
BRADMARK

SUPERDEX
User Manual

Version 3.1

All updates to or derivatives of the SUPERDEX™computer software provided herein
are copyrighted and may not be copied except for archive purposes, to replace a
defective copy, or for program error verification by Licensee. Copyrighted material
may not becopied onto any media (e.g. magnetic tape, paper tape, disc memory
cartridges, read-only memory, etc.) for any other purposes. The authorization to
duplicate copyrighted materials hereunder shall not be construed to grant the
Licensee or Licensee's customer the right to use copyrighted SUPERDEX material in
any manner other than which is provided in this agreement or otherwise approved in
writing by Bradmark Techologies, Inc..

(c) 1988 Bradmark Technologies, Inc.

Released March, 1992

AdvanceLink, Business Basic, Business Report Writer, HP, IMAGE, TRANSACT, TurboIMAGE, and
TurbolMAGElXL are trademarks of Hewlett-Packard Company

ASK2 and VISIMAGE are trademarks of Cogelog

Business Session is a trademark of Tymlabs Corporation

dBASE, dBASE III, and dBASE III Plus are trademarks of Ashton-Tate Corporation

DBGENERAL is a trademark of Bradmark Technologies, Inc.

DIF is a registered trademark of Software Arts Products

ENQUIRE and SUPERDEX are trademarked product names of Bradmark Technologies, Inc. for the
SI-IMAGE and ENQUIRE packages developed and implemented by Dr. Wolfgang Matt

FASTRAN is a trademark of Performance Software Group

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation

Macintosh is a registered trademark of Apple Computer, Inc.

MPEXl3000 is a trademark of Vesoft Inc.

PowerHouse, QUIZ, QUICK, and QTP are registered trademarks of Cog nos Incorporated

Reflection is a registered trademark of Walker Richer & Quinn, Inc.

SPEEDWARE is a trademark of Infocentre Corporation

SYDAID is a trademark of Sydes

About this manual

In writing this manual, we have assumed that you have working knowledge, although not internal
knowledge, of IMAGE and the HP3000.

All references to IMAGE in this manual and throughout the SUPERDEX package also apply to
TurbolMAGE and TurbolMAGElXL unless otherwise noted.

This manual is arranged in the followiingformat:

Section 2 overviews the various Access methods available in SUPERDEX for qualifying and
retrieving entries in IMAGE databases, with one chapter per method.

Section 1 provides an Overview of the SUPERDEX package, its capabilities, and benetits. It also
describes how SUPERDEX works and how it maintains compatibility with IMAGE and its facilities.

Section 3 describes the procedures used in Configuration/Establishing S/-indices in SUPERDEX for
use with your databases to provide quick retrieval of data entries.

Section 4 discusses the various methods utilized in Programming with SUPERDEX to add, update,
delete, qualify, and retrieve entries in SUPERDEX, and gives examples of each.

Section 5 describes the Intrinsics provided with SUPERDEX as enhancements to the IMAGE
intrinsics, as well as new SUPERDEX intrinsics.

Section 6 discusses the various Maintenance considerations for SUPERDEX'ed databases, as well
as the use of various Utilities to access and maintain them.

Section 7 deccribes SuperSELECT. which can be used to override a serial read with a SUPERDEX
qualification and retrieval.

Appendix A contains fragments of Program examples written in COBOL utilizing SUPERDEX.

Appendix B examines various Internal structures used for SUPERDEX, including the method for
calculating the capacity of the SI-dataset.

Appendix C documents Maximum limits that are imposed for SUPERDEX configuration.

Appendix 0 lists Error and exceptional conditions for SUPERDEX intrinsics, utilities, and programs
with their meanings and recommended actions.

Following Appendix D are several Supplements for different products and languages.

Finally, the Index is a complete index to the manual.

~-----~-----~-- .. ~~.- --.-~~--------

Table of contents

Section 1: Overview 1-1
Why SUPERDEX? 1-2
Enhancements 1-4
Functionality 1-7
Concepts " " 1-11
Terminology 1-13
Access principles 1-16
Compatibility 1-17

Section 2: Access methods 2-1
Multiple keys in master and detail datasets 2-3
Concatenated keys containing multiple fields 2-5
Sorted sequential retrieval 2-7
Keyword retrieval 2-8
Generic and partial key retrieval 2-11
Approximate match retrieval 2-13
Greater-than, less-than, and range retrieval 2-15
Grouped retrieval 2-17
Super-grouped retrieval 2-19
Relational access: multiple criteria retrieval 2-21
Relational access: multiple fields, sets, and bases 2-23
Custom indexing 2-24
Independent indexing 2-25

Section 3: Configuration I Establishing SI-indices 3-1
Installation 3-2
Configuration overview 3-6
Excluding words from keywording 3-12
Customizing default characters 3-14
Configuring SUPERDEX using SIMAINT : 3-16

Section 4: Programming 4-1
Locking 4-2
Adding, updating, and deleting entries 4-5
Qualifying entries with DBFIND 4-8
Retrieving entries with DBGET 4-33
Additional programming considerations 4-36
Native Language Support 4-40

.- -- ---------------

Section 5: Intrinsics 11 •••••••••••••••••••••••• 5-1
Enhancements 5-2
DBBEGIN intrinsic 5-4
DBCLOSE intrinsic 5-5
DBDELETE intrinsic 5-6
DBDELIX intrinsic 5-7
DBEND intrinsic 5-9
DBERASE intrinsic 5-10
DBERROR and DBEXPLAIN intrinsics 5-12
DBFIND intrinsic 5-13
DBGET intrinsic 5-21
DBINFO intrinsic 5-25
DBLOCK intrinsic 5-28
DBMEMO intrinsic 5-29
DBOPEN intrinsic 5-30
DBPUT intrinsic 5-31
DBPUTIX intrinsic 5-32
DBUNLOCK intrinsic 5-34
DBUPDATE intrinsic 5-35
DBXBEGIN intrinsic 5-36
DBXEND intrinsic 5-37
DBXUNDO intrinsic 5-38
SITRANSLA TE intrinsic 5-39
SIUSER procedure 5-40

Section 6: Maintenance and utilities 6-1
Database maintenance considerations 6-3
SIMAINT utility 6-6
SUPERDEX utility ..•............................ 6·16
SIPATH utility 6-37
SITEST and SIREPAIR utilities 6-40
SICOUNT utility 6-46
SITRACE utility 6-50
SIDRIVER utility 6-52
SIBASE Utility 6-53
SISIZE Uitlity 6-55
ALTPROG utility 6-58
QUERY/3000 utility 6-60

Section 7: SuperSELECT 7-1
Invoking SuperSELECT 7-1
SuperS ELECT - Methocl1 7-1
SuperS ELECT - Methocl2 7-3
SuperS ELECT - Methocl3 7-4
SuperSELECT - Methocl4 7-5

Appendix A: C080L Program examples A-1
Retrieving all entries in a set in ascending sorted order. A-2
Retrieving all entries in a set in descending sorted order A-4
Retrieving entries using a partial or generic key A-6
Retrieving entries using a concatenated key A-8
Retrieving entries in a range of values A-1 0
Retrieving entries using multiple values A-12
Refining and undoing a selection A-14
Retrieving entries using multiple SI-paths in a single dataset.. A-17
Retrieving entries using multiple datasets A-19
Retrieving entries using multiple databases A-22
Retrieving entries in multiple sets and bases using projection A-25
Reading SI-indices only A-28
Customizing SI-key value(s) with SIUSER A-30
Manually adding SI-indices with 08PUTIX A-32
Manually deleting SI-indices with 080ELlX A-34
Adding SI-dataset to the lock descriptor A-36
Calling SITRANSLATE A-37

Appendix 8: Internal structures 8-1
SI-dataset structure 8-1
SI-dataset capacity 8-1
SI-item 8-2
SI-index base 8-2
SI-index 8-2
SI-pointer 8-3
SI-subset 8-3

Appendix C: Maximum limits C-1

Appendix 0: Error and exceptional conditions 0-1
SUPEROEX intrinsic error and exceptional conditions 0-1
SUPEROEX utility error and exceptional conditions 0-1
Program failures related to SUPEROEX 0-1

Business Basic interface fI ••••••••••• SUPp-1
Installation SUPP-1
Running programs : SUPP-2
Adding, updating, and deleting entries SUPP-3
Qualifying and retrieving entries SUPP-3

TRANSACT interface SUPP-4
Installation SUPP-4
Adding, updating, and deleting entries SUPP-4
Using (CHAIN) SUPP-4
Qualifying and retrieving entries SUPP-4
Match register SUPP-6
LIST change SUPP-6
PROC DBFIND SUPP-6
FAST RAN SUPP-7

NetBase interface supp-a
Installation and configuration SUPP-8
SIGROUPSL JCW SUPP-8
Shadowing SUPP-9
Network File Access SUPP-9

Section 1 Introduction

Overview

SUPERDEX is not a database management system, nor a programming language. It is realized as a
natural extension to IMAGE, picking up where IMAGE leaves off. SUPERDEX automatically creates
and manages new 8-tree indices in your databases and provides enhanced IMAGE-compatible
intrinsics used by your programs automatically.

SUPERDEX has been designed and implemented to provide the most power and flexibility with the
least amount of effort. SUPERDEX is so simple, it requires little training and takes only a few
minutes to configure and minor program modifications to implement. Many SUPERDEX capabilities
are accessible with no program modifications at all.

This section previews the SUPERDEX package, its capabilities, and ilts benefits.

Charter 1
Description

Chapter 2
Description

Chapter 3
Description

Chapter 4
Description

Chapter 5
Description

Chapter 6
Description

Chapter 7
Description

Why SUPERDEX?
explains the basic reason for SUPERDEX and it's capabllities.

Enhancements
is a description of the latest enhancements in SUPERDEX Version 3.1.

Functionality
gives a brief description of the features that provide SUPERDEX's Functionalitvand
a simple example of each.

Concepts
explains the main Concepts of SUPERDEX and how they are used.

Terminology
defines the Termino/og,vused throughout SUPERDEX to identify its features and
capabilities.

Access Principles
overviews the Access principles within SUPERDEX for adding, updating, deleting,
and retrieving entries.

Compatibility
reviews compatibilitv issues, including compatibility with IMAGE intrinsics, the status
array, and transaction logging. Additionally, the impact on existing application
programs, third- and fourth-generation languages, QUERY and other utilities is
discussed. Finally, issues involving locking, program capabilities, and stack
requirements are examined.

Why SUPERDEX ?

Perhaps the best way to understand what SUPERDEX is all about is to understand why it was
created, why it was implemented in the way it was, and why we believe you will find it to be a simple,
straightforward method for achieving faster, more flexible access to your IMAGE, TurboIMAGE, and
TurbolMAGElXL databases.

IMAGE, although a very functional and powerful database management system, lacks certain
obviously-needed capabilities, such as:

• multiple keys in both master and detail datasets
• concatenated keys containing multiple fields
• sorted sequential retrieval
• automatic keywording and keyword retrieval
• generic and partial-key retrieval
• approximate match retrieval
• greater-than, less-than, and range retrieval
• grouping of functionally-equivalent fields
• relational access using multiple criteria
• relational access across multiple fields, datasets, and databases

SUPERDEX provides these desirable capabilities, and several others.

In IMAGE, for example, a master set indexes entries in a detail set, but there is no IMAGE structure
that indexes a master set. To locate a master entry, you must specify the exact search field (key)
value. To get around this limitation and permit entries to be located by multiple keys, many IMAGE
databases are designed such that master-oriented information (entities such as customers, vendors,
and parts) are placed in detail sets instead of master sets and indexed via automatic master sets.
This leads to cumbersome, inefficient database structures, yet fundamental operations such as
partial-key retrieval still cannot be performed without serially reading the dataset.

One fundamental requirement in designing SUPERDEX was to provide complete flexibility in
searching for entries by allowing any field in any master or detail dataset to be used as a key.
SUPERDEX permits you to designate any field--even every field--in master and detail datasets as a
key.

Another requirement was to be able to specify a partial or generic key value in searching for entries.
SUPERDEX can locate entries by a partial or generic key, multiple keys, or a range of keys. It can
even find entries by any word contained in a key, which is called keyword retrieval.

SUPERDEX provides these capabilities for master and detail sets in the same way, so the same
code that is written for detail datasets will work on master datasets, and vice-versa. In fact, ease of
integration was one of SUPERDEX's primary requirements.

1-2 Overview Version 3.1 March 1992

Another requirement was to minimize space and resources and impact existing structures as little as
possible. So, SUPERDEX requires only a single dataset with a single field in your database, in which
it maintains special B-tree index structures. Alternately, SUPERDEX's indices can reside in a
separate database. SUPERDEX manages these indices automatically using standard IMAGE
intrinsics, to remain entirely within and compatible with IMAGE facilities such as transaction logging,
unlike other indexing structures such as KSAM. These B-tree structures may be established,
deleted, and reconstructed quickly on-the-fly, allowing very flexible indexing schemes like those
inherent in relational databases.

Another IMAGE limitation is the inability to relate a master set to another master set. SUPERDEX
permits logical master-master connectivity, and moreover, connectivity between multiple keys in a
dataset, between any logically related datasets, and even across multiple databases.

The overall intent in creating SUPERDEX was to make it look and feel just like IMAGE--perhaps the
next logical step for IMAGE--with fully-compatible enhanced intrinsics that provide additional
functionality with the same names, parameters, and calling sequences. In SUPERDEX, all access
capabilities are available through DBFIND mode 1 to find entries and DBGET mode 5 and 6 to
retrieve them. And, to make matters as simple and straightforward as possible, all selection criteria
may be specified in the argument for DBFIND mode 1, permitting generic retrieval code to be written
and the type of and scope of the retrieval specified by the user.

SUPERDEX's B-tree indices are maintained automatically by DBPUT, DBDELETE, and DBUPDATE.
All status information is returned in the standard IMAGE status array, and locking may be done
automatically, further easing integration.

And most important of all, SUPERDEX was designed to be the fastest method for retrieving entries in
an IMAGE database. Lookups that would take minutes in IMAGE are done in seconds by
SUPERDEX.

We know you will quickly see the areas in which SUPERDEX improves IMAGE, and appreciate the
efforts that have been taken to make SUPERDEX as easy for you as its speed and power are to your
users.

Version 3.1 March 1992 Ovetview 1-3

Enhancements

Version 3.1 has several enhancements that are briefly described here.

SUPERDEX Menu Program

The SUPERDEX menu program provides a full screen system that can access a" of the programs
and utilities in the SUPERDEX product. This menu also provides a user-friendly, menu-driven
process that allows the user to maintain SUPERDEX paths.

SuperSELECT

This new program is used to intercept an existing program that reads the database serially. It will
force the serial read to be replaced with SUPERDEX qualifying and reading. It can be used to greatly
increase the speed of serial reads which also do qualifications.

The are several different modes of execution, including the ability to build entry screens for user-
friendly prompts.

SIREPAIR

SIREPAIR is a program that can be used to repair indices that are not aligned with the data. This
situation occurs when a program that updates the data was executed without the SUPERDEX library.
SIREPAIR will determine and report any inconsistencies in a path and will correct those
inconsistencies.

SICOUNT

In SUPERDEX Version 3.0, disc usage for indexes was reduced via a compression algorithm that
takes into consideration many different aspects of the user data and. the database structure. This
makes it very difficult to calculate what the exact compression ratio is. SICOUNT has been
developed to read the B-tree and display the exact compression status.

SIDRIVER

The new SIDRIVER program replaces the current DBDRIVERPUB.SUPERDEX. It has several
additional features including multiple database access and upshifting.

1-4 Overview Version 3.1 March 1992

New Boolean Operators

The words AND, OR, and NOT can now be used in an argument value to perform relational
accessing. For example, the user can now enter - SKITB@ OR JONES@; as a valid search
value.

Additionally, the infix notations, + (AND), , (OR), and - (NOn, can be entered as valid operators
in an argument. The user can enter - SKITB@ , JONES@ ; .

New Wild Cards

The @ can now be used in an argument other than just for a terminators. Up to two (2) @ signs can
be included in an argument. One can be placed at the beginning of an argument, or they can be
placed in the middle.

«A@B@C» -will retrieve all words that begin with an "A", have a "BNanywhere after the
"AN,and a "C" anywhere after the "B".

A new wild card for numeric values has also been added. The f can be used to float a particular
position (similar to the? wild card), but will only qualify records that have a numeric value (0 - 9) in
the position

AB#J35@ - will retrieve AB3J35P12 and AB5J35T, but will not retrieve ABKJ354.

Paths can now have their starting position defined, along with their lengths defined in bytes. This
means a path can now begin in position 5 of the field, and only include the next 3 positions.

SIMAINT Enhancements

Paths can now have their starting positions (referred to as ·OFFSET") along with their lengths
defined in bytes. This means a path can now begin in position 5 of the field, and only include the
next 3 positions.

SIMAINT now has thorough progress reporting. As paths are processed, SIMAINT will display the
number of indexes processed, the percentage complete, the elapsed time, and the number of CPU
seconds used. The interval for progress reporting defaults to every 1000 records, but can be defined
prior to execution.

The number of datasets in a database that can contain SUPERDEX paths has been expanded from
100 to ALL datasets in the database.

The number of grouped items in a path has been increased from 16 to 32.

Path Numbers

Now, as paths are defined, SUPERDEX will assign a path number beginning with the value of ten
thousand and one (10,001). This is similar to IMAGE defining and aI/owing set and item numbers to
access data.

Version 3. 1 March 1992 Overview 1-5

DBINFO Mode 312

DBINFO Mode 312 has been modified to return the new path number, along with the starting position
of the path. The buffer size of DBINFO mode 312 was not increased. The areas reserved in version
3.0 were utilized. Existing calls will continue to function as before.

SIPATH Enhancements

SIPATH has been enhanced to display the new options available for paths. These include the path
number, the subkey starting position and the length of the subkey. Additionally, the IMAGE key
information can optionally be displayed.

New Relation Operator

A new option has been added for those situations where several relational DBFINDs are being
executed and the relation tables overflow. (See Section 4: Programming)

SIBASE

This new program will create the additional SI-Index database for storing the SI-Indices in a separate
database.

SISIZE

This new program allows you to maintain the capacity of the SI-dataset(s).

1-6 Overview Version 3.1 March 1992

Functionality

The various capabilities of SUPERDEX are covered here. More complete information about and
examples of each feature appears in the Access methods section.

Sample applications

SUPERDEX may be used throughout your application systems in different ways to accomplish
various operations. Some of the more common uses of SUPERDEX capabilities are listed here:

• Customer lookup
Customers stored in a master dataset need to be accessed by name, contact, phone number,
and address. SUPERDEX could search on any field, keyword the contact so that either first or
last name or both could be specified, and group together both lines of a two-line address so both
are always searched. The customer name could be looked up by a partial or generic key.

• Part lookup
Users can enter partial part descriptions and the program retrieves all that qualify and displays
them on the screen with their corresponding part numbers. SUPERDEX could treat the part
description as a keyworded field, permitting any word or words within the description to be
specified.

• Part classification extract
All part numbers start with a classifying character sequence, and it is necessary retrieve all the
parts which start with a certain sequence of characters, so those characters are specified as
partial keys.

• Mail room
Everyone in a company has a mail-stop, but not all correspondence indicates it, so the mail
clerks enter the addressee's name or partial address and get the mail stop for routing.

• Text Management
Comments and other text must be searchable by any word contained in an 80-character field;
SUPERDEX could handle it as a keyworded field. .

• Library system
Book titles, authors, and summary information stored in a master set and two related detail sets
could be super-grouped together, permitting retrieval by any combination of criteria in a single
operation.

Version 3.1 March 1992 Overview 1-7

Multiple keys in master and detail datasets

IMAGE lets you access a master set by only one field, and a detail set only via its related masters
unless time-consuming serial reads are performed, forcing rigid applications and cumbersome
database structures. Using simple, IMAGE-compatible techniques, SUPERDEX lets you access any
dataset directly by any field, regardless of whether or not it is an IMAGE search field.

For example, a customer entry in a master dataset could be looked up by its customer number,
customer name, contact name, or phone number.

Concatenated keys containing multiple fields

SUPERDEX permits multiple fields or truncated fields to be concatenated together and retrieval to be
done on the entire concatenated value. This permits very specific lookups to be performed without
having to read serially or down a chain to qualify entries that match on multiple fields because all
fields may be contained in the key.

For example, a division number, group number, and partial account number could be concatenated
together and looked up by the full combined value or any portion of the combined value.

Sorted sequential retrieval

IMAGE returns entries in chronological order, unless sorted paths are used. SUPERDEX returns
entries in ascending or descending alphabetical order and, by USingconcatenated keys, provides
more flexibility than sorted paths without the overhead.

For example, a classification number, account number, and dateltime stamp could be concatenated
together, and entries would be returned in chronological order within each account within each class.

Keyword retrieval

SUPERDEX lets you access entries by any word contained in designated fields. This technique is
referred to as keywording.

For example, the entry "BRADMARK TECHNOLOGIES, INC." could be located by specifying either
BRADMARK, TECHNOLOGIES, or INC.

Generic and partial key retrieval

IMAGE won't find an entry unless you specify its exact key value. SUPERDEX is far more forgiving:
you may specify for any key or keyword a partial value or an embedded value with matchcodes.

For example, GEN@ would find all the entries that begin with "GEN" and KA??ER would find all the
entries that begin with "MA" followed by any two characters followed by "ER". A#J3@ would find all
the entries that begin with "AUfollowed by a single digit (0 - 9), then "J3" followed by any other
characters.

1-8 Overview Version3.1 March 1992

Approximate match retrieval

IMAGE cannot not find an entry that does not exist, but SUPERDEX can do the next best thing: find
the nearest matching entry.

The alphabetic ordering of indices allows approximate match retrieval: if no matching entry exists,
the nearest qualifying entry is returned, permitting a program to start reporting data at any alphabetic
location.

Greater-than, less-than, and range retrieval

SUPERDEX is also capable of retrieving all entries that are:

• greater than or equal to a specified value
• less than or equal to a specified value
• not equal to a specified value
• within the range of two values

For example >=1000 would find all the entries with amounts greater than or equal to 1000, <=500
would find all entries with amounts less than or equal to 500, <> 10 would find all amounts not equal
to 10, and >=A@<=C@ would find all the entries that begin with the letters "A", "S", or "C".

Grouped retrieval

IMAGE can search only one field at a time. SUPERDEX lets you group multiple fields together at
configuration time, and automatically searches them all at lookup time. IMAGE compound (arrayed)
fields can be used as keys, and are grouped automatically.

For example, three fields containing phone numbers could be grouped together and would all be
searched when retrieving by phone number.

Super-grouped retrieval

IMAGE can only search a single dataset at a time. SUPERDEX lets you form a super-group of a
master set and one or more of its related (by IMAGE paths) detail sets and qualify master entries
based on the contents of the related detail entries.

For example, a master set containing a book title related to a detail set containing authors and
another detail set containing summary information could be super-grouped together, allowing master
book entries to be qualified by title, author, and/or summary in a single operation.

Version 3.1 March 1992 overvie« 1-9

Relational access: multiple criteria retrieval

Access may be performed using boolean operations against multiple criteria, to retrieve:

• all entries that meet either criterion (OR operation)
• all entries that meet both criteria (AND operation)
• all entries that meet one criterion but not the other (AND NOT operation)

For example, all the customers that have orders waiting to ship Q[on back-order; all customers who
are more than 60 days delinquent and owe more than $1000; all parts that are out of stock and not
discontinued.

Relational access: multiple fields, sets, and bases

Relational queries may be performed based on multiple values across multiple fields, datasets, and
databases using dynamically-joined indices. This provides the power of a relational database in
accessing a regular IMAGE database.

For example, finding all the customers who have more than $100,000 in annual activity, current
orders pending, and who did that same amount of business last year requires access to the
CUSTOMERS and ORDERS sets in the SALES database and the ORDER-SUMMARY set in the
HIST database.

Custom indexing

SUPERDEX contains a facility for addressing non-standard indexing requirements for circumstances
in which the index value cannot be determined automatically.

Examples of this are data type conversion, date reformatting, upshifting, key extraction, and stripping
unneeded characters.

Independent non-IMAGE indexing

SUPERDEX is designed to index entries in IMAGE databases, but can also be used to index other
types of files.

For example, separate word processing documents may be indexed by all the significant words in
their document descriptions and accessed via their file names.

1-10 Overview Version 3.1 March 1992

concepts

SUPERDEX looks and feels like IMAGE. It uses IMAGE-compatible intrinsics which have extended
capabilities and, in some cases, additional modes.

These are the major concepts of SUPERDEX:

• 8-tree indices instead of chains
IMAGE uses doubly-linked lists to represent its chains. SUPERDEX uses SUPERDEX indices in
B-trees which are contained in one or more standalone detail datasets in each database or in a
separate database. These B-tree indices are automatically maintained and accessed by
SUPERDEX intrinsics which are IMAGE-compatible. They are easy to configure and
reconfigure.

• 8-tree = automatic master set
A SUPERDEX B-tree is functionally equivalent to an IMAGE automatic master set which provides
access to a field in a dataset, commonly referred to as a "key". Like entries in an automatic
master, SUPERDEX B-tree indices are added and deleted automatically. SUPERDEX easily
replaces and enhances the functionality of automatic master sets with SUPERDEX indices.

• Master and detail sets treated equally
In IMAGE, an automatic master may be related only to a detail set; in SUPERDEX, B-tree indices
may be related to master sets as well as detail sets. In IMAGE, master and detail sets are
handled differently: master sets are usually accessed via keyed reads (DBGET mode 7) and
detail sets are accessed via DBFIND followed by DBGET mode 5 or 6. In SUPERDEX, both
master and detail sets are accessed using a common method: DBFIND and DBGET mode 5 or
6, with DBFIND qualifying the entries and DBGET retrieving them--just like accessing an IMAGE
path in a detail set. Of course, DBFIND and DBGET against IMAGE paths continue to function
as in IMAGE.

