mask is applied to each element in the range (do not
include the brackets).

For example, the mask /(1-2)/devel'USERID/(4—*)/= applied to the
filename /usrfusr2/master/screens/abe results in the filename
fusrfusr2/devel/milind/screens/abc

You can also use the following wildcards in place of x or y:
~ number of levels in home directory path
number of levels in the current working directory path
one less than the number of levels in the current working
directory path
You can use curly braces, i.e., { X[= y] }, to indicate mapping from the
master file name rather than the current secondary file name.
For examnple, consider the following step called demo—test:
& Source files are defined as secondary files:
sputnik:/usrfusr2/{demo/dev/leveli flevel2/~
@ Destination files are defined as secondary files:
sputnik:/usrfusr2/demoftest/{5 —*} /=

The edit mask { 5 - * } is evaluated using the associated master file
path.

s Given the following source files:
sputnik:/usr/usr2/demoy/sre/dirt /dir2/dir3/*

& The destination files would be expanded to the following:
sputnik:/usrfusr2/demoytest/dirl /dir2/dir3/=

File Movement Rules 4-9

Prerequisites
This section describes how to define dependencies for steps.

Prestep

A prestep is a step in the current route that must be performed
successfully before the current step can be performed on a file.

For example, if APPROVAL is a prestep for CHECKIN, the APPROVAL
prestep must be completed before the file can be moved back to the
library by the CHECKIN step. If you perform CHECKIN for several files,
but some of the specified files were not approved with the APPROVAL
step, those files will not be moved with CHECKIN.

Specify a prerequisite step by entering its step name in the Prestep field
on the Steps (ST} screen (refer to Figure 4-3).

Alternate Presteps

You can define a prestep and one or two alternate presteps. The
prerequisite will be satisfied as soon as either the prestep or at least one of
the alternate presteps is performed successfully.

For example, files can be copied to the development area from the master
location (CHECKOUT step) or from QA (REJECT step). You can define
CHECKOUT and REJECT as alternate presteps to the TEST step, which
moves files to QA.

Multiple Prerequisites/Dale Prerequisite

To require completion of more than one prestep, create a special composite
prestep with the Composite Presteps (CF) screen as shown in Figure 4-4.
A composite prestep is a list of previously defined steps that must be
completed to satisfy the prestep. The order in which these steps are
performed is not important. Use a composite prestep name in either the
Prestep or the Altemnate-Prestep fields of the Steps (ST) screen.

To prevent a step from being performed before a specific date, enter the
date on the CP screen, then use the composite prestep name in any of the
Prestep fields on the Steps (ST) screen.

4-10 UBRARIAN/X Adminisirator’s Guide

LIBRARIAN

| CONPOSITE PRESTEPS P V.1.80

Conprrsile Prestep Nome
Step Reute fpp!
b i.-cpprnve evrinprni i
Dale Requiresent (Optiomat) N
Prestep List

Interruptions &?

Fo-1EST Fii—NERDE FG-UPS0K -

Figure 4-4. Composite Presteps (CP) Screen

Step Description

The description you enter for a step will appear on step reports as well as
on the Steps menu that you access from the File menu.

File Movement Rules 4-11

Defining Options for Steps

You can define additional step options on the Step Options (STO) screen
(see Figure 4-5) to customize the step to meet your needs. Initially, you
can accept the defaults displayed and fine tune the step later.

LT ERAH AN B
[STEP DFTIOMNS $10 V.1.e0
st Route (
T .
muthorizetion Requiret? J Lissrhick ower [

WPE/iN Onty: Create: Growp Accound] crentor] > S
Unix inly : oalir J Peralesions [l Corer [N Srop DD

File iratien (Coys) ——
Secomteries (Y Salety A=talnea IR

Step Paraneters {Default/Overrige Alioued) 1

Batch Heso (omp/Tecop Rein #ulo Beed/Write Orph Yy Pushil —External—
WooW W o W W W W ORY R WY St DSt

fdd) tions! Perematers KT S

Figure 4-5. Step Options Screen

Authorization Required? Indicates whether or not step authorization via
the Step Authorizations (SA) screen is required
for the step. Default: Y, indicates you must
authorize specific users to perform the step.
Setting this field to N allows all users to
perform this step without authorization.

LIBRARIAN Owner Sets the owner of secondary files LIBRARIAN
creates during the step to the LIBRARIAN user
you spedfy. Otherwise, the user performing

the step becomes the owner.
R Create: Group, You can specify that the destination group,
W Account, Creator account, or creator should be created

automatically by LIBRARIAN if it does not
already exist by entering Y in the appropriate
field.

R = Creator You can specify the MPE file creator for files

M created by the step. If a file creator is not

specified, LIBRARIAN uses the current MPE
user for files created within the login account,
and the default creator from the System Profile
(SP) screen for all other files created.

% mkdir Instructs LIBRARIAN to create directories if
x they do not already exist.
%.x Permissions Sets the UNIX permissions on destination files.

4-12 UBRARIAN/IX Administrator’s Guide

%m Owner Sets the UNIX owner for destination files.

%m Group Sets the UNIX group for destination files.

Note @ When a user requests a step that exists in more than one route and/or
application, an “ambiguous step name” message is issued, and a menu
of steps is displayed. This menu of steps is alphabetically sorted and
only displays steps the user is authorized to use.

File Expiration

If you do not want read mode and retained copies to accumulate
indefinitely, you can define an expiration policy (in days) for files created
by the step. The expiration policy determines when the file is eligible to
be flushed by the FLUSH utility:

You can define separate expiration periods for read mode secondaries
and safety retained copies. Write mode copies and master files do not
expire.

If you do not want files to expire or to be flushed, specify 999 days. The
default value for retained files is 0 (indicating that the files expire the same
day as created). The default value for read mode secondaries is 999
(indicating that the files do not expire).

Step Parameters (Defaults and Allowed Overrides)

For each step, you can spedify a variety of default parameters for
LIBRARIAN to use when you execute the step. You can also specify
whether users can override these parameters when performing the step.

The list of parameters is located at the bottom of the Step Options (STO)
screen. For each parameter, specify the default for the step (Y or N), and
indicate whether users are allowed to override these defaults when
pezforming the step (Y or N). Initially, all defaults are set to N to match the
PERFORM command defaults, and all overrides are set to Y.

You can set the defaults for the following parameters in the step

definition:

Batch Authorizes the transaction online. Performs the actual
file operation in a batch job.

Memo Prompts for memo text describing the current
transaction to be included with the log record.

Compress Compresses the destination file.

Decompress Decompresses the destination file (if compressed).

File Movement Rules 4-13

Retain

Autoupdate

Read

Write

Crphan

Verify

Pushread

External SRC/DST

Retains existing destination files being replaced, if
tracked.

Adds files to appropriate filesets, on
secondary-to-master steps, if any new files exist that
match auto fileset descriptors in the database.

Overrides default access mode and assigns read mode
to the secondary.

Overrides default access mode and assigns write mode
to the secondary.

For secondary files, breaks relationship to the master so
it is no longer tracked by LIBRARIAN, if the
destination is a secondary file. For master files, breaks
its relationship with the application enabling you to
assign a new application.

Causes files that have changed since they were created
by LIBRARIAN to result in a violation.

Allows a read mode secondary to replace its master file
or a related write mode secondary. LIBRARIAN flags
any write mode secondaries associated with the same
master. Used for emergency fix steps.

Indicates that the source/destination files for this step
are external to LIBRARIAN. Files are authorized,
tracked and logged, but no files are created by
LIBRARIAN, and no directory search is performed.
Used to document creation of a file by an external
process on remote computers, usually in a macro.

These examples depict how default parameters can be used:

® You can define a checkout step to automatically decompress files
when the step creates files in a work area (DECOMPRESS default

value is Y).

® You can require users to enter memo text when performing a step
(MEMO default value is Y, and the override is N).

® You can define a checkin step so that replaced master files are always
retained and the new masters are always compressed. (RETAIN
default value is Y, and override is N; COMPRESS default value is Y

and override is N).

Additional parameters can be hard—coded at the bottom of the STO
screen. Refer to the PERFORM command in Chapter 1 of the
LIBRARIAN/X Reference Guide for information on valid parameters when
performing a step.

4-14 UBRARIAN/IX Administrator's Guide

Example of a Step Definition

Figure 46 and Figure 4-7 show a step definition for a secondary-
to-master step called AP-IN.DEVEL.AP.

[STEPS ST V1.

St Route I Sart Rctive Hesier Fileset
@-M- da i (Step Scope) TN NN

1 (©opy/ (1 doves Ml

———————— DESTIMATIGN Tﬁ i masmfrsyﬂ e —
AN

ng — Al lermale Prestﬁ —
[~ -AHouve HP (i les Lo product ion sccount lcheckin)

Press Jj Ked Fieys. then F1 to canfigure Step Opllons

Figure 4-6. Step Definition on ST Screen

The step is assigned number 5 for sorting purposes. The step is currently

active and specific authorization is required to perform this step.

Because the master fileset for this step is AP-FILES, only secondaries

associated with the AP-FILES fileset are processed by this step. Since the

source file type is S (secondary), and the destination type is M (master),

this step is identified on reports as type SM. This step moves files instead

of copying them.

Because the source location is 5YSA:@.@ APDEVEL, LIBRARIAN
authorizes only secondaries of AP-FILES that are located in the

APDEVEL account on SYSA. The destination location =.=.=.= shows

that the files are returned to their original master locations.
The prestep AP-TEST must be performed before the AP-IN step.

Retained copies of master files expire in 30 days.

File Movernent Rules

4-15

[STEP OPTIOMS $T0 v.1,08
5 Ao te Eziii
futhorizatian Required? J LismniaN owncr [N

WPE/id Only: Cremte: Group J Aot J) Crestor] > D
Unix Only : weidir] Percissions [l Ooer SN srou NN

Fite iration (Deys) =————
Secontries % Safety Retained

Step Parareters (Dafao! t/Querride &1 lawed)

Batch Mewo Conp/Decep Retn fwto Read/Mrite Orph Wey PushR —External-—
W M W W M N W WY W W W Src i Dstl

fddi tiom| Porameters Ly K

Figure 4-7. Step Options (STO) Screen

The following parameters are automatically invoked for this step:

MEMO Prompts the user for memo text.
COMPRESS Compresses the new master files.
RETAIN Retains the old master files.

AUTOUPDATE Updates fileset membership automatically based on
auto fileset descriptors, for new files or new filesets.

VERIFY Does not allow files that have changed since they were
moved to the test area.

The BATCH, READ, WRITE, DECOMPRESS, and ORPHAN parameters are
not automatically invoked.

Defining Rules for Infroducing New Files

Pending production areas are locations where you can introduce new files
as secondaries during the development cycle. These locations are usually
linked to specific steps. Pending production areas can be associated with
any existing secondary step, or you can define a separate step to
introduce new files. Use the Pending Production Areas (PP) screen to link
a pending production area to a step (Figure 4-8).

The fields on the FP screen are used to specify one or more wildcard
masks that limit or filter names of new files. Untracked files whose names
are not in the scope of these wildcard masks do not qualify as new files
and cause an “UNKNOWN FILES” violation. By using wildcards (=, ?, #.*,
and @) in the Filename field, naming conventions can be enforced, and
paths, groups, and/or accounts in which files can be intraduced can be
restricted.

4-16 LUBRARIAN/IX Administrator’s Guide

LIBRARIAH

] PENOING PHODUCTION ARERS P V.0.60
#pplicatien Route (optiomsl) Step mme (optional)
o= TE—

Pending Prouct ion Aren
Seq ten Filenane
A S B
Pending Hacter Edjt Mosk
System Filenaxe

Inc ude/Exx |ude [Presxisting Master A!losed? J

Figure 4-8. Pending Production Areas (PP) Screen

Pending Master Determines the name of the master file associated with

Edit Mask each new secondary. Edit mask characters (=, @, 7,5,
and, —) can be used to derive the master file name
from the secondary filename (see Edit Masks at the
beginning of Chapter 1 in the LIBRARIAN/iX Reference
Guide). If the derived master filename does not already
exist, LIBRARIAN creates a pending master record in
the database to enforce serial write control and other

authorization checks.
Preexisting Master Determines whether users can introduce new files
Allowed? when a master of the same name already exists.

Usually, you do not want new source files to have the
same name as masters that already exist. On the other
hand, object code may or may not already exist in the
library because these files are usually compiled in the
development or test area without having been checked
out.

To incorporate the introduction of new files created by programmers in
development, create a step called AP-NEW by doing the following:

1. Use the Steps (ST) screen to define a null step called AP-NEW.
Programmers performm AP-NEW to introduce new files in the
development area. The source and destination locations for AP-NEW
should be identical to the destination location for AP-OUT.

2. Use the Pending Production Areas (PP) screen to identify AP-NEW as
a step where new files can be introduced, as shown in Figure 4-8. The
new files must be within the fileset and source scope of the step.

3. Use the Steps (ST) screen to modify any subsequent step to have
AP-NEW as an alternate prestep.

File Movernent Rules 4-17

4. When a user performs the AP-NEW step on a file, it is identified as a
pending production file. Untracked files that are not within the scope
of the defined pending production area will be in viclation of the
rules (unknown files).

Defining Step Refinements and Exceptions

After defining a step, you can refine the way the step works for any
subset of the source location using the Step Refinements/Exceptions (SR)
screen. These refinements and exceptions, which can be based on name,
filecode, or fileset membership criteria, include:

= Different Operation — An operation {move, copy, or null) different
from the one defined for the step. For example, if a step is defined
to move files, but there is a file that should be copied and not
moved, type the filename in Source Location and enter code C.

® Exclude Files —Files which would otherwise be authorized for the
step can be excluded by entering an E in the type field.

& Different Destination — A different destination for a subset of
files. For example, if a step is defined to copy files to one area but
you have a subset of files that should be copied to a different area,
enter a mask in the Refined Destination Location field.

® Multiple Refinements/Exceptions — If you define several
refinements or exceptions for a step (several different entries on the
SR screen), the source locations could overlap. You must specify the
sequence that LIBRARIAN checks for a matching refinement.

Figure 4-9 is a sample refinement/exception definition for the AP-IN step.

B STEP HEFIMENENTS/EKCEPTIONS S V.1.80

5t Boute ! Oheck
Sovrce Filecose [- 08 - Source Fileset N
—OR - Sayrce Locelian
E - [-.5%5, APPROD

(C)opy/ (Mowed G 1L/ E)xciute § Exclude from compression (vAH) J
fefloed Destimtion Eocatlon
N

ST Glabal SetUings
Sowre File Type N C (Copy/Move) Destinoticn Flle Type S
Fron PENGUIN:9, &, APROD

To PEMBUIN:=.=.AP

Figure 4-9. Step Refinements (SR) Screen

4-18 LIBRARIAN/IX Administrator’s Guide

Notice that the check sequence is 0001, indicating this refinement is the
first one LIBRARIAN checks when performing the step.

‘:; The source location for the step is SYSA:@.@ APDEVEL. This refinement
MPE applies only to files in the SYS group. For this subset of files only, the
destination location is the PUB group of the SYS account instead of the
SYS group of the AP account. Note also that this exception copies the files
instead of moving them.

Reviewing File Movement Rules

You can review the step definitions online with the HELP STEPS or HELP
stepname commands.

LIBRARIAN reports provide important information on defined file

movement rules, as shown in Table 4-3:

Table 4-3. File Movement Information on Standard Reports

Report
Code Title Description
RAD10 Step Detail Report Overview of all route and step definitions
RAD20 Step Detail Report (with Complete detailed information about all
related data) routes and steps

Sequence Summary

Table 44 summarizes the sequence for defining file movement rules for a
route. Repeat this sequence for each route. Use figure numbers to locate
where these activities are discussed. Perform activities 2 through 6 for

each step before defining the next step.

Table 4-4. Data Entry for File Movernent Rules

Aclivity Dala-Entry Screen Code
1. Define route (Figure 4-1)
*2. Define composite presteps Composite Presieps cP
P .4
3. Define steps (Figure 4-6)
*4 Define step refinements and Step Refinements/Exceptions
exceptions (Figure 4-9)
*5. Define altemnate search locabions Forward Versioning Y
(Figure 7-2)
*6. Define how new files can be Pending Production Areas _
introduced (Figure 4-8)

* Asterisks indicate optional activities

File Movement Rules 4-19

4-20 LIBRARIAN/IX Administrator’s Guide

Users and Authorizations 5

Defining Users

Each user in LIBRARIAN is identified by a user ID and password. All
LIBRARIAN IDs and passwords are case sensitive.

You can either assign spedal capabilities to users or you can authorize
each user for the steps and projects they are allowed to work with.

This chapter describes how to define user profiles and assign capabilities.
The following topics are covered in this chapter:
m Defining Users
Assigning User Capabilities
Authorizing Users to Perform Steps
Reviewing User Data

Sequence Sumumary

To define users to LIBRARIAN, the LIBRARIAN Manager uses the Users
(US) screen to assign user IDs. User IDs can be independent of system
logons. Users can review and modify their own user information.

Figure 5-1 shows user information as defined on the Users (US) screen.

LIBRARI] AN

[USERS s V.88

User Active

liser Rome Prame Mamber Pescxmoed Lockmord

Frone dones M - B

Figure 5-1. Users (US) Screen

The user information includes the user’s name, phone number,
LIBRARIAN password, and user’s lockword (the lockword is optional for
MPE and displays only when you access your own record).

Users and Authorzations 5-1

Note

Note

The User ID appears in the transaction log for each file movement. To
have an audit trail that uniquely identifies individual users, assign a
unique User ID to each user (i.e. do not allow users to share the same
User ID).

The ACTIVE flag indicates whether the user record is currently active or
inactive. Use the ACTIVE flag to suspend or reinstate a user’s access to
LIBRARIAN. The LIBRARIAN Manager can change this at any time.
When set to ™Y" (active), the user can access the system. When the flag is
set to "N (inactive), the user cannot access the system.

Users can access and maintain their own user information, but cannot
access information for other users.

Each user can change their own personal password and lockword with
the US screen, the USER command or the User menu. The user password
protects against unauthorized use of LIBRARIAN. You must supply the
correct password to access LIBRARIAN functions. Passwords and
lockwords are encrypted in the LIBRARIAN database.

i your UNIX login user matches your LIBRARIAN user, you will need
not need to supply a password when you run LIBRARIAN.,

It is not necessary to assign user passwords during the initial setup.
The first time you use LIBRARIAN, you are prompted to assign a
password for your User ID.

If a lockword is present, LIBRARIAN automatically assigns it to any files
the user creates.

When you access this screen, the password and lockword fields display
an asterisk(*), rather than their actual contents. You can display the
contents using the SHOW PASSWORD function key. To hide the contents,
press the HIDE PASSWORD function key. Using F2 (Set 2) toggles between
the SHOW PASSWORD and HIDE PASSWORD functions. Users can only
view their own passwords on this screen.