• Entries returned in sorted order
Entries are returned in ascending alphabetical order by SUPERDEX key value with DBGET
mode 5 and descending order with DBGET mode 6.

• Concatenated keys = sorted chains
A SUPERDEX key may consist of multiple field values or substring field values concatenated
together, permitting more flexible sorting than sorted chains without the overhead.

• SUPERDEX indices self-maintaining
SUPERDEX indices--like automatic master entries--are automatically added and deleted
whenever DBPUT and DBDELETE are called. Additionally, DBUPDATE may also cause the
indices to change automatically.

Version 3.1 March 1992 Overview 1-11

• Explicit index maintenance possible
SUPERDEX indices may be added and deleted manually via new intrinsics. This permits custom
indexing against IMAGE databases as well as indexing of external non-IMAGE files. This is
called Independent indexing.

• Zero or multiple indices per entry
A data entry may have zero or more SUPERDEX indices pointing to it, facilitating both multiple
indexing (as used in keyword retrieval) and the exclusion of blank fields.

• Improved handling of compound items
IMAGE does not allow compound items (which are also referred to as arrayed or repeating items)
to be used as keys. In SUPERDEX, compound items may be used as keys and are handled
such that every subitem in the item is automatically searched whenever the item is referenced.

• Power in the DBFIND mode 1 argument
Most of SUPERDEX's powerful selection capabilities are available via DBFIND mode 1, with
multiple values and operators included in the argument to define complex selection criteria. This
permits generic code to be written and the user to specify the type and scope of retrieval.

• Selection refinement and undo
SUPERDEX maintains the results of the current and previous DBFIND calls and manages them
automatically; it also allows them to be manipulated explicitly. This permits successive DBFINDs
to be used to refine and undo selections and to qualify entries across multiple fields, datasets,
and databases.

• Multiple relational syntax used
Boolean operations using multiple values can be specified in three common syntax.

SOL notation, as used with common SOL languages. The arguments can be entered with the
words AND, OR, and NOT.

Infix notation, as used with common report-writers. The arguments can be entered with +, -,
and, .

Reverse Polish Notation (RPN), as used by HP calculators. In RPN, the operator follows the two
values to which it applies.

1-12 Overview Version 3.1 March 1992

Terminology

Several new terms are used by SUPERDEX to identify its structures, and are used throughout this
manual:

SI SI stands for SUPERDEX index.

SI-key Equivalent to an IMAGE search field, except in SUPERDEX the SI-key may
consist of:

• a single field (simple SI-key)
• a substring field (e.g. only the first 6 characters of a 12-character field or

the 3rd through 6th characters).
• a combination of up to four fields or substring fields (referred to as a

concatenated SI-key), which permits extended sorting capabilities and may
be searched by the entire concatenated key value or any portion thereof.

SI-subkey A. field or substri~g field used as an ele~ent in a concatenated SI-key. A II·

simple SI-key, which references only one field, has no SI-subkeys. .

SI-index The B··treeentries which are comprised of the SI-key followed by an extension
which points to the corresponding data entry.

SI-extension Included at the end of the SI-index and used to map the corresponding data
entries. For entries that reside in master sets, the SI-extension consists of the
full IMAGE search field value, and its length is the same as the length of the
search field. For detail sets, the SI-extension is the entry's relative record
number, and is two words long.

SI-path In IMAGE, a path defines the relationship between a master and detail
dataset. In SUPERDEX, an SI-path defines any field (or combination of fields)
that can be searched via SUPERDEX, as an IMAGE path would be used to
index into a detail set. Entries along an SI-path are logically maintained in
alphabetical order, so an SI-path may be thought of as a virtual sorted chain
containing all tile entries in the dataset.

Version 3. 1 March 1992 Overview 1-13

SI-chain

SI-subset

SI-link

SI-counter

SI-definitions

SI-dataset(s)

SI-item

SI-index base

1-14 Overview

In IMAGE, a chain is comprised of all the entries in a detail set that have the
same search field value, as specified in the DBIFIND argument. In
SUPERDEX, an SI-chain is a virtual chain consistinn of all the qualifying
entries in a master or detail set that meet the search criteria as specified in
SUPERDEX's DBFIND argument (which mayor may not have the same
IMAGE search field value).

Used only when performing Relational Access (boolean operations) against
multiple values for a single SI-path, multiple SI-paths, datasets, and databases
by performing successive DBFINDs. Both a virtual active SI-subset and
backup SI-subset are maintained to contain the SI-chains retrieved by the
DBFINDs.

Used when performing Relational Access against multiple datasets; it defines
the common item used to logically link the different sets.

The SI-link may also be used to enforce a sorting order when performing
relational access against multiple SI-paths, sets, and bases.

It is required that the item assigned as the SI-link be configured an SI-subkey
in a concatenated SI-key; alternately, for SI-paths against a master dataset,
the SI-link may be the IMAGE search master field.

Optional parameter for the ! list construct for DBGET which specifies how
many SI-indices should be returned with a single DBGET call.

Information about the SI-paths configured for a database.

One or more standalone detail datasets in each SUPERDEX'ed database
which contain all the SUPERDEX B-tree structures. The root SI-dataset
(named SI or SIO)contains the SI-definitions.

The SI-dataset(s) that contain the SI-indices may alternately reside in a
separate database. For large databases or to optimize throughput, up to eight
SI-datasets may be allocated, although one SI-dataset is normally sufficient.
These datasets are named SI optionally followed by a sequence number (Le.
SI- SI7.).

The only field in the SI-dataset(s), which is configured as a compound item
named SI.

A separate database that contains the SI-indices, which may optionally be
configured for any base. With this option, all SI-indices are maintained in the
separate SI-index base rather than the primary base.

Version 3.1 March 1992

SI-pointer A pointer in each 8-tree that can be positioned before or after any index in the
tree.

SI-intrinsics The IMAGE-equivalent intrinsics used by SUPERDEX which are contained in
an SL or XL (and provided in a USL) and referenced by all programs that use
SUPERDEX.

Substring field A partial definition of a IMAGE field. The starting character position and I
number of characters can be specified.

Version 3.1 March 1992 Overview 1-15

Access principles

Adding, updating, and deleting entries

In SUPERDEX, entries are added, updated, and deleted using its DBPUT, DBUPDATE, and
DBDELETE intrinsics. These intrinsics are identical to their IMAGE counterparts and work exactly
the same, except they also update any corresponding SI-indices.

Qualifying and retrieving entries

Entries are qualified and retrieved using SUPERDEX's DBFIND and DBGET intrinsics. These
intrinsics are syntactically identical to the corresponding IMAGE intrinsics, but have extended
capabilities and additional modes.

In SUPERDEX, DBFIND mode 1 may be called against a master or detail set with an argument that
contains multiple values, and conditional and boolean operators. The qualifying number of entries is
returned in the status array, and an internal SI-pointer is set in the B-tree. If the qualifying entry
count is not needed, it is more efficient to instead use DBFIND mode 10. Additional DBFIND modes
are available to perform specialized functions, such as setting a pointer to the alphabetical first or last
entry in the set.

DBGET mode 5 may be used to retrieve the entries in ascending sorted sequential order; DBGET
mode 6 in descending order. When all qualifying entries have been returned, an end-ot-chain (or
beginning-of-chain) condition is returned. New DBGET modes 15 and 16 may also be used to
continue retrieving entries that are not on the SI-chain (those that no longer meet the search criteria).

Indexed access vs. relational access

Internally, one of two access methods is used in qualifying entries with DBFIND: indexed access or
relational access.

Indexed access is used for retrievals that can be accomplished by accessing a single SI-chain. This
accounts tor most retrievals, and is used by default.

Relational access is used for boolean retrievals that require the use of multiple SI-chains, such as in
performing retrievals against multiple SI-paths, sets, and bases by using multiple DBFIND calls.

1-16 Overview Version 3. 1 March 1992

Compatibility

Intrinsics
o...! • ',$ fi"}f(~ 1"'" <,.•••.

All SUPERDEX intrinsics are provided in an SL and XL (as well as a USL,,~l, and NMOBJ
files). All programs that access bases that are configured with SI-paths must reference these
intrinsics, which are fully-compatible with their IMAGE counterparts.

Data types

SUPERDEX handles data as stored based on the IMAGE item data types. Search values may be
represented in the same format as internally stored (ASCII, binary, etc.), or special conversion
operators may be used.

~ Unsigned and signed values for items of data type P and Z are treated identically when I
qualifying entries.

Status array

All SUPERDEX status information is returned in the standard IMAGE status array. The qualifying
number of entries from DBFIND is returned in words 5-6 (like IMAGE), and end-of-chain and
beginning-of-chain conditions are returned as condition words 15 and 16 in word 1 of the status array.
Status words 7-10 are not available for SI-paths.

Error and exceptional condition handling

All errors and exceptional conditions are indicated by standard IMAGE error messages in the
condition word field (word 1) of the status array.

Transaction logging

Because SUPERDEX uses IMAGE like intrinsics to maintain its SI-indices, it is covered by all forms
of logging and recovery. Normal recovery methods recover not only the IMAGE chain pointers but
also the SI-indices.

To further assure compatibility with transaction logging, for bases enabled for logging SUPERDEX
automatically imposes DBBEGINs and DBENDs around all DBPUTs, DBUPDATEs, and
DBDELETEs that do not already contain them.

Because SI-index maintenance generates additional log records, the SI-indicl3smay optionally reside
in a separate database (SI-index database) from the data entries they map. This results in no
additional log records being written for the primary database, and logging can optionally be enabled
or disabled for the separate SI-index database containing the SI-indices.

Version 3.1 March 1992 Overview 1-17

Application programs

Existing application programs require no changes or minor, straightforward modifications to utilize
SUPERDEX's capabilities.

Because SUPERDEX is fully-compatible with IMAGE, all existing programs may reference
SUPERDEX's SL or XL and continue to function as always. You can add SUPERDEX capabilities
and introduce them to users over time, never having to run parallel with old applications or perform
any significant conversion.

The simplest introduction of SUPERDEX is to replace all automatic master sets with SI-paths, which
makes it possible to access the records in the related detail sets generically and in sorted order
without any program modifications. The user need only include an (# and/or ? in the value being
searched for. Another simple modification is to replace sorted IMAGE paths with concatenated SI-
keys.

Third-generation languages

SUPERDEX supports programs written in COBOL, FORTRAN, Pascal, SPL, BASIC, Business
Basic, and C. SUPERDEX will support programs written in RPG that call the IMAGE intrinsics
directly.

Fourth-generation languages

SUPERDEX supports several 4GLs via special interfaces. TRANSACT and PROTOS are already
compatible and only need to reference SUPERDEX's SL or XL. Front-end programs are available for
Cognos' PowerHouse products QUIZ and QTP, while minor modifications to the dictionary facilitate
SUPERDEX access via QUICK. Interfaces also exist for HP's Business Report Writer (BRW),
Cogelog's VISIMAGE and Sydes' SYDAID. Interfaces to other 4GLs are currently being developed.

QUERY and other utilities

Most utilities that call IMAGE intrinsics, like QUERY/3000, are compatible with SUPERDEX in that
any data added, deleted, or modified in these programs while! referencing the SUPERDEX SL or XL
will automatically adjust the associated SI-indices. The retrieval capabilities in utility programs,
however, will vary based on various factors. The QUEHY-like ASK2utility from Cogelog is
compatible with SUPERDEX.

1-18 Overview Version 3. 1 March 1992

Locking

Because the SI-indices may require change with every DB PUT, DBUPDATE, or DBDELETE, it is
necessary to adopt an appropriate locking strategy whenever the SI-intrinsics are used.

SUPERDEX has several strategies for locking the SI-dataset(s) when necessary:

• you may add the SI-dataset(s) to the program's lock descriptor
• SUPERDEX will automatically lock and unlock the dataset containing the data and the SI-

dataset in succession
• SUPERDEX will implicitly lock the SI-dataset when necessary (requires MR capability)
• SUPERDEX may be configured to perform a separate DBOPEN for each process accessing

a database and perform its locking via that "access path" (requires MR capability)
• SUPERDEX may be configured to maintain the SI-indices in a separate base, in which case

a separate DBOPEN is performed against the primary base and the SI-index base (requires
MR capability)

Refer to the discussion in the Locking chapter of the Programming section for a complete description
of the various locking strategies and their advantages and disadvantages.

Capabilities

SUPERDEX uses standard IMAGE intrinsics for maintaining its SI-indices, which means it does not
require Privileged Mode and will be compatible with future releases of IMAGE and MPE.

All programs that reference the SUPERDEX SL or XL--except Native Mode programs under MPElXL,
which do not require DS capability--must have DS and conditionally MR capability, depending on the
locking method used. The groups and accounts in which these programs reside also require these
capabilities, as do users who :PREP programs for use with SUPERDEX.

Stack requirements

SUPERDEX requires about two Kwords of stack space for indexed access and one or two additional
Kwords for relational access (if used). Programs that are short of stack space may require
MAXDATA increases. Programs that already utilize the maximum MAXDATA may need to be :RUN
with the ;NOCB parameter.

Native Language support

SUPERDEX fully supports Hewlett-Packard's Native Language Support facility for matching,
collating, and other significant operations.

7-bit support for Swedish language
1::f A special version of SUPERDEX has been developed for support of the Swedish language.

Since new files must be supplied, please contact Bradmark if you need this version.

Version 3.1 March 1992 Overview 1-19

Section 2 Access methods

Overview

This section looks at various methods available in SUPERDEX for accessing entries in IMAGE
databases.

Each chapter covers a different access method and discusses the functionality provided, its
applications, details about configuration and implementation, rules of operation, efficiency, and
maintenance considerations. Examples are given throughout.

Chapter 1
Function

Chapter 2
Function

Chapter 3
Function

Chapter 4
Function

Chapter 5
Function

Chapter 6
Function

Chapter 7
Function

Chapter 8
Function

Chapter 9
Function

Multiple keys in master and detail datasets
For accessing data entries in manual master and detail datasets by any number of
keys.

Concatenated 51-keys containing multiple fields
up to four fields or substring fields may be concatenated together to form a
composite key.

Sorted sequential retrieval
All entries are returned in ascending alphabetical or descending alphabetical order.

Keywolrd retrieval
Permits an entry to be accessed by any significant word contained in any keyworded
key.

Generic and partial key retrieval
Allows entries to be searched for by the first few letters of a key or by a string
embedded in a key.

Approximate match retrieval
SUPERDEX can find the nearest matching entry if no entry that matches a specified
value exists.

Greater-than, less-than, and range retrieval
Permits searches for all entries that are greater than or equal to, less than or equal
to, or not equal to a specified value, or that fall within the range of two values.

Grouped retrieval
For handling multiple fields that are functionally equivalent as one logical field at
lookup.

Super-grouped retrieval
For allowing master entries to be qualified based on their contents and the contents
of their related detail dataset entries.

Chapter 10 Relational access: multiple criteria retrieval
Function Permits multiple values to be specified for a field in a single lookup operation and the

results to be combined by using boolean operations.

Chapter 11
Function

Relational access: multiple fields, sets, and bases
Like multiple criteria retrieval, permits multiple values and boolean operators to be
specified--but extends these capabilities to work on multiple fields, datasets, and
clatabases.

Chapter 12 Custom indexing
Function Indices may be calculated by a user-written procedure, providing complete flexibility

in indexing entries.

Chapter 13 Independent indexing
Function Permits non-IMAGE data to be indexed by SUPERDEX, for purposes such as

document management.

2-2 Access methods Version 3.1 March 1992

Multiple keys in master and detail datasets

Functionality

IMAGE lets you access a master set by only one field and a detail set only via its related masters
unless time-consuming serial reads are used, forcing rigid applications and cumbersome database
structures. SUPERDEX lets any dataset be accessed quickly by any field or fields--even every field.

Application

Due to the inability to specify more than one field in accessing a master dataset and to the high
overhead of detail dataset paths, access to datasets is typically restricted to either one or a few
fields.

For example, customers stored in a master dataset may be accessed only by the customer number
(unless a serial read is performed). In SUPERDEX, they could be accessed by various fields, such
as COMPANY-NAME, CONTACT-1, CONTACT-2, and PHONE. If the customers were instead
contained in a detail dataset with several related automatic master datasets, they could stay there,
and the related automatic master sets could be replaced by SI-paths with the same names as the
search fields and accessed via DBFIND mode 1, meaning that no program modifications would be
required to facilitate partial-key access and other powerful retrievals.

Implementation

Each field or combination of fields that is to be accessible as a key must be configured in an SI-path,
and SUPERDEX creates a B-tree for each one.

For simple, single-field SI-keys, the entire field could form the index or a substring of the field could
be used.

Operation

DBPUT, DBUPDATE, and DBDELETE automatically maintain the SI-indices in the B-trees.

Entries are qualified by DBFIND mode 1 or one of several new modes and retrieved by DBGET
modes 5 and 6 or new modes 15 and 16. If the item parameter contains the name of an SI-path, the
B-trees are automatically accessed; otherwise, regular IMAGE access is performed.

Version 3.1 March 1992 Access methods 2-3

Efficiency

It is recommended that SI-keys be kept as short as possible for efficiency. The longer the SI-key, the
more access will be necessary to manage the associated SI-indices. Substring SI-keys should be
used where possible. For example, 10 characters of a 20-character LAST-NAME field may be
sufficient for indexing purposes, or only the 5th character through the 9th character of a general
ledger account number may be sufficient.

2-4 Access methods Version 3.1 March 1992

Concatenated keys containing multiple fields

Functionality

IMAGE restricts a key to a single field. SUPERDEX permits multiple fields or substring fields to be
concatenated together and retrieval to be done on the entire concatenated value or any portion
thereof.

Up to four fields, or substring fields, may be concatenated to form an SI-key, permitting enhanced
retrieval and sorting capabilities and eliminating the need for sorted IMAGE paths and many
programmatic sorts. More than four fields may be included in a concatenated key as long as they are
physically contiguous in the dataset.

Application

Concatenated SI-keys permit very specific lookups to be performed without having to read down a
chain to qualify entries that match on multiple fields because all fields may be contained as SI-
subkeys in the SI-key.

For example, a customer number and order date could be concatenated together to form an SI-key.
To access the SI-key, a single composite value would be specified and the corresponding entry
returned. The alternative in IMAGE would be having to read down the customer's chain until the
order with the specified date was encountered.

Implementation

The combination of fields that are to be accessible as a concatenated SI-key must be configured in
an SI-path, and SUPERDEX creates a single 8-tree for the concatenated SI-index.

~ If related to a detail set, a concatenated SI-key may consist of up to four fields or
substring fields. For master sets, up to three fields (four if the IMAGE search field is
included) may be defined. Each field or substring field is called an SI-subkey.

If more than four fields are needed for a concatenated key, SUPERDEX is able to support
this, so long as the extra fields are contiguous in the dataset. This is facilitated when
configuring the SI-path by declaring an SI-subkey length that exceeds the length of the specified
field. This results in the specified number of characters being included in the SI-subkey, thereby
forming an SI-subkey that contains multiple fields or truncated fields. To utilize this feature, it is
necessary to set a special JCW named SIEXTLEN during SIMAINT operation.

Version 3.1 March 1992 Access methods 2-5

----------" ---~~----~"

Operation

DBPUT, DBUPDATE, and DBDELETE automatically maintain the SI-indices for concatenated SI-
keys.

Entries are qualified by DBFIND mode 1 or one of several new modes and retrieved by DBGET
modes 5 and 6 or new modes 15 and 16. If the item parameter contains the name of an SI-path, the
B-trees are automatically accessed; otherwise, regular IMAGE access is performed. The entire
combined SI-key value or a partial value may be specified in the argument parameter.

If the concatenated SI-key has been configured USingthe SIEXTLEN JeW to include more than four
SI-subkeys, it is required that all fields that are included in the concatenated SI-key but are not
explicitly referenced by name be included in the DBGET list in the order in which they occur in the
dataset, for preparation for DBUPDATE and DBDELETE.

Efficiency

It is recommended that each SI-subkey in an SI-key be kept as short as possible for efficiency.
Substring SI-subkeys should be used where possible. Concatenated SI-keys are generally less
efficient than simple SI-keys because they typically have longer lengths and therefore cannot be
managed as efficiently; however in many instances they can outperform simple SI-keys because they
can significantly reduce the number of entries qualified.

2~ Access methods Version 3.1 March 1992

Sorted sequential retrieval

Functionality

IMAGE returns detail chain entries in chronological order, unless sorted paths are used.

SUPERDEX returns entries in ascending or descending alphabetical order, providing a natural sorting
mechanism. The sort criteria may be further extended by using concatenated SI-keys, which provide
more flexibility than sorted paths without the overhead.

Application

The ability to retrieve entries in sorted sequential order eliminates the need for many or all program
sorts, and requires no special handling.

The alphabetic ordering of SI-indices also permits approximate match retrieval (described later).

Operation

Entries are unconditionally returned in sorted sequential order for entries qualified in indexed access
mode.

In relational access mode, an SI-link may be specified in the item parameter of DB FIND to enforce a
sorting order.

Entries are returned in ascending sorted sequential order with DBGET modes 5 and 15 and
descending sorted sequential order with modes 6 and 16. All the entries in a dataset may be read in
ascending or descending sorted order by calling DBFIND mode 100 or 200, respectively, and DBGET
modes 15 or 16.

SUPERDEX uses HP's Native Language Support facility in returning data contained in alphanumeric
(data types X and U) items for databases in which NLS is enabled, assuring that language-specific
attributes (such as esstsets and umlauts) are handled properly. The language is determined from the
root file of each database, and may be established in the database schema or by DBUTIL. The
collating sequences used by SUPERDEX, including language-dependent variations, are documented
in HP's Native Language Support Reference Manual .

.arSUPERDEX respects the sign in sorting data contained in numeric items (data types I, J,
P, R, and Z), and thereby returns negative values before positive values.

Version 3.1 March 1992 Access methods 2-7

-------- ------------------------------~-- -------~---~----------------~------

Keyword retrieval

~ Keyword retrieval is available only in the SUPERDEX " package.

Functionality

SUPERDEX lets you access SI-keys by any significant word they contain for SI-paths configured as
keyworded. For example, an entry with the SI-key value "REDUCED INSTRUCTION SET
COMPUTER" could be located by the values REDUCED, INSTRUCTION, SET, or COMPUTER.

Application

Keywording is useful for indexing fields that contain multiple values, such as company names, street
addresses, IasVfirst names, part descriptions, and comments.

Implementation

~ Keywording can be implemented on any alphanumeric (data type U or X) item, for a
simple or concatenated SI-key. For a concatenated SI-key, only the first SI-subkey is
keyworded.

Keyworded SI-paths are configured in the SIMAINT program by appending IE to the SI-path name.
You must specify the keyword length, which refers to the maximum number of characters to include
in the SI-key. For indexing purposes, words that are longer than the keyword length are truncated;
those that are shorter are padded with spaces.

Also specified is the minimum number of characters per keyword, which defines the minimum
number of characters, between 1 and 4, that a word must contain in order to qualify for keywording.
This permits very short words to be easily excluded based on their length.

Additionally for each keyworded SI-path, the average number of keywords must be specified, which
refers to the average number of significant, unique keywords within each SI-key, between 1 and 16.
If requlrements change at a later time, the average number of keywords may be changed by
reorganizing the SI-path--a new value may be entered at that time.

To eliminate unnecessary or common words by value from keywording, an exclusion list can be
defined which restricts the keyword entries to only relevant ones. Exclusion words are specified in a
disk file via any editor and uploaded into a special standalone SI-path called KWEXCLUDE.

2-8 Access methods Version 3.1 March 1992

Operation

For SI-paths that are defined as keyworded, every word in the SI-key separated by spaces or special
characters is treated as a keyword. (You may optionally specify up to four special characters to
be excluded as keyword delimiters when configuring SI-paths.) MuHipleSI-index entries (one
for each unique value in the SI-key) are automatically generated by DBPUT and removed by
DBDELETE. For compound IMAGE items that are keyworded, each subitem is examined separately
and keyworded accordingly. For concatenated SI-keys, only the first SI-subkey is keyworded.

~ All keywords are upshifted for indexing and matching purposes.

Keyworded fields are always searched by individual significant word during the DBFIND operation.
Additionally:

• words that contain a hyphen are keyworded muHipletimes: once for each hyphen plus one.
For example, "HEWLETI-PACKARD" would be muHiply indexed and could be located by
both HEWLETT-PACKARD and PACKARD, and "TIC-TAC-TOE" could be located by
TIC-TAC, TAC-TOE, and TOE. (This muHiple-indexing feature can optionally be
disabled when configuring SI-paths.)

• SI-keys in which the same word appears more than once are indexed only once for that word

• a maximum of 16 keywords per SI-key (for simple SI-keys) or SI-subkey (for concatenated
SI-keys) is allowed.

Keyworded SI-paths are accessed in the same way as non-keyworded SI-paths--the only difference
is in the configuration of the SI-path.

Efficiency

Keyword lengths should be kept as short as possible, typically 5 or 6 words, for efficiency. The
minimum keyword length should be set at 4, if possible, to exclude very short words that contain less
than four characters.

Commonly occurring special characters should be excluded as keyword delimiters to avoid
unnecessary indexing. For example, if keywording entries in which dates are common (e.g.
"02120/90"), the slash character (J) should be excluded.

If muHipleindexing of hyphenated values is not required in order to locate entries, this feature should
be disabled. This is especially significant for SI-keys in which hyphens are very prevalent, such as
part numbers (e.g. "123-999-447").

Also, only very common words should be configured for exclusion, since the required overhead when
entries are added increases with the number of excluded words.

Version 3.1 March 1992 Access methods 2-9

Maintenance

All keyworded SI-paths and the KWEXCLUDE (exclusion word) SI-path must be reorganized
whenever any changes are made to the file of excluded words.