52 UBRARIAN/IX Adminisfrator’s Guide

Assigning User Capabilities

The LIBRARIAN Manager can assign special capabilities to users through
the User Capabilities (UC) screen. Figure 5-2 shows a sample user
capability definition in the UC screen.

o - lor

—IBSETKEENIYE
[] USER CAPAREILITIES uC V.1.00
User
Capabi ity Rpplication
(@ for L, R, O, ¥ Copebilities)
p

L - Librarian nansger

A - hpplication Manoger
P - Project Hanager

R - Rule Adeinistrator

Opers r
- resiricied H-Commond Access

Figure 5-2. User Capabilities (UC) Screen

LIBRARIAN is provided with a predefined user name, LIBMGR, which
has LIBRARIAN Manager capability. If you have not already done so,
within LIBRARIAN create your own LIBRARIAN Manager on the US
screen, and then delete the capabilities and user name for LIBMGR.

The following special capabilities can be granted to a user:
L (LIBRARIAN Manager) Can perform all operations on all files on all

systems. Defines and maintains the file
management rules for the entire system.

A (Applicaion Manager) Can perform all operations on all files within

P (Project Manager)

0 (Operator)

R (Rules Administrator)

assigned applications. Maintains file
management rules for an application.

Can define projects within an application and
maintains project status. Authorizes users to
work on projects (see Chapter 6, “Projects”).
Can use the SHOWLOG >FLUSH command to
delete transaction log records and
LIBRARIAN's >RESTORE command to restore
retained files.

Can define and modifies rules, and creates

libraries. It cannot create users or perform file
movemnent operations.

Users and Authorizations 5-3

X (X Capability) Can use the X commands in LIBRARIAN to
operate on files unknown to LIBRARIAN,
regardless of operating system security. Qther
users can use these commands but operating
system security is enforced.

Authorizing Users for Defined Steps

If a step definition requires user authorization, LIBRARIAN checks for
user authorization prior to performing the step.

a [IBRARIAN Managers can perform any step in any application.

a Application Managers can perform all steps within their own
applications.

m General system users require explidt authorization.

You can authorize users for specific steps, routes, and/or applications.
Any number of users can be authorized to perform a given step. Because
each step, route, or application is authorized separately, users only need
one user ID for a variety of operations.

Use the Step Authorizations (SA) screen to designate which users can
perform each step. Figure 5-3 shows a typical step authorization for a
single step as defined in the Step Authorizations (SA) screen.

'L LBRAR AN
[| STEP AUTHORIZATIONS Sa v.1.e0

Step Route hpp lser fctive

JETE . [N T RFN i
futhor ized File Gonership
Rccess Hode Reqo | reeeni

3 I
R = Rand Blank = Mo Restriction
N = Write Y = Hoer myst WM flle
N = User pust MOT OMN fll2

Figure 5-3. Step Authorizations (SA) Screen

5-4 LIBRARIAN/IX Adminisitator’s Guide

The following are descriptions for the fields on the SA screen:

Step Route Appl. Name of the step, route and application being
authorized. If you want to authorize a user to
perform all steps in a route, use an at (@) sign in
the Step field. If you want to authorize a user to
perform all steps in the application, use an @
sign in the Step and Route fields,

User Name of the user authorized to perform the
step.

Authorized Access Mode Specifies whether user is allowed to obtain
write mode files with this step. For example, all
programmers on a development team could be
allowed to check out files in write mode
because their modifications will eventually
replace the current masters. Other users may
need to obtain copies of files but should not be
modifying them, so you would set their
Authorized Access Mode to R (read—-mode).

Active Use this field to suspend or reinstate the step
authorization for a user. This indicates whether
the user is currently authorized to perform the
step. Set this flag to "N if you want to suspend
the authorization without deleting the record
from the database.

File Ownership Use to further restrict the use of a step for files
based on ownership. You can restrict users to
files the user owns (e.g., a user can only submit
his own files) or on files the user does not own
{(e.g., a user can only test files checked out and
modified by a different programmer). The
owner of a file is the user who created the file
using LIBRARIAN.

Note You can define a step that does not require authorization. Set the
G “Authorization Not Required” flag on the ST screen to Y. Steps that do
not require authorization are available for use by any user, without
specific authorization on the Steps Authorization (SA) screen.

Users and Authorizations 5-6

Reviewing User Data

The following offline reports contain user data:

Table 5-1. User Data Reports

Report

Code Title Description
RUD10 Users Report Shows complete user profiles.
RUS10 Step Authorizations Report Shows users who can perform

each step.

Sequence Summary

Table 5-2 surrunarizes the sequence that has been described in this
chapter for defining user information.

Table 5-2. Data Entry for User Authcrizations

Activity Data Enfry Screen Scroen
Code
1. Create user profile records. Optionally Users
add passwords and lockwords. IEI
(Figure 5-1).
2* Assign special capabilities User Capabilities -UC
(Figure 5-2)
3. Authorize use of steps by spedific Step Authorizations sA |
users (Figure 5-3)

* Asterisk indicates optional activities

Deleting or Inactivating Users

When a user leaves the company or changes jobs, you will want to delete
that user and all of his/her authorizations from LIBRARIAN. However,
since the user name may appear throughout the audit trail and file
tracking information, it is generally a better practice to inactivate the user
ID rather than deleting it. To inactivate, simply bring up the user ID on
the US screen and change the Active flag to “N”. If anyone attempts to
use this ID, LIBRARIAN will respond as if the user ID did not exist.

When you are ready to completely delete a user ID, bring up the ID on
the US screen and press the “Delete” function key (F3). You will be
prompted to confirm; then the user ID and all related data, such as User
Capabilities, Step Authorizations and Project Authorizations, will be
deleted.

56

LIBRARIAN/IX Administrator’s Guide

Projects 6

LIBRARIAN allows you to define projects to associate file movements
with specific service requests, maintenance tasks, or software
development projects. LIBRARTAN automatically tracks files that are
worked on for a project, and identifies the programmer that changed
them. Complete project information is available in standard reports and
in customized SHOWLOG audit trail reports. You can restrict projects so
that only authorized users are allowed to work on them. You can also
require that all file movements be assodiated with a project.

This chapter describes how to set up and maintain projects with
LIBRARIAN. The following topics are included:

® Defining Project Managers

®» Creating Projects

®» Authorizing Projects

® Changing Project Status

m Reviewing Projects

® Flushing Project Transaction Records

® Using Projects in LIBRARIAN

m Project Filesets

® Distributing Files by Project

Defining Project Managers

Application managers and the LIBRARIAN Manager can create and
manage projects, and can assign Project Manager (P) capability to other
users. Use the User Capabilities (UC) screen described in Chapter 5 to
assign Project Manager capability.

Project Managers can create projects, maintain project status, and
authorize users to work on projects. Project Managers are automatically
authorized to work on any project they define.

Projects 61

Creating Projects

To create projects, you can use either the Projects (P]) screen or the
PROJECT command. This section covers the procedure for using the PJ
screen. To use the PROJECT command, see Chapter 1, “Commands”, in
the LIBRARIAN Reference Guide.

Figure 6-1 is a sample project definition for the REFT-MODS project. This
project is used for modifying budget and expense reports in the DEVEL
route of the FIN application. Note that project authorization is required.

—IEEETEERNN
| PAOCJELTS P V.1.60
Applicetion Project Haoe Roule Alles
T

Pruject Description IRy ey Ty s g expense
al location procedures

Froject

mutherjzation Project Date

Required? Heneer Dpen? Rerested Priortly Estisate
] PATH 3
Requestar Do taent. I I

Figure 6-1. Projects (PJ) Screen

The PJ screen contains the following fields:

Application
Project Name

Route Alias

Project Description

Application to which the project belongs.

Project name that users specify in LIBRARIAN
transactions or select from a project menu. For each
project, LIBRARIAN automatically creates a user
fileset with the same name as the project.

The specific files you work on for a project are
automatically added to the project fileset on
checkout steps and other steps that introduce new
files. Files can also be added manually with
FMAINT commands.

Associates a project with a route. The project name
can be used as an alias for that route in
LIBRARIAN operations. Projects can be defined for
all routes in the application by specifying an at (@)
sign in place of the route.

A free form description of the project. This
description appears on project menus and reports.

&2 UBRARIAN/X Administrator’'s Guide

Project Authorization, A flag that determines whether users require
Required? specific authorization te work on a project.

Project Manager Assigns a project to a specific Project Manager who
can change project data and status information. The
Project Manager c¢an assodate files with the project
without specific authorization.

Open? Allows you to define a project and reserve it for
later use by setting the Open flag to "N". Set the flag
to "Y” if you want the project to be available as soon
as it is defined.

Date Requested, Used for project documentation. It has no effect
Priority, Estimate, on LIBRARIAN file processing.
Requestor, Department

Defining Project Hierarchies

To create project hierarchies, use the FMAINT RELATE command to relate
project filesets to other project filesets. As a result, when you check out
files that belong to a project, these files automatically belong to any
parent project fileset. You can then perform checkins, approvals and/or
distribution by referring to parent project filesets.

Transactions are logged under the parent fileset. When you refer to them
in commands, however, the last project for the file reflects the actual
project name at the time of checkout.

Projects 63

Authorizing Projects

If the project requires project authorization, the Project Manager or
Application Manager must authorize users to work on the project. Any
number of users can be authorized to work on a project. Project Managers
are automatically authorized to perform work for their own projects
without requiring special authorization.

Use the Project Authorizations (PA) screen to authorize users to work on
projects. Figure 6-2 is a sample project authorization for setting up a user,
Frank, to work on the REPT-MODS project in the FIN application.

. PROJECT AUTHORIZATIOMNS PR V1.0

Application Project User
i T

Figure 6-2. Project Authorizations (PA) Screen

6-4 LIBRARIAN/IX Administrator’s Guids

Changing Project Status

Use the Project Status Change (PS) screen to review and modify project
status. Figure 6~3 shows a sample PS screen.

LIBPRARBIAN

[PROJECT STATUS CHAMGE S V.00

Appl Project Hape Project Descriplian

1N | Report modi ficalions for neo budget end expense
ailocation parposes

user Status [DICENEES N Pruject Ionager PAT
Crrant Project States : OP ® Yolld Operations :
D -— Dooumented fz2 — OFEl
0 — Opened * 13 — OOSE TO CHECKIRT
I — Closed 1o CHEDNOUT steps {4 — DOOSE
Q. — Clased to al) sieps f5 — HEDPEN
R0 — Reopened 16 — FLUSH
FP — Flush Pending » PJ — DELETE PROJECT
FL — Flushed ENTER — OHNGE USER STATUS

Figure 6-3. Project Status Change (PS) Screen

Possible project status values are:
DC Documented (project was defined but not opened)
oP Opened

cc Closed to Checkout (project can be used, but not for
master-to-secondary steps)

CL Closed to All Steps
RO Reopened

FP Flush Pending

FL Flushed

If you want to deactivate a project temporarily, use F4 (CLOSE). To
reactivate a closed project, use F5 (REOPEN).

To flush the transaction log records for the project and project fileset, use
F6 (FLUSH). The project status will change to “Flush Pending”. After
flushing the project’s log records with the FLUSHLOG utility, the project
status changes to “Flushed”. You can delete a project with a “Flushed”
status on the Projects (P]) screen, if you wish.

Projects 65

Reviewing Projects

Use the Project Inquiry (PI) screen to review all of the projects for an
application.

You can select a specific project status, or one of the following status
groups:

AL All Projects

Al All Inactive Projects

AC All Closed Projects

AA All Active Projects

AO All Open Projects

Figure 6-4 shows a sample project inquiry for all projects in the FIN
application. The same information is also available offline in the Project

Detail Report (RPJ10).
] PAOJECT TNQUIRY PI ¥.1.69

applicotion TN Select Stetus
Project UDate Dnie Dete

Project Nese SI s Route 10 nMomepr Opered Closest Flusted
REPT-HIIS P o« EWL PAT 81/18/94

* Project Ruilkorizalion Required

Figure 6-4. Project Inquiry (PI) Screen

Flushing Project Transaction Records

Transaction records for projects are protected from being flushed, when
you run the FLUSHLOG udlity. Project audit trail records are saved until
you change the status of a project to “Flush Pending” on the Project
Status Change (PS) screen. The FLUSHLOG utility flushes log records for
projects providing the project status is “Flush Pending”. After running
FLUSHLQOG, the project status changes to “Flushed”. Once flushed, you
can delete the project record on the Projects (P]) screen.

66 LBRARIAN/iIX Administrator’s Guide

Using Projects in LIBRARIAN

When projects are defined for a route, you can associate files created by
steps within that route with a specific project. If the route definition
requires project identification, you must associate the work with a project.
Once a secondary file has been associated with a project, it cannot be
changed in a subsequent step — you must wait until the route has
completed (i.e., the file checked in).

When you perform a step, you select a project from a menu of the open
projects you are authorized to work on. If projects are optional for the
route, you can select the “no project” option from the list.

Additionally, you can specify the project on the command line by
substituting the project name for the route when performing a step. For
example, to perform the AP-OUT step for the REPT-MODS project, type:

Project Filesets

Associated with every project is a fileset containing the master files that
are checked out under that project. This is known as a project fileset.

Filenarnes are automatically added to the project fileset when files are
checked out or new files are introduced for the project.

When you use either the CLEANDB or PURGE command to remove the
last master, related secondary, or retained file, the master filename will
automatically be removed from the project fileset.

Additionally, if you use either the MOVE or RENAME command to remove
the last master, related secondary, or retained master associated with a
project, the old filename will automatically be removed and the new one
will be added.

Note Steps will automatically locate secondary file(s) in the step source
location if you specify the project or project fileset.

Distributing Files by Project
You can imply the files associated with a project when performing a step
by specifying the project name, rather than files. The syntax is:
>step.project

Alternatively, you can omit the project name and select your project from
the project menu when projects are defined. In menu mode, this is the
only alternative.

Frojects 6~/

Subset selection by project selects only files associated with a particular
project. This parameter must follow all file references, including
destination locations, if specified. PROJECT is valid for all commands.
The syntax is:

filefist: PROJECT=proj

If you use a step to copy files in read-mode (e.g., move—to—production),
LIBRARIAN automatically copies the appropriate revisions of the files
associated with the project that you specify. However, if you do not use a
step for file distribution (e.g., COPY), then use the project fileset as well as
the PROJECT parameter.

6-8 LIBRARIAN/IX Administrator’s Guide

Versions

LIBRARIAN is a powerful configuration management tool that allows
you to create baselines for your applications at spedific strategic points in
time. This chapter describes how to manage versions of applications
within LIBRARIAN. Topics discussed in this chapter include:

® Version Management
Working with Versions
Using Forward Versioning

Tags

Reviewing Version and Tag Information

Version Management

Note G

A version is a collection of files in an application at a selected point in
time, corresponding to a particular release or configuration of the
software. Establishing versions for your applications lets you:

8 manage the files in a version as a single entity,

® group different kinds of related files (for example, source code,
executables, graphics, documentation, etc.),

® track changes to applications, and
® distribute versions easily and quickly.

Versions are often used to identify a software release. In a development or
maintenance environment, several versions of an application often
coexist. LIBRARIAN's version management capabilities allow you to
definre a version for an application at any point in time with a name you
provide. You can then easily distribute or branch-off development of any
existing version.

When you create a version, the current revision of each file in the
application’s master library is stamped with the version identifier.
Members of a version can be retrieved individually or as a whole, even
when newer revisions or versions are introduced. You typically retrieve
files from previous versions for modification, distribution, or restoration.

Versions apply to an entire application; revisions refer to changes made
to individual files within an application.

Versions 7-1

The initial revision of each file in an application comprising a version is
the base revision or root revision of that file. The version count (VCOUNT)
for the base revision is 0, each time you check in a revision this counter is
incremented by 1. Base revisions are protected from being flushed until
you specify that the version is obsolete. Refer to Chapter 4, “Revisions”,
in the LIBRARIANAX User’s Guide for more information about managing
revisions to files.

LIBRARIAN version management allows you to describe and reference
alt files comprising an application at a specific point in time. With
versions, revisions assodated with the version make up a baseline and are
protected as a collection of files.

Figure 7~1 shows two versions of a sample application that includes five
files. The first version is called REL-1.

FILE A FILEE

Figure 7-1. Sample Versions

During the revision process, file A is modified three times, and three
generations are retained. File C was modified once, and file D was
modified twice. Files B and E were not modified.

When new version REL-2 is created, LIBRARIAN locates and marks the
most current revision of each file in the application. These files comprise
the new base version and the VCOUNT is set to 0. Because files B and E
were not modified, they are members of both REL-1 and REL-2. Files that
are members of current and previous versions cannot be flushed unless
all versions to which the file belongs are obsolete. The version created is
REL-1 and the current version is REL-2.

Base revision files for REL-1 remain protected. These files are kept until
you specify the version as obsolete by using the OBSOLETE parameter of
the VERSION command. Any revisions expired or associated with an
obsolete version are flushed using the FLUSH utility.

7-2 UBRARIAN/IX Administrator's Guide

@

@

Working with Versions

LIBRARIAN tracks the various versions of applications with user defined
version IDs. When you create a version, LIBRARIAN prefixes all revision
identifiers with the new version ID. For example, REL2:0 indicates the
base revision of REL2. If no version has ever been defined for an
application, the version ID is an asterisk (*).

Creating Versions

Create the first version when defining the file library for the application,
and before the first file is checked out of the library. Record the version
using the VERSION command. If your files are not ready for release, you
could call the initial version a pre-release.

For example, stamp every master file in the PAYR application with the
version ID PREREL-1 by typing:

>VERSION PAYR ;ID=PREREL-1 ;DESCRIPTION=prerelease 1

You can also create a version by selecting the version option from the
Admin menu.

You should create versions of an application when releasing the entire
application into production, or when creating a baseline for future
development.

Referring to Versions in LIBRARIAN

A user with LIBRARIAN Manager, Application Manager, or Operator
capability can use the RESTORE command to restore a previous revision
of a single file or a version of an entire application from the library. In
menu mode, you can specify a version in dialogs that restore and /or copy
files by pressing the “Revision Criteria” function key. These options are
also available in command mode. For example, the following command
restores the revision of a file that was part of the REL-2 version baseline:

>RESTORE REL-2 OF DRERPPUB.FIN
>RESTORE REL-2 OF fapps ffinance/pub/drep

In addition, all of the LIBRARTAN commands that perform file
operations can use version references. All references to previous versions
retrieve the base revision unless the VCOUNT is included or revision ID is
specified. The following command copies the version REL-5 files, using
baseline to a test:

>COPY REL-5 OF %PAYFILES TO =.TESTS
>COPY REL-5 OF %PAYFILES TO _ftestS/=

Versions 7-3

If you are retaining intermediate revisions of files, you can retrieve them
by referencing the version and the VCOUNT or revision ID. For example,
the following command copies the second revision of PAYTAB.PUB.FIN
in REL-2:

>COPY REL-2 OF PAYTAB.PUB.FIN;VCOUNT =2

>COPY REL-2 OF /fin/pub/paytab,VCOUNT =2

You can check out or distribute a version using defined steps. For
example:

>PAYR-DIST REL-2 OF %PAYROLL

Changing Version Status
You might want to declare some versions obsolete and flush retained base
version files.

Make a version obsolete by using the OBSOLETE parameter of the
VERSION command or selecting the Version option from the Admin
menu. For example, make the first pre-release version of the PAYR
application obsolete by typing:

>VERSION PAYR ;ID=PREREL-1 ;OBSOLETE

Return an obsolete version to its previous status using the UNOBSOLETE
paramneter of the VERSION command. For example, unobsolete the first
pre-release version of PAYR1 by typing:

>VERSION PAYR ;ID=PREREL-1 ;UNOBSOLETE

Note You canniot make a version obsolete if an active older version exists;
you cannot reinstate a version if an obsolete newer version exists.

Deleting Versions

It is not necessary to delete flushed versions. It is recommended that you
keep old version records as an audit trail of the application’s version
history.
To delete a version, use the DELETE parameter of the VERSION command.
For example, delete the pre-release version of the PAYR application by
typing:

>VERSION PAYR ;ID=PREREL-1 ;DELETE

Note ﬂ A version must be marked as obsolete and the files flushed using the
FLUSH utility prior to deleting the version using the DELETE parameter
of the VERSION command.

74 LIBRARIAN/IX Administrator’s Guide

Using Forward Versioning

LIBRARIAN provides an alternate method for managing successive
releases of an application called Forward Versioning. This method requires
storing each major version of an application in a separate location. Files
are checked out from the old location, modified, compiled, and checked
into the new location.

Thus, the new location is gradually built up until the new version is
complete and ready for distribution to one or more production locations.
Each version can include all of the files in the application, or you can
choose to include only the programs that have changed.

How Forward Versioning Works

When you use a checkout step that has forward versioning rules
associated with it, LIBRARIAN first attempts to check out file(s) from the
new version location. This location is specified as the source location on
the Steps (ST) screen.

If the file(s) do not exist in that location, then LIBRARIAN searches for
the file(s) in the alternate (0ld) version location(s) as defined on the
Forward Versioning (FV) screen. Pending master records are created for
files that are checked out from an old location, so that they will
automatically be moved to the new location on check-in.

Sefting Up Forward Versioning

You define forward versioning rules for the checkout
(master—to—secondary) step using the ST and FV screens. No
modification to the checkin step is required. To set up forward
versioning, do the following:

1. Define both the old and the new master version locations within the
same application. Further, make sure that these locations are in the
scope of the step fileset. Then, use SHORTCUT, or use the Auto
Filesets (AF) screen followed by running AUTOUPDATE.

2. Set up the checkout step using SHORTCUT or the Steps (ST) screen to
copy files from the new version location to the development area, even
though no files exist yet in the new location.

3. Define forward versioning rules for the checkout step on the Forward
Versioning (FV) saeen. Enter the old library location(s) as alternate
search location(s). See Figure 7-2 for an example.

Versions 7-5

LIBRART AN

- FORMARD VERSIONIME FY v.1.00

Step Route app!

FCET. ST X

Previous Version Search Locolions

tem F1 lenspe
ZE LN S

Figure 7-2. Forward Versioning (FV) Screen

Multiple Search Locations

It is possible to define multiple alternate search in multiple locations for a
single checkout step. The sequence of alternate location checking is
determined by the sequence number specified on the FV screen. Using
this approach, it is possible to set up a “base release” location, then
separate locations for each subsequent “minor” or “partial” release. The
FV checkout searches each location in turn until it finds the requested
file(s), always retrieving the latest version of the file(s). This is illustrated
in Figure 7-3.

DEV-OUT search 2

FINREL 1.1

ANREL 1

Figure 7-3. Aliernate Search Locations for New Release

A new FV location must be added and the ST source location changed
every time a new release account is created. To establish a new “base
release,” simply check out the entire application and check it in to a new
directory, purge all the old directories, and start the process over.

76 LIBRARIAN/iX Administrator’s Guide

Using Forward Versioning for File Distribution

Distribution steps (master—to—secondary, read mode) can also make use of
forward versioning. In the multi-~account FV model described in the
preceding section, an FV step can be used to distribute the entire
application’s executable files, and will always select the most current
version of each file.

Concumrent Maintenance and Development

Forward Versioning can be used to support concurrent, or overlapping
maintenance and development. In the scenario described above, the FV
checkout is used for development, creating a new library location with
the changed modules only. To allow maintenance of the old version while
development is taking place, set up a second checkout—checkin process,
possibly in a different route, to check—out from and check—in to the old

location.
REL1-OUT . -
REL
]
m
REL2-OUT (1) ~)
Rel2 REL2-IN W

Figure 7-4, Concurrent Maintenance ond Development

With this process, it is possible for one programmer to maintain a given
program through the maintenance route while another programmer
enhances the same program for the next release through the forward
versioning route. Both copies of the file are write mode secondaries.
Unlike the “emergency fix” (PUSHREAD) approach to this situation, there
is no notification or exception logic when ¢ither secondary is checked in.
Such notification and lock can be achieved with a macro, if desired.

Using Forward Versioning with Vendor Software

Forward Versioning is useful for managing custom changes to
vendor-supplied software by aliowing you to keep the vendor’s original
source physically separate from your customized changes.

To accomplish this, set up forward versioning as described above and
restore the unmodified vendor source into the old location. Use the FV
checkout to make local changes, checking in to the new location. Under
this scheme, programmers do not need to know whether a given program
has been customized or not. If it has, it will be checked out from the new
location; if not, they will get the original vendor source from the old
location.

Versions 7-7

Tags

#@d

To install a new vendor release, restore files into the old location or restore
into a separate location and checkin to the old location. Check out each of
the customized files from the new location, integrate vendor changes, and
check in,

In addition to identifying entire applications with version identifiers, you
can assign a tag to any set of files within an application for future
reference. One example of using tags is to identify a subset of an
application’s files that make up a patch for distribution.

To assign a tag to a group of master files, use the SET TAG command or
select Set...Tag from the File menu. For example:

>SET ABC@.SOURCE.PROD; TAG=PATCH201
>SET /prod/source/abc®; TAG=PATCH201

Regardless of how many times these files are revised in the future you
can always refer to the correct revisions that made up this patch by
typing (or using the revision criteria option in menu mode):

>A-OUT ABC100.ABC200 ;TAG=PATCH201
LIBRARIAN checks out the tagged revision of each file, branching if
necessary. See Chapter 4, “Revisions”, in the LIBRARIAN/iX User's Guide.

You can display the tags for files using the VERIFY command, format 16,
“Revision Information”.

7-8 LIBRARIAN/iIX Administrator’s Guide

Reviewing Version and Tag Information

You can review version and tag information by using the VERIFY
command. For example, to view information for the files in the ABC
application, type:

>VERIFY %ABC
VERIFY produces the menu shown in Figure 7-5.

LIDAARL AN VERIFY NENU
6 Files @ Uniomen 6 Mesters 0 Secongaries 0 Retained 8 Peltn

[01] Actiml Nodificotion Tinestonp. Flilecoge, all files

[62] LIB nodification Tiseslamp, Lock Status... ... all flles

[63] Associeled Master File (or Ozita Fille)..,.... all flles

[64] rssociatled Master Filesai(s) -.. oll files

[65] nAssocisled Projeci(s).............. all files

[65] Associated Rser Filesel(s)......... all files

[67] version Inforwotion..........covvnmnvnininns all flles

[69] mMaster File Counters..........ccovuiniinvnnn. master files only
[69 Location of Wriletiode fopy........coovnnnen. sasier {lles oniy
[18] Previous Vertions (Generaled Flles).......... saslert/secondaries
n Ozner, Access Modo, Expiretion, Bxceptions.., sscondarles only
[12] LBSt S1eP...ccureesrartvarronrrasirannaorrons sacondarjes anly
[13] Step Historg.............. .. Secondarics oaly
[14] Original File Nome oo retoined files anly
[15] Date Retained, Expiration Bate............... retained filos aniy
[16 fAevision Informotion/Tog......ccvcvvnnninrany o)l trocked {iles
[17 Revision History....... ... c..coaiiaas, . masier files oniy
[18] Loanguage/Bescriplion.o.vvvnvriennerrennes mster files only

(19 Retarn tn LIERARIEN prospt (or “G°)
Forsst Mmber [LP1?

Figure 7-5. VERIFY Menu

Format 7 displays version information. Format 16 displays tag
information.

Figure 7-6 shows format 7, version data, for the PAYR application.

LIERRAIAN VERIFY (RIl Files/Version Date)
File Current Version

Flle Type Versim Created L, o "
PENEY TN : AEL 100815 . SUYRCE , L 16PA no v.2ea v.1.00 0 2
PENGU N : LS . SINECE . L IBPROT n v.2.m8 v.2.08 13
PENGU TN : ABCIO0GS , SIUACE . L I6FRID H v.2.88 v.1.80 8 2
spoinik: /apt/ocs/ocs] ID/libgrod/ N V.2.8D v.1.08 81
abc 1800 .¢

sputnik:fopt/ocs/ocst D/ ibgproad/ N V. .2.88 v.2.08 t 2
abc 2R .c

sputnlk:/opt/ocs/ocs 10/ Ibprog/ N V.2.88 v.2.00 2
abe3000. ¢

Figure 7-6. VERIFY Display with Version Data (Format 7)

Versions

7-9

Figure 7-7 shows the tags for the ABC application using format 16.

LIBRARIAN VERIFY (Mesters-Secondariss/Movision Information)

File Latest! Rewislon/Teg
FEMGUTN: ABC 1699S . SOURLE . L 1 BEPAIGD v.2.e8:1
PATCH-281
PENGUIN: RECPHBES . SOURCE . L 1BPRLD $.2.00:2
PENGUIN: RECIB6S . SOURLT . L IBPROD v.2.@e:1
PATOH-281
sputnik:/apt/ocs/ocs|in/) ibprod/ V.2.00:2
abhc1088.c
spuinik;/opt/ces/ocs| b/l Ibprod/ ¥.2,00:3
abhe2008. & PRTCH=UIH-201
sputnik:/opt/ocs/ocslib/lioprod/ ¥.2.00:2
ahcI608. ©

Figure 7-7. VERIFY Display Showing Tags (Format 16)

Version Reports

Version information is available in standard LIBRARIAN reports, as

shown m Table 7-1.
Table 7-1. Version Information in Standard Reports
Report Report Title Description
Code
RFNIO Pre-Flush Nofification Files that will be flushed by user and by
filename.
RFN20 Pre-Flush Nofification Files that will be flushed by filename.
FLUSH Flush Wility Detail Files that were flushed.
RAVIO Apriication Version Versions for an application.
RFC10 Filesat Status Version membership for spedific files.
RFD20 Master File Status All master files and assodated files.
RGF10 Generated Files Cross reference of retained generations and
original filenames.
RRH10 Revision History Shows history of file revisions with
tmestamps.
RVDI10 File Version Shows detatled information on all files ina

Versi10mn.

7-10 UBRARIAN/X Administrator's Guide

Reports 8

LIBRARIAN's reports and online inquiries allow you to review the rules
you have defined, file status and history information, and the audit trail
records.

This chapter describes how to generate reports and online inquiries.
Topics discussed in this chapter include:
m Generating Reports
File Inquiry Screen
Project Inquiry Screen
File Information Using VERIFY
Version Inquiries
Step/project Inquiries Using HELP
The SHOWLOG Report Writer

Generating Reports

You can review your rules at any time by generating standard reports.
These reports reflect the rules you defined for the library, file movements,
and user authorizations, in addition to the current status of files, filesets,
projects, versions, and listings of files ready to be flushed.

Menu Mode

You can generate any of the standard reports by selecting Files...,
Versions..., Rules..., or Log... from the Info menu. Select the report you
want from the appropriate menu. Some reports will require answers to a
series of prompts.

Reports 8-1

Command Mode

You can also generate any of the standard reports directly from the
LIBRARIAN prompt. Type the report name and press ENTER. For
example:

>RFX10

In addition, you can generate standard reports from report]obstrea.ms,
and redefine the output device and priority.

For more information on reports, refer to Chapter 6, “Reports”, in the
LIBRARIANAX Reference Guide.

File InqQuiry Screen

The File Inquiry (FI) screen provides complete status information for a file
or fileset, including the access mode, related master or secondary files,
historical totals for read mode and write mode access, version
membership information, most recent fransaction information, and dates
of file creation, retention, and expiration. To access this screen, select
Files... from the Info menu and select the FI option. From the command
line, type FI followed by ENTER.

Figure 8-1 shows a file inquiry for a master file on one system with a
write mode copy in development. This information is also available with
the VERIFY command.

[] FILE INQUIRY F1 V.1.08

Fligx In Flissl IEATCONENEN 0
tes Fliennme
P BREL L0GYS SUURCE . L IBPROD

Flle Acc acc Longuege XEEWIEE IEEEE —l:lrrmt Totnt—
Ir l:n%rlll;b Mrite Beod lrits

fxsociaten Bnster File tII _ I 7 e
Corrent Hritefodge Secoms

PENGUTY BFF HGH [H: ABC1008S . JOSE PH. L TRUE VEL
versun Creoted Current Yersiom YOnt E’:ltt Lot St .MesProlect ﬁ
Last Slqi FI la Elplretlm 0] 1] Data Timn

Oreniod htall’dm
AIEm TN e G0 e GARE

Figure 8-1. File Inquiry (F) Screen

8-2 LUBRARIAN/X Administrator’s Guide

Project Inquiry Screen

Project inquiries provide information on the status of projects for an
application. Figure 8-2 shows a project inquiry for all projects in the MFG

application.
[PADJECT INAQUIAY FI v.1.88

App1 lcot fon Select Status
Froject Date Rate Date

Project Neme St Roule ID nenager (pened Closed F I ushed

- aw o

S 1564 o o AINT L I19nGR 12/15/93
SH1572 o MPE—MRINT LIBMSA 12/15/93
SR1558 [HFE-NATNT L10MsH 12/15/93 01704794

* Project Ruthorization Rep)vod

Figure 8-2. Project Inquiry (Pl) Screen

To access this screen choose Projects... from the Screens menu, from the
Admin menu, or enter PI on the command line.

File Information Using VERIFY

The VERIFY command offers extensive information about files. You can
review information such as who last checked out a file, when it was last
checked out, where it was copied, and which step was performed. When
issuing VERIFY, spedify the files or filesets to review. For example:

>VERIFY %MFG-FILES, F@.PUB.FIN, Ji#H#P.JOB.FIN

VERIFY displays a menu of formats. Each format includes different
information. You can review the information online or use the OFFLINE
(or LP) parameter to send the information to another device. Figure 8-3
shows the VERIFY menu.

Reports 8-3

LIBRAAIAN VERIFY NENU
6 Files 0 Undmoen 6 Hasters 0 Secondor jes 0 Retained 9 Delte

{01] Actmm) nodification Tinesteap, Filecode...... oll fides

[82] LIB nodificollon Tigestnep, Lock STOtUS...... all files

(03] Rssoclated master Flle (or Detta Fije)....... all flles

[64] Associated Mester Fileset(s) oll files

[65] Rssocioled Projeci(s)....... ew. all files

[86] Associated Usar Fileset(s),. -ven gl files

[07] Version Informstion......... @atl flHies

[88] nester File Coumters........ -... master flles only
[69] Locetion of Hritetode Copy saster files only
[19] Previous VYersions (Generated Files).......... 45 1ers/secondar ies
[11]1 Omner, Rocess Mode, Expirotion, Exceptions... socomgaries only
[$2] Lest Step...cuuiniiniianrremiecirnannaarnnas secangeries anly
[13] Step History...uosiiiiaionineraninnnconanaans secondories miy
[14] Original File M.ovvevincinnnineranes retained files anly
[151 Dote Bstained. Expirntion Bete............... rotained files only
[16] Revision INforeation/Tag. . .co.vvvenrurnnsa, all tretked flles
[17] AewiSIon KiISTOrY. ...ooioisinrenannncnsanan, saster files only
{18) Languege/Meser iption. .coveiee oy vrnrcvnrnn. master files anly

(197 Beturn to LIBRAAIAW propt (or °0°)
Forzal Mambher [.LP]?

Figure 8-3. VERIFY Menu

When you enter a format number, the requested information appears.
You can continue to choose different formats for the same files until you
type Q to quit and return to the LIBRARIAN prompt. Figure 84 is a
sample display of master files and the location of their associated write
mode copies (format 9).

LIBRAAIAN VERIFY (Master Files/Current Urite-tode Copy)

Def
File A/C AM Gwrent Wreite-Mode Copy (or Copies)

PEMFU N : AEC 10065 . SERCE . L IDPROD H PENGUTN: ABC {BEEES . VERUE ICM. L THIEVEL
PENGUIN : AECZEEES . SUURLE . L 1GPRID

¥ PERGUTH: ABCSYES . VERONI Ok L1 BOEVEL

-3
3
PENGUIN: ABLIB0GS . SOURLE . L IBPROD 5 N PENBUIN:ARCIBONS . VERINICA. L1 BOEVEL
sputnik:/opi/ocs/acs ib/1 Ibprod/ 5 N sputnik:/opt/ocs/ecs! 0/ 1 Ibdova 1/
abe 1008.¢ poul febc 1689 . ¢
sputnik:/opt/ocs/ocs] 1/ Lprod/ S M sputnik:/opt/ocs/acs))b/ 1 ibdeve) /
abe2008 s

dehiny/obc 2883 c
M sputnik:fopt/ocs/ocs) b/ ibdesl /

.0
sputn ik: /opt/ocsfocs| 10/ | Ebprog/
abc3960. ¢ poul febc30E. ¢

Figure 8-4. VERIFY Display (Format 9)

8-4 UBRARIAN/X Administrator’'s Guide

Version Inquiries

The VERSION command (available from the Admin menu) provides
information on all of the versions for an application, including current
status and baseline dates. The following shows a version inquiry for the
AP application. The same information is available offline in the Versions

Report (RAV10).
= VERSIDNS FOR APPLICATION WFB
Version Seq Description 5iol Created Dhenlate
vz.a1 4 Field relemse of WG Rel 2.00 CURR 91/a5/94
ve.mm J 6 Relense 2.88 PREV 12/15/9)
e1.01 2 Field releass of WFG 085 63/15/93 81/ 18794
vi.00 1 Initlial releasa of WFG FLSH 121/ 1272/%

Figure 8-5 Versions Display

Step/Project Inquiries

You can review step and project information online with the HELP
command, using the stepname as its parameter, you can request
information on the defined defaults, allowed overrides, and other step
information. You can also obtain this information for steps by pressing F1
on the Steps menu (accessed from the File menu) or for projects by
opening the Projects menu available from the Settings window (accessed
from the User menu).

Reports 8-5

Figure 8-6 shows the step information windows for the AP-OUT step.

>HELP AP-OUT

Step: AP-OUT DEVELOPMENT .DEMO GLOBAL VALUES
Move Bp Exp

NOTvpe StepFieSet Eom/Iolocations Ime Sec Ret

10 M3 DEMO-FILES @.@.TPUBPROD.SYSA COFY 0 @

=USERID .TPUBDEV .5YSA
Desc: This step copies files from production to development

Step: AP-OUT DEVELOPMENT .DEMO PREVIOUS VERSION LOCATIONS

Previous Version Locations will be searched in the following order:

010 = = .TPUBLIB.SYSA
Step: AP-OUT DEVELOPMENT .DEMO REFINEMENTS
There afe no step refinements.
Step: AP-OUT DEVELOPMENT .DEMO PRESTEPS

No presteps are documented for this step.

Step: AP-OUT DEVELOPMENT .DEMO PENDING AREAS

There are no pending production aracs aesocicted with this step.

Step: AP-OUT DEVELOPMENT .DEMO DEFAULTS

Default parameters for the step are configured as follows:
ONUNE, MEMCY, NO COMPRESS, NO DECOMPRESS. NO RETAIN, NQ ORFHAN
Note: | means that you cannot ovenide the default when you perfomn.this step.