~ The keyword exclusion file must be present In the same group/account as the database
when 51-paths are reorganized.

2-10 Access methods Version 3.1 March 1992

Generic and partial key retrieval

Functionality

IMAGE will not find an entry unless you specify its key value exactly in its entirety. 5UPERDEX
permits a partial key or keyword to be specified, as well as a generic key containing wildcards.

Application

Probably the most requested capability for IMAGE databases is generic and partial key access: the I
ability to specify only a few Significant characters of the key rather than its entire value.

This saves not only time and keystrokes, but locates entries whose exact values are not known or
which cannot be located due to misspellings or other reasons.

Generic key access permits values that match a specified pattern to be located, useful for selecting I
entries with commonalty. Partial key access allows for.a variable number of positions to be defined.

Implementation

Generic and partial key retrievals may be performed on any alphanumeric field (data type X or U)
referenced in an 51-path. They may not be performed against numeric fields (data types I, J, K, P, R
and Z).

Operation

Partial key access can be performed by three different methods:

The first is to specify the partial key value appended with an @as the argument for DB FIND mode 1,
e.g. HEWL@. DBFIND will locate all entries that match on the significant characters followed by
anything. (A character other than @may be designated as the wildcard character when configuring
51-paths.)

The second method is to specify up to two (2) @in the argument, surrounded by« »for DBFIND
mode 1, e.g. «H@L@T». DBFIND will qualify all entries that contain all three groups of significant
characters in the specified order.

The last method is to specify the value in the argument without an @but vary the mode based on the
length of the argument. For example, an argument containing the partial key ROLA would dictate
mode 102 or -104 (100 plus the number of words or bytes, respectively, in the value).

Version 3.1 March 1992 Access methods 2-11

IGeneric key retrieval is accomplished by embedding the ? or f matchcodes in the argument.

The? holds the place of any alphanumeric character. For example, the argument L?TTER would
locate "LETTER" and "LITTER"; by appending an tI (L?TTERtI), "LETTERMAN," "LITTERBUG,"
and "LOTTERY" would also be located. (A character other than ? may be designated as the
matchcode when configuring 51-paths, or the single-character matchcode may be disabled.)

IThe I holds the place of only numeric characters. The argument APIJtI would locate "AP2J8A99"
and "AP7JIT", but not "APYJ97K".

Efficiency

5earch arguments that contain one or more ?s or Is in the leftmost character positions or contain an
tI in the first character position are less efficient than those that begin with alphanumeric characters.
Therefore, for best performance, a substring field should be specified.

2-12 Access methods Version 3. 1 March 1992

Approximate match retrieval

Functionality

Neither IMAGE nor SUPERDEX can find an entry that does not exist, but SUPERDEX can do the
next best thing: find the nearest matching entry.

Application

Approximate match retrieval, like partial and generic key retrieval, is useful in circumstances in which
the exact key value is not known. Unlike partial and generic key retrieval, approximate match
retrieval does not require that any entry matching the specified value exist: the nearest matching
entry is always found.

For example, if the value UNITED is input and no matching entry exists, the nearest matching entry
in ascending or descending order, "UNIFIED" or "UNITY," may be retrieved.

Implementation

The sorted ordering of SI-indices permits approximate match retrieval by using new SUPERDEX
DBFIND modes. If no entry that matches the search criteria exists, the internal SI-pointer is set in
the B-tree to the nearest qualifying entry, permitting a program to start reading entries at any
alphabetic location in either ascending or descending order.

Approximate match retrieval may be performed on any alphanumeric item (data type X or U)
referenced in an SI-path.

Operation

Approximate match retrieval is performed by using a DBFIND mode that specifies how many
characters in the argument SUPERDEX should match on, which is typically the length of the value
specified. If no matching entry exists, the nearest matching entry is returned.

The mode also dictates whether the internal SI-pointer in the B-tree should be set before or after the
matching or nearest matching entry, permitting subsequent DBGETs to include or exclude that entry.

Version 3. 1 March 1992 Access methods 2-13

For example, an argument containing the value UNITED would dictate mode 103 or -106, both of
which would cause DBFIND to match on the entire value. The mode is calculated as 100 plus the
number of words or bytes (negated if bytes). Using these modes, the SI-pointer would be set before
the matching or nearest matching entry. Subsequent DBGETs in ascending order (mode 15) would
include any entries beginning with "UNITED," while DBGETs in descending order (mode 16) would
exclude them.

With a mode of 203 or -206 (200 plus the number of words or bytes), the SI-pointer would be set after
the matching or nearest matching entry, and the "UNITED" entries would now be included with
subsequent DBGETs in mode 16 (descending) but would excluded be included with mode 15
DBGETs (ascending).

2-14 Access methods Version 3. 1 March 1992

Greater-than, less-than, and range retrieval

Functionality

In addition to generic and partial-key retrieval, SUPERDEX permits retrievals of entries that are

• greater than or equal to a specified value
• less than or equal to a specified value
• not equal to a specified value
• in the range between two values

Application

Greater-than-or-equal-to and less-than-or-equal-to retrievals are especially useful for operations
against amounts, such as finding all customers with balances of $1000 or more.

Not-equal-to retrieval is useful for testing for the absence of a value for a particular field, such as all
invoices that are not "PAID."

Range retrievals may be used against ordered values, and can be used, for example, to find all
customers in a given geographical area by means of a range of zip codes. In addition, pattern
matching is supported within a range retrieval which is useful, for example, for finding all orders for a
given customer within a date range where the SI-key is a concatenation of the date and customer
number.

Implementation

Greater-than-or-equal-to, less-than-or-equal-to, not-equal-to, and range retrievals may be performed
against both alphanumeric and numeric items .

.arThey operate on any value in any SI-key, including keyworded SI-keys.

Operation

These retrievals are performed by embedding special operators in the argument for DBFIND mode 1
or 10.

Greater-than-or-equal-to retrieval is accomplished by prefixing the argument with the >= operator
(e.g. >=1000), less-than-or-equal-to retrieval uses the <= operator as a prefix, and not-equal-to
retrieval uses the <> operator as a prefix. The <> operator can also appear after another value in
the same argument to exclude records (e.g. SUPER@<>SUPERDEX).

Version 3.1 March 1992 Access methods 2-15

Range retrievals are performed by using the >= and <= operators in combination. For example, a
range search to find all the entries with amounts between 500 and 1000, inclusive, is specified with
the argument >=500<=1000. Pattern matching may be done within a range by specifying the
pattern, start point, and endpoint in the argument; for example, an argument of
??????4433>=890101<=891231 against a concatenated key containing date and customer
number would find all the orders for the customer 4433 placed in 1989.

Entries may be retrieved in ascending or descending sorted order with DBGET modes 5 and 6, which
return end-of-chain and beginning-of-chain conditions when all entries have been read.

Greater-than-or-equal-to and less-than-or-equal-to retrievals may alternately be accomplished without
specifying the >= and <= operators and instead using any DB FIND mode and argument followed by
DBGETs with new modes 15 and 16, which perform greater-than ascending and less-than
descending retrievals, respectively.

2-16 Access methods Version 3.1 March 1992

Grouped retrieval

~ Grouped retrieval is available only in the SUPERDEX II package.

Functionality

IMAGE can search only one field at a time. SUPERDEX lets you group multiple fields in a dataset
together at configuration time, and automatically searches them all at lookup time, thereby handling
them as one logical field. By default, SI-keys are not grouped.

This grouping technique is automatically imposed on all compound IMAGE items used in SI-keys,
and generates a separate SI-index for each subitem value. The result is that every subitem is always
searched automatically whenever the item is referenced.

Application

Grouping is useful for logically combining multiple fields in a dataset that are functionally identical.

For example, a two-line address may be stored in the fields ADDRESS-1 and ADDRESS-2 with
addresses contained on either or both lines. The two fields may be configured as SI-keys and
grouped together in an SI-path called ADDRESS, and both will be searched automatically whenever
ADDRESS is referenced.

Or, if a quick customer lookup mechanism is needed in which either the company name, contact
name, or phone number may be specified in response to a single prompt, the fields COMPANY,
CONTACT, and PHONE could be grouped together under the SI-path name QUICK-LOOKUP.

Implementation

Multiple SI-keys may be grouped together into a single SI-path as a configuration option in SIMAINT
by appending /G to the SI-path name.

~ All SI-keys contained In a group must be of the same data type. It Is also required that
each SI-key in the group be configured with the same length, so It is possible that some
SI-keys must be substringed and others padded with spaces. For example, if COMPANY
is X30, CONTACT is X20, and PHONE is X14, these three fields may be grouped together with
any length between 7 and 15 words--with 7 words, the SI-key for both COMPANY and
CONTACT would be truncated; with 15 words, both CONTACT and PHONE would be padded
with spaces; or any length in between could be chosen.

Version 3. 1 March 1992 Access methods 2-17

In configuring a group, specify the longest SI-key first. It will establish the length of the grouped SI-
path, as its length (or substring length, if specified) is unconditionally applied to subsequently
configured SI-keys bekmging to the same group.

~ 51-keys that are used as IMAGE master set search fields should be specified last.

Concatenated SI-keys can also be grouped. The second through the fourth SI-subkeys are repeated
for each SI-key in the group. This allows COMPANY and CONTACT to be grouped and to have the
LAST-ACTIVITY-DATE concatenated with both indexes.

Operation

Whenever the group is referenced by its SI-path name in the item parameter of DBFIND, all SI-keys
that form the group are unconditionally searched.

Grouped SI-paths are accessed in the same way as non-grouped SI-paths--the only difference is in
the configuration of the SI-path.

There may be some ambiguity in searching by an SI-key in a grouped SI-path whose item length is
shorter than the group length and which is therefore padded with spaces. For example, if CITY, an
X16, and STATE, an X2, are grouped together with an SI-key length of 8 words (to accommodate
CITY), an argument of CA would find not only all entries in the state of "CAlifornia" but also those in
the cities of "CALABASAS" and "CARLSBAD." To resolve this ambiguity, use DBFIND mode 1 or 10
and pad the argument with enough trailing spaces to cover the full SI-key length.

2-18 Access methods Version 3.1 March 1992

Super-grouped retrieval

ES"Super-grouped retrieval is available only in the SUPERDEX II package.

Functionality

IMAGE can search only a single field in a single dataset at a time. SUPERDEX lets you group
together a master dataset with one or more of its related detail sets at configuration time, and
automatically searches the configured fields in the related detail datasets at lookup time.

The result is that entries in master datasets can be qualified based on the values in related detail
sets.

Application

Super-grouping is useful for qualifying master entries based on a logical combination of each master
entry and its related detail entries, or on just the related detail entries.

For example, a library system may contain the title of a book in a master dataset, a description of the
book on multiple entries in a related detail set, and the book's author(s) on one or more entries in
another related detail set. The master set is keyed on book number and pathed to the two related
detail sets on the same item. Together, the master and detail entries of a given book number form a
profile of the book.

A super-grouped 51-path called BOOK-PROFILE could be configured based on the book name (from
the master dataset), description (from one detail dataset), and authors (from the other detail dataset),
permitting a book to be qualified by one or more of its characteristics (such as author plus title). The
greatest functionality would be achieved by defining the super-grouped 51-path as keyworded,
permitting any word in the book name, summary, or author--or any combination thereof--to be
specified for retrieval.

It is not required that the master entry itself be contained in the super-group: it is possible to define a
super-group in which the detail entries only are used to qualify their related master entries. This
means that a DBFIND against the master dataset can only be qualified by values in the detail
dataset.

The super-group in the previous example could have alternately been defined to consist of only the
descriptions and authors (excluding the book name). This way, books could be qualified by author
and/or description.

Version 3.1 March 1992 Access methods 2-19

Implementation

Multiple SI-keys in related datasets may be grouped together into a single SI-path as a configuration
option in SIMAINT by first defining the SI-path for the master dataset and then referencing this SI-
path (by appending /G to the SI-path name) for each detail dataset that should be included in the
super-group.

If instead defining a super-group that does not include the master entry itself, the SI-path is specified
for the master set using an item from one of the related detail sets (since no item from the master set
is included in the super-group).

~ All detail sets included in the super-group must be related to the master dataset by an
IMAGE path. Also, the name of the item in each detail dataset that forms the path must
be the same as the name of the search field In the master dataset.

IConcatenated SI-keys can also be super-grouped. The second through the fourth SI-subkeys are
repeated for each SI-key in the super-group.

Operation

DBPUT, DBUPDATE, and DBDELETE to all datasets configured in the super-group automatically
maintain the SI-indices.

Super-groups may be accessed only via the master dataset--not the related detail sets. So DBFINO
must be called against the master set, referencing the name of the super-group in the item
parameter. DBFINO automatically searches all SI-keys in all (master and related detail) datasets in
the super-group and qualifies the corresponding master entries based on them.

Only qualifying master entries are returned by SUPERDEX's DBGET--not their related detail entries.
If desired, use standard IMAGE OBGETs (mode 5 or 6) to read the IMAGE chains to retrieve the
detail entries related to the qualifying masters.

As illustrated, SUPERDEX's DBFIND and DBGET qualify and retrieve only master entries. The
detail entries in the super-group are only used as criteria for qualifying their related master entries.

Maintenance

Whenever the SIMAINT program is used to reorganize or delete any Sl-ksy contained in the group,
all SI-keys in the group are automatically reorganized or deleted.

2-20 Access methods Version 3.1 March 1992

Relational access: multiple criteria retrieval

~ Relational access retrieval capability using multiple criteria is. available only in the
SUPERDEXII package.

Functionality

SUPERDEX can search an SI-path for a combination of multiple search criteria in a single operation.

Retrievals against multiple criteria can be used to locate entries:

• that meet either criterion (Boolean OR operation)
• that meet both criteria (Boolean AND operation)
• that meet one criterion but not the other (Boolean AND NOT operation)

Application

Often, it is not enough to be able to specify keys in partial or generiC format; rather, it is necessary to
locate entries that meet multiple criteria.

Boolean operations provide the most powerful and flexible search capability. Some examples would
be finding all entries in a keyworded SI-path that contain both of two keywords (AND operation), or
one keyword or the other (OR operation), or one keyword and not the other (AND NOT operation).

Implementation

Boolean operations may be specified against any SI-path, regardless of its configuration.

Operation

Boolean operations are accomplished by embedding the appropriate notation in the DBFIND I
argument.

For example, a search for all part descriptions that contain both the words PAPER and CLIP could be
specified with an argument of either - PAPER AND CLIP: (SOL Notation), - PAPER+CLIP;
(Infix Notation), or [PAPER] [CLIP] & (Reverse Polish Notation). To find all invoices that are
unpaid or cancelled, the argument would be - UNPD OR CANC;, - UNPD, CANC;, or
[UNPD] [CANC] I. Additionally, to find all entries in California and not Los Angeles would be
specified as -CA NOT "LOS ANGELES":, -CA-"LOS ANGELES";, or [CA] [LOS
ANGELES] !&.

Values stored in binary may be qualified by specifying the search values in ASCII format.

Version 3. 1 March 1992 Access methods 2-21

For a more complete description of boolean operations, refer to the QualifYing entries with OBFINO
chapter in the Programming section of this manual.

Efficiency

When performing boolean operations using multiple values, it is always recommended for
efficiency to specify the less common value or values first. For example, an argument of
- JOHN AND BROWN; causes SUPERDEX to select all the entries that contain "JOHN" and then
deselect those that do not contain "BROWN". If there are more records with JOHN, it would be
considerably faster and more efficient to specify -BROWN AND JOHN; instead, since far fewer
entries would be selected in the first lookup.

2-22 Access methods Version 3.1 March 1992

Relational access: multiple fields, sets,
and bases

IEirRelational access retrieval capability using multiple fields, sets, and bases is available
only in the SUPERDEX II package.

Functionality

Relational queries may be performed using multiple values across multiple fields, datasets, and
databases using dynamically-joined indices. This provides the power of a relational database within a
regular IMAGE database.

Application

These features permit entries to be located by multiple criteria on multiple fields in a dataset, as well
as using multiple datasets and databases to qualify entries.

For example, to find all unpaid invoices in the ORDERS database with amounts greater than $1000
might require testing both the PAID-FLAG and ORDER-TOTAL-AMT fields of the INVOICE-HEADER
dataset.

To find all those invoices only for customers with poor payment history would also require a lookup in
the AVG-DAYS-TO-PAY field in the CUSTOMER dataset. And to attain more complete information
about these customers may require access to entries archived in the ORHIST database.

Implementation

Entries are qualified based on multiple fields, sets, or bases with multiple DB FIND calls against any
SI-paths. No special SI-path configuration is required.

Operation

Multiple DBFIND calls are performed in succession, with one DBFIND per SI-path with varied base,
dset, and item parameters which specify the database, dataset, and SI-path to access.

In the preceding example, four DBFINDs would be performed in succession: one against the PAID-
FLAG SI-path in the ORDER-HEADER set in the ORDERS base, another against the ORDER-
TOTAL-AMTSI-path, another against the AVG-DAYS-TO-PAYSI-path in the CUSTOMERS set, and
the last against the dataset and SI-path of the same name but in the ORHIST database.

Version 3. 1 March 1992 Access methods 2-23

Custom indexing

Functionality

SUPERDEX indexes each entry based on its configured SI-paths using the literal value of each SI-
key, as influenced by truncated fields, concatenated SI-keys, and keyworded SI-paths.

There are circumstances in which this may not be sufficient to properly index an entry and where
additional intelligence is required to compose the SI-key.

To address these requirements, SUPERDEX allows entries to be indexed by any value that may be
calculated from the data entry.

Application

Some examples of requirements for customized SI-indices are:

• data type conversion
• reformatting date (e.g. ASCII to Julian)
• upshifting
• specialized SI-key extraction (embedded key)
• stripping unneeded characters
• facilitating concatenated SI-keys comprised of more than four SI-subkeys

Implementation

SUPERDEX provides an exit in the form of a user-written procedure that permits SI-indices to be
calculated by parsing any values in data entries.

This procedure, named SIUSER, needs to be written by the user and placed in the SL or XL along
with the SUPERDEX intrinsics.

Operation

The SIUSER procedure is called unconditionally with every DBPUT, DBUPDATE, DBDELETE, and
by the SIMAINT utility, and thereby automatically maintains the generated SI-indices.

Custom SI-keys should be handled as ASCII, since sorting is done using the binary or NLS
representation and non-ASCII SI-keys would not sort properly. For binary SI-keys, the DBFIND
argument must also be specified in binary format and modes 1nn or 2nn, or modes 1 or 10 with the
full SI-key value, may be used.

2-24 Access methods Version 3. 1 March 1992

Independent indexing

Functionality

Independent indexing describes the use of SUPERDEX to index entries contained in a structure other
than an IMAGE database, such as flat MPE files. This permits SUPERDEX's advanced data
qualification capabilities to be used on data extemal to an IMAGE database.

Application

SUPERDEX's independent indexing facility is intended to index files that supplement an IMAGE
database, although an IMAGE database need only exist to house the SI-dataset in which the SI-
indices are maintained.

For example, a document management system that manages separate word processing files could
be implemented using independent indexing, with the SI-index consisting of the article title as the SI-
key and the file name as the SI-extension. This permits an article to be looked up by its title, and its
file name returned to the calling program.

Implementation

Independent indexing is implemented by configuring a standalone B-tree for each independent SI-
path using the SIMAINT program. The dataset is left blank, and the SI-path name and SI-index
length, including the SI-extension, are defined.

"With independent indexing, the type and value of the SI-extension is unknown to
SUPERDEXand must be specified, since the file and data structures are designed by the
user. Typically, a file name or record number is used as the SI-extension.

Operation

The entities being indexed are added and deleted by some method that is unknown and of no
concern to SUPERDEX.

SI-indices must be explicitly added and deleted using the new DBPUTIX and DBDELIX intrinsics, for
which both the SI-key and SI-extension are specified in the buffer parameter. The database that
contains the SI-indices is specified in the base parameter, and the sf-path in the item parameter.
The dset parameter is left blank or set to 200.

Version 3. 1 March 1992 Access methods 2-25

Entries are qualified and retrieved by DBFIND and DBGET. For both, the base parameter specifies
the database that contains the 51-indices, the dset parameter is left blank or set to 200, and the 51-
path is defined in the item parameter. For DBGET, the! list is used to return the entire 51-index,
including the 51-extension.

Independent 51-indices should be handled as ASCII, since sorting is done using the binary or NLS
representation and non-ASCII 51-indices would not sort properly. For binary 51-indices, the DBFIND
argument must also be specified in binary format and modes 1nn or 2nn, or modes 1 or 10 with the
full 51-index value, may be used.

Maintenance

Correspondence of the 51-indices to the entities they reference is the sole responsibility of application
programs. No method is provided for implicitly manipulating the SI-indices, nor maintaining their
synchronization.

2-26 Access methods Version 3.1 March 1992

Section 3 Configuration I Establishing
SI-indices

Overview

This section describes the methods used in configuring SUPERDEX for your databases. This
includes establishing the SI-item and SI-dataset(s), defining SI-paths, and establishing 8-trees and
SI-indices.

This section assumes that you have already loaded SUPERDEX on your system, as described in the
separate SUPERDEX loading instructions.

Chapter 1
Function

Chapter 2
Function

Chapter 3
Function

Chapter 4
Function

Chapter 5
Function

Installation
describes procedures, including SL creation and modifications to users, groups,
accounts, programs, job streams, menus, and UDCs.

Configuration overview
provides a brief description of the various configuration options, including simple vs.
concatenated SI-keys, handling of compound IMAGE items, SI-path names, SI-key
lengths, and various restrictions.

Excluding words from keywording
reviews the process of excluding words from keywording and shows how to create
the KWEXCLUD file and configure exclusion words.

Customiz.ing default characters
illustrates customizing default characters to optionally redefine the characters used to
represent the wildcard and matchcode, to disable multiple indexing of hyphenated
values for keyworded SI-paths, and to exclude certain special characters from being
recognized as keyword delimiters.

Configuring SUPERDEX using SIMAINT
describes the methods of configuring SUPERDEX using SIMAINT and discusses
program operation, access requirements, and input rules. It then gives examples of
how to define various simple and concatenated SI-paths for keywording, grouping,
and other functions, as well as custom and independent SI-paths.

Options for maintaining S I-paths are not discussed in this section--refer to the Maintenance and
utilities section for information.

Installation

Once the SUPERDEX installation tape has been loaded, as described in the separate SUPERDEX
loading instructions, several steps are necessary for completing the SUPERDEX installation.

Some of these steps are one-time operations, while others are required for future creation of users,
accounts, programs, etc. The installation procedures may include:

• creating SUPERDEX SL(s) or XL(s)
• creating a group for utility programs
• adding capabilities to accounts and groups
• adding capabilities to users
• adding capabilities and stack space to programs
• changing menus, UDCs, and job streams
• expanding system tables

Creating SUPERDEX SL or XL

The SUPERDEX SL is SL.PUB.SUPERDEX; the XL (for Spectrum MPElXL systems) is
XL.PUB.SUPERDEX. Copy the SL or XL into the PUB group of every account that contains
programs which will use SUPERDEX.

If SL.PUB.youracct already exists, add the SUPERDEX segments into it from the file
SIUSL.PUB.SUPERDEX:

:SEGMENTER
-SL yours!

-USL SIUSL.PUB.SUPERDEX
-ADDSL SIPROCO
-ADDSL SIPROCl
-ADDSL SIPROC2
-ADDSL SIPROC3
-ADDSL SIPROC4
-EXIT

If XL.PUB.youracct already exists, add the SUPERDEX modules into it from the file
XL.PU8.SUPERDEX:

:LINKEDIT
-XL yourxl

-COPYXL; XL.PUB.SUPERDEX
-EXIT

3-2 Configuration / Establishing S/-indices Version 3.1 March 1992

The SUPEROEX SL or XL may alternately reside in a group SL or XL (in a group other than PUB).
Copy the SL or XL into the group in which the programs reside, or add the segments or modules into
an existing SL or XL as shown above.

~ If using BASIC/3000, please call Bradmark Technologies for instructions. If using Business
Basic, refer to the supplementary documentation for the Business Basic Interface.

If you don't want to run your programs via an SL or XL, the SUPEROEX procedures may alternately I
be included in program files during the PREP or the LINK.

Creating a group for utility programs

Copy the utilities (QUERY, OICTOBL, etc.) and other programs (TRANSACT, etc.) you use for
database transactions into a group in an account containing the SUPEROEX SL or XL (not
PUB.SYS). The recommended method is to create a new SUPEROEX group in the SYS account,
copy the utilities into it, and run them with ; LIB=G. You may want to rename or lockword the
copies of the utilities that remain in PUB.SYS to prevent accidental use which could result in a loss of
synchronization between the SI-indices and entries.

Adding capabilities to accounts and groups

SUPEROEX unconditionally requires OS capability, and optionally MR capability; OS capability is not
required under MPElXL for groups/accounts that contain only Native Mode programs. MR capability
is required for programs that have SUPEROEX automatically lock its internal dataset(s)--refer to the
discussion in the Locking chapter of the Programming section to determine if MR capability is
necessary for your installation.

If required, add OS and optionally MR capabilities to groups and accounts in which programs that
access SUPEROEX'ed databases reside:

: ALTACCT account; CAP =current capabilities, DS, !II.R
: ALTGROUP group; CAP =current capabilities, DS , !II.R

~ All programs, except those in Native Mode, that access the SUPEROEX SL--even those which
do not utilize SUPEROEX capabilities--require OS capability.