Figure 8-6. Help Information for AP-OUT Step

8-6 LIBRARIAN/IX Administrator’s Guide

With the HELP STEPS command, you can review a list of the steps you
are authorized to perform and information about the step, as shown in
Figure &-7.

l—mmnlzm STEPS
User 10 HRX Mases: Mol | Skeet Phone: X989
Step foute HAppl nove Ty From Location Node
T FE—RINT 6 COPY 1S PONRJIN:@.9, LIBPROD E
WF6—¥EN WFE-MINT .WF6 MAL 55 PEMSUIN:O. JUSFRID. L IEDEVEL [Py]
FE—-DuT WFGHIKT .WF6 COPY NS sputnik:/opt/ocs/ocsiin/libpred/s R/
F5-8% JEGMRINT FG MALL 55 PEMGUIN:©.2.LIBDEVEL R/
i 4]] JEB-MAINT .IF6 MVE SN spotnik:/opt/ocs/ocsTib/libdewel/ R/AM
HUSERTD/ »
W6-TEST JAFGRINT WG MOVE 55 PESUIN:@.9.LIBIEVEL R
W6-FRIL LF-AINT LFE ENE S5 PEMGUIN: 0. €. LIBTEST U
WG-TESTOK .WFGAINT ./FG MAL SS PENGUIN:€.0.LIBTEST N
WFH5-Iw JF-RINT 0FG COPY SN PENGUIN:Q. €.LISTEST AR
WE-FI% JFRAINT S IFE MVE SN PERNGUIN:S. @ LISTEVEL R/
Enter HELP and (he name of the Step for {urlher inforzation.

Figure 87. Help Steps

In addition, you can use the HELP PROJECTS command to review an
online list of which projects you are authorized to work on, as shown in
Figure 8-8.

|—ni.I'I'IIUIIZE!I FRLELTS
User ID: MAM Nans: Mool) Seowt Phores: K99
fippl Project 51 Project Rascription
e SH1S6Y P add BAOKLOG-DRYS 1o IFE (598 REPORT
SRR 0P Fix boumis violation problez in WFR2DO0 at 1,832
SR1598 [T Fix string overfioe problem in A% lransaction
End of Project authorization list.

Figure 8-8. Help Projechs

Reporfs 8-7

Using the SHOWLOG Report Writer

SHOWLOG is a flexible report writer that allows you to select and report
transaction data from the LIBLOG audit trail database. By using
SHOWLOG, you can review transaction history information selectively in
a vaniety of formats.

In addition to reporting capabilities, SHOWLOG offers several other
functions:
® EDITMEMO allows you to edit memos entered when performing
steps.
@ LIST allows you to create a listfile of files in selected transactions.
® FLUSH flushes selected log records.

Access SHOWLOG from LIBRARIAN with the SHOWLOG command or
select Log... from the Info menu and then select SHOWLOG.

SHOWLOG initially displays default selection criteria and default report
settings, followed by the SHOWLOG prompt, as shown in Figure §-9.
The default is to include all transactions in the database. The default
report settings are the concise format, unsorted order, and an online

display.
— EE R
APLICATION : » RUTE : » STEP/O®: »
PROJELT e USER(S) : DATE(S) ¢ »
MWD TEXT : o«
FILE(S) ! MASter =

Report Settings

TITLE: SHOMLDE Tronsection heport
GILIE CONCISE WWSOATED

SHOM (6

Figure 8-9. Inifial SHOWLOG Display

Use SHOWLOG commands listed in Table 8-1 to specify the transactions
you want to review and the way you want them presented. For more
information, refer to Chapter 4, “SHOWLOG Commands” in the
LIBRARIAN/iX Reference Guide.

8-8 LUBRARIAN/X Administrotor's Guide

Table 8-1. SHOWLOG Commonds Summary

Command Function

Selectlion Criteria

SHOWLOG>SE[LECT) Extracts only those transaction records which match the
specified selection critena,

Report Format i

SHOWLOG»>FO[RMAT] Chonges report famat.

SHOWLOG=LI[ST) Creates a listhle containing the names of files involved in
selected fransactions,

Output Definition

SHOWLOG=OL[TPUT] Sets the report output dispasition to offline or online.

Sort Sequence

SHOWLOG:-SC[RT) Sefs up the report sonf sequence.

Report Sellings

SHOWLOG>GE[T] Processes commands from a file,

SHOWLOG»>SAVE] Sﬁgves cument report setlings and selection critetian a

Generate Reports

SHOWLOG>GO Generates report using current report setlechion critetia
and setings.

Subsets

SHOWLOG>SUB[SET) Selects asubset of cumerttly exiracted fransactions for
reporting,

SHOWLOG»UN[DO] Reseis the cument subset.

Other Commands

SHOWLOG>EX[T) Terminates an active SHOWLOG session, and retums you
to the LIBRARIAN prompd.

SHOWLOG=FL[USH] Deletes all log records associates with extraocted
fransactions.

SHOWLOG>HE[LP] Accesses the online help for nformation about using
SHOWLOG.

SHOWLOG>RED([O] Edits the previous command entry.

SHOWLOG>RES[ET] Resets selection criteria and/or report seftings to default
values.

SHOWLOG>SH[OW] Displays selection crteria and repost settings.

SHOWLOGTI[TLE] Sets g tifle to oppear on all pages of o report,

Reports B-9

The following sequence of commands selects transactions for all steps
performed by any user in the MFG application between December 1st

and 31st 1993, and selects the Surmary format, sorted by date and user,
with a new title.

SHOWLOG>APPLICATION MFG

SHOWLOG>12/1/93 - 12/31/93

SHOWLOG>SUMMARY

SHOWLOG>SORT DATE, USER

SHOWLOG>TITLE MFG Activity 12/1/93 through 12/31/93

Figure 8-10 shows the SHOWLOG display after you issue the above
commands.

SHONLOG SETTINGS
Setegction Crileria

APPLICATION : FG RENTE :» STEP/OM: »

PROLELT] USER(S) : = DATE(S) : 12/01/93-12/31/93
MO TENT : =

FILE(S) : Haster &

Report Seilings

TITLE: ™% Aclivity 1271793 through 12731793
M INE St SUATED BY ORTE USER

SHBALOG>

Figure 8-10. SHOWLOG Display

After setting the selection, format, and output criteria, generate the report
with SHOWLOG>GO. The report displays on the screen or is sent to the
defined offline device.

Figure 811 contains a sample SHOWLOG summary report.

LIBRARTAN HEG fctivity 1271793 through 12°31/73 PRl : 1
VERSI(N: 1.00 DPERATIONS CHMTBOL SYSTEMS DATE: B1/21/94
ST SEUEMLE: DATE, USER TIvE: 10:29
TRANGRCTLON LDG FR 12/14/93 18:88 Type PFC Stetus C
Applicalion IFE RAoule WFEIMINT Step IFBOUT Falled 6
User LIEMGR logged Wn &5 sminik:derek on ttypS Flles 1
TRASACTION LOG FOR 12/14/93 18:08 Ty PU States C
fpplication IFE Falled @
User LIBMSR logged In 65 sputhik:derek on tiyps Fliles 1
TRANSACTIN LDG FUR 12/14/93 19:02 Tupe TO Stotws C
fppllication WFE6 Faited]
liser LIENGH Logon PENGUIN:AGA.LIKOM:LDEVY 17 Flies L
TRANSACTION LOS FOR 12/15/93 11:47 Type PF-L Stotus C
fpplicotion WFE Project SH1S64 Step WH-OUT Failed ®
User JOSEPH Logon PEMGUIM:DEREX, MGR.LIKOA:LDEV 29 Flles 1
Contimwe? [v/M]

Figure 8-11. SHOWLOG Summary Report

810 LIBRARIAN/iIX Administraior’s Guide

Housekeeping Q

This chapter covers periodic housekeeping activities that the LIBRARIAN
Administrator typically performs. Other users might perform some of
these activities depending on how you implement LIBRARIAN. Topics in
this section include:

® Flushing Expired Files

» Flushing Expired Transactions from the Audit Trail (LIBLOG)

® LIBRARIAN Databases - Capacity Management

» Changing Database Passwords

® Changing Network Configuration and Remote System Logon
Information

Flushing Expired Files

LIBRARIAN allows you to set up rules to automatically purge, or “fiush”,
certain types of files based on age and other criteria:

s Read mode secondaries - can be assigned a retention period by the
step that creates them, or an expiration date through the SET
EXPDATE command. Once expired, these files are eligible to be
purged by the FLUSH utility.

® Retained masters and retained secondaries - (also called “g-files”,
either kept as MPE files or as deltas), are purged by the FLUSH
utlity only if they meet all of the following criteria:

o The current date is greater than the expiration date assigned via
the “safety retained days” on the step that created them, or set
by a SET EXPDATE command.

o They exceed the “minimum number of generations” configured
on the SP screen.

0 They are not “base revisions” (revisions with a zero VCOUNT)
of an active version.

Expired files, as described above, are purged by the FLUSH
utility-—either by issuing the FLUSH command from the command
prompt, or by selecting Flush from the Admin pull-down menu. The
FLUSH utility has no parameters; it simply purges files according to the
rules defined and the expiration dates of the eligible files. Prior to
running FLUSH, you may want to use the Pre-Flush Notification Reports
(RFIN10 and RFN20) to preview a list of files that will be purged by the
utility. If files appear that you do not want to purge, use SET EXPDATE to
set a new expiration date for these files (or set them to not expire).

Housekeeping 9-1

A common strategy with FLUSH is to use both the “safety retained days”
and the “minimum generations” restrictions to ensure that you have
sufficient history for both frequently and infrequently changed files. In
most installations, it is suffident to run FLUSH once 2 month. If you use
Versions, you may want to set the other controls more aggressively, since
base revisions will always be preserved.

Flushing Expired Transactions from the Audit Trail

(LIBLOG)

The FLUSHLOG utility flushes, or deletes, audit trail transactions that
meet the following criteria:

8 The transaction is older than the Audit Trail “Aging Policy” set (in
days) on the System Profile (SP) screen.

® If the transaction was associated with a project, that project has a
status of “flush pending” (FP).
Specatfic log records can also be purged through SHOWLOG, by using the
SHOWLOG commands to select records, then issuing the FLUSH
command.

LIBRARIAN Databases - Capacity Management

LIBRARIAN uses two TURBODMAGE databases, LIBDB (rules and file
tracking information) and LIBLOG (audit trail). Datasets in these
databases must be resized to accommodate growth, just like any
TURBOIMAGE application.

The CHECKDB command is provided to assist with capacity management
by reporting dataset capacities and flagging those that exceed a threshold
percentage full. The command can be issued directly,

CHECKDE (threshold)
or as an argument to the MAIL command,
MAIL user, CHECKDB=threshold

In the MAIL command, mail will only be sent to the specified user if there
are datasets that exceed the threshold percentage fuil.

9-2 LIBRARIAN/IX Adminisitator’s Guide

Changing Database Passwords

For security reasons, you may wish to change LIBRARIAN database
passwords periodically. Since these passwords are embedded in certain
LIBRARIAN programs, the programs must be changed whenever the
passwords are changed. To do this, run the program CONFIGP.COMP in
the LIBRARIAN account. See Appendix C of this manual for details.
CONFIGP changes only the programs; you must change the database
passwords themselves using DBUTIL or some other utility.

Changing Network Configurafion and Remote System
Logon Information

LIBRARIAN account (MPE only) and user passwords are used to connect
to remote and receiver systems, and are encrypted in the LIBRARIAN
database. They are maintained on two screens: Network Configuration
(NC) and Systems (5Y). The NC screen maintains default values and SY
specifies connection and logon/login information for individual systems
if they are different from those recorded on the NC screen.

Network addresses, network type (NS, DS, or UNIX), and dial-up
information are also maintained on these screens, so they are also used
when adding clients or receivers or changing your network configuration.
See the Reference Guide “Screens” chapter for detailed explanation.

MPE and UNIX client systems also require passwords to connect to the
LIBRARIAN server. On MPE clients, this logon and password
information is maintained via the CONFIGF.COMP program. On UNIX
clients, this configuration information is maintained with the command
ooslib —config.

Housekeeping 9-3

9-4 LIBRARIAN/IX Administrator’s Guide

Appendix A
Automatic Decompression

only

MPE

LIBRARIAN provides file compression for security and as a means to
save disk space. To use compressed files, it is necessary to first
decompress them. This process provides a version of the file that is
identical to the original uncompressed version, and the file is available for
immediate access. Typically, the file decompression process must be
initiated from LIBRARIAN using the DECOMPRESS command or the
OCSDCMP program. The user initiates this process on an ad hoc basis.

In addition, LIBRARIAN provides an automatic method of
decompressing files, as needed. In brief, programs that call the file system
routine FOPEN can be trapped by LIBRARIAN to first determine whether |
a file needs to be decompressed. If a file is stored in compressed format, it
is decompressed prior to the actual call to FOPEN. This feature is virtually
transparent to the application and user.

If the application only needs to read the compressed file, a separate
routine is provided that decompresses the file temporarily.

This appendix describes how to use automatic decompression with
LIBRARIAN.

Enabling Automatic Decompression

Use the following steps to enable automatic decompression for each
application program or group of application programs.

Add PH Capability to Application Programs

All programs that use automatic decompression must have PH capability.
A utility called PROGCAPS.COMP.OCSLIB can add this capability. When
you run this utility, you are prompted for a program name. Program
capabilities are displayed. Type PH (in uppercase) to add PH capability to
the program (lowercase indicates that the capability is absent).

Because of the Privileged Mode and stack requirements, file
decompression is handled by a separate process. A process for the
programn DCMPRSS.COMP.OCSLIB is created when decompression is
necessary; thus the requirement of PH capability.

Automatic Decompression A-1

Set Up Group/Public SL or XL

For compatibility mode programs, set up a Group (;LIB=G) or Public
(;LIB=P) Segmented Library (SL) for each application group or account
that includes the spedial FOPEN trap. If no SL is currently being used,
copy SLFOPEN.COMP.OCSLIB to the program group or PUB group
where the application programs reside. Be sure to rename SLFOPEN to
SL. (For temporary decompression, use SLFOPENT.COMP.QOCSLIB).
Remember to use the ;LIB= parameter of the RUN command.

If your application currently uses a Group or Public SL, add
LIBRARIAN's FOPEN trap to it using SEGMENTER, as shown below:

:SEGMENTER

-SL 5L

-USL FOPENU.COMP.OCSLIB

-ADDSL OCSFOPEN

-E
If your application currently uses an XL, add LIBRARIAN'’s FOPEN trap
to it using LINKEDIT, as shown below:

:UNKEDIT

LinkEd:> XL XL

UnkEd> ADDXL FOPENO.COMP.OCSLIB
Linked> E

(Use the USL file FOPENTU.COMP.OCSLIB for temporary
decompression).
Alternatively, copy the OCSFOPEN segment from FOPEN to your

program’s USL file, or RL and then PREP your executable program
referencing the USL or RL.

Note Because LIBRARIAN's FOPEN trap cannot coexist in the same SL with
G the system FOPEN routine, programs residing in the PUB group of the
5YS account (e.g., EDITOR) must be moved to a new group (e.g.,
PUB2). Make sure that your alternate group has the same capabilities
as PUB.SYS.

For native mode programs, use the XL file XLFOPEN.COMF.OCSLIB (or
XLFOPENT.COMP.OCSLIB to decompress files temporarily when
accessed). Alternatively, use LINKEDIT to add FOPENO.COMF.OCSLIB
(or FOPENTO.COMP.QCSLIB) to an XL or RL; or link it with other native
mode object files to create an executable program file.

A-2 LUBRARIAN/X Administrator’s Guide

Allocate DCMPRSS.COMP.OCSLIB

For faster loading, OCS recommends that you allocate the automatic
decompression program, as shown below:

:ALLOCATE DCMPRSS.COMP.OCSLIB

Now you can enjoy the convenience of accessing compressed files. Once
decompressed, files remain decompressed until compressed again by
LIBRARIAN (unless you use the temporary version.)

Error Conditions

The FOPEN trap and subsequent decompression are designed to be
completely transparent, although you may notice a slight delay when
accessing large compressed files. In the event that an error occurs during
decompression, check a JCW called OCSERR to reference the error
number.

a Errors less than 1000 are file system errors encountered during
decompression.

w Errors greater than 1000 are process creation errors (subtract 1000 to
obtain the true CREATEPROCESS error).

For example, error 1001 is CREATEPROCESS error number 1 which
translates to “Caller lacks Process Handling (PH} capabitity”.

If your programs check condition codes and call FCHECK, a file system
error of 560 will be returned for file system errors during decompression,
and 561 will be returned for process creation errors. If FERRMSG is
called, the following error messages are returned:

UNABLE TO DECOMPRESS FILE FOR ACCESS. (FSERR #Hr)

ERROR CREATING PROCESS TO DECOMPRESS FILE. (CREATEPROCESS
ERR #H)

If your application does not use FCHECK and FERRMSG, check the
OCSERR JCW if the program fails to access a compressed file. This will
help you determine the problem.

Autorndtic Decompression A-3

A-4 LIBRARIAN/IX Administrator’s Guide

Appendix B
LIBRARIAN Ufility Program

Operation

A utility is available for miscellaneous functions including globally
changing system IDs. This utility facilitates moving applications or an
entire LIBRARIAN implementation to a new system.

The LIBRARIAN Utlity program is called LIBUTILRCOMP.OCSUB. To use
LIBUTILP, log on as MGR.OCSLIB on the MPE server and type:

‘RUN LIBUTILP.COMP.OCSLIB
The program presents a menu of options as displayed in Figure B-1.

OCS/LIBRARTIAN/1X Version 1.00.00 {C) Operations Camtrol Systems. Imc. 1993
LIBUTIL LIBRARIAM ttility Functiions

LIBRARIAN Utillty Functions

1 = Charge Systew ID in LIOOB
2-m&mmfwmﬁmlim1m
3 = Unluad dats base to a flle

4 = Lnad dsts bhase from a flle

E ~ Exit

Please type desired aption: [

Figure B-1. LIBRARIAN Utility Functions Menu

This appendix describes the options on the utility menu.

Changing the System ID in LIBDB (Option 1)

You can use UBUTILP to copy your LIBRARIAN database to a file, scan
and replace occurrences of the system ID, erase the database, and then
reload it. We strongly suggest that you make a backup copy of LIBDB
before executing this function.

After you have accessed the Utility Functions menu, enter 1 to select the
“Change System ID in UBDB” option. You will see the following prompts
(sample responses are included):

Do you have a curent backup of LIBDB? (NfY) Y

Old System ID: VENUS
New Systermn ID: MARS

LIBRARIAN Wiility Program B-1

After you respond to the prompts above, you will see messages similar to
the following:

Changing System ID from “VENUS” fo “MARS".

Unloading LIBDB
Ercsing LIBDB vvvvveeevees
Reloading UBDB,
Entries changed:; 78

Changing the System ID for an Application (Option 2)
You can use LIBUTILP to change your system ID for a specific application.

After you have accessed the Utility Functions menu, enter 2 to select the
“Change System ID for an Application” option. You will see the following
prompts (sample responses are included):

Do you have a curent backup of LBDB? (N/Y) Y

Application: LOUS

Qld System ID: MARS
New Systemn ID; { VENUS)

After you respond to the prompts above, you will see messages similar to
the following:
Changing System ID frormn "MARS” to “VENUS” for Application “LOUS".

Unloading UBDB...............
Erasing LIBDA
Reloading UBDB...............
Entries changed: 78

Unload Database to a File (Option 3)
You can use LIBUTILP to unioad the database to a file.

After you have accessed the Utility Functions menu, enter 3 to select the
“Unload data base to a file” option. You will see the following prompt:

Unload data base (LIBDB):
Comment : THIS IS A LIBDB UNLOAD TO BINARY FILE.

Unloading LUBDB data base to file UBDBUL. Automatic masters are
ignored.

Note Q The “Unload data base” prompt requests the name of the database root
file. The unload file will be the name of the root file with a suffix of
L UL&V'

After you respond to the prompt above, you will see the following
message:

LBDB unlooding complete.

B-2 LIBRARIAN/IX Administrator’'s Guide

Load Database from a File (Option 4)
You can use LIBUTILP to load the database from a file.

After you have accessed the Utility Functions menu, enter 4 to select the
“Load data base from a file” option. You will see the following prompt:

Load data bose (LUBDB):
Loading UBDB data base from UBDBUL file

LIBDB datfta base unloaded an WED. JU. 3, 1992. .41 AM
THIS IS A LIBDB UNLOAD TO BINARY FILE.

Leading data....loading M-USER , 1 entry loaded WED, JU. 3, 1992, 9:42
AM

After you respond to the prompt above, you will see the following
message:
LIBDB load complete.

Exiting the LIBRARIAN Utility Program
To exit the LIBUTILP program, type E at the Utility Functions menu.

LIBRARIAN Ufility Program B-3

B-4 LIBRARIAN/X Administrator’s Guide

Appendix C
LIBRARIAN Configuration Program

A utility is available for updating your LIBRARIAN configuration,
changing database passwords, and changing server passwords on client
systems. Topics in this appendix include:

8 Configuration Program (MPE)

® Configuration Program (UNIX}

Configuration Program (MPE)

The LIBRARIAN Configuration program is called
CONFIGP.COMP.OCSLIB. To use CONFIGP, log on as MGR.OCSLIB and

type:
:‘RUN CONFIGP.COMP.OCSLIB
The program presents a menu of options as displayed in Figure C-1.

O/ TERARTAM/1LX Version 1.00.00 (C)} Operations Camtrol Syctems, Inc. 1993
CONFIG LIBRARIAH Configurstor

LIBRARIAN Configurgtor Functions

1 - Updste Configurstion Flle
- Chonge LIHDR/LIBLOG Pascwords
- E,':ﬁ" SERVER Logon/Passucrds

2
3
E
an: i

Please type desired optl

Figure C-1. LIBRARIAN Configuration Functions Menu

Updating the Configuration File (Option 1)

Enter 1 to select the “Update Configuration File” option. You will see the
following prompts:

Waming @ Do not attempt to update your configuration file if anyone is
accessing LIBRARIAN.

LIBRARIAN Configuration Program C-1

Change Configuration Values (Use // to Remove Value)

Current COMPANY NAME . QCS
New COMPANY NAME

Curent SYSTEM ID : VENUS
New SYSTEM ID :

Current EDITOR : EDITOR.PUB.SYS
New EDITOR ;

Current HOST ID
New HOST ID

Cumrent BATCH LOGON
New BATCH LOGON

After you respond to the prompts above, you will see the following
message:

Configuration updated successfully!

Changing LIBDB/LIBLOG Passwords (Option 2)

To change passwords in the LIBDB and LIBLOG databases, enter 2 to
select the Change LIBDB/LIBLOG passwords option. You will see the

following prompts: i
Current UBDB READ password :
New UBDB READ password . TOP
Current UBDB WRITE password :
New LIBDB WRITE password : SECRET
Current LUBLOG READ password :
New LBLOG READ password ; FORYOUR
Current UBLOG WRITE password :
New UBLOG WRITE password : EYESONLY
After you respond to the prompts above, you will see the following
message:

Changing database passwords...done.

C-2 LBRARIAN/iIX Administrator’s Guide

Changing SERVER Logon/Passwords (Option 3)

To change the LIBRARIAN server logon and passwords in the LIBDB
database, enter 3 to select the Change SERVER Logon/Passwords option.
You will see the following prompts:

Cument USER : CLIENT
New USER:

Cument USER password
New USER password

Cument ACCOUNT : LIXTR
New ACCQOUNT :

Current ACCOUNT password
New ACCOUNT password

Cument GROUP :PUB
New GROUP :

Cumment GROUP password
New GROUP password

To allow HIPRI login, type HIPRI; otherwise type //

Cument HIPR| :
New HIPRI M

After you respond to the prompts above, you will see the following
message:

Configuration updated successfully!

Note @ In order to use HIPRI for automatic remote logon to LIBRARIAN, MPE
requires that the logon user and account have OP or SM capability.

Exiting the LIBRARIAN Utility Program

To exit the CONFIGP program, type E at the Configuration Functions
menu. You return to the main LIBRARIAN prompt.

UBRARIAN Configuration Program C-3

Configuration Program (UNIX)

If you are running a UNIX client, you can configure information about
the MPE server, including passwords for gaining access. In addition, you
can update the ocslib user password that already exists on the client.

You must have superuser capability to run the configuration program.
The following is an example:

HP-UX [1] cd jopt/ocsfocslib
HP-~UX [2] su

Password:

./ocslib —config

Change Server Login/Passwords {(~ X to remove password)

SERVER NAME [PENGUIN]:

USER [CUENT]:

USER PASSWORD (not displayed):

PLEASE RE—-ENTER PASSWORD TO VERIFY:
ACCOUNT [ocsiib]:

ACCOUNT PASSWORD (not displayed):
PLEASE RE-ENTER PASSWORD TO VERIFY:
GROUP [PUB]J:

GROUP PASSOWRD (not displayed):

PLEASE RE—ENTER PASSWORD TO VERIFY:
UNIX LOGIN [ocslib]:

UNIX PASSWORD (not displayed):

PLEASE RE—ENTER PASSWORD TO VERIFY:
Configuration /opt/ocsfocslib/config updated successfully!

C—4 UBRARIAN/iX Adrninistrator’s Guide

LIBRARIAN/IX Glossary of Terms

Note ﬂ Terms that appear in italics in the following definitions have separate
glossary entries.

Access Control

The attribute of a master file that determines how many read/write mode
copies are allowed. The four access control levels are: exclusive, read only,
serial write, and multiwrite.

Access Mode

The attribute of a secondary file that determines whether or not it can be
checked in and replace its associated master file. A secondary in write mode
can replace a master. A read mode can only replace a master through an
emergency checkin that is configured to use the PUSHREAD parameter. A
file's access mode is determined by access control, user request, step
definition, and default access mode (precedence is in order listed).

Aging Policy

A system profile value that indicates how long log records are kept. When
the FLUSHLOG utility is run, audit trai] records that are older than the
number of days specified in the aging policy are deleted.

Transactions associated with projects override this policy and are deleted
only when the project status is flush pending.

Alernate prestep

A prestep that can be performed as an alternative to the defined prestep.
Up to three alternatives can be defined for a step.

Annotate

Comments inserted by LIBRARIAN into source listings that indicate
which lines were inserted /deleted for which revision. Date/time, related
project and user who made the change are included.

Application

A site—defined organizational unit including a set of master files that are
being controlled by LIBRARIAN, a set of steps for file
movement/approval, and, optionally, a set of projects for tracking file
changes associated with a particular work activity.

Application Manager

A special user capability assigned to the user responsible for the files and
steps within an application.

Glossary- |

Application fileset
The highest level fileset for an application.

Approval step
A null step that is required as a prerequisite for a subsequent step.

Authorization

The process of determining which files have been requested in a
transaction and whether or not the rules permit the operation to be
performed on each of these files. Authorization is based on the user who
initiated the request and the current status of each file requested.

AUTOXERQ file

A macro that is executed before the first prompt/main menu appears. A
file called AUTOXEQ that exists in the product account is executed prior
to any AUTOXEQ file that might exist in the user’s home directory.

Auto fileset descriptors

General locations that describe how master files are assigned automatically
to master filesets. Descriptors can include or exclude files from filesets
using wildcards. When you run AUTOUPDATE, introduce new files with
a pending master, or perform a checkin step with the AUTOUPDATE
parameter turned on, any previously untracked files in these locations get
added to the appropriate master filesets.

Aulomatic Login ID

The login used when transactions require automatic logging in to a
remote system.

Autoupdate

The process used to add master files to master filesets automatically based
on predefined auto fileset descriptors that include or exclude files from
filesets, typically using wildcards. Pending masters and masters not
currently assigned to required filesets are added, typically during checkin,
new steps and/or running of the AUTOUPDATE utility.

Baseline

The master library at a particular point in time. An application manager
establishes a baseline by creating a version. This marks and protects all of
the files in an application at that time, so that the application or any part
of the application can be restored to that baseline any time in the future.

Base Revision

A revision that was current at the time a baseline version was created. The
version count (VCOLINT) for a base revision is always zero and cannot be
flushed until the version(s) of which it is a part is made obsolete.

(M IBRARIAN/IX

Branch

A set of revisions that are made as a divergence from the main
development path for a master file. A branch is created automatically
when a previous revision is checked out. A branch can also be forced
from the latest revision if the master is already checked out in write mode,
or the user does not intend to check the file back in on the trunk.
Whenever a new branch is created, a branch counter and leaf counter
(both starting at 1} are appended as a pair to the original revision ID.

Branch revision
A revision that appears on a branch.

Checkin step

Any step which copies or moves a file from a secondary location into the
master library, either retaining and replacing the existing master,
introducing a new one or establishing a new branch .

Checkout step

Any step which copies a file from the master library into a secondary
Iocation, generally for modification by programmers.

Client

An MPE or UNIX implementation of LIBRARIAN where the LIBRARIAN
data bases reside on a different system, but the user is able to perform all
LIBRARIAN functions.

Command Mode

In command mode, the user enters LIBRARIAN commands at a
command line prompt. Users can switch between command mode and
menu mode by pressing the F2 function key.

Component filesets
Filesets that are subsets of higher-level filesets.

Composite prestep

A collection of presteps that must be performed before a subsequent step
can be performed. Composite presteps also permit the spedification of a
date prerequisite.

Default access mode

The access mode that is assigned to a secondary file when neither the user or
step explicitly specify the mode. The access control level for a file
determines which access modes are allowed.

Glossary- il

Delta file

A privileged (MPE) or hidden (UNTX) file that contains the history of
changes made to an associated master file.

Deltas

A method for retaining and reconstructing previous revisions of master
files that involves storing only the changes to files over time.

Dependency

A file that make evaluates with respect to some target to determine
whether to invoke some action, such as a compile or link.

Destlination
The target location when copying or moving a file.

Dummy target

A make target that does not correspond to an actual file. Dependencies of
dummy targets are actual files that are always evaluated as targets
themselves to determine whether they are out of date and need to be
rebuilt.

Edit mask

A file expression that uses spedial editing characters to map one filename
into another; e.g., source to destination name for a copy or move or
secondary to pending master name for introduction of a new file.

Emergency checkin

A checkin that moves a read mode secondary file into the library with the
PUSHREAD option. If a write mode copy exists, the owner is notified via a
LIBRARIAN mazil message, and an excephion is recorded.

Excepfion Flag

An indicator that something special has happened related to a file such as
an emergency checkin, merge conflict or previous master revision was restored
at a time when the file was checked out. The exception flag must be
¢cleared before any further operation on the file is allowed.

Exceptlion message

A LIBRARIAN mail message that indicates that an exception fiag has been
placed on a file. This message is sent to the owner of the write mode copy of
the file.

Exclusive access
The access conirol level that prevents secondary copies of a master file from

being made.
Expiration date
The date when after which a file can be flushed using the FLUSH utility.

IV IBRARIAN/IX

Expired file

A read mode secondary or retained file that is eligible to be flushed by the
FLUSH utility.

Explosion

The creation of a list of files by expanding a fileset, listfile, or wildcard file
specification for LIBRARIAN to authorize.

External

A file that resides on a system on which LIBRARIAN is not running,
typically an unsupported platform, or system which is not on an
accessible network. LIBRARIAN steps can be used to record movement to
an external location, but cannot physically move the file or verify its
existence. Users are responsible for transferring files (via tape or other
means) for any transaction using the EXTERNAL option.

Fileset

A collection of files identified by a unique name assigned by the Librarian
Manager (master filesets) or any user (user filesets), When requesting files,
filesets can be referenced by preceding the fileset name with a percent
sign (%). Because filesets contain collections of files that are related by
some criteria other than physical location, and can span directories and
systems, they are often referred to as logical filesets.

Note: In MPE, a fileset is any set of files that can be referred to using
wildcards in name, group and/or account. LIBRARIAN refers to this as a
physical fileset.

File structure (hierarchy)

The relationship of filesets, subsets and physical files within an
application library.

Flush policy

The system profile policy that determines how many previous file
gemerations to keep when the FLUSH maintenance utility is run.

FLUSHLOG

The maintenance utility that purges old log records that have aged
beyond the aging policy specified in the system profile.

FLUSH

The maintenance utility that purges expired files and obsolete versions.

Flushed project

When a project is closed and then assigned a status of flush pending, log
records associated with that project get flushed the next time the
FLUSHLOG utlity is run. After FLUSHLOG has been run, the project
status is changed to flush, and the project can be deleted, if desired.

Glossary-V

Flushed version

When a version’s status has been changed to obsolete, base revision files that
are a part of that version are flushed if they are not also part of a
subsequent version. After FLUSH has been run, the version status is
changed to flush, and the version can be deleted, if desired.

Flush pending

A project status that indicates that log records for the project should be
purged when the FLUSHLOG utility is run.

FMAINT
The facility for creating and maintaining user filesets.

Forward versioning

An option on checkout to automatically search alternate libraries (usually
previous versions) when a master file is not found in the expected location
as defined by the checkout step. If the file is then found in an alternate
location, it is brought forward as a secondary of a new pending master for

the primary application.

Generation

Each time a file is checked in, a new generation is created. Previous
generations of muaster files are stored in the library as retained files (usually
compressed) or as deltas.

Generation count (GCOUNT)

A sequential number assigned to each master file generation. The current
GCOUNT is the total number of times a master file has been replaced.
When specifying GCOUNT as an option in a file request, a negative
number indicates a generation relative to the latest generation.

Generic rule

A target—dependency relationship in make that uses wildcards (target) and
edit masks (dependency) to determine what is out of date. Actual target
and dependency names are substituted into the rebuild commands using
make macros.

indirect file

Also called a Iistfile, an indirect file is a text file that includes a list of
filenames. This file can be used in LIBRARIAN commands as a convenient
way of referencing files. Indirect files can be created in a text editor or
through LIBRARIAN's LMAINT facility.

VI IBRARIAN/IX

INPROGRESS

A parameter used with a checkout step that instructs LIBRARIAN to record
the existence of a write mode secondary without physically copying the file
from the library. This parameter is most often used when LIBRARIAN is
initially implemented and some files are already being worked on or
tested.

Intermediate revision

Master files that are retained between versions. The version count
(VCOUNT) for intermediate revisions is always greater than 0.

Leaf Revision

Each revision on a branch is called a leaf, sequentially numbered from the
start of the branch. Whenever a new branch is created, a branch counter
and leaf counter (both starting at 1) are appended as a pair to the original
revision ID.

LIBRARIAN

The program that controls and processes all file operations maintaining
an audit trail of activity.

LIBRARIAN Manager

A special user capability assigned to the person responsible for configuring
LIBRARIAN and defining site rules. The LIBRARIAN Manager has
unrestricted access to all LIBRARTAN functions for all files.

Librory

A library is the repository from which files are checked out, and to which
they are subsequently checked in. Files are also distributed to production
locations from the library. It is the ‘official’ collection of files that are
under LIBRARIAN's control. Files in the library are called master files. The
library provides a central point of control for changes to production
source, object and data.

Listfiles

Also called an indirect file, a listfile is a text file that includes a list of
filenames. This file can be used in LIBRARIAN commands as a convenient
way of referencing files, Listfiles can be created in a text editor or through
LIBRARIAN's LMAINT fadlity.

LMAINT .
The fadlity for creating and maintaining listfiles (indirect files).

Locaflion

The group/account (MPE) or directory (UNIX) and system where a file
exists or should be created.

Glossary- Vil

Logical fileset

A meaningful name assigned to a collection of files not bound by physical
boundaries. See fileset.

ILOGON, ILOGIN

A special wildcard that can be used in defining step source and
destination locations to indicate that the user’s login data should be
substituted as appropriate. For MPE, this wildcard can be used for group,
account and/or system. For UNIX, this wildcard is equivalent to *. for
current working directory and can also be used for system.

Macro

A set of LIBRARIAN and operating system commands for LIBRARIAN to
execute. A macro conirol language provides programmatic control
(conditions and loops) and parameter substitution. Parameter values can
be system—defined or provided by the user via prompts and/or
customized menus. Macros are analogous to MPE command files and
UNIX scripts. Multiple macros can be combined in a single procedure file.
Macros are also referred to as XEQ files.

Macro Confrol Language

The set of special commands and keywords that are used in macros to
control flow of execution (IF...THEN...ELSE, REPEAT, WHILE, LOQP.
GOTO) and allow for parameter substitution (tokens preceded by %%).

Mail :
Mail includes messages that are sent from one LIBRARIAN user to

another, or from LIBRARIAN notifying a user that an exception condition
has occurred that affects that user’s work.

Make

A utility that automatically rebuilds/recompiles components of an
application when they change. Make reads a makefile that shows
dependencies between application components and evaluates which
components are out of date. Based on which components are out of date,
make issues only the commands necessary to bring the application up to
date.

Makefile

A text file that contains make rules. This file can have any name and can
be created and maintained using any text editor. This file includes
targei—dependency relationships and commands required to bring each
target up to date whenever their dependencies are changed. Make macros
and generic rules can be used to reduce the size and complexity of a
makefile.

Make macros

A shorthand that simplifies creating makefiles. Macro references are
substituted with either user—defined or system—defined values when the

VIl IBRARIAN/iX

makefile is processed. For example, out-of-date dependency names can be
substituted in generic command descriptions.

Master file

A file that is part of a defined library and reflects the most current
production version.

Master fileset
A fileset defined by the LIBRARIAN Manager that includes library files.

Master library
The hierarchy of master filesets and associated master files for an application.

Memo

Text that provides documentation for a fransaction. Memos are stored in
the audit trail database and can be reviewed using SHOWLOG.

Menu Mode
The mode of LIBRARIAN operation in which use!'s select LIBRARIAN

functions from a set of pull-down menus. Users can switch to the
command line prompt at any time by pressing the F2 function key.

Merge

An option available on checkout steps to combine source code changes
from one or more branches. Conflicting changes are highlighted with
comments in the source ¢ode, and should be resoived prior to the next
step. Merge is only available if the delta feature is being used.

IMSUSER

A special wildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who originally checked out the file. For MPE, this wildcard can
be used to fill in group or account. For UNIX, this wildcard can appear
anywhere in the path name. This wildcard is typically used to reject files
and move them from a test area back to the appropriate developer’s work
area,

Multi-write
The access control level that allows multiple secondary files with write-mode
access.