Adding capabilities to users

Programmers who will :PREP source programs which use SUPEROEX will need OS and optionally
MR capabilities added to their users, unless they are :L1NKing only Native Mode programs under
MPElXL, which do not require OS capability:

: ALTUSER userid; CAP =current capabilities, DS , !II.R

Version 3.1 March 1992 Configuration / Establishing S/-indices 3-3

Adding capabflltles to programs

Programs that use SUPERDEX, including utility programs like!QUERY, must also have DS and MR
capabilities. Several methods are available:

• use ALTPROG.PUB.SUPERDEX
• if you have VESOFT's MPEXl3000 utility, use the ALTFILE command (e.g. ALTFILE

@. @. account; (CODE="PROG"); CAP=+DS, +MR)
• re-:PREP with CAP=current capabilities, DS, MR

Adding stack space to programs

All SUPERDEX procedures automatically extend a program's stack by up to two Kwords for indexed
access and one or more additional Kwords for relational access (if performed), so programs which
run short of stack may abort with a STACK OVERFLOW. For programs in which this occurs,
increase the program's MAXDATA using one of the methods below. If the MAXDATA is already at its
upper limit, run the program ;NOCB:

• use ALTPROG.PUB.SUPERDEX
• use MPEXl3000 ALTFILE command (e.g. ALTFILE program; HAXDATA=(current

maxdata + 204B))
• re-:PREP with !olAXDATA=(current maxdata + 2048)

Changing menus, UDCs, and job streams

All application and utility programs that use SUPERDEX capabilities must be run with ;LlB=P or
;LlB=G, depending on whether the SUPERDEX SL or XL are in an account or group SL or XL,
respectively:

I ,RUN program; LIB=P

Native Mode programs on MPElXL may alternately be run by:

I,RUN program; XL- "XL. PUB•SUPERDEX" J
All menus, UDCs, job streams, and other facilities that run these programs must be changed, and
users who run programs explicitly from MPE must be instructed to include ;LlB=P or ;LlB=G on the
:RUN command.

3-4 Configuration / Establishing SI-indices Version 3.1 March 1992

Expanding system tables

On MPEIV systems, the LOADPROC intrinsic called by SUPERDEX utilizes entries in two system
tables, which may require expansion. The tables are:

• LOADER SEGMENT TABLE
• SWAP TABLE

Additionally on MPEIV systems, SUPERDEX creates one or more Extra Data Segments (XDS),
which may require that the system's virtual memory allocation be increased.

~ Refer to HP's System Operation and Resource Management Reference Manual for
information about these tables and how to change them.

Version 3.1 March 1992 Configuration / Establishing 51-indices 3-5

- ----~---- --~----------------.------- - -------- --------.--------------- ---------------------------------------

Configuration overview

Defining 51-keys and 51-paths

SI-paths are defined in the SIMAINT program, which initially creates the B-tree structures and
optionally the SI-item and SI-dataset(s).

The SIMAINT program may need to know any of the following, which are discussed in detail on the
following pages:

• whether a separate DBOPEN should be done for each database through which to perform all
locking and unlocking of indices

• whether to maintain the SI-indices in the base with the data entries or in a separate base
• the dataset to which each SI-path is related
• the SI-dataset that contains the SI-indices for a dataset's SI-paths
• the name of each SI-path
• the field or fields that form each SI-key and their lengths
• whether each SI-path is keyworded, grouped, both, or neither
• whether to index entries that contain blank values in the first SI-subkey, for each SI-path
• the keyword length, for each keyworded SI-path
• the minimum number of characters per keyword, for each keyworded SI-path
• the average number of significant words that will be contained in the SI-key, for each

keyworded SI-path
• the keyword exclusion length, for all keyworded SI-paths
• the SI-key length, for each custom SI-path
• the SI-index length, for each independent SI-path
• up to four special characters to optionally exclude as keyword dellrniters
• an optional replacement character for the @ wildcard/terminator
• an optional replacement character for the? matchcode operator
• an optional replacement character for the # matchcode operator
• whether to disable multiple indexing of hyphenated values for keyworded SI-paths

Separate DeOPEN for locking

SUPERDEX is capable of implicitly locking the appropriate SI-dataset whenever a DB PUT,
DBUPDATE, or DBDELETE is performed. Because IMAGE has no selective unlock facility, the lock
on the SI-dataset is held until the program calls DBUNLOCK. This could impede throughput with
multiple users.

For this reason, SUPERDEX may be configured to DBOPEN a database twice for each process and
perform its SI-dataset locks via the second DBOPEN. It is then able to unlock the SI-dataset via that
open rather than waiting for the program to call DBUNLOCK.

To configure SUPERDEX to perform a separate DBOPEN for locking, append /2 to the database
name.

3-6 Configuration / Establishing SI-indices Version 3.1 March 1992

Separate database for SI-indices

By default, SUPEROEX's B-tree structures reside in the SI-dataset(s) in the same database as the
data entries that they index. However, it is possible to alternately locate the SI-indices in a separate
database, referred to as an SI-index base. In either case, the SI-definitions must reside in the root
SI-dataset in the same database as the data entries (the primary base).

The main advantage to keeping the SI-indices in a separate database is that fewer log records are
written for bases enabled for logging. Because SUPEROEX uses IMAGE intrinsics for maintaining its
SI-indices, additional log records are generated, causing log files to fill more quickly. This situation
becomes even more apparent with multiple indexing (multiple SI-indices for a single data entry), as
required for keywording. By locating the SI-indices in a separate base, no additional logging activity
is generated for the primary base.

Logging may be selectively enabled or disabled for the SI-index base. In either case, it is always
possible to recover the SI-indices. If logging is enabled, logging recovery may be used in the event
of a failure. If disabled, the inconsistent SI-paths may be re-indexed as necessary by reorganization
using the SIMAINT utility program.

With this option, the root SI-dataset and SI-item reside in the primary database and contain only the
SI-definitions. All SI-indices reside in one or more SI-datasets in the separate SI-index base.

This feature may be used selectively for each database. First, create the SI-index base in the same
group and account as the primary base, and assign it the same name as the primary base but with
the last two characters SI. If the primary base name is 4 characters or less, append SI to the base
name; if 5 or 6 characters, replace the last one or two characters with SI. For example, the SI-index
base for the OEOB base would be OEDeSI, and for CUSTOB would be CUSTSI.

The SI-index base may contain additional items and datasets in addition to the SI-dataset(s). The
first SI-dataset must be named S11,with additional SI-datasets named SI2 - S17. Each SI-dataset
must have the same block size and blocking factor as the root SI-dataset in the primary base.

~ Refer to the Internal st'ructures appendix for more information about the required I
characteristics of the SI-index base.

Once the SI-item and root SI-dataset have been added to the primary base and the SI-index base
has been created, proceed to configure the SI-paths using SIMAINT, and append /3 to the database
name.

~ This feature and the separate DeOPEN for locking feature (configured by 12) are
mutually exclusive, since all locking against the SI-index base is always done
independently-via a separate DeOPEN against each base.

Version 3.1 March 1992 Configuration / Establislling SI-indices 3-7

Naming 51-paths

The name of the SI-path is important because it is later used in the item parameter of SUPERDEX's
DBFIND intrinsic. Also, it may not contain a forward slash (f) unless the SI-path name is identical to
an item name that contains a forward slash.

The SI-path name must be unique within a dataset but multiple datasets may contain SI-paths of the
same name, unless the SI-path is for a super-group, in which case the SI-path name must be unique
within the database. It is recommended that the SI-path name not be the same as the item name
that forms the SI-key or any other item, since this can cause programs that are attempting IMAGE
access via the IMAGE path to instead perform SUPERDEX access via the SI-path. This may,
however, be desirable, as explained below.

If an SI-path related to a dataset is given the same name as an existing item used as an IMAGE
search field in the same dataset, the SI-path is used instead of the IMAGE path. If the entry cannot
be found using the SI-path, the IMAGE path is used instead. If both fail, condition word 17 ("NO
ENTRY") is returned. This is useful for replacing automatic master sets with SI-paths: just name the
SI-path the same name as the search field in the detail dataset and programs do not require
modification.

~ Replacing an automatic master dataset with one or more SI-paths causes additional log
records to be written for databases enabled for logging.

If, however, you would like to access entries alternately by an SI-path and by an IMAGE path, assign
a name other than the item name to the SI-path.

Simple vs. concatenated 51-keys and their lengths

An SI-key can be simple (a single field) or concatenated (a combination of fields). The latter is useful
for both searching and sorting by extended criteria.

A concatenated SI-key for a detail set may consist of up to four fields. For a master set, the search
field and up to two additional fields may be defined. If more than four fields are required in a
concatenated SI-key and the desired fields are contiguous, they may be included and thereby exceed
the four field limit. If the search field is included as an SI-subkey in a concatenated SI-key for a
master set, it must be defined last.

For a Simple SI-key or for each SI-subkey in a concatenated SI-key, each alphanumeric item that
exceeds one word may be included in full, or its length may be shortened (andean start in any
position). This is referred to as a substring SI-key or substring SI-subkey. The exc:eption is master
dataset search fields used in SI-keys, which may not be substring.

~ When performing relational access against multiple datasets, it is required that a common item
(called an SI-linK) from each dataset be included in an SI-key for each dataset, except for
master datasets in which the common item is the search field. The recommended method for
implementing this is to include the common item as an SI-subkey in a concatenated SI-key.

3-8 Configuration / Establishing SI-indices Version 3.1 March 1992

Compound items

Compound IMAGE items may be used in simple SI-keys or as the first SI-subkey in concatenated SI-
keys, including compound items with subitems of odd-byte lengths. SUPERDEX automatically treats
compound items as grouped SI-keys and generates a separate SI-index for each subitem value, the
result being that every subitem is always searched automatically.

For concatenated SI-keys that include compound IMAGE items, an SI-index is automatically
generated for each subitem value, with the values of the other SI-subkeys in the SI-key repeated in
each SI-index. For example, for an SI-~ey that consists of the compound item ORDER-COMMENTS
(a 5X72) and the regular item ORDER-NUMBER (an X12) five SI-indices would be created with each
one containing a different ORDER-COMMENT value but the same ORDER-NUMBER.

Keyworded 51-paths

Any alphanumeric (data type U or X) SI-key, either simple or concatenated, may be defined as
keyworded. For concatenated SI-keys, only the first SI-subkey is keyworded.

Keyworded SI-paths are configured in SIMAINT by appending /K to the SI-path name. Three
attributes must be specified for each keyworded SI-path:

• maximum length of each keyword
• minimum number of characters per keyword
• average number of keywords in the field for each entry

The keyword length determines the maximum number of characters to include in the SI-key, which is
independent of the length of the field. For indexing purposes, words that are longer than the keyword
length are truncated; those that are shorter are padded with spaces. For example, with a keyword
length of 5 words, the first 10 characters of each word would be included, so for the word
"MANUFACTURING," only "MANUFACTUR" would be included in the SI-key.

~ It is desirable for efficiency to keep the keyword length as short as possible and not to
exceed a keywolrd length of 6 words (12 characters). Substring keywords can still be retrieved
using the full keyword as the search argument, but other entries may also be returned; for example,
M1\NUFACTURJCNG would qualify entries with the value "MANUFACTURER" because only 10
characters are stored in the SI-index and the argument length is substringed to 10 characters.

The minimum number of characters per keyword determines the minimum number of characters that
a word must contain in order to qualify for keywording. For example, the word "ASK" would be
included in keywording with a minimum keyword length of 1, 2, or 3 but excluded with a length of 4.
The minimum keyworrdlength may be between 1 and 4, wrth 1 effectively meaning that all words are
included in keywording. This value should be set to 4 wherever possible for efficiency.

The average number of keywords refers to the average number of significant keywords that would be
contained in this fletd, between 1 and 16. For example, "ACME MANUFACTURING PARTS"
contains three keywords. The value of this parameter is used to reserve sufficient internal space, so
fractional averages must be rounded up, and it is better to estimate high instead of low if in doubt; for
example, if an averaqe of 2.5 words are contained in the field, specify a value of 3. If requirements
change at a later time, the average number of indices may be changed by reorganizing the SI-path--a
new value may be specified at that time.

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-9

To eliminate common words from keywording, an exclusion list may be defined, which restricts the
keyword entries to only relevant words. Exclusion words are specified in a disk file using any editor
and uploaded into a special standalone 51-path called KWEXCLUDE. You must define a keyword
length for this 51-path, which is applied against all the keyworded 51-paths in the database. The
keyword length may be redefined at a later time if required.

Grouped 51-paths

Multiple 51-keys related to a given dataset may be grouped together as a single 51-path, with the
following restrictions:

• each 51-key in the group must be of the same data type
• each 51-key in the group must internally have the same length, which is assigned for the first

configured 51-key in the group and inherited by subsequently-configured 51-keys

For concatenated 51-keys in a group:

• the second - nth SI-subkeys are automatically and unconditionally imposed on all 51-paths in
the group

• the first SI-subkey of every 51-key in the group must be of the same data type
• the first SI-subkey of each 51-key must be assigned the same length

Because each 51-key in a group must be of the same length, it is possible that the lengths of some
51-keys must be truncated and others padded with spaces. For example, if COMPANY is X30,
CONTACT is X20, and PHONE is X14, these three fields may be grouped together with any length
between 7 and 15 words--with 7 words, the 51-key for both COMPANY and CONTACT will be
truncated; with 15 words, both CONTACT and PHONE would be padded with spaces; or any length
in between could be chosen.

SI-paths are grouped together as a configuration option in SIMAINT by appending /G to each 51-path
name except the first. The length and second - nth SI-subkeys of the first 51-path defined are
unconditionally applied to subsequent 51-paths belonging to the same group, so define the 51-path
that contains the desired SI-subkeys and longest 51-key first. If one of the 51-keys in a group for a
master dataset is the IMAGE search field, define it last.

Super-grouped 51-paths

A master set and one or more related detail sets--related by IMAGE paths--may be super-grouped
together as a single 51-path, with the following restriction:

• the item name of the search field used to form the IMAGE path must be the same

For concatenated 51-keys in a super-group:

• the second - nth SI-subkeys are automatically and unconditionally imposed on all 51-paths in
the super-group

• the first SI-subkey of every 51-key in the super-group must be of the same data type
• the first SI-subkey of each 51-key must be asslqned the same length

3-10 Configuration / Establishing SI-indices Version 3.1 March 1992

It is not required that a field in the master set be configured as an SI-key: it is possible to configure
only SI-keys in the detail sets to be used to qualify entries in the related master set. In this case, use
the field in the detail set when configuring the master path. This will be used to define the length and
type of path.

SI-paths are super-grouped together as a configuration option in SIMAINT by appending IG to each
SI-path name except the SI-path related to the master set. The length and second - nth SI-subkeys
of the first SI-path defined are unconditionally applied to subsequent SI-paths belonging to the same
super-group.

Custom 51-paths

Custom indexing (maintained by the SIUSER procedure) is implemented by defining an SI-path of an
arbitrary name for each custom index. Although the dataset is defined, along with the SI-path, no
items are specified, since the SI-indices do not directly reference any items. The SI-key length,
excluding the SI-extension, is defined, as well as the average number of SI-indices per entry.

Independent 51-paths

Independent indexing is implemented by configuring a standalone B-tree for each independent SI-
path. The dataset is left blank, and the SI-path name and SI-index length, including the extension,
are defined.

Blank 51-keys

By default, SUPERDEX will not generate any SI-indices for any entry that contains a blank SI-key
value. For a concatenated SI-key, it will not generate any SI-indices for an entry whose first SI-
subkey is blank.

This is done for efficiency and disk savings, but differs from IMAGE's method of creating a "null"
chain of all blank keys. To override SUPERDEX's default and cause SI-indices to be generated for
entries with blank SI-keys, append /B to the SI-path name.

Summary of restrictions

Most configuration options may be used in combination against all data items, although some
restrictions exist. This summarizes the aforementioned restrictions:

• only alphanumeric items (data types U and X) may be keyworded
• keywording functions only for the first SI-subkey in a concatenated SI-key
• substring fields may only be defined for alphanumeric items (data types U and X) whose

lengths exceed one word. Master set search fields and numeric items are always
represented in full and may not be truncated

• all SI-keys in a group must be of the same data type
• all SI-keys in a group must be assigned the same length (alphanumeric fields may be

truncated or padded with spaces)
• if a !~roupedSI-path for a master dataset contains the IMAGE master search field, it must be

configured last
• concatenated SI-keys may contain a compound item as the first SI-subkey only

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-11

Excluding words from keywording

Definition and Purpose

To minimize disk utilization, SUPERDEX permits common words to be excluded from keywording.
These exclusion words are user-specified and apply to all keyworded SI-paths in a database.

All the words that SUPERDEX should exclude from keywording for a database are entered into a file
named KWEXCLUD and then transferred into the special Independent SI-path KWEXCLUDE by the
SIMAINT program.

Just as each keyworded SI-path has an associated keyword length that determines how many
characters of each keyword are recognized for indexing, the KWEXCLUDE SI-path also has an
associated keyword length which is applied against each word in the exclusion file. Because the
exclusion words are compared against all keyworded SI-paths, and because each keyworded SI-path
may have a different keyword length, it is important to assure that the excluded words will work
effectively for each SI-path. This means that only as many characters as are defined by the!keyword
length are matched on; therefore, it is recommended that the shortest keyword length configured for
any SI-path in the database be used as the keyword length for the KWEXCLUDE path.

Exclusion words are entered into a file named KWEXCLUD which must be located in the
group/account in which the corresponding database resides. Multiple KWEXCLUD files may be
used, one per database. If multiple databases reside in the same group/account and require different
KWEXCLUD files, create additional files under different names and reference them with :FILE
equations, for example:

i'P'LE KWEXCLUD.OEDBKW.DEMO.SUPERDEX

Example

Exclusion words may be entered in any editor that creates a plain ASCII file, one per line, and must
be in upper case, as shown in the following example. (In this example, EDIT/3000 is used, but any
editor that produces a standard ASCII file may be used.)

3-12 Configuration / Establishing SI-indices Version 3.1 March 1992

:EDITOR
HP32201A.07.17 EDIT/3000
(C) Hewlett-Packard CO. 1985
/A

1 INC
2 INCORPORATED
3 CORP
4 CORPORATION
5 DIVISION
6 ASSOC
7 ASSOCIATES
8 II

/K KWEXCLUD
/EXIT

END OF SUBSYSTEM

For this example, the keyword length that will be imposed on the KWEXCLUDE SI-path (when it is
defined in SIMAINT) is 4 words (8 characters). The words on line 2 and 4 exceed this length, so they
will be truncated. The shorter words on lines 1, 3, and 6 will be padded with spaces, which are
ignored for comparison.

Once the KWEXCLUD file has been created, it is necessary to define the KWEXCLUDE SI-path
using the SIMAINT program, as described in the following chapter. AHhoughthis file may be created
and modified at any time, it is recommended that it be created in its entirety before configuring any
keyworded SI-paths because any changes to the file require that the KWEXCLUDE path and all
keyworded SI-paths be reorganized.

Default File

The KWEXCLUD.DEMO.SUPERDEX file is a default file containing common words to be excluded.
Except in very special cases, it is recommended that this file be used in databases with keyworded
SI-paths to reduce the amount of D. For example:

:FILE KWEXCLUD=KWEXCLUD.DEMO.SUPERDEX
:RUN SIMAINT.PUB.SUPERDEX,LIST

SIMAINT VERSION 3.1(06DEC91) COPYRIGHT DR. MATT / IABG (1988,1991)

DATABASE >OEDB
DATASET > space + return
SI-PATH > KWEXCLUDE

Version 3.1 March 1992 Configuration / Establishing 51-indices 3-13

---.----------~--- ...--~--~--.-

Customizing default characters

SUPERDEX recognizes a few special characters that influence the operation of various intrinsics.
Because of unique characteristics that your data may have, SUPERDEX allows you to redefine these
characters to suit your individual requirements.

For DBFIND, SUPERDEX reserves the following special characters as conditional operators:

• @ as wildcard and terminator
• ? as alphanumeric matchcode
• # as numeric matchcode

For DBPUT, DBUPDATE, DBDELETE, and SIMAINT indexing on keyworded SI-paths, the following
special characters are reserved:

• all special characters as keyword delimiters
• - as a keyword delimiter which results in multiple indexing of hyphenated values

So, if your system contains data values that include ?s or #s as literal characters, it would be
restrictive to use the default ? or # character as a single-character matchcode; therefore, the
matchcode operator could be redefined to some other character not commonly found in your data
values (such as %).

~ When assigning replacement characters for @, #, and ? I it is important to choose
characters other than those already treated specially by DBFIND as relational or Boolean
operators (documented under DBFIND in the Intrinsics section in this manual).

Another circumstance in which default characters should be redefined is in recognizing keyword
delimiters for keyworded SI-paths. By default, spaces and all special characters are treated as
keyword delimiters, and it may be desirable to restrict which special characters are recognized. For
example, values that include fractions ("1/2") or dates ("01/30/90") suggest that / should be excluded
as a keyword delimiter; otherwise "1/2" would be indexed as "1" and "2."

Additionally, because hyphenated values are by default indexed multiple times ("01-30-90" is indexed
as "01-30," "30-90," and "90") it may be desirable to disable this feature and instead treat hyphens (-
) as regular keyword delimiters (resulting in "01," "30," and "90"). Or, it may be best to disable
hyphens as keyword delimiters altogether.

To redefine default characters, include a customization string of up to eight characters which defines
the desired defaults as an INFO parameter when running the SIMAINT program (described later).
The wildcard/terminator, alphanumeric matchcode, numeric matchcode, and up to four excluded
keyword delimiters can all be included in the customization string.

The customization string specified when running SIMAINT affects all SI-paths in the database.

3-14 Configuration / Establishing SI-indices Version 3.1 March 1992

~ Once specified, the customization string is written into the internal SI-definitions for the
database and need not be specified again. If the default characters need to be changed at a
later time, run SIMAINT with a new customization string; if keyword delimiters are changed, also
reorganize all keyworded SI-paths.

To preserve the default values for wildcard and matchcode operators (@, t, and ?) it is
necessary to specify them explicitly in the customization string.

The eight characters (bytes) in the customization string are represented as follows:

byte description
1 wildcard and terminator character
2 alphanumeric matchcode, blank disables this feature
3 numeric matchcode; blank disables this feature
4 - if multi-indexing on hyphen, blank to treat hyphen as regular delimiter
5 special character to be treated as literal rather than keyword delimiter
6 same
7 same
8 same

For example, running SIMAINT with the customization string shown:

would result in the following: % is recognized (in place of @) as the wildcard and terminator character,
~ (instead of ?) is the single-character matchcode, * replaces t as the single-numeric matchcode,
no multi-indexing is performed for hyphenated values, and /' :, -, and • are not treated as keyword
delimiters but rather as regular literal characters.

To display the configured customization string, run SIMAINT with the LIST entry point as shown:

:RUN SIMAINT.PUB.SUPERDEX,LIST

SIMAINT VERSION 3.1 (06DEC91>COPYRIGHT DR. MATT / IABG (1988,1991)

DATABASE >OEDB
CUSTOMIZATION STRING: %A* /:-.
~rHE FOLLOWING SI-PATHS AND ITEMS ARE DEFINED:

Version 3.1 March 1'992 Configuration / Establishing SI-indices 3-15

Configuring SUPERDEX using SIMAINT

The SIMAINT program automatically establishes the B-tree structures and SI-indices for all SI-paths
when they are created. It adds the SI-item and SI-dataset(s) for TurbolMAGE and TurbolMAGElXL
databases, unless a separate SI-index base is used. For non-Turbo bases, use DBGENERAL, or
DBUNLOAD/DBLOAD to establish the SI-dataset(s) and SI-item. For separate SI-index bases, use
the DBSCHEMA and DBUTIL utilities to create the SI-index base, or use the SIBASE utility program
(see Section 6).

(SIMAINT is also used for deleting, reorganizing, and performing other maintenance functions on
existinq SI-paths. Options for existing SI-paths are not discussed in this section but in the
Maintenance and utilities section, which also includes a table describing the various operations that
may require SI-path maintenance.)

Creating SI-item and SI-dataset(s}

The SI-item and SI-dataset(s) that are used for storing SUPERDEX's 8-trees may be created by one
of two methods:

• by SIMAINT.PUB.SUPERDEX, which creates them automatically
• by conventional means, such as DBGENERAL, or DBUNLOAD/DBLOAD

The preferred method is to use SIMAINT, since it easier and automatic. After creating the SI-item
and SI-dataset(s) based on the SI-path configuration, SIMAINT proceeds to create the required SI-
definitions and SI-indices; however, the following requirements must be met in order to use
SIMAINT.PUB to create the SI-item and SI-dataset(s):

• the system must be running TurbolMAGE or TurbolMAGElXL (not IMAGE)
• all dataset block sizes must be even multiples of 128 words (e.g. 128,256, 384, 512), which

is normally the case
• the SI-indices must reside in the same database as the data entries (not in a separate SI-

index base)

If the above conditions are not satisfied, instead run SIMAINT.NOPRIV which (based on the SI-path
configuration) displays the characteristics of the SI-item and required capacities for the SI-dataset(s)
but does not generate the SI-definitions or SI-indices. Use this information to manually create the SI-
item and SI-dataset(s), referring to the Internal structures appendix for more information. Then,
stream the job created by SIMAINT.PUB,SCHEMA to configure the SI-paths, and the SI-definitions
and SI-indices will be generated.

3-16 Configuration / Establishing SI-indices Version 3.1 March 1992

Operation

The SIMAINT program is prompt-driven, and includes an on-line help facility that displays datasets
and the items they contain. SIMAINT operates in three discrete phases, which are automatically
invoked in succession:

• dialog phase: all configuration information is specified
• extension phase: the SI-item and SI-dataset(s) are added, as necessary
• indexing phase: all SI-indices are generated

This permits all configuration information to be specified up front in the dialog phase and for the
program to be left unattended during extension and indexing.