Glossary-IX

New step

A step that introduces a previously untracked file to LIBRARIAN as a
secondary file. The file is linked to a pre—existing master file or a pending
master record is created. Rules governing introduction of new files on a
step are configured on the PP (Pending Production Areas) screen.

Node

The actual device name associated with a system in a network. This name
may or may not be the same as the LIBRARIAN system ID.

Null step

A step not involving any file movement. A null step is used to reflect
some external action such as an approval. Null steps are used to control
dependencies between steps; that is, they are used as presteps.

Obsolete version

When the LIBRARIAN Manager or Application Manager change the status
of a versiom to obsolete, any retained base revisions assodated with that
version will be flushed the next time the FLUSH utility is run. Once a
version is flushed, it can be deleted, if desired.

Operator

A special capability assigned to a user who can flush records in the log
database and can restore previous revisions of files.

Orphan

Any file not currently being tracked by LIBRARIAN or a master file not
associated with an application. Orphans can be created by a LIBRARIAN
operation that causes a tracked file to become untracked (unknown to
LIBRARIAN), or by operations that use the orphan option to create files
in destinations that are not to be tracked.

IOWNER

A spedial wildcard that can be used in defining step destination locations.
When the step is executed, the wildcard is replaced with the user ID of
the user who currently owns the file. For MPE, this wildcard can be used
to fill in group or account. For UNIX, this wildcard can appear anywhere
in the path name. This wildcard is typically used to approve files in
multiple developer work areas.

X IBRARIAN/X

Parent Fileset
A fileset that includes compenent filesets.

Pending master file

A file that is being tracked as a master library file, but, because it is new,
does not physically exist in the library yet. The assodated secondary is
called a pending production file and was introduced through a new step or
through the use of LIBRARIAN's forward versioning feature.

Pending master mask

An edit mask used to automatically derive a pending master file name based
on the name of the secondary file being introduced through a new step.

Pending production area

Any location(s) defined for a step where previously untracked files can be
introduced as new secondary files. Steps with pending production areas
are considered to be new steps.

Pending production file

A secondary file that was inttoduced using a new step. The master file does
not currently exdst in the library.

Permissions

A UNIX term used to indicate file access rights; a matrix of read, write,
and execute access for owner, group and world.

Physical fileset

A collection of files that exist in a particular location. Physical fileset
references include specific filenames, or names using standard operating
system/shell wildcards.

Prestep

A step that must be completed successfully for a file before the next step
in the route can be performed. Presteps are often null approval steps.

Procedure

A macro that is included in a file with other macros with a procedure
header. .

Procedure file

A file that contains multiple macros. Each macro has a procedure header
indicating the name of the macro. Procedure files can be loaded and
unloaded while using LIBRARIAN.

Project

A way of organizing transactions and associated files with a specific work
activity.

Glossary- Xl

Project fileset

A user fileset that is created automatically when defining a project. The
fileset is maintained automatically when files are checked out or
introduced as new files for the project. Files can also be added to this
fileset in advance by a Project Manager using the FMAINT facility.

Project manager

A special user capability assigned to users who can create projects, modify
project status and authorize users to work on projects.

Project menu

Whenever projects are associated with a particular route, users are asked to
select the project that they are working on from a menu when checking
files out or introducing new files.

Project status
A flag that determines what activities can be associated with a project.

PUSHREAD

A step option which allows a read mede copy to replace a master file or write
mode secondary which has not been checked in yet. This option is typically
used for emergency steps.

Read mode

The attribute of a secondary file that indicates it cannot replace the master.
Read mode copies expire after a configured period of time and can be
flushed using the FLUSH utility.

Read only
An access control level that only allows read mode copies of a file.

Read step

A step that copies a master file to a secondary location in read mode, with no
intention for modification. An expiration policy can be applied, so that
read mode copies created by the step can be cleaned up automatically
with the FLUSH utility.

Receiver

A system that can receive files from other systems, but from which
LIBRARIAN transactions cannot be initiated. .

Release Step

Similar to a read step, a release step copies files from the library to a
production location in read mode. Typically, these files do not expire, and
the previous version is often retained.

Xl IBRARIAN/IX

Retained file

A previous generation of a file saved under a LIBRARIAN—generated
name “Gi#HRHAA". Files are retained when the retain parameter is used
on a step and the destination file is a tracked master or secondary file. Base
revisions are always retained. If deltas are being used, changes to the
previous generations are stored.

Revision

Any set of changes made to a master file through a checkin step. Revisions
include all generations of a master file including the most current. Leaves
and branches also make up the set of revisions for a file.

Revision ID

Revisions are identified by version name followed by a colon (:} followed
by version count. If the revision is on a branch, branch and leaf count
pairs are appended delimited with periods (.).

Route

A set of automated procedural controls for managing file changes and
distribution. A route consists of a predefined file-movement path that
reflects an established cycle. The route includes steps for all aliowable
movements of the files for that cycle.

Route Alias

When defining projects, a route alias can be defined to indicate that the
project only applies to a particular route. The project name can be used in
place of the route name when performing a step (i.e., step.project) to
bypass the project menu.

Rule Administrator

Similar to the LIBRARIAN Manager, the Rule Administrator is a user with
special user capability who can define LIBRARIAN rules such as steps and
filesets, but is not automatically authorized to perform LIBRARIAN
functions, and cannot create user authorizations,

Scan/Replace

A LIBRARIAN function that searches files for patterns of text, and
optionally replaces the matches with user—defined text.

Scope

The attribute of a step that restricts which files the user can request. When
copying or moving files, the scope specifies where files come from and
where they can be copied. Steps can restrict by fileset, from location and
to location.

Secondary file

Any copy of a master file or another secondary file. All secondaries are
linked to a master (or pending master) either directly or indirectly, and are
in read or write mode.

Glossary- Xl

Secondary location
Any location where secondary files can be created.

Serial write

The access control level that allows only one secondary file at a time to have
write mode access, preventing concurrent modifications.

Server

A system that has an implementation of LIBRARIAN which includes the
LIBRARIAN databases. Clients access this database and other
LIBRARIAN functions remotely.

Seftings
LIBRARIAN session-level parameters that control the user’s working
environment.

Special user capability
See user capabilities.

Standard Rule
A make rule that associates specific target(s) with specific dependencies.

Step

A rule governing the copying and moving of files from one location to
another. Steps are the basic building blocks of the LIBRARIAN file
movement and control system. Steps are grouped into routes and are
performed using system— and/or site-defined names.

Step parameter detfaulls
Options that control the behavior of a step, by default.

Step parameter overmrides

If allowed, users can override step parameter defaults by specifying desired
overrides.

Step refinements/exceptions

A step definition that includes rules for altering the destination location
based on the from location, filecode (MPE), and /or fileset membership.
The same criteria can be used to alter the type of movement (copy, move
or nuil} or exclude files altogether from the step.

Step type

There are three types of steps: master—to-secondary (MS),
secondary-to—secondary (SS) and secondary-to—master (SM). MS steps
are steps that checkout or distribute files. SM steps are steps that check
files in. SS steps encompass all steps in between, such as move to test and
approvals.

System
A unique node within a network identified to LIBRARIAN with a unique
system ID.

XIV IIBRARIAN/iX

System 1D

Used to identify systems to LIBRARIAN within a network. Optionally
appears as a prefix to a filename delimited by "’ to indicate the
appropriate system.

System Profile

A set of global parameters maintained by the LIBRARIAN manager that
control how LIBRARIAN operates. Includes items such as flush policy,
aging policy, date formats, etc.

Tag

A user-defined name for a particular revrsion of a file or files that can be
used to identify them at a later time, even after they have been retained.

Target

Component of a make rule that is built from one or more dependencies
using one or more commands. Object code and executables are examples

of targets.

Tracked file

A file for which there is a record in the LIBRARIAN data base. Tracked
files are masters, secondaries or retained files and movement operations are
controlled by LIBRARIAN rules. All other files are untracked files.

Transaction

Any LIBRARIAN operation attempted either successfully or
unsuccessfully on a set of files. Except for commands which provide
information, all transactions are logged in the LIBRARIAN audit trail.

Trunk revision
A revision that is not checked in on a branch.

Unfracked file

A file for which there is no record in the LIBRARIAN database. Ad hoc
operations on these files conform to normal operating system security.
Steps cannot be performed for untracked files.

User authorizations

The mechanism for determining who can do what. Authorizations can be
defined for steps and projects. Special user capabilities can be assigned so
that specific authorization is not required in some cases.

Glossary- Xv

User capabilities

Grants users certain privileges that transcend standard user authorizations.
These include LIBRARIAN Manager, Application Manager, Project Manager,
Operator, Rule Administrator and X capability. If no special capability is
assigned, authorization is required for steps, and other commands
conform to normal operating system security.

User filesel

A fileset created and maintained by a user through the FMAINT user
fileset module. User filesets allow users to group files for their
convenience. Like master filesets, precede user filesets with % when
referencing them in commands.

IUSERID

A special wildcard that can be used in defining step source and destination
locations. When the step is executed, the wildcard is replaced with the
user ID of the user performing the step. For MPE, this wildcard can be
used to fill in group or account. For UNIX, this wildcard can appear
anywhere in the path name. This wildeard is typically used to check out
file’s into the developer’s work area.

User ID

A unique identifier for a LIBRARIAN user that is password protected.
Users are prompted for their User ID when initiating the LIBRARIAN

program.

User password

Used to protect against unauthorized use of the LIBRARIAN system.
Passwords are required and can be changed by the individual users.

Verify
The LIBRARIAN facility for reviewing file information on-line or off-line.

Version count (VCOUNT)

The sequential number that tracks the number of generations since the
current version was defined.

Version

All the files in an application, as they were at a specific point in time.
Version ID

The name given to a version by a LIBRARIAN or Application Manager.

w

Wildcaords

Special characters or tokens used in filenames to request multiple files
that match a pattern, and/or to determine destination locations.

XV IBRARIAN/IX

Work-in-progress

Untracked files that were in development and /or test prior to
LIBRARIAN implementation. These files can be handled using the
INPROGRESS parameter with a checkout step.

Write mode

The attribute of a secondary file indicating that it can replace its master file
through an authorized checkin step.

X

XEQ filo

A text file that contains the commands for a single macro. These macros
are executed by filename.

Glossary— XV

VI IBRARIAN/X

Index

Symbols

. ref 1-6, 3-1; adm 4-7

?: adm 46

oref14; usr8-14

i usrB-14

— usr8-14, 8-15

= usr 815

SNP: ref 1-67; usr 3~13

%% YEf7—3

@: adm 46

- adm 4-6

*: ref 1-6, 1-94, 1--115; usr 3-3; adm 4-6
** ref 1=6, 1-94, 1-115; usr 3-3
*Empty**: usr 9-5

A oref 3-1

=: adm 4-6

A

Access control; adm 34

setting default: ref 5-16, 5-29
Access mode: ref 1-150; adm 3—4

default: adm 3-12

setting: ref 1-122

seting default ref5-16, 5-29
Accessing LIBRARIAN: usr 2-1
ACCOUNT variable for MAKE: usr 8-17
ACTIVATE: ref 1-19
ADJUST: ref 7-7
Admin menu: ref 98
Aging policy: ref 1-41
ALL parameter for LM>QUTPUT: usr 7=2
ALL parameter for MAKE: usr8-5
ALLOW: ref 1-20; usr9-5
Alternate search locations: adm 7-6
ALTPATH variable for MAKE: wusr 8-18
Annotation: ref 1-29, 1-120; usr 14, 4-11, 5-%

example of: usr4-12,5-2

setting language for: ref 5=18, 5-30
Applications: usr 1-2, 7-4; adm 2-3, 31

automated testing: usr8-2

building: ref 8-1

compiling: ref 1-53; usr8-1

default for session: ref 1-95, 1101, 1-117
defining: ref 5-11
deleting: ref 1-36; adm 2-5
dependencies in: usr 81
example of archiving: wusr 74
file dependencies: usr 84
in progress: usr A-1
menu of. ref 7-17
processing text: usr 8-2
rebuilding documents: usr 8-2
versions of; adm 7-1
Applications (AP) screen: ref 5-11
example of: adm 3-2
at command: usr 3-19
AT location: ref1-9; usr3—4
Audit trail Sez Transaction reporting;
Transactions
Audit trial transaction, flushing: adm 9-2
Authorizations
projects: adm 64
steps: adnt 5—4
AUTHORIZE parameter for LM>OUTPUT: usr
7-3
Authorized files: usr3-10
Auto fileset descriptors: adm 3-8
Auto Fileset Update (AUTOUPDATE): ref 1-21,
5-9,5-21; adm 2-5, 3-8, 3-9
Auto Filesets
descriptors: ref 6-13
report of. ref6-13
Auto Filesets (AF) screen: ref 5-9, 5-21
example of: adm 3-8
Auto Filesets (RAF10) report: ref 1-21, 6~13
AUTQUPDATE. Se¢ Auto Fileset Update
AUTOXEQ files: ref1-3, 7-14
location of: usr9-7

Background process, UNIX clients: ref 1-4; usr
2-1

Base revision: ref 1-82; adm 7-2

Base version. See Base revision

Baseline. See Versions

BATCH: usr3-18

Index i

Batch transactions: ref 1-3, 1-13; usr 1-3, 3-9,
3-18; adm 49

Branches: wsr4-3
BRANCH: ref 1-68
merging. See Merging revisions
NOBRANCH: ref 1-70

Building applications: usr8-1

Bypassing menus: ref 1-3, 7-14

C

Capabilides
See also User capabilities
SM: ref 5-64
Capacities, LIBRARIAN databases: ref 1-22, 1-55
Capailities. See User capabilities
Caret (7): ref3-1
Change control cycle: wsr1-2; adm 2-1
See also Routes
CHECKDB: ref1-22
Checking
LIBRARIAN databases: rgf1-22
LIBRARIAN databases capacities: ref 1-55
Checkount
previous revision: usr 4-1
simulating: usr A-2
Checkout/checkin: adm 2-1
CLEANDB: ref 1-23
CLOSE: ref 1-24
Colon (:): ref 1-4
Comunand mode: regf 1-3; usr 2-5
switching to: usr2-5
Commands
access restrictions: ref 1-15
commonly used: usr2-10
editing previous: ref 1-86, 1-87
listing previous: ref 1-50
looping: ref 7-13, 7-21, 7-24
repeating execution of: ref 1~37
summary of: ref 1-16
Company name: ref 6-5
Comparing files: ref 1-109
example of: usr4-11
Compiling applications: usr 8-1
Composite Presteps (CP) screen: ref5-14
example of: adm 4-10
COMPRESS: ref 1-25
Compress Exclusions (CE) screen: regf 5-13
Compressing files: usr 3-15
automatic: rzf 562

excluding files from: ref 5-13
Concurrent maintenance, example of: adm 1-9
Conditional expressions: ref 7-12

in macros: usr9-3
Conditional files: usr 3-12
Conditional looping: ref 7-21, 7-24
CONFIG, changing database passwords: adm 9-2
CONFIGP: ref 11-1 '
Configuration file: re¢f 1-2, 11-1

changing: adm C-1
Configuration management: usr 1-3
CONFIRM: usr 3-7
Conflicts

example of: usr 49

resolving for merge: usr4-9
CONNECT: ref 1-27
CONTINUE: ref 7-8
COPY: ref1-29; usr 3-7
Copy steps: adm 4-5
Copying files: ref 1-66
COPYMEM variable for MAKE: usr 8-19
Create projects

FROJECT comunand: adrm 6-2

Projects (P]) Screen: adm 6-2
Customized software: adm 7-7
Cycle. See Routes

D

Data, deleting mass: ref 593

Database passwords: ref 11-1; adm C-1
Database utility: ref 10-1

Datasets
LIBDB: ref 12-1
LIBLOG: ref 124

Date format: ref 5-62
Date prerequisites: ref 5-14
DECOMPRESS: ref 1-34
Decompressing files, automatic: adm A-1
Defining rules, Shortcut utility: adm 2-1
Defining steps: adm 4—4, 4-13
DELETE: ref 1-36
Delete, mass data: rgf 593
Delta files: usr1-4, 4—4
associated master: ref 1-142; usr 4-14
integrity of: wsr 4-14
maintaining: usr 4-6
purging: usr 4-12
restoring from: rgf 1-102
verifying checksum: ref 1-142
vs. generation files: usr4—4

il

UBRARIAN/iX

Dependency tree, for MAKE: usr 84
Development
concurrent maintenance with: adm 7-7
in progress: usr A-1
Dial-D5: ref 5-85
Dialogs: ref 9-11
Differences between files: usr 54
Distribution, forward versioning with: adm 7-7
DO: ref 1-37
Documenting file movements: wsr 3-14
DS/3000: ref 5-37
DSLINE: ref 1-27
Dummy target: usr 8-11

E

ECHO: ref 7-9
ECHO parameter for MAKE: usr 8-5
EDIT: ref 1-38
Edit masks: ref 1-11; wusr 3-7
for MAKE: usr 8-14
in macros: usr 9-4
in UNIX destinations: adm 4-9
List of symbols: usr 3-8
pathnames: tsr 3-8
referring to different elements: usr 3-9
Editing files: usr 3-15
Editor: ref 1-14; usr 3-15
Emergency fix rule: adm 1-7
ENL: ref 7-10
Environment variables: ref 1-2
Error messages, security monitor: ref 1-30, 1-57,
1-68
Escape key: usr2-5
Exception report: ref 1-23
Exclamation point (!): ref 3-1
EXCLUDE variable for MAKE: usr 819
Excluded files: usr 3-12
Exclusive access control: adm 3—4
EXIT: ref1-39
Expiration: ref 1-150, 1-154
defining policy for: adm 4-12
setting: ref 1-118
EXPRESS SUBMIT: rgf 1-13

F

Features: adm 1-2
File Access (FA) screen: 7ef 516
example of: adm 3-12

File dialog: ref 9-11

File Exceptions (RFX10) report: ref 629

File Inquiry (FI) screen: ref 5-24
example of: adm 8-2

File management
objectives: usr 1-5; adm 1-1
overview: adm 1-1
rules: adm 1-3

File menu; ref9-3

File movement rules
See also Routes; Steps
reviewing: adm 4-19
routes: adm 4-1
sequence for defining: adm 4-19
steps: adm 4-1

File movements
associating projects: adm 4-3
defining rules for: adm 4-1
exclusions: usr3—6
multiple file references: wusr 3-6

File naming conventions: ref xv

File operations, batch mode: usr3-18

File security, enhancing: usr 3-15

File transactions: usr 3-1

File Versions (RVD10) report. ref 6-50

File Versions and Timestamps (RVT10) report: ref
652

File Versions and Timestamps (RVT20) report: ref
654

Filenames: usr 3-2
referring to: ref 1-6

Files: ref1-154
access control: ref 5-16
access mode: ref 1-122, 1-150, 5-16
access override: adm 3-11
annotation: ref1-30, 1-120
applying selection criteria to: ref 3-10
assigning tags: adm 7-8
associated master: ref 1-142
associated projects: ref 1-144
assodated user filesets: ref 1-145
associated versions: ref 1-146
authorized: usr 3-10
automatic decompression: adm A=1
checking existence of: usr 9—4
commands for: wsr 3-17
compiling: ref 1-53, &1
compressing: ref 1-25
conditional: usr 3-12
confirming authorized: rzf 1-11
copying: ref 1-29
counts: ref 1-147

Index i

creating histfile of: ref 3-10
decompressing: ref 1-34; usr 3-15
defining movement rules: ref5-71
deleting tracking: ref 1-§1
description: ref 1-157, 5-16
destinations: usr 3-7

differences between: ref 1-46, 1-109
directly referring to: wusr3-2

editing: usr 3-15

exceptions: rgf 1-96

excluded: 1sr3-12

excluding: ref 1-10

excluding from compression: ref 5-13
expiration date: ref 1-10, 1-150, 1-154; wusr

expiration policy: adnt 4-12

expired: ref 1-40

FLUSH policy: usr 46

flushed: ref 67

forward versioning: adm 7-5

generated: ref1-149

generation count; wusr3—4

in last transacton: wsr 3-3

indirectly referring to: usr 3-3

information about: ref 1-138, 5-24; usr 3-21;
adm 8-2, 8-3

language: ref 1-120, 1-157, 5-16

last step performed: ref 1-151

last transaction: ref 1-7

locking: ref 1-52, 1-133

lockword: ref1-121

macos that process: usr9-2

merging revisions: ref 1-70

modified status: usr 3-6

moving: ref 1-56

MPE security: ref 1-88, 1-113

new: ref 1-70, 5=42, 5-51; usr 4=4; adm 4-15

nonexistent: ref 1-23

on hold: ref1-52, 1-133

online inquiry: ref 1-138

original filenames: ref 1-153

ownership: ref 1-124, 1-150

pathnames: usr 3-8

PC transfer: ref 1-64, 1-65

pending masters: ref 635

previous versions: ref 1-149

printing: usr5-1

purged: ref1-23

purging: ref 1-81

purging old versions: adm 7—4

referring to: ref 1-5; usr 3-2

referring to by project: usr 3-5
referring to by revision: usr 3-3
referring to by step: usr 3-5
referring to multiple: ref 1-10
renaming: ref 1-90
replacing text in: ref 1-105; usr 5-2
report by master: ref 6-19
report of: ref 67, 617, 6-35
report of expired: ref 6-25
report of generations: ref 6-31
report of missing: ref 6=29
report of untracked: ref 6-29
report of versions: ref 6-50
retained: adm 4-12
retaining: usr4-4
revision storage: usr 44
revisions: ref 1~155, 1-156; wsr 3-3, 4-2
scarning: usr 5-2
searching for textin: ref 1-105; usr5-2
secondary location: usr 34
selecting by date: ref1-11
selecting by project: ref 1-10
selecting by tag: ref1-10
selecting tracked /untracked: ref1-11
sets of: usr6-1
showing differences between: usr 54
showing versions of. usr 4-12
step history: ref 1-152
subset selection: usr 3-6
tagging: ref 1-128, 1-155; adm 7-8
timestamps: ref 1-99, 1-100, 1-131
tracked: rgf1-11
tracking status: usr 3-7
transferring from PC: ref 1-65
transferring to PC: ref 1-64
untracked: ref 1-11; usr 3-17
user confirmation: usr 3-7
VERIFY: adm 8-3
versions of: wsr 3-3; adm 7=1, 7-4
violations: usr 3-12
Files in Filesets (FF) screen: ref 1-21, 5-21
example of: adm 3-10
Fileset Components (FC) screen: ref 5-19
example of: adm 3-6
Fileset descriptors: ref 1-21
Fileset Explosion (RFE10) report: ref 6-21
Fileset Explosion (RFEZ20) report ref 6-23
Fileset Status (RFD10) report: ref 6=17
Filesets: usr 6-1; adm 3-5, 3-14
ad hoc, See User filesets
auto fileset descriptors: ref 6-13
defining: ref 5-29

LIBRARIAN/IX

defining hierarchy of: adm 3-14
files in: adm 3-7
hierarchy of: adm 36
information about files in; ref 5-24
logical; usr 3-3
master. See Master filesets
members of: ref 1-143; adm 3-7
numbered: usr 7-2
projects: ref 2-12; usr&=3
referring to: wsr 33
report by master: ref 6-19
report of: ref 6-17
reporting members of: ref 6-21, 6-23
user. See User filesets
Filesets (FS) screen: ref 5-29
example of: adm 3-5
FLUSH: ref 140, 141
Flush, preview of files ready for: ref 625, 6~27
Flush Detail (FLUSH) report: ref 6-7
Flush policy: ref 5-62
Flushing
expired files: adm 9-1
expired transactions: adm 9-2
FLUSHLOG: ref 1-41, 6-39, 6~41, 6-43; adm &-5,
66

FM>ADD: ref 2-3; usr6-2
FM>CREATE: ref 2-4; usr 6-2
FM>DELETE: ref 2-5; usr 62
FM>EXTT: ref2-6
FM>HELP: ref 2-7
FM>LIST: ref 2-8; usr6-3
FM>LMAINT: ref 2-9
FM>MAKE: ref 2-10; usr 62
FM>PURGE: ref 2-11; usr 6~2
FM>RELATE: ref 2-12; usr6-2
FM>SERVER: usr 6-2
FM>SEVER: ref 2-13
FM>SHOW: ref 2-14; usr 6-3
FMAINT: ref1-42,2-1; adm 6-2
accessing: ref 3-7
commands: ref 2-2
exiting: ref 2-6
FOPEN
decompression: adm A-2
trapping: adm A~2
FORMAT parameter: usr 3-22
Forward versioning: adm 7-5
example of: adm 1-9
searching multiple locations: adm 7-6

seting up: adm 7-5

Forward Versioning (FV) screen: ref 5-32
example of: adm 7-6

Function keys: ref 1-1

G

GCOUNT. See Generation count
Generated Files (RGF10) report: ref 6=31
Generation count: usr 34,44
referring to: ref 1-8
Generation files: ref 1-7, 1-8, 1-149; usr4—4
original filenames: ref 1-153, 6-31
report of: ref 6-31
vs. Delta files: usr 44
Getting started: wusr 2-1
Global changes to LIBRARIAN database: ref 10-1
Global search /replace: usr5-2
GOTO: ref 7-11
GROUP variable for MAKE: usr 18

H

HELP: ref 1-43; usr2-6; adm 4¢-19
Help menu: ref 9-10

HELP PROJECTS: adm 87

HELP STEPS: usr 3-9; adm 4-19, 8-7

Housekeeping: adm 9-1

IF/ELSE: ref7-12

Indirect files. See Listfiles

Info menu: ref 9-7

INPROGRESS parameter: usr A-1

J

JCWS
adjusting values in macros: ref 7-7
LIBMATCHES: ref 1-108
transaction status: usr 321
Jobs: usr3-21
example of: usr 3-20
rurning LIBRARTAN from: usr 3-19

KILL: ref1~45

Index v

L

Language: ref 1-157
setting: ref 1-120, 5-16; adm 3-12
setting default: ref5-29
LAST: usr3—4
Last transaction
referring to files in; ref 1-7; wsr 3-3
resetting reference to: ref 1-94
saving list of files from: ref 1-115
LASTNOTO parameter: usr 3-4
LCOMPARE: ref 1-46; usr1-5
example of: usr 5-5
LIBBATCH variable: usr3-19
LIBDB database: ref 12-1
LIBLOG database: ref12—4; adm 88
maintaining: ref 4-6 '
transaction codes: ref 6-3
LIBMGR. See LIBRARIAN Manager
LIBPROMPT variable: usr2-6
LIBRARIAN
accessing: usr 2-1
benefits and features: usr 1-1
components: usr 1-2
concepts: usr 1-1, 1-2
configuring: ref 11-1; adm C-1

configuring server logon/passwords: ref 11-1

database passwords: ref 11-1
features: usr 1-5; adm 1-2
terminology- usr 1-2

LIBRARIAN Administrator, housekeeping: adm

9-1

LIBRARIAN databases: ref 12-1
capacity management: adm 9-2
changing passwords for: adm 9-2
loading/unloading: adm B-1
monitoring: ref 1-22, 1-55
passwords: adm C-1

LIBRARIAN Manager: adm 2-2, 2-7,5-3
capability: adm 2-7
creating: adm 2-7
deleting: adm 2-8
restricting: ref 562

LIBRARIAN prompt, changing: usr 2-6

LIBRARIAN/iX Plus: ref 1-29, 146, 1-76, 1-81,

1-102

features: wusr1-4
Library. See Master library
LIBSCREEN: ref 149
LIBUTIL: ref10-1; adm B-1
Line drawing characters: ref1-2

Link: ref 1-24

LISTF: ref 1-6
in MAKE: usr 8-16

Listfiles: usr 7-1
appending to: ref 3-3
archiving with: usr 74
creating: usr 7-1
creating with SHOWLOG: ref 4-12
editing: ref 3-5
example of: usr7-2
generated by SHOWLOG: adm 8-8
listing files in: ref 3-9, 3-15
maintaining: ref 1-51, 3-1; usr 7-3
majntaining documentation for: ref 3—4
numbered: ref 3-13
referring to: ref 1-6; usr3-3
refreshing content of: usr 7-2
selecting files based on step: usr 7-3
selecting files by date: usr 7-2
selecting files for: rgf 3-10

showing related documentation: ref 3-16

sorting: ref 3-16
using with STORE: usr 7—¢
LISTEX10: ref 1-23
LISTREDO: ref 1-50
LM>ALTER: ref 3-3; usr 7-3
IM>DOCUMENT: ref 3-4; usr 7-3
LM>EDIT: ref 3-5; usr7-3
LM>EXTT: ref 3-6
IM>FMAINT: ref3-7
LM>HELP: ref 3-8
LM>LIST: ref 3-9; usr7-4
LM>OUTPUT: ref 3~10; usr7-1, 7-3, 74
LM>REPORT: ref 3-15; usr 7-4
LM>SORT: ref 3-16; usr 7=3
LMAINT: ref 1-51, 3-1; usr 7-1
accessing: ref 2-9
commands: ref 3-2
exiting: ref 3-6
LOCK: ref1-52
Locks, status: ref 1141
Lockwords: usr 3=15
assigning: usr 3-15
changing: ref 1-136; usr 2-3
setting- ref1-121
Log records
See also Transactions
deleting: ref &6
Log reporting: ref 1-130
See also Transaction reporting
Logical fileset, referring to: ref 1-6
LOGON wildcard: adm 4-7

i

UBRARIAN/IX

Long Pathname (LP) screen: ref 5-34
Lookup, step refinement: ref 5-67
LOOP/NEXT: ref 7-13
Loops
commands: ref 7-13, 7-21, 7-24
in macros: usr 9-4
nesting: usr9-5
REPEAT/UNTIL: usr9-5
WHILE/ENDWHILE: usr9-5
LF parameter: usr 3-21

M

Macros: ref 7-1; usr 3-15, 3-21, 9-1
automatic execution of: usr 9-7
AUTOXEQ: usr9-7
checking file existence in: usr 94
comments in: ref 7-5
conditional expressions: ref 7-12; usr 9-3
conditional looping: ref7-21, 7-24
control language sumumary: ref 7-6
control optons: ref 7-15
controlling display: ref 7-9
displaying messages: ref 7-9
edit masks: usr9-4
editing: ref 7-2
entering data on the command line: ref 7-15
error handling: ref 7-8
example of: usr9-2
execution of: ref 1-161, 7=1
filename substitution in: ref 7-3
files for: ref 7-2, 7-15; usr 9-2
jumping to specific location in: ref 7-11
location of: usr 3-15,9-2
looping for files: ref 7=13; usr 94

looping through records in a file: ref 7-13; wusr
9-5

menus in: ref 7-17; usr 9-3

nesting: ref 7-15; usr 9-6

nestng loops: ref 7-15; usr 9-6
parameters in: ref 7-3, 7-17, 7-22; usr9-3
pausing ir: ref 7-23

procedure files: ref 1~125, 7-20; usr 9-7
prompling users: ref 7-17

providing custom help for: ref 7-3
reusing parameters: ref 7-15; usr 9-6
RUN: ref 7-5

signalling end of: ref 7-10

spedfying parameter values: ref 1-161
STREAM: ref 7-5

suppressing commands/messages: ref 7-9

suppressing warning: ref 7-15
terminating: ref 7-10
user capabilities in: ref 1-20
variables. See Parameters
Macros menu: ref 9-5
MAIL: ref1-55
Main menu: rgf 9-2
Maintenance, concurrent development with: adm
7-7
MAKE: ref1-53, 8-1; usr 8-1-8-3
See also Makefiles
accommodating new files: usr 88
account default for: ref 8-9
across multiple accounts: usr 8-18
applying edit mask to LISTF in: usr 88
automatic dependency determination: usr
8-16
benefits: usr 8-2
COBOL COPYLIB: ref8-9
controlling job launching: ref 88
controlling job logon: ref 8-5
defining rules for: ref 8-2
dependency tree: usr 84
dummy target: usr 8-11
edit masks: ref 8-6
example of operation: usr 8-3
executng: usr 8-20
files in multiple accounts: ref 8-10
gemeric rules: usr §-15
generic values: ref 8-6
group default for: ref 82
iterative command processing: usr 8-12
job logon: usr 8-8
makefiles: usr §=2
promptng users for input usr 8-19
rules: ref 8=2; usr 8-5
searching for dependencies: ref 8-5
targets: usr B=2
TOUCH comunand: usr 8-20
types of rules: usr 8~14
Makefiles: ref 8-1; usr 8-2
comments in: ref 8-2; usr 85
conventions: usr 8-5
creating: usr -5
defining rules: usr 8-5
delimiters: usr8-14
edit masks in: usr §-14
example of: usr 86, 8-7, 89
job cards in: usr8-13
LISTF variables: usr 8-16
multiple generic dependendes in: usr 815
rules: usr8-14

Index vii

special variables: usr 8-16
system variables in: wusr 8-20
variable substitution in: ref 8-7; usr 812
MAKEOUT: usr8-8
Mass changes to LIBRARIAN database: rf 10-1
Master File Status (RFD20) report: ref 6-19
Master files: usr 1-2; adm 1-3
associated: ref 1-148
associated delta files: usr 4-14
associated deltas: ref 1-142
associated write—mode secondary: ref 1-148
new: ref 542, 5-51
ORPHAN: ref 1-61
pending: ref 1-70, 542, 5-51, 6-35
reporting revisions of: ref 6-37
Master filesets: ref 1-143
adding files to: ref5-21; adm 310
defining hierarchy of: ref 5-19
deleting: adm 3-13
deleting files from: ref 5-21
reporting: adm 3~13
Master library: usr1-2; adm 1-3, 3-3,3-14
defining: ref 5-19, 5-21, 5-29
deleting: adm 2-5, 3=13
reporting: adm 3-13
MASTER parameter: ref 1-70
Matching patterns: ref 1-106
MEMO: ref 1-55; usr 3-15
Memos: ref 1-14; usr 3-15
editing: adm 8-8
MENU: ref 7=14
Menu mode: ref 1-3; usr 24
dialogs in: ref 9-11
steps dialog: usr 2-7
switching to: usr2-5
using: usr 2-5
Menus
Admin: rgf9-8
bypassing: ref 1-3, 7-14; usr 24
controlling: ref 7-14
File: ref 9=3
Help: ref9-10
hierarchy of: ref9-1
in macros: ref 7-17; usr 24
Info: ref 9-7
Macros: ref 9-5
Main: ref 9-2
Options: ref 9-13
Revision Criteria: ref 9-12
setting parameters: usr 9-3

suppressing: ref 7-14

Tools: ref 96

User: ref 94

user—defined: ref 7-17; wusr 9-3
Merge: usr1—4
Merge conflicts

example of: usr 49

setting language for: ref 5-18, 5-30
Merging revisions: ref 1-70; usr 4=7

conflicts: usr 4-9

excluding specific changes: usr 4-9

including spedfic changes: usr 4-7
Messages

audit trail: ref 1-55

controlling: usr 3-12

to users: ref 1-55
Modification timestamps: ref 1-131
MODIFIED: ref 1-11; usr 3-6
MOVE: ref 1-56
Move steps: adm 4=5
Move-to-production: usr1-3
Movement rules. See Steps
Moving files: ref1-66
MPE

commands: ref 1-3

security: ref 1-113
MSUSER wildcard: adm 4-7
Multiple search locations: adm 7-6
Multiple versions, example of: adm 1-9
Multiple write access control: adm 34

N

Network Configuration (NC) scxeen: ref 5-37
example of: adm 2-5
Networking
buffer size: ref 537
changing configuration: adm 9-3
configuring: ref 5-37, 5-69, 585
example of: adm 2-5
linking to remote MPE systems: ref 1-104
logon security: adm 2-5
node names: ref 569
overrides: ref 585
passwords: ref 5-37, 5-85
troubleshooting: adm 2-5
X.25 adm 2-5
New files: ref 1-70; wsr4—4
See also Pending master files
added with a step: rgf 1-5
rules for: ref 5-51; adm 4-15

LIBRARIAN/iX

Node name, System-to-System Table (55} screen:
ref 5-62

NOMAKE parameter for MAKE: usr 85

NOVIOLATIONS: usr3-20

NS5/3000: ref 5-37

Null steps: adm 4-5

o

Object code, introducing: ref 5-51
Objectives: adm 1-1

file management: usr1-5
Online help: ref 1-5; usr 26
Online inquiry

files: ref 1-138

versions: ref 1-159
Opton menu: ref 9-13; usr2-5
OFTION statement for macros: ref 7-15
Original filename. See Generations
ORPHAN parameter: rgf 1-32, 1-61
OUTPUT: usr7-3
Output, redirecting: ref 6—4
OVERLAY: ref 1-32, 1-62
QOwmer, setting: ref 1-124, 1-150
OWNER wildcard: adm 4-7

P

Parameters
allowing users to override: adm 4-12
in macros: usr 9-3
step defaults: 2dm 4-12

PARM: ref 7-17

PASSWORL:: usr 2-3

Passwords
changing: ref 1-136, 5-91
LIBRARIAN databases: ref 11-1
providing: usr2-1
removing: usr2-3
security: ref 5-64, 5-65; adm 2-6

Pathnames: ref 1-6
entering long names on screen: ref 5-34
recursion: usr 3=2

Pattern matching: ref 1-106
wildcards: wusr 5-3

Pause in macros: ref 7-23

PC: ref1-64, 1-65

PCRECEIVE: ref 1-64

PCSEND: ref 1-65

Pending master: ref 1-70

Pending master file, report of: ref 6-35
Pending Master Files (PF) screen: ref 542
Pending Master Files (RPM10) report: ref 6-35
Pending Production Areas (PP) screen: ref 5-51
example of: adm 4-16
field descriptions: adnr 4-16
PERFORM: ref 1-66; usr2-9,3-13
PH capability: adm A-1
Pre-Flush Notification (RFN10) report: ref 6-25
Pre—Flush Notification (RFN20) report: ref 6-27
Presteps: adm 4-9
alternate: adm 49
composite: ref 5-14; adm 4-9
multiple: adm 4-9
Steps (ST) screen: adm 4-9
Previous transaction, saving files from: ref 1-115
PRINT: ref1-76
Printer, escape sequences: ref 147, 1-77
PRINTESC file: ref 1-47
Printing files: usr 5-1
annotated: usr 5-1
PRIVATE: usr6-2
Private filesets: usr6-2
PROCEDURE: ref 7-20
Procedure files: ref 1-125; usr 9-7
Procedures
executing: ref 1-161
naming: ref 7-20
signalling end of: ref 7-10
terminating: ref 7-10
Process, running in the background: ref 14; usr
2-1
Process ID numbers: ref 1-19, 1-45
Programs, compiling: rzf 8-1
PROJECT: ref1-78
Project Authorizations (PA) screen: ref 540
example of: adm 6-2
field descriptions: adm 6-2
Project Authorizations (RUP10) report: ref 647
Project fileset, implied reference to: ref 1-9
Project filesets: adm 6-7
finding secondaries: usr6-3; adm 67
hierarchies: ref 2-12
maintaining: usr 6-3
updating automatically: ref 1-23, 1-59, 1-82,
1-92: usr6-3; adm 67
using FMAINT with: adm 6-2
Project Inquiry (PI} screen: ref 545
example of: adm 6-6, 8-3
Project manager, assigning capability: edm 6-1
Project Status (PS) screen, example of: adm 6-5
Project Status Change (PS) screen: ref 5-54