Access requirements

Before running SIMAINT, make sure:

• you have exclusive access to the database
• you are logged on as the database creator
• you are logged into the group and account in which the database resides

It is also recommended for performance reasons that you:

• disable ILR
• disable logging
• do not run SIMAINT with ;LlB=G or ;LlB=P

Input rules

These rules govern SIMAINT input:

• all input may be in upper- or lower-case
• ? displays structural help (sets and items)
• \ flushes all activity for a given level and returns to the previous level
• space returns to the previous level in the hierarchy while retaining the activity in a level
• alliengths--with the exception of minimum keyword length, average number of characters per

keyword and offset in bytes, which are always specified in bytes--are reported and specified
in words if a positive value, and bytes if a negative value. It is necessary to convert for
alphanumeric (data types U and X) items (e.g.)(20 = 20 bytes orto words).

Dialog phase

SIMAINT dialog is structured in a hierarchical fashion whereby you are led down through various
levels until all required information has been supplied, and then automatically returned to the previous
level. The levels in the hierarchy are:

DATABASE >
DATASET >

SI-PATH >
ITEM n >

SI-subkey prompts

Version 3. 1 March 1992 Configuration / Establishing SI-indices 3-17

This organization encourages a logical ordering in configuring SUPERDEX for muniple datasets and
items, assures that all required information is specified, and permits an easy and consistent method
for canceling and reentering input for any level in the hierarchy.

SIEXTLEN JeW for special concatenated SI-keys

A concatenated SI-key can normally contain no more than four fields as SI-subkeys. It is possible,
however, to create a concatenated SI-key with more than four SI-subkeys, provided that the
additional fields are contiguous in the dataset. If they are, it is possible to define a length for any SI-
subkey that exceeds the field length, and the additional fields or truncated fields that follow are
included in the SI-key, based on the length specified.

If you need to utilize this feature, it is necessary to set a special JeW named SIEXTLEN to 1 before
invoking SIMAINT.

Invoking SIMAINT

To invoke SIMAINT for TurbolMAGE and TurbolMAGElXL databases:

:RUN SIMAINT.PUB.SUPERDEX

SIMAINT VERSION 3.1(06DEC91) COPYRIGHT DR. MATT I IABG (1988,1991)

~ SIMAINT is run with neither ;LlB=G nor ;LlB=P.

For IMAGE databases, as well as databases with block sizes that are not even multiples of 128
words (128, 256, 384, 512, etc.) instead: RUN SIMAINT. NOPRIV. SUPERDEX after creating
the SI-dataset(s) and SI-item, refer to the Internal structure appendix for more information.

Defining database

SIMAINT can be run against databases that have never been configured for SUPERDEX as well as
those that already contain SI-paths.

The OEDB database in these examples contains no SI-paths. Because the version of SIMAINT
being run is SIMAINT.PUB, a message is displayed that the SI-detail dataset(s) will be added
automatically:

DATABASE >OEDB
DATABASE HAS NOT BEEN INITIALIZED FOR SUPERDEX
AFTER THE DIALOG PHASE THE PROGRAM WILL GO INTO PRIVILEGED MODE TO ADD THE SI-
DATASET(S) TO THE DATABASE

3-18 Configuration / Establishing SI-indices Version 3.1 March 1992

Defining number of DSOPENs

In this example, the database is being configured for SUPERDEX to perform a second DBOPEN
through which all locking of the SI-dataset(s) will be performed:

IDATABASE >OEDB/2

~ /2 appended to the database name means that a second DBOPEN should be performed. If,
instead, only a single DBOPEN should be done, with all locking done via that DBOPEN, either
nothing or /1 should be appended. The specified suffix is automatically retained for all
subsequent configuration against the database. Either suffix may also be declared for an
already-configured database, and SUPERDEX will override the old specification.

Defining that a separate 51-index base is used

In this example, the database being configured for SUPERDEX will contain the root SI-dataset but
not the SI-dataset(s) that hold the SI-indices, rather, they will be maintained in a separate SI-index
database:

IDATABASE >OEDB/3

~ /3 appended to the database name means that SUPERDEX should maintain its SI-indices in a
separate SI-index base, which must already exist. The suffix is automatically retained for all
subsequent configuration and may not be overridden.

The /3 option and the /2 option may not be used together--they are mutually exclusive.

Defining datasets

SIMAINT can be run against datasets that already have related SI-paths as well as those that do not.
If a dataset already contains SI-paths, they are displayed.

Enter the name of a manual master or detail dataset in the current database, optionally followed by
one of the following suffixes:

/n SI-dataset to contain the SI-indices for all dataset's SI-paths, where n is the number of the
SI-dataset between 1 and 7

/D Delete all dataset's related SI-paths (refer to Maintenance and utilities section)
/R Reorganize all dataset's related SI-paths (refer to Maintenance and utilities section)

In the following example, no suffix was specified, therefore all indices for SI-paths related to the
PRFD dataset will reside in the root SI-dataset:

IDATASET >PRFD

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-19

Once all datasets have been defined, hit RETURN at the DATASET prompt. This indicates to
SIMAINT that you are done defining SI-paths, and causes it to proceed to the extension stage.

~ Once an SI-dataset has been selected for a dataset, all indices for that dataset must
remain in the same SI-dataset. Different SI-paths for the same dataset cannot be placed
in different SI-datasets.

Defining associated 51-datasets

In this example, all the SI-indices for all SI-paths related to the CUST dataset will be built in the SI-
dataset named S11:

IOATASET >CUST/l

Up to eight Sl-datasets (including the root SI-dataset) may be configured for any database. Multiple
SI-datasets are useful for optimizing concurrent access and necessary for large databases in which
an SI-dataset may outgrow the maximum file size allowed by the MPE operating system (about 2
million sectors for MPEIV and 8 million sectors for MPElXL). Valid SI-dataset suffixes are /1
through /7. In assigning suffixes, do not skip any numbers.

The suffix is automatically retained for all subsequent configuration against the dataset, and may only
be changed by deleting and re-adding all the SI-paths related to the dataset. Likewise, if the dataset
was originally configured without a suffix, no suffix may be specified without redefining all the
dataset's SI-paths.

~ With super-grouping the master and the related detail sets must be configured with the
same SI-dataset.

Bypassing data sets for independent 51-paths

When defining independent SI-paths which are not associated with any dataset, and when defining
the keyword exclusion path KWEXCLUDE, a SPACE followed by a RETURN is specified at the dataset
prompt:

IOATASET »space + return

To specify which SI-dataset will contain all independent SI-paths for the database, specify the SI-
dataset number in place of the SPACE, as shown:

IOATASET >/2

3-20 Configuration / Establishing SI-indices Version 3.1 March 1992

Defining 51-paths and 51-keys

As described previously, SI-paths may be:

• simple or concatenated
• keyworded
• a grouping of multiple SI-keys
• customized, for SI-keys generated via the SIUSER procedure
• standalone, for independent indexing

As already discussed, each SI-path name is arbitrary, and may be the same as an existing item
name. The SI-path name may optionally be appended by one of the following suffixes:

/K SI-path is Keyworded
/G SI-path consists of multiple SI-keys that form a Group
/B Blank entries are indexed (by default, no SI-index is generated for an SI-key value that is

blank or for a concatenated SI-key, whose first SI-subkey is blank)
/D Delete existing SI-path (refer to the Maintenance and utilities section)
/R Reorganiizeexisting SI-path (refer to the Maintenance and utilities section)

After the SI-path name has been entered, SIMAINT prompts for the item(s) that comprise the
corresponding SI-key. A simple SI-key consists of only one item; a concatenated SI-key may contain
between two and four items.

For alphanumeric items (data types U or X), a truncated field rather than the full field may be included
in both simple and concatenated SI-keys. For numeric items, no truncation is allowed, so the request
to shorten the length is not asked.

Defining simple! 51-keys

In this example, the arbitrary name CITY is assigned for the SI-path that consists of the full field
CUCITY:

SI-PATH >CITY/B
ITEM 1 >CUCITY
ITEM LENGTH IS 8 WORDS.ENTER SHORTER LENGTH (- =BYTES) IF DESIRED>rewrn
ITEM 2 »return
SI-PATH >

~ RETURN was hit to accept the full field length for the SI-key and also hit when SIMAINT
prompted for the second SI-subkey, thereby defining this SI-key as simple rather than
concatenated. Also, /B was appended to the SI-PATH, which causes SUPERDEX to override
its default and generate SI-indices for entries that contain blanks in the first SI-subkey.

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-21

If the name specified for an SI-path is the name of a field in the dataset--such as when replacing an
automatic master dataset with an SI-path--SIMAINT assumes that the first SI-subkey is that item and
therefore does not prompt for it:

SI-PATH >PRFIDF
ITEM LENGTH IS 2 WORDS. ENTER SHORTER LENGTH (- =BYTES) IF DESIRED>rerurn
ITEM 2 >rerurn
SI-PATH >

If the current dataset is a master and the SI-path name specified is the same as the dataset's search
field, neither the item nor length is prompted for, since truncated SI-keys that are master set search
fields are not allowed:

IS1 ~PATH >CUCNUH
SI-PATH >

Defining concatenated SI-keys

To define a concatenated SI-key, specify additional fields to be included as SI-subkeys:

SI-PATH >ORDER-ID/B
ITEM 1 >OMCPON
ITEM LENGTH IS 7 WORDS. ENTER SHORTER LENGTH (- =BYTES) IF DESIRED >2
ENTER OFFSET IN BYTES (RETURN=1) > return
ITEM 2 >OMBLOC
ITEM 3 >OMCCOD
SI-PATH >

~ There are several items to notice in this example. First, only the first 2 words (4 characters) of
the OMCPON field are being included in the SI-key. Second, since the item has been
shortened, the desired offset is requested. Next, the length was not prompted for in the second
and third SI-subkeys because the items are not of an alphanumeric data type and numeric items
must be represented in full. Fourth, only three SI-subkeys (rather than four) were prompted for
because the SI-path is being configured for a master dataset and the IMAGE search field is not
included in the SI-key. Lastly, IB was specified to cause SUPERDEX to generate SI-indices for
entries that contain a blank value in the first SI-subkey.

3-22 Configuration / Establishing SI-indices Version 3. 1 March 1992

The following example defines the same concatenated SI-path, but defines the length in bytes, I
instead of words. Additionally, an offset of 3 has been chosen.

SI-PATH >ORDER-ID/B
ITEM 1 >OMCPON
ITEM LENGTH IS 7 WORDS. ENTER SHORTER LENGTH (- =BYTES) IF DESIRED >-4
ENTER OFFSET IN BYTES (RETURN=l) > 3
ITEM 2 >OMBLOC
ITEM 3 >OMCCOD
SI-PATH >

In the following example, a concatenated SI-key containing three SI-subkeys is being configured for a
detail dataset. No SI-subkey lengths are prompted for because all items are numeric:

SI-PATH >ITEM-ID
ITEM 1 >OMNUMB
ITEM 2 >ITMNDM
ITEM 3 >ITMCOD
ITEM 4 »return
SI-PATH >

~ As explained earlier, a concatenated SI-key can contain more than four SI-subkeys only if the
desired excess fields are contiguous in the dataset and if the special SIEXTLEN JCW is set to 1.

This example shows a concatenated SI-key containing eight SI-subkeys, although only four are
referenced by name. The situation is that there are eight separate fields that hold status codes--
named STA TUS-1 through STA TUS-8; and it is necessary to have all eight four-character codes
included in the concatenated SI-key:

SI-PATH >STATUS
ITEM 1 >STATUS-l
ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH (- =BYTES) IF DESIRED >return
ITEM 2 >STATUS-2
ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH >return
ITEM 3 >STATUS-3
ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH >return
ITEM 3 >STATUS-4
ITEM LENGTH IS 2 WORDS. ENTER NEW LENGTH >10
ENTER OFFSET IN BYTES (RETURN= 1) »return
SI-PATH >

IkirThe default length of two words was chosen for the first three status codes (by hitting RETURN).
A length of 10 was specified for STA TUS-4, which will cause the remaining status codes
(STA TUS-5 through STATUS-B) to be implicitly included in the SI-key. Also, the question
displayed is not the same when the SIEXTLEN JCW is turned on.

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-23

Remember that in order to configure this special type of concatenated SI-key that it is necessary to
have the SIEXTLEN JCW set to 1 before invoking SIMAINT.

Defining keyworded 51-paths

Appending /K to the SI-path name defines an SI-path that is keyworded:

SI-PATH >CUNAME/K
ITEM LENGTH IS 15 WORDS. ENTER KEYWORD LENGTH >6
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD (1-4) >4
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY >3
ITEM 2 >return
SI-PATH >

~ Instead of prompting for the SI-key length, SIMAINT instead prompts for keyword length,
minimum number of characters per keyword, and average number of keywords. The keyword
length can be entered in bytes as a negative value. Also, the offset cannot be specified. The
entire field is included in the keyword.

In this example, each keyword is recognized only by the first 12 characters (6 words), a word must
contain at least 4 characters to be keyworded, and an average of 3 keywords are contained in each
SI-key.

Concatenated SI-keys can also be configured as keyworded, but only the first SI-subkey is
keyworded:

SI-PATH >SHIP-ID/K
ITEM 1 >SHNAME
ITEM LENGTH IS 15 WORDS. ENTER KEYWORD LENGTH >-12
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD (1-4) >3
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY >4
ITEM 2 >SHADDl
ITEM 3 >SHADD2
ITEM 4 »return
SI-PATH >

The keyword length of -12 (12 characters or 6 words), minimum number of characters per keyword of
3, and average number of keywords of 4 are automatically applied to the first SI-subkey (the other SI-
subkeys are not keyworded).

3-24 Configuration I Establishing Sf-indices Version 3.1 March 1992

Defining grouped SI-paths

A grouped SI-path is defined by specifying multiple SI-keys under a common SI-path name. It is not
necessary to configure all members of the group at the same time: additional SI-keys may be added
into the group at a later time (when deleting a grouped SI-path, however, all members are deleted).

These are the steps to follow in defining a grouped SI-path:

1. Specify a new SI-path name, optionally suffixed with IB (to index all blank SI-keys in the group)
or IK (to define all SI-keys in the group as keyworded). The suffix attribute is inherited by all SI-
keys in the group.

2. Specify the name of the first item to be contained as an SI-key in the group. Define the longest
item first, since the SI-key length for the group may not exceed the length of the first item
specified. If the group is related to a master dataset and includes the IMAGE search field,
define it last.

3. Specify the SI-key length, which will be applied to all SI-keys in the group and which therefore
must be no greater than the longest item in the group. SI-keys for items that are shorter than
this length are padded with spaces.

4. Define additional SI-subkeys, if desired, when prompted. These SI-subkeys are unconditionally
applied to all SI-keys in the group.

S. When prompted for the next SI-path name, specify the same SI-path name as before but
append the suffix IG.

6. Enter the name of the next SI-key to be included in the group.
7. Repeat steps Sand 6 for each additional SI-key in the group.

This example shows a grouping of two SI-key fields under the SI-path name SHADD.

SI-PATH >SHADD
ITEM 1 >SHADD1
ITEM LENGTH IS 13 WORDS. ENTER SHORTER LENGTH (- =BYTES) IF DESIRED >-10
ITEM 2 »return
SI-PATH >SHADD/G
ITEM 1 >SHADD2
SI-PATH >

~ The first field defined is automatically included in the group, even though IG was not appended
to the corresponding SI-path name.

This example shows a 'groupingof three fields under the SI-path CUPHN.

SI-PATH >CUPHN
ITEM 1 >CUPHN1
ITEM 2 >return
SI-PATH >CUPHN/G
ITEM 1 >CUPHN2
SI-PATH >CUPHN/G
ITEM 1 >CUPHN3
SI-PATH >

Version 3. 1 March 1992 Configuration / Establishing 51-indices 3-25

The SI-key length was not prompted for here because all items are integers (data type I).

Defining super-grouped 51-paths

A super-grouped SI-path is defined by configuring an SI-path for a master dataset and then
referencing that SI-path for one or more related detail datasets. It is not necessary to include all
related detail datasets in the super-group.

IThe SI-set number option on the datasets, both master and details, must be the same if a super-
group is wanted.

ISI-path names between masters and their related details should be uniquely named to avoid any
confusion between super-grouped paths, and those that are not super-grouped.

~ The items selected must exist in all datasets involved except for the first item on a master
dataset.

These are the steps to follow in defining a super-grouped SI-path:

1. First configure a new SI-path for the master dataset, optionally suffixed with /B (to index all
blank SI-keys in the group) or /K (to define all SI-keys in the group as keyworded). The suffix
attribute is inherited by all SI-keys in the super-group.

2. Specify the name of the first item in the master set to be contained as an SI-key in the super-
group. If no item in the master set is to be included in the super-group, specify the item from
one of the related detail sets that will be part of the super-group.

3. Define additional SI-subkeys in the master set, if desired, when prompted. These SI-subkeys
are unconditionally applied to all SI-keys in the super-group. If defining additional SI-subkeys for
the master path, each subkey must also exist in the detail dataset(s), except for SI-subkey 1.

4. When prompted for the next SI-path name, hit RETURN to be prompted for the next dataset (or
continue to define additional, unrelated SI-paths for the master set).

5. When prompted for the next dataset, specify the name of a detail dataset related by an IMAGE
path to the master set previously specified.

6. When prompted for SI-path name, enter the same SI-path name as for the master set but
append the suffix /G.

7. Enter the name of the item in the detail dataset that is to be included as an SI-key in the super-
group.

8. Enter RETURN for SI-path name (or continue to define additional, unrelated SI-paths for that
detail set).

9. Repeat steps 5 through 9 for each additional related detail datasets in the super-group.

3-26 Configuration / Establishing SI-indices Version 3. 1 March 1992

This example shows a super-grouping of a master dataset and a single associated detail set (related
by the IMAGE path along CUSTOMER-NUMBER) under the SI-path name CUSTOMER-BRANCH:

DATASET >CUSTOMERS
SI-PATH >CUSTOMER-BRANCH
ITEM 1 >CUSTOMER-NAME
ITEM LENGTH IS 15 WORDS. ENTER NEW LENGTH (- =BYTES) IF DESIRED >rewrn
ITEM 2 »retum
SI -PATH »return
DATASET >BRANCHES
SI-PATH >CUSTOMER-BRANCH/G
ITEM 1 >BRANCH-NAME
SI-PATH »return

DATASET >

This example shows a super-grouping of the ORDER-LINES detail dataset that is related to the
ORDER-HEADERS master dataset in which the master dataset is not included in the super-group,
under the SI-path name PART-DESCRIP:

DATASET >ORDER-HEADERS
SI-PATH >PART-DESCRIP
ITEM 1 >PART-DESCRIPTION «does netexlstIn ORDER-HEADERS butIn ORDER-LINES»
ITEM LENGTH IS 13 WORDS. ENTER NEW LENGTH (- =BYTES) IF DESIRED >rewrn
ITEM 2 >return
SI-PATH »return
DATASET >ORDER-LlNES
SI-PATH >PART-DESCRIP/G
ITEM 1 >PART-DESCRIPTION
SI-PATH »return
DATASET >

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-27

Defining 51-paths that are both keyworded and grouped

As shown above, a grouped SI-path may be defined as keyworded, in which case every SI-key in the
group is treated as keyworded.

The SI-path in this example is both keyworded and grouped, as defined simply by appending /K to
the SI-path name when first declared:

SI-PATH >CUADD/K
ITEM 1 >CUADD1
ITEM LENGTH IS 13 WORDS. ENTER KEYWORD LENGTH >5
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD (1-4) >1
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY >4
ITEM 2 >return
SI-PATH >CUADD/G
ITEM 1 >CUADD2
SI-PATH >

Defining custom SI-paths

For custom SI-paths, for which the SI-key is generated by the SIUSER procedure, specify an
arbitrary SI-path name and RETURN for the first SI-subkey:

DATASET >SHIP
SI-PATH >CUSTOM-ID
ITEM 1 »return
ENTER SI-KEY LENGTH >4
ENTER AVERAGE NUMBER OF INDICES PER ENTRY >4
SI-PATH >

The SI-key length represents the length, excluding the SI-extension, that is returned in the indices
parameter of the SIUSER procedure. The average number of indices represents the average value
of the index count returned in the first word of the index parameter of SIUSER.

If the database is enabled for NLS (Native Language Support), the following question is also asked:

IUSE NLS-SORTING (N/Y) >

This determines whether NLS collating sequences are used for ordering entries for this SI-path.
Because numeric data is sorted the same, respond N if the SI-path contains only numeric data fields;
otherwise respond Y.

3-28 Configuration / Establishing SI-indices Version 3. 1 March 1992

Defining independent 51-paths

For independent SI-paths that are not associated with any dataset, enter a SPACE and RETURN for the
dataset and an arbitrary SI-path name:

DATA5ET »space + return
51-PATH >DOCUMENT-NAME
ENTER 51-INDEX LENGTH >10
51-PATH >

The SI-index length represents the length of the entire SI-index: both the SI-key and SI-extension.
This must be at least 2 words long.

If the database is enabled for NLS (Native Language Support), the following question is also asked:

JUSE NLS-SQRTING (N/Yj >

This determines whether NLS collating sequences are used for ordering entries for this SI-path.
Because numeric data is sorted the same, respond N if the SI-path contains only numeric data fields;
otherwise respond Y.

Defining keyword exclusion 51-path

The special independent SI-path named KWEXCLUDE is reserved for words excluded from
keywording (as defined in the file KWEXCLUD, which should already exist in the same group/account
as the database). Enter SPACE for the dataset and KWEXCLUDE for the SI-path:

DATA5ET > space + return
51-PATH >KWEXCLUDE
ENTER KEYWORD LENGTH >5
51-PATH >

The keyword length represents the Significant length of each exclusion word. Refer to the Excluding
words from kevwording chapter in this section for a discussion.

Deferring indexing

By default, SIMAINT will proceed to the extension phase (if required) and indexing phase once all
configuration information has been specified, as indicated by a response of RETURN at the DATA5ET>
prompt. You may instead want to defer indexing until a more convenient time, since it does require
exclusive database access.

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-29

To tacllitate this, SIMAINT is capable of completing the extension phase (if required) and saving the
newly-configured SI-definitions but deferring the indexing phase until explicitly specified. This is
accomplished by responding IN to the DATASET> prompt, as shown:

IDATASET> IN

To proceed with indexing when convenient, rerun SIMAINT against the same database and hit
RETURN at the DATASET> prompt.

Extension phase -- specifying SI-dataset{s) capacity

Once all definitions have been entered, SIMAINT proceeds to calculate the capacities for every SI-
dataset. The calculated SI-dataset capacities are worst-case calculations which are sufficient for
storing the SI-indices that are required based on the current capacities of the datasets they
represent. (Refer to the Internal Structures appendix for more information about how the SI-dataset
capacity is calculated.)

If SIMAINT.PUB is being run, the capacities are displayed and the opportunity is given to override
them. The program then proceeds to add the SI-item and SI-dataset(s) into the database.

CALCULATED CAPACITY OF SI-DATASET 241
DESIRED CAPACITY (RETURN = CALCULATED CAPACITY) >400

CALCULATED CAPACITY OF SI1-DATASET 160
DESIRED CAPACITY (RETURN = CALCULATED CAPACITY) >250
EXTENSION STARTED - DO NOT INTERRUPT
EXTENSION SUCCESSFUL

With SIMAINT.PUB, the configuration process is now complete and the program proceeds to create
the SI-indices.

If SIMAINT.NOPRIV is being run, the SI-item characteristics and calculated SI-dataset capacities are
displayed and a job stream is created to facilitate configuration once the SI-item and SI-dataset(s)
have been added:

CAPACITY OF SI-DATASET

THE CALCULATION IS BASED ON THE CURRENT BLOCKMAX OF 512 WORDS
CREATE SI-ITEM AS FOLLOWS 4X254 (508 WORDS)
CREATE SI-DATASET WITH CAPACITY OF 241
CREATE SI1-DATASET WITH CAPACITY OF 160

3-30 Configuration / Establishing SI-indices Version 3. 1 March 1992

With SIMAINT.NOPRIV, it is now necessary for you to manually create the SI-item and SI-dataset(s),
as described in the Internal structures appendix. The SI-item should be created with the
characteristics shown, and the SI-dataset capacity(ies) should be set at least as high as the
recommended capacity(ies). Once this is done, stream the job created by SIMAINT to configure and
create the SI-paths.

If you have configured SUPERDEX to utilize a separate SI-index base, use SIMAINT.NOPRIV to
calculate the capacities for the SI-dataset(s) but do not append /3 to the database name. Once the
capacities have been determined, create the SI-index base as described in the Internal structures
appendix.

Now, having created the SI-item and SI-dataset(s) and perhaps the SI-index base, stream the job
created by SIMAINT.NOPRIV to actually configure the SI-paths. If using a separate SI-index base,
append /3 to the primary database name when re-running SIMAINT.

Indexing phase -- progress display

Once the extension is completed, SIMAINT proceeds to generate the SI-path definitions and 81-1
indices. Extensive progress reporting is displayed during the indexing phase.

Each non-independent SI-path must go through three processes. First, the records in the dataset
must be read, called the INPUT phase. Next the created indices for the SI-path must be sorted,
called the SORT phase. Finally the indices must be written out to the SI dataset, called the OUTPUT
phase.

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-31

------------~--~- .. -.--- ..-----'------.-.~--.----~---- .----.~.-----.-----------~--.~~--.-.---------.---------~-'..---~~-~~-.-----

During the INPUT and OUTPUT phases a display of the number of entries read, or indices added,
the percentage complete, the elapsed time, and the elapsed CPU seconds are displayed at a regular
predefined interval. During the SORT phase, no progress reporting can be displayed until after the
SORT is completed.