Index ix

Projects: adm 6-1,6-2
“no project” option: usr 3-13
associating files with: adm 6-7
anthorizing users for: ref 5-40; adnr 6—4
changing linkage: ref 1-126
changing status of: ref 5-54; adm 6=5
creating: adm 6-2
default for session: ref 1-97, 1-126
defining: ref 1-78
defining hierarchies: adm 6-3
defining manager for: adm 6-1
example of: adm 6-2
files in: ref 1-144
filesets: wusr 6~3; adm 6~7
flushing transactions associated with: adm
€5, 6-6
hierarchies: ref2-12
implied reference to files: usr 3-5
inquiring: adm &5
linking files to: usr 3=13
list of: adm 6-6, 83
list of authorized: adm 8-7
menu of: ref 7-17
online listing of: ref 545
report of: ref6-33
report of users authorized for: ref 647
requiring: 7ef 5-57; adm &3
selecting from menu: adm 6-7
spedifying: adm 6~7
status change: adm 6=5
subset selection: usr 3-6
Projects (P]) screen: ref 548
example of: adm 6-2
Projects (RPJ10) report: ref 6-33
Prompt: ref 14
Prompts
changing: usr2-6
controlling: usr3-12
PUBLIC: usr6-2
Public filesets: usr 6-2
PURGE: ref 1-81; usr3-7

Q

QA function: adm 1-6

QEDIT files: ref 1-77, 1-108; usr5-1,5-3
QUIET: ref 1-83

QUIT: ref 1-39

R

R1: ref1-85
R7: ref1-85
Read access control: adm 34
Read mode secondary, updating: ref 1-134
Read-mode access: adm 34
Read-mode secondaries, housekeeping: adm 9-1
Recursion
in pathnames: ref 1-6; usr 3-2
levels of: usr3-2
REDO: ref 1-86, 1-87
Reflection: ref 1-64, 1-65, 1-85
RELEASE: ref1-88
Releases, multiple: adm 7-6
Remote logon: ref 1-27
configuring: ref 5-37
Remote sessions: ref 1-39
Remaote systems
linking to: ref 1-24, 1-104
logon information: adm %3
RENAME: ref 1-90
REPEAT/UNTIL: ref 7-21
Replacing text in files: ref 1-105; usr 5-2
variables: rgf 1-107; usr 5—4
Reports
from command mode: adm §-2
from menus: adm 8-1
generating: ref 6-4; adm 81
information about files: adm 8-2
project status: adm 8-3
redirecting: ref 6—4
retained files: ref 6-31
See also Generations
SHOWLOG: adm 8-8
summary of: ref 6-2
transaction codes: ref 6-3
VERIFY: adm 8-3
version data: adm 84
Request status: usr 3-9
RESET (APPLICATION): ref 1-95, 1-101
RESET (EXCEPTIONY}: ref 1-96
RESET (PROJECT): ref 1-97
RESET (ROUTEY): ref 1-98
RESET (TIMESTAMP): ref 1-99, 1-100
RESET* (**): ref1-94
RESETONZEROQO parameter for LM>OUTPUT:
usr 7-2
RESTORE: rzf 1-101
Retained files
See also Generation files
location of: usr4-6

X

LIBRARIAN/IX

maintaining: wusr 46
Retained masters, flushing: adm 9-1
Retained secondaries, flushing: adm 9-1
Retaining old revisions: usr 4-4
RETRY: ref 1-27, 1-104; usr 3-20
Revision Criteria menu: rgf 9-12; usr 2-8
Revision Histery {(RRH10) report: ref 6-37
Revision tree, example of: usr 42
Revisions: usr4-1, 4-11

branching: usr 4-1

comparing: usr4=9

concepts related to: adm 7-2

deleting: adm 7—4

file reference: usr 3-3

history: ref 1-156

identifying: usr4-2

information about: ref 1-138; usr 4-12

location of: usr 46

maintaining: usr4-6

merging: r¢f 1-70

See also Merging revisions

printing with annotation: usr 4-11

referring to: ref 1-7

reports of: ref 6-37; usr 4-15

retrieving: adm 7-3

storage of: usr 44

tagging: adm 7-8

tags: ref 1-155

vs, versions: usr4-1; adm 7-1
Root revision. See Base revision
Routes: usr1-3; adm 1-3, 41, 4-2

default for session: ref 1-127

defining: ref 557

examples of: adm 14,4-2

menu of: ref 7-17

report of: rzf 68, 6-10

steps in: adm 4-3
Routes (RT) screen: ref 5-57
Rules: adm 1-3

default for session: ref 1-98

file movement: adm 4-1

setting up: adm 2~1

Shortcut utility: adm 2-1
RUN: 7ef1-19, 145
Running LIBRARIAN: wusr2-1

S
SCAN: ref 1-105
Scan
appending to lines with match: 7ef 1-107

deleting lines with match: ref 1-107
example of: usr5-3
QEDIT files: ref 1-77, 1-108; usr5-1, 53
replacement variables: usr5—4
variables: ref 1-107
SCHEDULE variable for MAKE: usr 817
SCOMPARE: ref 1-109; usr 5-6
Screens
accessing: ref 1-49, 5-3
adding data: ref 5—4
brealdng to UNIX/MPE: ref 5-5
carrying data forward: ref 5-5
changing data: ref5-5
deleting data: ref 5-5
enter key: ref 54
exiting: ref 5-5
finding data: ref 54
function keys: ref 5-5
moving between: ref 54
moving between fields: ref 54
security: ref5-3
summary of: ref 51
using: ref 54
using online help: ref 5-5
Searching files for text: ref 1-105; usr 5-2
Secondary files: usr 1-2; adm 1-3
in progress: wusr A-2
indirectly referring to: ref 1-9; usr 3—4
new: rgf 5-51
not checked out: usr A-1
ORPHAN: ref 1-61
pattern—matching: usr 5-3
untracked: usr A-]
updating with current master: ref 1-134
write-mode: ref 1-148
SECURE: ref 1-113
Security
MPE: ref 1-88
Setting Passwords: ref 5-64, 5-65
setting passwords: adm 2-6
Security monitor: ref 1-91
erTor message: ref 1-30, 1-57, 168
Sequence. See Routes
Serial access control: adm 2-1, 34
Server: ref 1-2
configuring logon/passwords: ref 11-1
logon: edm C-1
passwords: adm C-1
SET (APPLICATIONY): ref 1-117
SET (EXPDATE): ref 1-118
SET (LANGUAGE): ref 1-120
SET (LOCKWORD): ref 1-121

Index xi

SET (MODE): ref 1-122
SET (OWNER): ref1-124
SET (PROCEDUREY): ref 1-125
SET (PROJECT): ref1-126
SET (ROUTE): ref 1-127
SET (TAG): ref 1-128
SET ™ usr3-3
SET * (**): ref 1-115
Setting parameters using menus: usr 9=3
Setup
applications: adm 2-3
defining steps: adm 2—4
defining users: adm 2—4
deleting: adm 2-5
troubleshooting: adm 2-5
SETVAR: ref 7-22
Shell commands: ref 1-2, 1-3; usr2-5
Shortcut: adm 2-1
defining applications: adm 2-3
defining library: adm 24
defining steps: adm 24
defining users: adm 2-4
deleting setup: adm 2-5
function keys: adm 2-3
running: adm 2-2
troubleshooting: adm 2-5
SHOW parameter for MAKE: usr 8-5
SHOWLOG: ref 1-130, 4-1, 6=41; adm &8-8
accessing; ref 4-1
commands summary: adm 8-8
creating listfiles with: ref 4-12
example of: adm 8-10
exiting: ref 4-5
generating reports: ref 4-10
getting saved settings: ref 49
refreshing display: ref4-22
report format: ref4-7
resetting report values: ref 4-15
resetting subset selection: ref 4-26
saving report settings: ref 4-16
selecting subsets: ref 4-24
selection criteria: ref 4=17
setting offline /online: ref 4-13
sort sequence: ref 4-23
title for reports: ref 4-25
transaction codes: ref4-2
SHOWLOG>EXTIT: ref 4-5
SHOWLOG>FLUSH: ref 4-6
SHOWLOG>FORMAT: ref 4-7
SHOWLOG>GET: ref 4-9
SHOWLOG>GO: ref 4-10

SHOWLOG>HELP: ref4-11
SHOWLOG>LIST: refd-12
SHOWLOG>OUTPUT: ref4-13
SHOWLOG>REDO: ref 4-14
SHOWLOG>RESET: ref 4-15
SHOWLOG>SAVE: ref 4-16
SHOWLOG>SELECT: ref 4-17
SHOWLOG>SHOW: ref 4-22
SHOWLOG>SORT: ref 4-23
SHOWLOG>SUBSET.: ref 4-24
SHOWLOG>TITLE: ref 4-25
SHOWLOG>UNDO: ref 4-26

SIMULATE parameter for LM>OUTPUT: usr 7-3

SM capability, warning message: ref 564
Son processes: rgf 145
Source code, annotation: usr 1-4

Source/object synchronization, example of: adm

1-7
Spedal characters: adm 4-7
Step Authorizations (RUS10) report: ref 648
Step Authorizations (SA) screen: ref 5-59
example of: adm 54
field descriptions: adm 5-5
Step Detail (RAD20) report; ref 6-10
Step fileset, implied reference to: ref 1-10
Step Options (STO) screer: ref 5-76
example of: adm 4-10
field descriptions: adm 4-12
Step Options menu: usr2-9
Step Refinements/Exceptions (SR) screen: ref
5-66

example of: adm 4-19

purpose: adm 4-18
Step Summary (RAD10) report: ref 6-8
Steps: wsr 1-3; 4dm 1-3,2-1,4-1,4-3, 44
authorizing users for: ref 5=59; usr 39
command line executior: usr 2-9
commonly used: usr2-10
copy: adm 4-5
customizing: adm 4-10
date prerequisite: ref 5-14
default parameters: ref 5-76; adm 4-12
defining: ref5-71
defining advanced options: rzf 5-76
defining alternate location for: ref 5-32
defining ambiguous: adm 4-4, 4-13
dependendes: adm 4-9
descriptior: ref 5-71
destination locatiore adm 4-5, 4-6
dialog: ref9-11; usr2-7
entering description for: adm 4-10
example of executing: usr 3-12

i

LIBRARIAN/IX

examples of: adm 14, 4-2, 4-15
exceptions: ref 5-66; adm 4-18
executing: ref 1-66
explanation of: usr 3-1
forward versioning rules: ref 5-32; adm 7-6
implied reference to files: usr 3=5
inquiry: adm 85
list of authorized: adm 8-7
lookup refinement: ref 567
master—to—secondary: adm 4-5, 4-6
menu of: ref 7-17
multiple prerequisites: ref 5-14
new files: adm 4-15
overrides: adm 4-12
pending production areas; adm 4-15
PERFORM command: rgf 1-66
performing: usr 2-6, 2-7
presteps: adm 4=9
refinements: ref 5-66; adm 4-18
report of: ref 6-8, 6-10
report of users authorized for: ref 648
request status: usr 3-10
restricting: ref 5-59
rules for: adm 1—4
rules for new files: ref 5-51
secondary—to-master: adm 4-5, 4-6
secondary—-to-secondary: adm 45,46
sorted list of: adm 4-4, 4-13
sourve location: adm 4-5, 46
Step Options (STO) screen: adm 4-10
Steps (ST) screen: adm 4—4
summary of: ref 6=8
tuning: ref 5-66
types of: adm 4-5
users authorized for: adm 44, 4-13
using: usr3-9
Steps (ST} screen: ref 571
example of: adm 4-4
field descriptions: adm 4—4
Steps menu: usr 2=7
STORE: usr7-=4
STREAM: ref 1-13; usr 3-9, 3-19; adm 4-5
variable for MAKE: usr 8-17
Subset selection; usr 36, 37
Suspended process: rgf 1-19
Switching modes: ref 1-3
System ID, changing globally: adm B-1
System overrides: ref 585
System profile, customizing: adm 2-7

System Profile (SP) screen: rzf 5-62
example of: adm 2-7
SM capability: ref 5-64
System variables: ref 1-1
LIBEDITOR: ref 1-38
LIBPROMPT: ref 14
source and destination: adm 4-6, 4-8
System~to-System Table (SS) screen: ref 5-69
node name: ref 569
Systems, mass change of references to: ref 10-1
Systems (SY) screen: ref 585

T

Tags: adm7-8

definition of: adm 7-8

setting: ref 1-128

subset selection: usr 3—6
Targets, dependencies: usr 8-2
testing: adm 1-6
Text

replacement: ref 1-105

search: ref 1-105
Third party software: adm 7-7
Timestamps: ref 1-125, 1-131

compiling based on: usr 8-1

discrepancies: ref 1-140, 654

for MAKE: ust 8-20

from file label: ref 1-140

LIBRARIAN: ref1-141

report of: ref 6-52, 6~54

validation: ref 1-140, 6-54
Tools: usr5-1

menu of: 7ef 9=6
TOUCH: rzf1-131; usr 820
TRACKED parameter: usr 3-18
Tracking, deleting: ref 1-61
Transaction Detail (RTD10) report: ref 639
Transaction Detail (RTD40) report: ref 6—41
Transaction Summary (RTS10) report: ref 643
Transactions

aging policy: ref 1-41, 562

audit trail: usr 1-3

batch: usr3-18

codes: ref 4-2, 6-3

deleting: adm 8-8

deleting data: ref4-6

files: usr 3-1

log reporting: ref 1-130

logging: ref 5-62

memos associated with: ref 643

Index xiii

purging records of: ref 141, 46

report of: ref 1-130, 4-1,4-2, 6-39, 641, 6-43;

adm 8-8
status codes: ref 642
status of usr3-21
using jobs: usr 3-19
Trunk: usr4-2

U

UNIX
background process: ref 1-4; wusr2-1
command line options: ref 1-2
commands: ref 1-3
pathnames: ref 1-12; usr 3-8; adm 4-9
UNLOCK: ref1-133
UNMODIFIED: ref 1-11; usr 3-6
Untracked files: usr3-17
commands for: usr 3-18
UPDATE: rzf1-134
USE parameter for LM>OUTPUT: usr 7-3
USER: ref 1-136; usr2-3
User capabilities: ref 1-20
assigning: ref 5-89; adm 5-3
granting temporary: usr 9-5
list of: adm 5-3
User Capabilities (UC) screen: ref 5-89
example of: adm 5-3
User fileset maintenance utility: ref 1-42
User filesets: ref 1-42, 2-1; usr 6-1
adding files to: ref2-3
creating. ref 2=4; usr 6=2
defining subsets: ref 2-12
deleting files from: ref2-5
disconnecting subsets: ref2-13
examples of using: usr 6-3
files in: ref1-145
information about usr 6-3
listing by user: ref 2-8
listing files in: ref 2-14
listing subsets of: ref 2-14
maintaining: usr 6-2
making public/private: ref 2-10
private: wusr6-2
public usré-2
referring to: usr6-3
removing: ref 2-11
User identification: usr 2-1
switching: wusr2-3
User IDs: ref 1-20

User menu: ref 9-4

User passwords: ref 1-20

USERID wildcard: adm 4-7

Users: adm 5-1
assigning capabilities: ref 5—89; adm 5-3
authorizing for steps: ref 5-59; adm 54
defining: ref 5-91
establishing for session: ref 1-136
inactive: adm 5-2
passwords: adm 5-2
project authorization: ref 5-40; adm 6—4
report of: ref 645
report of authorized projects: ref 647
report of authorized steps: ref 648
reports of: adm 5-6
sequence for defining: adm 56
step authorization: adm 5—4

Users (RUD10) report. ref 645

Users (US) screen: ref 5-9%
deleting mass data: ref 593
example of: adm 2-8, 5-1

\'/

Variables

for macros: ref 7-17, 7-22

Inmacros: usr 9-3

LIBBATCH: usr 3-19

LIBEDITOR: ref 1-38

LIBPROMPT: usr2-6

list of: wusr3=21

MAKE: ref87

makefiles: usr8-12, 8-16

scan/replace: ref 1-107
VCOUNT. See Version count
Vendor software: adm 7-7
VERIFY: ref 1-138; usr3-21,3-22; adm 8-3

example of: adm 84

retrieving files: rgf1-138
VERSION: ref 1-159; adm 84
Version count usr 34, 4-2

referring to: ref 1-7
Versions: usr 1-3; adm 7-1

bringing forward: ref 5-32

copying: adm 7-3

defining: ref 1-159; adm 7-3

deleting: ref 1-159; adm 74

example of: adm 7-2

files: ref1-146

flushing: ref 1-159

forward versioning: gdm 7-5

Xiv_ LIBRARIAN/IX

identifying: adm 7-3

indirect file reference: usr 3-3

information about: adm 84

list of: ref 1-159; adm 8—4

obsolete: ref 1-40; adm 74

referring to: ref 1-7; adm 7-3

report of: ref 6~14

report of files in: ref 6-50

restoring: adm 7-3

retained: usr3—

status of adm 74

Vs, revisions; adm 7-1
Versions (RAV10) report: ref 614
Video enhancements: usr 56
Violations: usr 3-12

w
WAIT: ref 7-23
WHILE/ENDWHILE: ref 7-24
Wildcards: ref xv, 1-6
?: adm 4-6,4-7
#: admd-7
- adm 45,47
*: adm 4-7
=! adm 4=6
for pattem—matching: usr 5-3
special: adm 4-7
Work in progress: usr A-1
simulating checkout: usr 8-5
Write Mode Secondaries by Path (RSF20) report:
ref6-16
Write Mode Secondaries by User (RSF10) report:
ref 6-15
Write—mode access: adm 3-4
Write-mode secondaries: ref 1-148

X

X commands; usr3-17, 3-18
X25: ref 5-37; adm 2-5
X—terminal: ref 1-2
XCOMPRESS: ref 1-25
XCOFY: ref 1-29
XDECOMPRESS: ref 1-34
XEQ: ref 1-161

XEQ file. See Macros
XEQLIST: ref 7-13
XLCOMPFARE: r=f 146
XMOVE: ref 1-56
XPRINT: ref 1-76

XPURGE: ref 1-81
XRENAME: ref 1-90
XSCAN: ref 1-105
XSCOMFPARE: ref 1-109
xterm: ref 1-2
XTOUCH: ref 1-131

index xv

xvi LIBRARIAN/X