PROCESSING SI-PATH KWEXCLUDE OF
PROCESSING SI-PATH CUSTOMER-NAME OF CUSTOMERS # OF ENT: 1003

INPUT: 1003 RECORDS 100 % CPU 0:00:01.2 Elapsed 0:00:05
SORT: 1003 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 1003 INDICES 100 % CPU 0:00:00.9 Elapsed 0:00:02

PROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECORDS 100 % CPU 0:00:02.7 Elapsed 0:00:06
SORT: 2803 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 2788 INDICES 100 % CPU 0: 00: 01. 6 Elapsed 0:00:03

PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECORDS 100 % CPU 0:00:04.3 Elapsed 0:00:07
SORT: 4448 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 4417 INDICES 100 % CPU 0:00:02.6 Elapsed 0:00:03

TOTAL TIME: CPU 0:00:17.7 Elapsed 0:00:40

END OF PROGRAM

~ Notice that the number of records read during the INPUT phase was always the same as the #

OF ENT:, but the number of indices sorted and written out either match the number of entries
or is larger. This is because in an SI-path that is not a one-to-one path (only simple paths or
simple-concatenated paths are one-to-one paths) will create more indices than number of
records.

The number of indices written out may be less than then number sorted because all duplicate
SI-indices are not added. In other words, if a record has the same word in a keyworded SI-path
only one SI-index will be added.

The default interval for updating the progress report is 1000 records or indices. This can be
overridden by setting the JCW SICOUNT. The valid values for this JCW are 100 to 32767, inclusive.
If the value is not valid, then 1000 will be used.

3-32 Configuration / Establishing SI-indices Version 3.1 March 1992

Example of configuring and establishing SI-indices for a database

A complete example of an entire SIMAINT configuration session for a database follows:

:RUN SIMAINT.PUB.SUPERDEX
SIMAINT VERSION 3.1 (06DEC91) COPYRIGHT DR. MATT / IABG (1988,1991)

DATABASE > OEDB
DATABASE HAS NOT BEEN INITIALIZED FOR SUPERDEX
AFTER THE DIALOG PHASE THE PROGRAM WILL GO INTO PRIVILEGED MODE TO ADD
THE SI-DATASET(S) TO THE DATABASE
DATASET > space + return
SI-PATH > KWEXCLUDE
ENTER KEYWORD LENGTH > 4
SI-PATH > return
DATASET > CUSTOMERS
SI-PATH > CUSTOMER-NAME
ITEM LENGTH IS 15 WORDS.ENTER SHORTER LENGTH (- =BYTES)IF DESIRED> return

ITEM 2 > return
SI-PATH > CUSTOMER-NAME-KW/K
ITEM 1 > CUSTOMER-NAME
ITEM LENGTH IS 15 WORDS. ENTER KEYWORD LENGTH> 4
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD > 1
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY > 6
ITEM 2 > return
SI-PATH > ADDRESS1-CITY-KW/K
ITEM 1 > ADDRESS-l
ITEM LENGTH IS 13 WORDS. ENTER KEYWORD LENGTH> 4
ENTER MINIMUM NUMBER OF CHARACTERS PER KEYWORD > 1
ENTER AVERAGE NUMBER OF KEYWORDS PER ENTRY > 4
ITEM 2 > return
SI-PATH > ADDRESS1-CITY-KW/G
ITEM 1 > CITY
SI-PATH > return
DATASET > ORDER-HEADERS
SI-PATH > CUSTOMER-NUMBER
ITEM 2 > return
SI-PATH > return
DATASET > ORDER-LINES
SI-PATH > ORDER-PART
ITEM 1 > ORDER-NUMBER
ITEM 2 > PART-NUMBER
ITEM LENGTH IS 7 WORDS. ENTER SHORTER LENGTH (- =BYTES)IF DESIRED> return

ITEM 3 > return
SI-PATH > PART-ORDER
ITEM 1 > PART-NUMBER
ITEM LENGTH IS 7 WORDS.ENTER SHORTER LENGTH (- =BYTES)IF DESIRED> return
ITEM 2 > ORDER-NUMBER
ITEM 3 > return
SI-PATH > return

DATASET > return

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-33

OUTPUT: 9272 INDICES
PROCESSING SI-PATH PART-ORDER

INPUT: 9272 RECORDS
SORT: 9272 INDICES
OUTPUT: 9272 INDICES

TOTAL TIME :

100 % CPU 0:00:06.9 Elapsed 0:00:09

CALCULATED CAPACITY OF SI-DATASET 752
DESIRED CAPACITY (RETURN = CALCULATED CAPACITY) >1000
EXTENSION STARTED - DO NOT INTERRUPT
EXTENSION SUCCESSFUL

PROCESSING SI-PATH KWEXCLUDE OF

PROCESSING SI-PATH CUSTOMER-NAME
INPUT: 1003 RECORDS
SORT: 1003 INDICES

OF CUSTOMERS # OF ENT: 1003
100 % CPU 0:00:01.3 Elapsed 0:00:02

CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 1003 INDICES 100 % CPU 0:00:00.9 Elapsed 0:00:01

PROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECORDS 100 % CPU 0:00:03.0 Elapsed 0:00:03
SORT: 3046 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 3032 INDICES 100 % CPU 0:00:01.8 Elapsed 0:00:02

PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECORDS 100 % CPU 0:00:04.6 Elapsed 0:00:05
SORT: 4375 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 4344 INDICES 100 % CPU 0:00:02.6 Elapsed 0:00:03

PROCESSING SI-PATH CUSTOMER-NUMBER OF ORDER-HEADERS # OF ENT: 2620
INPUT: 2620 RECORDS 100 % CPU 0:00:02.4 Elapsed 0:00:03
SORT: 2620 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 2620 INDICES 100 % CPU 0:00:01.4 Elapsed 0:00:02

PROCESSING SI-PATH ORDER-PART OF ORDER-LINES # OF ENT: 9272
INPUT: 9272 RECORDS 100 % CPU 0:00:09.1 Elapsed 0:00:10
SORT: 9272 INDICES CPU 0:00:00.1 Elapsed 0:00:00

OF ORDER-LINES # OF ENT: 9272
100 % CPU 0:00:09.1 Elapsed 0:00:10

CPU 0:00:00.1 Elapsed 0:00:00
CPU 0:00:07.3 Elapsed 0:00:09
CPU 0:00:57.8 Elapsed 0:06:27

100 %

END OF PROGRAM

3-34 Configuration / Establishing Sf-indices Version 3.1 March 1992

Running SIMAINT in batch

SIMAINT can be run in batch, and uses dialog similar to on-line. The method for creating a job
stream by which to run SIMAINT in batch is to build a job file using the SCHEMA entry-point after all
paths have been defined.

The discrepancies between on-line and batch use are:

• all prompts are displayed during batch, while during on-line the prompts are variable I
depending on answers

• a line containing only a SPACE is represented in batch by a blank line
• a line containing only a RETURN (which is normally specified in a batch job as a blank line) is

represented by a line containing a double slash (J/) in the first two character positions

SIMAINT will QUIT (not TERMINATE) normally upon encountering any error in batch, permitting
testing of the system JCW.

Running SIMAINT with a ; STDIN option will cause SIMAINT to execute as if in batch.

Version 3.1 March 1992 Configuration / Establishing SI-indices 3-35

----------------_._-_.

Section 4 Programming

Overview

This section discusses the various methods utilized in programming with SUPERDEX and gives
examples of various types of SUPERDEX access.

Although the SUPERDEX intrinsics are discussed throughout this section, they are documented fully
for reference in the Intrinsics section.

Chapter 1
Function

Chapter 2
Function

Chapter 3
Function

Chapter 4
Function

Chapter 5'
Function

Chapter 6
Function

Lock:ing
in this section examines various Locking strategies available in SUPERDEX, both
explicit and implicit, as well as multiple DBOPENs and other locking considerations.

Adding, updating, and deleting entries
discusses Adding. updating. and deleting entries using DBPUT, DBUPDATE, and
DBDELETE. Also covered are custom indices, the DBPUTIX and DBDELIX
intrinsiics, and independent SI-paths.

Qualiifying entries with DBFIND
describes various methods of Qualifving entries with DBFIND. All the various access
methods are shown, including keyword and grouped retrieval, as well as lookups that
involve a single set, multiple SI-paths in a single set, multiple sets, and multiple
bases"

Retri1eving entries with DBGET
looks at Retrieving entries with DBGET in sorted sequential order using modes 5, 6,
15, and 16, as well as methods for reading masters and their related details and SI-
indices only.

Addi1tional programming considerations
examines Additional programming considerations, such as :PREParing programs
and programming language variations.

Native Language Support
describes special considerations that must be made when using HP's Native
Langu,age Support facility, for adding, updating, and indexing entries and qualifying
entries with DBFIND.

Locking

Because the SI-indices may require changes with every DBPUT, DBUPDATE, DBDELETE,
DBPUTIX, and DBDELlX, it is necessary to lock the SI-dataset(s) whenever these intrinsics are
called against SUPERDEX'ed datasets and the database is DBOPENed in mode 1.

SUPERDEX has several strategies for locking the SI-dataset(s) when necessary:

• explicit locking of all datasets, including the SI-dataset(s)
• implicit locking of all the datasets that are not explicitly locked (entry datasets as well as SI-

datasettsj)
• implicit locking of the SI-dataset(s) only
• implicit locking and unlocking of the SI-dataset(s) via a separate DBOPEN of the base
• implicit locking and unlocking of the SI-dataset(s) contained in a separate SI-index database

via a separate DBOPEN of the SI-index base

Explicit locking of all datasets

If you do not want SUPERDEX to perform any implicit locking, add the SI-dataset(s) to the program's
lock descriptor, using an item of @.

Implicit locking of all the datasets

SUPERDEX is capable of automatically performing all required locking (both DBLOCKs and
DBUNLOCKs) in any program against all the datasets in a database, including those that do not have
associated SI-paths. In order to utilize this method, the program must not lock the datasets that have
related SI-paths.

When an application calls DB PUT, DBUPDATE, or DBDELETE with no covering lock, SUPERDEX
automatically locks the dataset that contains the data entries, modifies it, and then unlocks it. It then
locks the appropriate SI-dataset, modifies it, and then unlocks it. Both locks are applied at the
dataset level.

This method is very efficient but because the lock against the SI-dataset is applied at the dataset
level, it is recommended that any locking performed by programs be done at the dataset level to
avoid waiting for item-level locks.

4-2 Programming Version 3.1 March 1992

Implicit locking of the SI-dataset(s}

Existing programs that already lock do not need to be modified for SUPERDEX. SUPERDEX is
capable of automatically performing a set-level lock against the appropriate SI-dataset when required.

This method requires that SUPERDEX lock an SI-dataset when another lock against the dataset
containing the entries is being held. To accomplish this, MPE requires that the program and the
group and account in which it resides have MR (rnultl-rin) capability. (By granting MR capability, it is
possible that an undetected conflicting lock inherent in a program will result in a deadlock, whereas
the result without MR capability would be an IMAGE error.) A deadlock could occur, however, if a
separate program performs a base-level lock during the window between the set-level lock against an
entry dataset and the SI-dataset. If such a condition exists--with a separate program performing
base-level locks concurrently with another program performing set-level locks against a dataset that
contains SI-paths, either locking should be done explicitly or SUPERDEX should be configured to
maintain its SI-indices in a separate SI-index base, as explained below.

SUPERDEX determines whether to implicitly lock the SI-dataset(s) by checking the lock descriptor
when the program calls DBLOCK. If an SI-dataset (SI - SI7) is not included, SUPERDEX
automatically performs a set-level lock against the appropriate SI-dataset. The lock is released when
the program calls DBUNLOCK, unless SUPERDEX was configured to lock and unlock via a separate
DBOPEN (as discussed below).

In this method, SUPERDEX locks only one SI-dataset, so if a logical transaction consists of multiple
DBPUTs, DBUPDATEs, or DBDELETEs involving multiple datasets with SI-paths, all these datasets'
SI-indices must be contained in the same SI-dataset in order to be covered by the implicit lock. If this
is not the case, the program must explicitly lock all related SI-datasets; alternately, SUPERDEX may
be configured to perform a separate DBOPEN or maintain its SI-indices in a separate SI-index base,
as discussed below, to eliminate this requirement.

Implicit locking and unlocking of the SI-dataset(s} via separate DeOPEN

Because IMAGE does not have a selective unlock facility, the SI-dataset lock placed by SUPERDEX
in the previous method is released when the program calls DBUNLOCK. This strategy could impede
throughput of mul1ipledatabase users if the delay between the DBPUT, DBUPDATE, or DBDELETE
call and the DBUNLOCK call is significant.

~ It is recommended that SUPERDEX be configured to perform a separate DIBOPEN for
each process through which all SI-dataset locking will be done. With this method, all
entry-dataset locks are done via the first DBOPEN, and all SI-dataset locks via the
second DBOPEN. This permits SUPERDEX to call DBUNLOCK immediately after
modifying its SI-indices, although the dataset lock placed via the first DBOPEN may still
be held. An additional benefit is that logical transactions against multiple datasets whose SI-
indices are in separate SI-datasets are locked for accordingly. This method requires MR
capability.

Version .3.1 March 1992 Programming 4-3

Implicit locking and unlocking of the SI-dataset{s) in SI-index base

If SUPERDEX has been configured to maintain all the SI-indices for a database in a separate SI-
index base, a separate DBOPEN is automatically performed against the SI-index base and a set-
level lock automatically applied to the appropriate SI-dataset in the SI-index base.

In this case, no SUPERDEX locking is required against any datasets in the primary base containing
the data entries, since only the root SI-dataset exists and it is only read and not written.

This strategy is recommended for users who do not want the overhead of transaction logging of
intrinsics used by SUPERDEX to maintain the SI-indices in addition to the regular logging of
transactions against data entries. Using this method, logging may be either enabled or disabled on
the SI-index base while enabled on the primary base.

Because programs must hold two locks simultaneously (against both the entry dataset in the primary
base and an SI-index dataset in the SI-index base) this method requires MR capability.

4-4 Programming Version 3.1 March 1992

Adding, updating, and deleting entries

Adding and deleting entries with DBPUT and DBDELETE

Entries are added and deleted using SUPERDEX's DBPUT and DBDELETE intrinsics, which are
identical to their IMAGE counterparts except they additionally maintain the associated SI-indices.

For bases that are enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBPUT and DBDELETE that does not already specify them. The DBEND is imposed
regardless of whether or not the DBPUT or DBDELETE is successful.

Updating entries with DBUPDATE

Entries are updated using SUPERDEX's DBUPDATE intrinsic, which is identical to its IMAGE
counterpart except that a delete and add of any related SI-indices is internally performed.

If DBUPDATE specifies neither the @ list nor a list that includes all the SI-subkeys whose values are
being changed, SUPERDEX will automatically perform one or more rereads (DBGET mode 1) with
various lists when performing the DBUPDATE. This is both inefficient and causes the current list to
change without the knowledge of the program, and therefore any subsequent calls done without re-
initializing the list may be faulty. It is therefore recommended that the @ list or a list that contains all
SI-subkeys be used when calling DBUPDATE.

In the event that DBUPDATE is performed against a database that was DBOPENed in mode 2, no
SI-keys may be updated since this would require that a DBPUT and DBDELETE be performed
against the corresponding Sl-dataset, which may not be done in DBOPEN mode 2. If this is
attempted, condition word -41 ("[)BUPDATE WILL NOT ALTER A SEARCH OR SORT
ITEM") is returned.

For bases that are enabled for log!~ing,SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBUPDATE that does not already specify them. The DBEND is imposed regardless of
the success of the DBUPDATE.

DBGET used to locate entry for DBUPDATE or DBDELETE

If the DBGET used to locate an entry for updating or deletion specifies a list that does not include all
SI-subkeys, SUPERDEX may internally change the list. The list will be changed for DBUPDATE if it
does not include all SI-subkeys whose values are being changed; for DBDELETE, all SI-subkeys in
the dataset must be included. Refer to the Retrieving entries with DBGET chapter later in this
section for a discussion.

Version 3.1 March 1992 Programming 4-5

Determining SI-key value

Normally, SUPERDEX automatically determines, based on its configuration, the SI-key and SI-
subkey values to include in the SI-indices.

There are instances, however, in which the SI-key value is not represented in the data entry in any
straightforward manner and SUPERDEX is therefore unable to determine it. Some examples of this
are as follows:

• Date reformatting
Date must be converted from yy/mmldd format into Julian or other format

• Upshifting
SUPERDEX only upshifts SI-keys for SI-paths that are configured as keyworded. You may want
to upshift SI-keys for non-keyworded SI-paths

• Compound indexing
SUPERDEX allows a maximum of four SI-subkeys in an SI-key, which may be insufficient

• SOUNDEX
A SOUNDEX system whereby sound-alike searching is possible may be desired

SUPERDEX provides two different facilities for addressing these needs: the SIUSER procedure, and
the DBPUTIX and DBDELIX intrinsics.

Custom SI-indices with SIUSER

SIUSER is a user-written procedure that is used by SUPERDEX to compute one or more custom SI-
indices for entries whenever DB PUT, DBUPDATE, or DBDELETE is called and whenever SIMAINT
is run.

SIUSER requires that the database, dataset, and SI-path be defined in its base, dset, and item
parameters and that the full data entry be supplied in its buffer parameter. SIUSER returns the
number of SI-indices created and their values in the index parameter.

Explicit SI-index management with OBPUTIX and OBOELIX

The DBPUTIX and DBDELIX intrinsics explicitly add and delete SI-indices, and are useful for
generating custom SI-indices in addition to those automatically generated by DBPUT and removed by
DBDELETE.

The common method for establishing multiple SI-indices for an entry, over and above those
generated by DB PUT, is to first call DBPUT to add the entry to the dataset and create the configured
SI-indices, and then call DBPUTIX as many times as necessary to establish the additional SI-indices.
The same technique is used with DBDELETE and DBDELIX to remove SI-indices.

DBPUTIX and DBDELIX require that the database, dataset, and SI-path be defined in their base,
dset, and item parameters and that the full SI-index, including the SI-extension, be supplied in the
buffer parameter.

4-6 Programming Version 3.1 March 1992

For a master set, the SI-extension is the entry's IMAGE search field value, which for DBPUT may be
retrieved from the buffer parameter and for DBDELETE may be gotten from the list used by the
DBGET that located the entry for deletion. For a detail set, the SI-extension is the entry's relative
record number, which is returned in words 3-4 of the status array from the DBPUT or DBDELETE.

Independent 51-paths

The DBPUTIX and DBDELIX intrinsics are also used for independent indexing, in which the entities
being indexed do not reside in IMAGE datasets.

DBPUTIX and DBDELIX against independent SI-paths require that the base parameter identify the
database in which the SI-indices are contained and the dset parameter be left blank or set to 200.
The SI-path is defined in the item parameter, and the full SI-index, including an appropriate SI-
extension, is provided in the buffer parameter.

Version 3. 1 March 1992 Programming 4-7

Qualifying entries with DBFIND

In IMAGE, entries in a detail dataset are normally accessed by using DBFIND to locate the head of a
chain (which is contained in a related master dataset) for a specified search field value (commonly
called a "key value"), and then the associated entries are subsequently retrieved via DBGET mode 5
or 6. An entry in a master dataset is normally accessed via DBGET mode 7, based on the search
field value specified.

SUPERDEX also uses DBFIND and DBGET to access dataset entries. The same techniques are
used for both master and detail datasets in the same way.

In SUPERDEX, DBFIND does much more than locate the chain head for a specified key value: it
qualifies multiple entries based on various criteria, and may be called multiple times in succession to
refine the selection using various fields, datasets, and databases.

Once entries have been qualified with DBFIND, they may be retrieved in ascending or descending
sorted sequential order with DBGET mode 5 and 6 or new DBGET modes 15 and 16.

Effectively, qualifying and retrieving entries in a master or detail dataset using an SI-path is just like
qualifying and retrieving entries in a detail set using an IMAGE path.

Summary of DBFIND options

Whereas IMAGE's DBFIND works only on detail datasets, SUPERDEX's DBFIND works on:

• detail datasets
• master datasets
• SI-indices only, which may reference external files

Based on how SI-paths are configured, DBFIND can qualify entries by any of the following:

• any word in a keyworded SI-key
• a combination of SI-subkey values in a concatenated SI-key
• a value that occurs in multiple SI-keys that are grouped
• any subitem in a compound IMAGE item that is configured as an SI-key

DBFIND can qualify entries generically by any of the following, as specified in the argument by
conditional and relational operators:

• start with a specified value (partial key)
• contain a specified value (embedded key)
• greater-than or equal-to a specified value
• less-than or equal-to a specified value
• not equal to a specified value
• in a range of two values

4-8 Programming Version 3.1 March 1992

DBFIND also permits multiple generic or exactly-matching values to be specified in an argument,
which permits the use of range and Boolean operations to find all qualifying entries:

• by an AND combination of multiple values
• by an OR combination of multiple values
• by an AND NOT combination of multiple values

In performing relational access, multiple successive DBFINDs may be called and their results
ANDed, ORed, and AND NOTed by Boolean operators. This dynamically achieves the following
operations:

• refine a selection with additional criteria
• undo a selection (revert to results of prior DBFIND)
• qualify by multiple SI-keys in a single dataset
• qualify by multiple datasets in a database
• qualify by multiple databases

New Relational Operator

A new option has been added for those situations where several relational DBFINDs are being
executed and the relation tables overflow.

If a DBFIND contains an argument with two or more values to be OR'ed together, and then AND'ed
to the pervious DBFIND, an overflow can occur even when it is possible that the net result of qualified
records would fit in the table. Two new DBFIND operators have been added to make this process
possible; [] and $. The [] will automatically copy the active SI-subset to the backup SI-subset
and clear the active SI-subset. The $ will then AND the search value to the backup SI-subset,
placing the qualified enti ies in the active Sl-subset.

The net result of this process is that the record qualified by the additional DBFIND will not
automatically be written to the active SI-subset, but will first be qualified against the backup SI-
subset. This means that the active SI-subset will never contain more records than the backup SI-
subset, eliminating most table overflows.

To illustrate the process:

1. DBFIND on path NAME with argument [A@] places the records that qualified into the active
SI-subset.

2. DBFIND with argument [] will replace the backup SI-subset with the active and create an
empty active SI-subset.

3. DBFIND on path DATE with argument [9111@] $ [91212@] $ will process each
selection separately. First all the records in the backup SI-subset with a DATE of 9111@
will be copied to the active SI-subset, then the records in the backup SI-subset with a DATE
of 9112@ will be copied to the active SI-subset.

Steps 2 and 3 could be combined into a single DBFIND on path DATE with an argument of
[][91111@]$[9112@]$.

Before these new operators, steps 2 and 3 would have been in a single DBFIND on path DATE with
argument [9111@]1[91121@] 1&.

Version 3. 1 March 1992 Programming 4-9

Indexed access vs. relational access

Internally, one of two access methods is used in qualifying entries with DBFIND: indexed access or
relational access.

With indexed accessed, DBFIND locates the first qualifying SI-index that matches the specified
argument in the SI-path defined by the item parameter. With indexed access, the B-tree in the
corresponding SI-dataset is accessed, and all qualifying entries form a logical SI-chain. Entries on
the SI-chain are returned using DBGET by reading up or down the B-tree and retrieving the
corresponding entries one-by-one.

With relational access, SI-indices are qualified using the same method but are then copied to form a
virtual SI-chain in the active SI-subset. Entries are retrieved using DBGET by reading up or down
this virtual SI-chain. The advantage is that unlike indexed access, the SI-chains contained in the
active SI-subset are available for combination with entries located by subsequent DBFIND calls.

To recap, indexed access retrieves entries by directly reading a logical SI-chain in the SI-dataset;
relational access first forms the logical SI-chain and then copies it to form a virtual SI-chain in the
active SI-subset.

Indexed access is used for retrievals that can be accomplished by accessing a single SI-chain. This
accounts for most retrievals, and is used by default.

Relational access is used for Boolean retrievals that require the use of multiple SI-chains, such as in
performing retrievals against multiple SI-paths, sets, and bases by using multiple DBFIND calls. It is
only invoked when explicitly specified by enclosing the argument value(s) in square brackets ([]),
or enclosing the complete argument with tilde and semi-colon C ••• ;).

DBFIND modes

Typically, most DBFINDs are performed using either mode 1 or mode 10. Either mode may be used
for both indexed and relational access methods, although they are treated identically when
performing relational access. In indexed access, both modes perform the same function, except
mode 10 does not return the qualifying number of entries in the status array (always returns a count
of 1) and may therefore be considerably more efficient than mode 1. Mode 10 should be used
instead of mode 1 in indexed access whenever possible for efficiency.

Modes 1nn and 2nn in indexed access read nn words of the argument and set the SI-pointer before
or after the first qualifying entry, respectively. If nn is prefixed by a minus sign (-), they read nn
bytes instead of words. These modes are refinements and therefore do not handle as many
argument constructs as modes 1 and 10, but are useful for certain circumstances, such as
approximate match retrieval in which no qualifying value exists which sets the SI-pointer to the
nearest qualifying entry. These modes are also useful in the unlikely event that a combination of
symbols used to represent a SUPERDEX operator (e.g. > ••) conflicts with a value in an SI-key in a
data entry.

4-10 Programming Version 3. 1 March 1992

Modes 1nn and 2nn may also be used in relational access against a virtual 51-chain in the active 51-
subset if a null item is specified. Refer to Positioning on virtual SI-chain later in this section for a
discussion.

Modes 100 and 200 position the 51-pointer at the logical beginning and end of the dataset (lowest
and highest entry in ascending sorted sequential order) or a virtual 51-chain in the active 51-subset,
respectively.

DBFIND arguments used for indexed access

For indexed access, if DBFIND is called in mode 1 or 10 and the specified argument value is not the
full SI-key value, either the buffer must be padded with spaces or the argument value must be
terminated by:

• for alphanumeric fields, a single blank followed by a single @
• for alphanumeric fields, a single @ (used for partial-key retrieval)
• for numeric fields, a single blank

For DBFIND modes 1 and 10 in indexed access, ASCII numbers may be specified for most numeric
items (data types I, J, P, R, and Z) if prefixed with ==, >=, <=. or <> or. if appropriate. a -
(negative sign) -- the == operator simply converts an ASCII value specified to binary format for
comparison.

~ The exception is data type K, for which values must be specified in binary.

For concatenated SI-keys that contain SI-subkeys of mixed data types (alphanumeric vs. numeric)
and for which the first SI-subkey is numeric, an ASCII value may be specified in modes 1 and 10 for
the first SI-subkey only.

When performing relational access against numeric items, the argument must be specified in ASCII.

For data types P and Z, SUPERDEX's DBFIND treats unsigned and positive values equivalently.

Real numbers (items of data type R) may include embedded decimal points (.). exponential signs
(E), and positive (+) and negative (-) signs.

Version 3. 1 March 1992 Programming 4-11

DBFIND mode/argument examples

Simple SI-key: alphanumeric X12
mode argument description
1 GOLDENBERG exact match on "GOLDENBERG"
10 GOLDENBERG same, but does not return the number of qualifying entries in the

status array
1 GOLD@ all that start with "GOLD"
102 GOLD same
1 G?LD the values "GELD" and "GOLD"
1 G?LD@ the values "GELD," "GOLD," "GOLDEN," and "GOLDBERG"
1 ?OLD the values "BOLD," "COLD," "FOLD," and "GOLD"
1 PX??44001i all that start with "PX," followed by any two characters,

followed by 4400, followed by anything
1 PX??441i all with "PX" followed by any two characters, followed by "44,"

followed by anything
1 >=AIi<=BIi all in the range between "A" and "B," inclusive
1 <>871i all except those that begin with "87"
100 (ignored) the first alphabetical value in the dataset on the specified SI-path
200 (ignored) the last alphabetical value in the dataset on the specified SI-path

Sim pie SI-key: numeric R2
mode argument description
1 >=1000 greater than or equal to 1000
1 >=123.4ES greater than or equal to the specified number
1 <=100 less than or equal to 100
1 >=100<=1000 all in the range between 100 and 1000, inclusive

Sim pie SI-key: numeric Z4
mode argument description
1 1234 exact match on the value 1234
102 1234 same
-103 123 exact match on 123
any 0034 the value 34 (leading zeroes must be specified)
any OOOJ the signed value -1 (leading zeroes must be specified)
1 >=1234 all greater than or equal to 1234
1 <=OOOJ all less than or equal to the signed value -1
1 >=23<=24 all in the range between 23 and 24 inclusive (leading zeroes need

not be specified if prefixed with ==, >=, <=, or <»

4-12 Programming Version 3.1 March 1992

Concatenated 51-key: X4+X4
mode argument description
1 ABCOO "ABCD" in the first SI-subkey, any value in the second SI-subkey
1 ABCD1234 exact match on both SI-subkeys: "ABCD" and "1234"
104 ABCD1234 same
-·108 ABCD1234 same
1 ????1234 "1234" in the second SI-subkey, any value in the first SI-subkey
10 ????1234 same, but does not return the number of qualifying entries in the

status array
-·111 ABCD123456 condition word -31 ("BAD MODE"), because the SI-key length was

exceeded

Concatenated 51-key: X4 + 11(values underlined are specified in binary)
mode argument description
-1106 ABCD1234 exact match on "ABCD" in the first SI-subkey and 1234 in the

second SI-subkey (where 1234 is specified in binary)
-1105 ABCD1234 condition word -31 ("BAD MODE"), because 11 requires 2 bytes

and therefore mode -106 should be used
1 ABCDE all with" ABCD" in the first SI-subkey, and any value in the second

SI-subkey (the extra character is ignored)
10 ABCDE same, but does not return the qualifying number of entries in the

status array

I Concatenated 51-key: 11+ X4 (values underlined are specified in binary) J
mode argument description
103 1234ABCD exact match on the value 1234 in the first SI-subkey and" ABCD"

in the second SI-subkey (where 1234 is specified in binary)
-1103 1234A all with 1234 in the first SI-subkey and "A" leading the second SI

subkey (truncated value)
1 1234A all with 1234 in the first SI-subkey (the extra character is ignored)
1 >:1234 all greater than or equal to 1234
1 <=2999 all less than or equal to 2999
1 >=-100<:100 all greater than or equal to -100 (negative 100) and less than 0

equal to 100 (positive 100)
-1101 spaces condition word -31 ("BAD MODE"), because the mode exceeds the

argument length
1 1234 all equal to 12624 (first word, value "12", converted from ASCII

value to binary value)

Version 3.1 March 1992 Programming 4-13

Concatenated SI-Key: Z4 + X4
mode argument description
104 1234ABCD exact match on the value 1234 in the first SI-subkey and" ABCD"

in the second SI-subkey
-106 1234AB exact match on 1234 in the first SI-subkey and "AB" in the second

SI-subkey
1 1234 all with 1234 as the first SI-subkey
1 1234ABCD same (the value for the second SI-subkey is ignored)
any 0034 the value 34 (leading zeroes must be specified)
1 0034ABCD same (the value for the second SI-subkey is ignored)
1 >=1234ABCD results unpredictable; any characters specified after the first SI

subkey renders the entire argument invalid
1 >=1234AB<=1234AB same

Finding entries in a concatenated 51-key

In searching for entries using a concatenated SI-key, the entire concatenated value is considered.
This permits an entry to be located by very specific criteria. For example, a concatenated SI-key
comprised of an X2, X4, and X4 and containing the three SI-subkey values "PH," "1234," and
"ABCD" would be located by:

argument = PH1234ABCD

If the concatenated SI-key is comprised of SI-subkeys that are all alphanumeric (data types X or U,
as in the previous example), DBFIND modes 1 and 10 may be used to qualify entries using a full or
partial SI-key value.

~ If, however, the SI-subkeys are of both alphanumeric and numeric data types, modes
1nn and 2nn must be used. An exception is that if the leftmost SI-subkey is alphanumeric, a
partial value appended with an @ may be specified to match on the leftmost alphanumeric SI-
subkey(s).

Finding entries in a group

Searching for entries in multiple SI-keys in a dataset that are grouped together is completely
transparent--DBFIND treats an SI-path containing a group of SI-keys as if it were a single SI-key and
unconditionally searches all SI-keys in the group.

For example, if the items PHONE-1, PHONE-2, and PHONE-3 were grouped together in an SI-path,
a phone number contained in any of the three fields would be searched for in a single DBFIND call.

For searches against an SI-key in a group which is shorter than the other SI-keys in the same group
and is therefore padded with spaces, it is necessary to either pad the argument with spaces or
perform a partial-key retrieval when calling DBFIND.

4-14 Programming Version 3.1 March 1992

Finding entries in a super-group

Searching for entries in multiple SI-keys in multiple sets in a database that are super-grouped
together qualifies master entries based on the contents of the SI-keys that form the super-group.

For example, if the book title is contained in the master dataset BOOK, the book author is contained
in a related detail set AUTHOR, and the book summary is contained in the related detail set
SUMMARY, and the three sets are super-grouped together based on book number, a specified value
would be searched for in all three datasets. Master entries that contain the specified value in the title
would qualify, as well as master entries that contain the specified word in either related detail dataset.

To qualify master entries, DBFIND is called against the master set specifying the SI-path name of the
super-group in the item parameter, as shown:

dataset
SI-path
argument

= BOOK
= BOOK-KEY
= PLAN@

Finding entries in a compound IMAGE item

SI-keys that contain compound IMAGE items are automatically handled as if they were grouped; all
subitems are always searched when the SI-path is referenced in the item parameter.

Finding entries by keyword

Searching for the occurrence of a keyword in an SI-path that has been configured as keyworded is
completely transparent: the keyword is simply specified in the argument parameter.

If a given keyword occurs more than once in a single data entry, the entry is always returned only
once. However, if multiple words in a single entry meet the search criteria, the entry will by default be
returned multiple times. For example,

argument = PLAN@

an entry containing the value "THE PLANNING COMMISSION'S NEW PLAN" would be returned
twice. To prevent entries from being returned multiple times, specify relational access by placing a
tilde (-) in front of the "argument" and placing a semi-colon (;) at the end of the "argument".

-PLAN;

~ If the length of a keyword specified exceeds the keyword length configured for the referenced
SI-path, the keyword value is truncated to the configured keyword length and matching is done
based on the truncated value. Because of this, it is possible that entries with keywords that
exceed the configured keyword length will be erroneously qualified. For example, a keyworded
SI-key with a configured keyword length of 4 words (8 characters) containing the value
"INDUSTRIOUS" would be qualified by an argument of "INDUSTRIAL," since only 8 characters
are indexed and matched on.

Version 3.1 March 1992 Programming 4-15

Finding entries using a partial key

IDBFIND can search for entries using a partial key value, with the @character. The @is treated as a
wildcard (as in :LlSTF) that stands for any number of any characters.

For example, to find all entries that begin with GENERAL":

argument =GENERAL@

IThe partial key value specified is compared with the entries.

The @can be used up to two times within an argument. This is accomplished by surrounding the
requested argument with« ». The format is «A@B@C». Which means that this argument
will qualify records that begin with an A, having a B anywhere in the middle, and ending with a C. If
only one @is provided, there is an implied @at the end of the argument (e.g.«A@B» is identical
to «A@B@»).

IFor example, to find all entries that begin with "GE" and contain "AL":

argument = «GE@AL»

~ The @can also be used as the first character in an argument. For example, «@OWN» will
return BROWN and CROWN.

Finding entries using a generic key

The ? and # characters facilitate generic searches. The? represents a single alphanumeric
character and the # a single numeric character (as in :LlSTF). They may occur multiple times
anywhere in the value, for example:

argument = STR?NG

would locate "STRING," "STRONG," and "STRUNG."

argument =AP#J3@

Iwould locate "AP1J379C," "AP8J3AQ4," and "AP4J3", but "APBJ3826" would not qualify.

IBoth matchcodes may be used in combination with each other, along with the @ wildcard, for
example: .

argument =AP?J#@

Iwould additionally find "APBJ3826," "AP7J8AH," and "APZJ277." In this example, the @acts as the
terminator because the argument is not surrounded with« ».

The matchcodes may also be used to locate entries in which the desired value does not begin in the
first position; for example:

argument = ??RT?N

would locate "BARTON," "BURTON," "MARTIN," and "MORTON."

4-16 Programming Version 3.1 March 1992

This technique is especially useful for generic searches on concatenated SI-subkeys, by specifying
wildcard conditional operators for the unspecified SI-subkeys. These three examples perform generic
searches on the first, second, and third SI-subkeys, respectively, of a concatenated SI-key consisting
of an X2, X4, and X4 field with the value "PH1234ABCD":

argument =PH@

argument = ??1234@

argument = ?????? ABeD

~ Instead of specifying a ? at the beginning of an argument, it is more efficient to define
and offset.

Finding entries greater than or equal to a specified value

Greater-than-or-equal-to searches are accomplished using the >= relational operator to prefix the
value. For example, to find all entries greater than or equal to 1000:

argument = >=1000

SUPERDEX does not have a greater-than operator: > is not recognized and is therefore treated as a
regular character. To accomplish a greater-than search, add one to the value being searched for:

argument = >=1001

If the field being searched is of IMAGE data type R, specify the value in the following format:

argument = >=1000<>1000

Finding entries less-than or equal-to a specified value

Less-than-or-equal-to searches are accomplished using the <= relational operator to prefix the value.
For example, to find all entries less than or equal to 500:

argument = <=500

SUPERDEX does not have a less-than operator: < is not recognized and is therefore treated as a
regular character. To accomplish a less-than search, subtract one from the value being searched for:

argument = <=499

If the field being searched is of IMAGE data type R, specify the value in the following format:

argument = <=1000<>1000

Version 3. 1 March 1992 Programming 4-17

Finding entries not equal to a specified value
To find entries not equal to a particular value, use the <> relational operator. For example, to find all
unpaid orders:

argument = <>PAID

The <> operator may also be embedded within an argument to perform a Boolean AND NOT
retrieval. For example, to find all the entries with ZIP-CODES (an X6 item) beginning with "900" but
not in "90039":

argument = 900@<>90039

Finding entries in a range of values

The >= and <= relational operations may be used in combination to specify a range. For example,
to find all the entries that start with letters between "A" and "0," inclusive:

argument = >=A@<=D@

Pattern-matching and/or exclusion may optionally be performed within a range, allowing entries to be
qualified that not only fall between two values but also conform to a specific pattern. For example:

argument =####AA>=8910@<=8912@

would find entries that fall between the values "8910" and "8912" and additionally contain "AA" as the
fifth and sixth characters.

~ The argument following >=, <= and <> may NOT contain embedded? or # characters

DBFIND arguments used for relational access

For relational access, any of the previous arguments used for indexed access may be specified, and
operate in the same way.

Unlike indexed access, however, search values specified in ASCII for retrieval against a binary field
are automatically converted (and therefore do not need to be prefixed by the ••= conversion operator).

IThere are three ways to specify arguments for relational access: the SQL Notation, the Infix Notation,
and the Reverse Polish Notation.

~ The SQL Notation is the use of "AND", "OR", and "NOT" as Boolean operators to specify the
relationship between the argument values. If the SQL Notation is to be used, the entire
argument must begin with the tilde C) character and end with the semi-colon (;). The
operators can be in either upper- or lower-case, including any combination of both. The
argument must be left justified and contain no embedded spaces within each argument value
unless the argument value is enclosed in quotes.

4-18 Programming Version 3.1 March 1992

For example, an argument of -JONES @ OR SMITH@; is not a valid argument.

I SOL Notation Operators I
Oper Description Format
AND AND'ed -x AND y;
OR OR'ed -x OR y;
NOT AND NOT'ed -x NOT y;

~ Infix Notation is the use of "+", ",", and "-" as Boolean operators. The use of Infix Notation
also requires the entire argument to begin with the tilde C} and end with the semi-colon (;).
There must not be any spaces within the entire argument. For example, the argument
- JONES@, SMITH@; is not valid. It must be - JONES@, SMITH@; .

I Infix Notation Operators
Oper Description Format
+ AND'ed -x+y;
, OR'ed -x,y;
- AND NOT'ed -x-y;

~ When Reverse Polish Notation (RPN) is used, each argument value must be enclosed within
square brackets ([]), and the entire argument must be terminated by a blank or @ (a value I
within square brackets needs no trailing character).

I Reverse Polish Notation Operators I
Oper Description Format
& AND'ed [xl [yl &

I OR'ed [xl [yl I
!& AND NOT'ed [xl [yl !&

Version 3. 1 March 1992 Programming 4-19

DBFIND mode/argument examples

Relational retrievals
mode argument description
1 [GOLD@] all that start with "GOLD"
1 -GOLD@i same

1 [>=A@] [<=B@]& all in the range between "A" and "B", inclusive
1 ->=A@ AND <=B@i same
1 ->=A@+<=B@i same

1 [A@] [B@] I all that begin with "A" or "B"
1 -A@ OR B@i same
1 -A@,B@i same

1 [>=A@] [AB@] !& all greater than or equal to those that begin with "A", except those
that begin with" AB"

1 ->=A@ NOT AB@i same
1 ->=A@-AB@i same

Finding entries by ANDing multiple values

A DBFIND argument may contain multiple values that are ANDed together with one of the AND
Boolean operators (AND,+,&), and only those entries that qualify based on all specified values are
selected.

For example, to find all the entries in a grouped SI-path that contain both the values "JOHN" and
"CHICAGO":

argument
argument
argument

=-CHICAGO AND JOHN;
= -CHICAGO+JOHN;
= [CHICAGO] [JOHN] &

SOL Notation
Infix Notation
Reverse Polish Notation

~ In the above example "CHICAGO" was specified first and "JOHN" second. This was done
because "CHICAGO" appears on fewer entries than "JOHN". It is faster and more efficient to
specify the less common value first when performing relational access retrievals.

4-20 Programming Version 3.1 March 1992

Finding entries by ORing multiple values

Multiple values in a DBFIND argument may be ORed together using one of the OR BooleanI
operators (OR," I), and entries that qualify based on any specified value are selected.

For example, to find all the entries in a keyworded SI-path that contain the word "FITTING,"
"NIBBLE," or "CONNECTOR":

argument
argument
argument

= -FITTING OR NIBBLE OR CONNECTOR; SOL Notation
= -FITTING,NIBBLE,CONNECTOR; Infix Notation
= [FITTING] [NIBBLE] I [CONNECTOR] I Reverse Polish Notation

Finding entries by AND NOTing multiple values

Multiple values in a DBFIND argument may be AND NOTed together using one of the AND NOT
Boolean operators (NOT,-, !&),and entries that qualify based on one value and not another are
selected.

For example, to find all the entries in a non-keyworded SI-path that begin with "NEW" except those
that begin with the value "NEW YORK":

argument
argument
argument

=-NEW@ NOT "NEW YORK";
= -NEW@-IINEW YORK";
= [NEW@][NEW YORK]!&

SOL Notation
Infix Notation
Reverse Polish Notation

soIncidentally, the same retrieval could also be performed more efficiently using indexed
access:

argument = NEW@<>"NEW YORK"

Finding entries with combined Boolean operators

The Boolean operators used by SUPERDEX allows very powerful combinations of operations to be I
specified.

For example, to find all the entries in a keyworded SI-key that contain both the words "COMB" and
"BIND" or "HOLD" and "DRILL" but not any word beginning with "FASTEN":

argument

argument

argument

=-(COMB and BIND) or (HOLE and DRILL) not FASTEN@;
SOL Notation

= -(COMB+BIND),(HOLE+DRILL)-FASTEN@;
Infix Notation

= [COMB] [BIND] & [HOLE] [DRILL] & I [FASTEN@]!&
Reverse Polish Notation

Version 3.1 March 1992 Programming 4-21

Processing of Boolean Operators for SOL Notation

IAt the lowest level, all processing of the arguments occur in Reverse Polish Notation. Therefore, the
SOL Notation will be converted internally first to the Infix format and then to the RPN format.

IMost of the examples and tables following will reference the SOL format. When the Infix format or
RPN format is referenced, the example will be marked as such.

ISince the SOL format is first converted to Infix, following are several examples of the conversion.

ISOL Notation to Infix Notation Processing: I
SOL Argument Infix Argument

-CHICAGO and JOHN; CHI CAGO +JOHN
-FITTING OR NIBBLE or CONNECTOR; FITTING, NIBBLE, CONNECTOR
-NEW@ not "NEW YORK"; NEW@-HNEW YORK"
-A@ OR B@ OR C@; A@,B@,C@

IFor information on how the Infix Notation is processed, see the following section.

Processing of Boolean Operators for Infix Notation

IAt the lowest level, all processing of the arguments occur in Reverse Polish Notation. Therefore, the
Infix Notation will be converted internally to the RPN format.

IMost of the examples and tables following will reference the SOL format. When the Infix format or
RPN format is referenced, the example will be marked as such.

IFollowing are several examples of the conversion.

I Infix Notation to Reverse Polish Notation Processing: I
Infix Argument RPN Argument

-CHICAGO+JOHN; [CHICAGO] [JOHN] &
-FITTING,NIBBLE,CONNECTOR; [FITTING] [NIBBLE] I[CONNECTOR] I
-NEW@-"NEW YORK"; [NEW@][NEW YORK]!&
-A@,B@,C@; [A@] [B@]I [C@]I

4-22 Programming Version 3. 1 March 1992

Active and backup SI-subsets

Besides the active SI-subset in which the SI-chain selected by an argument using one of the Boolean
operators is copied, a backup SI-subset is used when processing arguments that contain more than
one value.

The internal processing of the argument specified in the previous example is done as follows (RPN is I
used to define the process):

[COMB] The SI-chain that is formed by the selection is stored in the active SI-subset

[BIND]' A Boolean ANDing is performed between the result of this selection and the
virtual SI-chain contained in the active SI-subset

[HOLE] The virtual SI-chain contained in the active SI-subset is transferred to the backup
SI-subset, and the resulting SI-chain is stored in the active SI-subset (replacing
the existing SI-chain)

[DRILL]' An ANDing is performed in the same manner as above

The contents of the backup SI-subset and the active Sl-subset are ORed, and the
resulting SI-chain is stored in the active SI-subset. The SI-chain stored in the
backup SI-subset is deleted.

[FASTEN@] !, The negated result of the selection is ANDed with the SI-chain in the active SI-
subset, with the resulting SI-chain stored in the active SI-subset, replacing the
existing SI-chain

For consistency and efficiency, specify a Boolean operator following each bracketed value except the
first (leftmost), as shown:

[A@][B@]I[C@]I
Alternately, specifying the argument value

[A@] [B@] [C@] II
will also select the desired entries but will destroy the backup SI-subset.

However, the argument value

[A@] [B@] [C@] [D@] III
will not work.

Version 3.1 March 1992 Programming 4-23

The effects of the various operations on the active and backup SI-subsets is summarized in the
following table. All of the arguments are defined as RPN since this is the only way to directly
manipulate the active and backup Sl-subset!ii using all of the special arguments.

argument SI-chain in active SI-subset SI-chain in backup SI-subset
& ANDed with backup deleted

I ORed with backup deleted
!& AND NOTed with backup deleted
[x] replaced by x replaced by old active
[x]' ANDed with x unchanged
[x]I ORed with x unchanged
[x]!& AND NOTed with x unchanged
[X]$ ORed with active after x unchanged

is ANDed with backup
/ unchanged replaced by active
[] erased replaced by active
\ replaced by backup deleted
/\ unchanged deleted

V replaced by backup unchanged
swapped with backup swapped with active

\[x] replaced by x unchanged
/[X]& ANDed with x replaced by old active
/[X] I ORed with x replaced by old active
/[x]!' AND NOTed with x replaced by old active
![x]& inverts and ANDs with x unchanged
[*] replaced by projection replaced by old active

Successive refinement

The complex DBFIND argument illustrated previously may be broken up into several DBFIND calls
rather than being performed in a single call.

For example, the SOL arguments would be:

1. DBFIND argument = - (COMB and EIIND);
2. DBFIND argument = - or (HOLE al:ld DRILL);
3. DBFIND argument = - not FASTEN~l;

The result is the same as when using a single DBFIND call with the complete argument containing
multiple values. After each DBFIND, the number of qualifying entries in the SI-chain (stored in the
active SI-subset) is returned in the status array, and this may be reported to the user to decide at any
stage whether or not to continue.

The / operator may be used to save an intermediate result in the backup SI-subset and retrieve it
later using the \ operator.

4-24 Programming Version 3. 1 March 1992

Positioning on a virtual 51-chain

A similar technique to that described above may be used to position at the beginning or end of or at
any entry on a virtual SI-chain in the active SI-subset.

DBFIND modes 1nn and 2nn may be used to position on the entry whose SI-key value matches the
specified argument, if no matching entry exists, the internal SI-pointer is set to the location where the
entry would reside. The following parameters could be used:

dset
mode
item
argument

= CUSTOMER-MASTER
= -103
=; or 0
= ABC

In this example, the SI-pointer would be positioned at the SI-index for the customer ABC.

This same technique may also be used for going to the beginning of (rewinding) or end of a virtual SI-
chain, using modes 100 and 200, respectively. The entries could then be retrieved with DBGET
modes 15 and 16.

Determining entry count of a virtual 51-chain

In addition to being able to locate and retrieve entries on any virtual SI-chain in the active st-suoset, it
is possible to determine the number of entries on any virtual SI-chain by calling DBFIND in mode 1
with a special argument, as shown:

base
dset
mode
item
argument

=CUST
= CUSTOMER-MASTER
=1
= ; or 0
=@@

This returns the entry count for the SI-chain that corresponds with the base and dataset specified in
the base and dset parameters.

Finding entries using multiple 51-paths in a dataset

This same technique of using multiple DBFIND calls to refine a selection works not only on a single
SI-path in a dataset but on multiple SI-paths.

For example, to find all customers that start with "GENERAL" and are located in "LOS ANGELES,"
two DBFIND calls would be performed and their results combined. The first DBFIND call would
include these parameters:

item
argument

= CUSTOMER-NAME
= - GENERAL@ ;

Version 3.1 March 1992 Programming 4·25

The second DBFIND call would specify a different SI-path and the argument that corresponds with
that SI-path, as well as a Boolean operator indicating how the results should be combined:

item
argument

=CITY
= - and "LOS ANGELES";

IThe AND on the second DBFIND call indicates that the two sets should be ANDed. The second set
can instead be logically ORed or AND NOTed, by specifying OR or NOT instead of AND.

For example, to find all the customers who have not placed any orders since January 1, 1991 OR
have an average order amount of fifty dollars or less, two DBFIND calls are performed with the OR
operator prefixing the argument on the second DBFIND:

item
argument

= LAST-ORDER-DATE
= - <=901231;

item
argument

= AVG-ORDER-AMT
= -or <=50;

Finding entries using multiple datasets

The same technique may be used to qualify entries across multiple datasets by using multiple
DBFIND calls, each specifying a different dataset.

It is preferred that both datasets contain a common item that is used in an SI-subkey in each set. In
this case, the common item forms a logical linkage between the two sets, and is referred to as the SI-
link.

~ It is required that the item assigned as the SI-link be configured as an SI-subkey in the
SI-path that the DBFIND is being called against; alternately, for SI-paths against a master
dataset, it may be the IMAGE search master field.

Ilf there is no common item between the datasets defined as an SI-subkey, a projection may be
performed, as will be explained later.

Let's look at an example that locates all the customers that are slow paying for orders and currently
have unpaid orders. The customers are contained in the CUSTOMER-MASTER dataset which has
CUSTOMER-NUMBER as its search field and a simple SI-path called AVG-DAYS- TO-PA Y. The
orders are contained in the ORDER-DETAIL set, which has an SI-path called ORDER-STATUS
which is comprised of the SI-key items ORDER-STATUS and CUSTOMER-NUMBER.

Both datasets have the CUSTOMER-NUMBER in common, so this defines the Sl-llnk used to
logically join the two sets. The Sl-link is declared as a second value in the item parameter on one or
both DBFIND calls, in addition to the SI-path name, in this format:

item = SI-path,S/-link

4-26 Programming Version 3.1 March 1992

To accomplish the search, DBFIND is first called to locate all the unpaid orders with the specified SI-
path and SI-link:

dset
item
argument

= ORDER-DETAIL
= ORDER-STATUS ,CUSTOMER-NUMBER
= -UNPAID;

Then, DBFIND is called. again to locate all the customers that take an average of more than 45 days I
to pay. An AND prefixes the argument value to cause the virtual sets to be ANDed:

dset
item
argument

= CUSTOMER-MASTER= AVG-DAYS-TO-PAY, CUSTOMER-NUMBER
= -and >=45;

Alternately, the virtual sets could have been ORed or AND NOTed by substituting the OR or NOT I
operator in place of the AND operator.

After both DBFIND calls are completed, DBGETs could be performed against CUSTOMER-MASTER
to retrieve the qualifying entries.

In this example, there are two virtual SI-chains in the active SI-subset. For this reason, the AND is
done on the values of the SI-link. If instead there were only one SI-chain in the active SI-subset, the
AND would be done on the SI-extension (the search field value for masters or relative record number
for details; refer to the Internal structures appendix for more information about the layout of the SI-
subset).

Finding corresponding entries in multiple datasets

When DBFIND is called in succession against multiple datasets, one SI-chain per dataset is placed
into the active SI-subset. Entries may be retrieved from any of these virtual SI-chains, independent
of one another, simply by using DBGET with the appropriate dataset specified in the dset parameter.

Since the entries on these SI-chains are logically related by the Sl-link, it is often desirable to find
entries on one or more of the SI-chains whose SI-link values match a specified value, thereby
performing a search against a virtual SI-chain in the active SI-subset rather than against entries in a
dataset.

This technique is facilitated by performing a DBFIND on each SI-chain with the exact Sl-link value
specified in the argument parameter and ; or 0 specified in the item parameter. It is the "null item"
that causes the DBFIND to act on the active SI-subset rather than the dataset. The exact SI-
link value must be specified.

For example, to find all the customers whose SI-link value is equal to "ACME" call DBFIND with the
following:

dset
mode
item
argument

= CUSTOMER-MASTER
=1
= ; or 0
= ACME

Subsequent DBGETs in mode 5 or 6 will access the sub-selected entries that have an SI-link value of
"ACME," while DBGET modes 15 and 16 will access the entire virtual SI-chain.

Version 3. 1 March 1992 Programming 4-27

Finding entries using multiple databases

Entries in multiple databases may be located in very much the same way as those in multiple
datasets. Again, multiple DBFIND calls are used with an SI-Iink, but each has a different value for
the base parameter. If a different item in each base is used as the SI-link, they must be configured
with the same length.

SUPERDEX requires that DBFINDs against multiple databases be logically linked together. If both
DBFIND calls are performed in immediate succession (with no intermediate intrinsic calls) and
therefore use the same status array, SUPERDEX automatically links the bases together, and no
specification is required by the program.

If intermediate calls are performed, the program must logically link the bases. To facilitate this,
DBFIND returns a unique number in the second word of the status array (unused by IMAGE). The
program must retrieve this number from the status array of the first DBFIND and specify it in the
second word of the status array in the second DBFIND.

Let's look at an example of two databases, one containing customers and the other sales history.
We want to determine sales trends of books to schools in the CUST base by reviewing historical data
in the SALES base.

The relevant sets in each base have the common item CUSTOMER-NUMBER, so this item will be
used as the SI-link. If no common item exists, a projection may be done, as we will see shortly.

The first DBFIND call locates the customers that are schools using a keyworded SI-key. The
argument values are partial keys being ORed together:

base
aset
item
argument

=CUST
= CUSTOMER-MASTER
=CUSTOKER-ID,CUSTOKER-NUMBER
=-SCHOOL@ or UNlVERSITY@ or COLLEGE@;

The second DBFIND call accesses the appropriate dataset in the other database:

base = SALES
dset = PART-SUMMARY
item = VENDOR-ID, CUSTOMER-NUMBER
argument = -and (MCMIL@ or KCGRAW@);

~ Both calls specify the SI-link as the second value in the item parameter. Also, the use of AND
at the beginning of the argument in the second DBFIND call tells SUPERDEX to AND its results
with the previous DBFIND call.

IAs always, the OR or NOT operator could have been used instead of the AND operator to perform an
OR or AND NOT retrieval between databases.

4-28 Programming Version 3.1 March 1992

Finding entries in multiple sets and bases using projection

In the last two examples, a common item exists between the two datasets and databases being
searched, and was defined as the SI-link. For situations in which there is no common item but a
logical relationship exists, projection may be used.

A projection is an operation that permits two datasets that do not contain a common item to be linked
together, providing each has an item in common with a third dataset. For this discussion, we'll refer
to the first dataset as set A, the second dataset as set B, and the third (linking) dataset as set C. The
projection reassigns the SI-link from the item set C has in common with set A to its item in common
with set B, thereby forming a logical relationship between set A and set B, even though they do not
contain a common item.

A projection is invoked by a separate DBFIND against set C which is called between the DBFINDs
against set A and set B. Internally, a projection takes the SI-link values returned internally by the
DBFIND against set A (which are stored in the active SI-subset), looks up the corresponding entries
in set C, and replaces them with the SI-link values that will be used for set B. The SI-link for set A
and set B are both defined by item name or number in the item parameter, as shown:

item = SI-path, new SI-link

where SI-Path is a concatenated SI-Path that is comprised of the old SI-link as SI-Subkey-1 and the I
new SI-link as any other SI-Subkey.

Let's look at an example that locates all quotations for earthquake coverage given to policyholders in
Los Angeles in November and December of 1987. This requires four DBFIND calls against three
datasets, with the second DBFIND call performing the projection.

The first DB FIND locates all policyholders in Los Angeles, with SI-link specified in the item
parameter:

dset
item
argument

= INSURED-MASTER
= CITY, POLICY-NUMBER
= - "LOS ANGELES";

The next DBFIND performs the projection, as designated in the argument by the special * (asterisk)
operator. The item specifies the SI-link used in the previous DBFIND, as well as the SI-link that will
be used in the next DBFIND:

dset
item
argument

= QUOTE-MASTER
= POLICY-NUMBER, QUOTE-NUMBER
= [*]

The third DBFIND accesses the same dataset in which the projection was performed and locates all
the entries in the specified date range. The new SI-link is specified in the item parameter:

dset
item
argument

= QUOTE-MASTER
= QUOTE-DATE ,QUOTE-NUMBER
=-and >=871101<=871231;

Version 3.1 March 1992 Programming 4-29

The final DBFIND locates all the entries in another dataset that are of the requested coverage type:

dset
item
argument

= QUOTE-DETAIL
= COVERAGE-TYPE,QUOTE-NUMBER
= -and EQ;

Notice that the last two DBFIND calls used ANDs in the argument to logically AND the results.

q:o Projection uses all qualifying SI-link values contained in the active SI-subset in locating
entries. If there is more than one SI-chain in the active SI-subset, entries may qualify
more than once. Therefore, a projection should only be performed when there is only
one SI-chain in the active SI-subset.

Circumstances in which the SI··link must be specified

As described, the SI-link is a common item that is configured in an SI-subkey in each set and which
is used to form a logical linkage between the two sets. It is required that the item assigned as the SI-
link be configured as an SI-subkey in a concatenated SI-key; alternately, for SI-paths against a
master dataset, it may be the IMAGE search master field.

The SI-link need not be specified in all cases involving relational access against multiple datasets
and/or databases, and may be omitted on some DBFIND calls. The following rules govern the
specification of the SI-link:

1. For relational access between two different SI-paths within the same dataset, the SI-link is not
required. The Boolean operations are based only on the SI-extension (the search field value for
a master or relative record number for a detail).

2. For relational access between two datasets in the same database, the SI-link must be specified
for the first DBFIND call but not the second, although there is no harm in specifying it for both
DBFIND calls. In this case, the value of the SI-link is used for comparison instead of the SI-
extension. The SI-link need not be specified for a manual master for which the IMAGE search
field is the default SI-link.

3. For relational access between databases, the SI-link is always used for comparison and must
always be specified for every DBFIND call. (Additionally, if intermediate calls between
databases are performed, the bases must also be logically related via word 2 of the status array,
as described previously.)

Qualifying entries in the active 51-Subset

IWhile SI-Subsets were designated for relational retrievals, they can be very useful for ultra fast
access since they can be considered as in-memory datasets.

An in-memory dataset is created by a DBFIND call, where the SI-Link is specified and the argument
is a relational argument. This SI-Subset acts like a dataset with SI-Link as a SUPERDEX key. You
can access this set by DBFIND utilizing most of the SUPERDEX features.

4-30 Programming Version 3.1 March 1992

For example, first create an SI-Subset for customer "ACME".
dataset
mode
item
argument

= CUSTOMER-KASTER
1
CUSTOMER-NAME,ORDER-NUKBER
-ACME;

=
=
=

Now do a selection on this SI-Subset with order-number 70123:

dataset
mode
item
argument

= CUSTOMER-KASTER
1
: or 0;
70123

=
=
=

Instead of using mode 1, the special modes 1nn and 2nn can be used to retrieve partial keys in
sorted order. Partial key retrieval using the @ operator and the ? or # match characters are
NOT available.

~ In-memory datasets can be especially useful for applications where you expect many
DBFINDs to fail, or when you need the same information frequently, since you get this
information without any disc access.

Preparing the argument

The many argument operators available with SUPERDEX allow very advanced and powerful
retrievals using the simple DBFIND mode 1. Arguments can contain one or more of the following in
various combinations:

• the @,« »,?, and # conditional operators
• the <=, >=, and <> relational operators
• the AND,OR,and NOT Boolean operators
• the +, " and - Boolean operators
• the", I, and !"Boolean operators
• the *, /, \' $, and ~ special operators

Allowing these generalized arguments for DBFIND modes 1 and 10 permits standard lookup routines
to perform many types of retrievals, with the argument determining the type and scope of access.
Complex arguments may be prepared for DBFIND calls by several methods.

The simplest method, which requires little or no reprogramming, is to have users specify the entire
argument themselves, including multiple values and various operators, and have the program pass
them literally to DBFIND.

Another method is to assign function keys to facilitate various retrieval capabilities. The user could
enter a string and hit a function key, and the program could read the function key label and
concatenate the appropriate operator to the specified value to form the argument.

Various other methods are available for programmatically constructing the DBFIND argument, such
as prompting the user with various selection boxes to check off or enter values into.

Version 3. 1 March 1992 Programming 4-31

Effect of DBFIND on the 51-pointer and current path

Like IMAGE, SUPERDEX returns a condition word of zero for successful DBFIND calls and non-zero
if an error or exception is detected.

In IMAGE, calling DBFIND against a master set returns condition word -21 ("SPECIFIED
INTRINSIC IS NOT ALLOWED ON KASTER SET"); in SUPERDEX, no error is returned
because it is a valid operation.

IEir Since the condition word -21 is not returned on the master dataset for a DBFINO, some
generic access programs may need modification. If a DBFINO is used to determine whether
a dataset is a master or detail, this will not work. If a master dataset has at least one SI-Path,
the DBFINOwill not return the -21, but can return the condition word -52 (see following).

If the specified item is neither a valid SI-path nor IMAGE path, condition word -52 ("ITEM
SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE SPECIFIED
SET") is returned.

If DBFIND does not find an entry that matches the specified argument, condition word 17 ("NO
ENTRY FOUND") is returned. If the SI-path name is the same as the IMAGE search field name
and the SUPERDEX DBFIND against the SI-path fails, an IMAGE DBFIND is automatically
performed against the search field. If called in mode 1 or 10, the SI-pointer is not set and the current
path is reset to the dataset's current IMAGE path. Therefore, if the condition word is ignored and
subsequent DBGETs are called, they will operate on an IMAGE path (the current IMAGE path for a
detail set or the synonym chain for a master set) rather than the SI-path.

If DBFIND is called with mode 1nn or 2nn, the SI-pointer is set immediately before or after the
nearest qualifying entry and the current path is set to the appropriate SI-path and does not change.
For example, DBFIND mode 102 with an argument of BRAC may not locate a matching entry but will
set the SI-pointer before "BRADMARK," the nearest qualifying entry. Then, DBGET mode 15 or 16
may be used to retrieve the entries in ascending or descending order.

The following table summarizes the effects of DBFIND on the SI-pointer and current SI-path:

mode condition word = 0 condition word <> 0
1 before entry current path not set ***
10 before entry current path not set **
100· before first (alphabetical) entry current path not set
1nn before entry if cw = 17, before next entry
200 after last (alphabetical) entry current path not set
2nn after entry if cw= 17, after next entry

* may be followed by either DBGET mode 5 or 15 or mode 6 or 16 and will start at either the
beginning or end of the dataset, respectively, as compatible with IMAGE
if using relational access, the current path is retained
if using relational access, the current path is retained; otherwise, defaults to current IMAGE
path

**

4-32 Programming Version 3.1 March 1992

Retrieving entries with DBGET

Entries that are located with DBFIND may be returned in ascending sorted sequential order with
modes 5 and 15 and descending order with modes 6 and 16.

Like IMAGE, modes 5 and 6 return condition words 14 and 15 ("BEGINNING OF CHAIN" and
"END OF CHAIN") when all qualifying entries on the SI-chain have been returned. Modes 15 and
16 continue to return entries in sorted sequential order that are not part of the SI-chain, like greater-
than-or-equal-to and less-than-or-equal-to retrievals.

DBGETs with Un-initialized 51-chain

If the SI-chain has not been established or the SI-pointer is outside of the current SI-chain, this could
be the result of:

• DBFIND with mode other than 1 or 10
• DBFIND that does not find a match (returns condition word 17)
• DBGET mode 4

In these cases, DBGET modes 15 and 16 should be used instead of modes 5 and 6; otherwise, the
results are unpredictable.

Repositioning on an 51-chain

If reading an SI-chain (not an SI-subset) along an SI-path that has a unique relationship (one SI-
index per data record, unlike with a keyworded SI-path), DBGET mode 4 can be used to reposition
on the SI-chain. An application for this is, for example, implementing a "previous page" function
when displaying entries on a terminal. This can be programmed by keeping an internal list of relative
record numbers of the first entry on each page and then returning to any page by calling DBGET
mode 4 followed by DBGET mode 5s in a loop.

To reposition on an SI-chain after switching to a different SI-path or IMAGE path in the same dataset,
save the relative record number before switching paths, then to return, call DBFIND mode 10 with the
original search argument followed by DBGET mode 4 using the saved record number. From here,
DBGET modes 5,6,15, and 16 may be performed normally.

Reading 51-indices only

It is desirable for efficiency to restrict the DBGETs to reading only the SI-indices rather than actually
retrieVing the entries from the datasets whenever possible.

When performing indexed access, the full SI-index including the SI-extension (search field value for a
master dataset or relative record number for a detail) is returned. For relational access, the SI-link (if
specified) and SI-extension are returned.

Version 3. 1 March 1992 Programming 4-33

Several operations that may be accomplished by reading SI-indices:

• validating the format of any value in an SI-index, which always includes the search field value
for SI-paths related to master datasets.

• intermediate storage of the SI-extension to facilitate resetting the SI-pointer to its former
position, such as after changing SI-paths

• testing for the presence or absence of a value in multiple SI-paths by reading them in parallel

To read SI-indices only, use a list of ! with DBGET modes 5, 6, 15, or 16.

To retrieve the entry associated with any SI-index, use DBGET mode 1 (reread current entry).

~ The ! list is never transferred to IMAGE; therefore, the list in use before the ! was declared will
still be active.

Reading multiple 51-indices with a single DBGET

When using the! list to read SI-indices only, it is possible to read multiple SI-indices with a single
DBGET, equivalent to calling DBGET multiple times in a loop.

This is facilitated by an optional SI-counter parameter, which specifies the number of SI-indices to
return. If not specified, the default SI-counter value is 1. The SI-counter is a numeric literal
immediately following the !, as shown:

list = !SI-counter
list = !50

If a beginning-of-chain or end-of-chain condition is detected during the DBGET call, the returned
indices are less than the requested number of indices. The number of indices returned is contained
in word 5-6 of the status array. The SI·Pointer is positioned at the first/last index.

~ If using an SI-counter, be sure to use a buffer large enough to accommodate all the SI·
indices that will be returned.

~ The SI-counter parameter cannot be used with any list construct other than !.

DBGET used to locate entry for DBUPDATE

If the DBGET used to locate an entry for updating specifies neither the @ list nor a list that includes all
the SI-subkeys whose values are being changed, SUPERDEX will automatically perform one or more
rereads (DBGET mode 1) with various lists when performing the DBUPDATE.

This is both inefficient and causes the current list to change without the knowledge of the program,
and therefore any subsequent calls done without re-initializing the list may be faulty. It is therefore
recommended that the @ list or a list that contains all SI-subkeys be used when calling DBGET
before DBUPDATE or when calling DBUPDATE.

4·34 Programming Version3.1 March 1992

DBGET used to locate entry for DBDELETE

Similarly, if all SI-keys are not included in the list of the DBGET used to locate an entry for deletion,
SUPERDEX will automatically change the list to @ (unless it is already @ or ;).

Because the current list may change and therefore any subsequent calls done without re-initializing
the list may be faulty, it is recommended that the @ list or a list containing all SI-keys be used when
calling DBGET before DBDELETE (the; list may also be used but is inefficient).

Effect of DBGET on the 51-pointer and current path

Like IMAGE, SUPERDEX returns a condition word of zero in the status array for successful DBGET
calls and non-zero if an error is detected.

In addition, DBGET modes 5 and 6 performed on a master set read down and up the SI-chain,
whereas in IMAGE, they read down and up the current synonym chain.

If the item specified is neither a valid SI-path nor IMAGE path, condition word -52 ("ITEM
SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE SPECIFIED
SET") is returned.

The following table summarizes the effects of DBGET on the SI-pointer and current SI-path:

mode/relationship condition word = 0 condition word <> 0
5 or 15* before next entry if cw = 15, no change
6 or 16* after previous entry if cw = 14, no change
other unique on entry no change
other non-unique no change no change

* if SWitching from mode 5 or 15 to mode 6 or 16, the same entry IS not returned twice.

Serially Reading All Entries

Like IMAGE, SUPERDEX will allow a serial read through a dataset using DBGET mode 2. This will
return the records in the same order as IMAGE.

If you wish to sequentially access all the records in sorted order by any path, initialize the path using
DBFIND mode 100, and retrieve them with DBGET mode 15. This will return the records in sorted
order, based on the SI-Path defined, and return a condition word of 11 (End-of-file), as DBGET mode
2 does.

IFor master datasets, using DBFIND mode 100 and DBGET mode 15 can be faster and more efficient
than DBGET mode 2. SUPERDEX does not need to read each block in the dataset, while IMAGE
needs to read each block to see if any records exist in the block.

Version 3.1 March 1992 Programming 4-35

Additional programming considerations

Summary of effects of SI-intrinsics on the SI-pointer and current SI-path

The table below indicates the effects of various intrinsics on the 51-pointer and current 51-path.

In performing a DBPUT, DBPUTIX, DBDELETE, DBDELlX, or DBUPDATE against an 51-path for
which more than one 51-index may point to the same record (a n-to-one relationship referred to below
as a non-unique relationship as in keywording, grouping, compound items, and 5IU5ER), the position
of the 51-pointer does not change--regardless of whether or not a unique relationship exists for a
given entry.

intrinsic/mode condition word = 0 condition word <> 0
DBFIND mode 1 before entry current path not set ***
DBFIND mode 10 before entry current path not set ***
DBFIND mode 100* before first entry current path not set
DBFIND mode 1nn before entry if cw= 17, before next entry
DBFIND mode 200 after last entry current path not set
DBFIND mode 2nn after entry if cw = 17, after next entry
DBGET modes 5/15** before next entry if cw = 15, no change
DBGET modes 6/16** after previous entry if cw = 14, no change
DBGET other modes unique on entry no change
DBGET other modes non-unique no change no change
DBPUT no change no change
DBPUTIX no change no change
DBUPDATE no change no change
DBDELETE no change no change
DBDELIX no change no change

* may be followed by either DBGET mode 5 or 15 or mode 6 or 16 and will start at either the
beginning or end of the dataset, respectively, as compatible with IMAGE
if switching from mode 5 or 15 to mode 6 or 16, the same entry is not returned twice
if using relational access, the current path is retained

**

Testing for the existence of SUPERDEX;

New DBINFO mode 311 is provided to test for the presence of 5UPERDEX, and returns information
about the 51-paths configured for a specified dataset. It is designed for programs that are run against
the same database on various systems, of which some do not contain 51-paths.

Additionally, new DBINFO mode 312 may be used to determine the characteristics of a specific 51-
path.

4-36 Programming Version 3. 1 March 1992

Calling SUPERDEX intrinsics in Privileged Mode

~ All SUPEROEX intrinsics should be called in user mode. If called in Privileged Mode (after a call
to GETPRIVMOOE), contact Bradmark's Technical Support for information on possible
problems.

PREParing programs

Programs that access SUPEROEX'ed databases must be :PREPped with OS and optionally, MR
capability; OS capability is not required for Native Mode programs under MPElXL. Programmers who
:PREP programs that use SUPEROEX will need one or both of these capabilities added to their users
with :ALTUSER. Users running the programs do not require additional capabilities.

All SUPEROEX intrinsics automatically extend the stack, by:

3 * SI-dataset block size

An additional 1 or 2 Kwords of stack space is required if performing relational access.

Programs should be :PREPped with a larger MAXDATA parameter value of at least 2 - 3 times the
block size (in words) of the SI-dataset. Some programs will need to be executed with ;NOGB.

BASIC/3000

1:rlf using BASIC/3000, please contact Bradmark's Technical Support for instructions.

BRW (Business Report Writer)

SUPEROEX is capable of interfacing to HP's Business Report Writer package. The Full PowerHouse
option is required for the BRW interface. Please see the Business Report Write interface in the
Fourth-Generation Language User Manual.

Business Basic

If using SUPEROEX with Business Basic, make sure the necessary SL segments have been properly
copied, as explained in the Installation chapter of the Configuration / Establishing SI-indices section.
Please see the Business Basic Interface supplement.

C

No special considerations exist for programs written in C.

Version 3. 1 March 1992 Programming 4-37

COBOL

COBOL programs that call SORT using INPUT PROCEDURE and OUTPUT PROCEDURE require a
large amount of stack space, and calling an SI-intrinsic from INPUT or OUTPUT PROCEDURE may
cause a stack overflow. If this happens, limit the amount of stack used for sorting in COBOL
programs by including the following command in source programs and then recompiling:

$CONTROL SORTS PACE = nnnnn

where nnnnn is the number of words allocated for sorting, between 0 and 24000.

If COBOL programs are written in COBOL or COBOLII that does not support $CONTROL
SORTSPACE yet, then use the USING statement.

FORTRAN
No special considerations exist for programs written in FORTRAN, although SORTINIT may be used
to restrict stack usage for sorting if necessary.

Pascal

No special considerations exist for programs written in Pascal, although SORTINIT may be used to
restrict stack usage for sorting if necessary.

PowerHouse

tfr SUPERDEX has interfaces to Cognos' PowerHouse modules QUICK, QUIZ, and QTP available,
with separate software and documentation. Contact your Bradmark sales representative or
distributor for information and a demonstration.

RPG
If the IMAGE intrinsics are being coded and called directly by the programmer, SUPERDEX does not
require an interface. If the intrinsics are not handled in this manner, SUPERDEX can not be used
with RPG.

SPL

No special considerations exist for programs written in SPL, although SORTINIT may be used to
restrict stack usage for sorting if necessary.

4-38 Programming Version 3.1 March 1992

TRANSACT
Programs written in TRANSACT are converted quite easily to use SUPERDEX. Basically, the SI-path
name is placed into the key register, the search argument into the argument register, and
FIND (CHAIN), FIND (RCHAIN), or PATH is called against a master or detail dataset. Please
see the TRANSACT Interface supplement for more information and documentation.

PROTOS
SUPERDEX does not require an interface with PROTOS.

Version 3.1 March 1992 Programming 4-39

I

Native Language Support

Adding, updating, and indexing entries

When Native Language Support (NLS) is activated for a database, SI-indices are generated by
SIMAINT, DBPUT, DBPUTIX, DBUPDATE and SI-USER according to HP's documented NLS
collating sequences. This may result in some confusion because indexing may be done differently
with and without NLS.

The following table shows how SI-indices for a concatenated SI-key would be sorted with and without
NLS:

with NLS without NLS Keywords without NLS
PAPER 100 PAPER 100 PAPER 100
PAPER 400 PAPER 400 PAPER 200
Paper 300 PAPERBAG 150 PAPER 300
paper 200 Paper 300 PAPER 400
PAPERBAG 150 paper 200 PAPERBAG 150

Qualifying entries with DBFIND

To qualify the entries with the SI-keys shown above, the arguments PAPER@, Paper@, and
paper@ are treated equivalently and all of the above entries are returned in the order shown in the
left column.

W Since the different representations of the same word are stored as distinct indices,
there are circumstances where the same entry may qualify more than once.

4-40 Programming Version 3. 1 March 1992

Section 5 Intrinsics

Overview

This section describes the various SI-intrinsics provided with SUPERDEX as enhancements to the
IMAGE intrinsics as well as the new DBERASE, DBPUTIX, DBDELIX intrinsics and SIUSER
procedure.

Chapter 1
Description

Enhancements
Briefly documents the Enhancements to the SI-intrinsics over their IMAGE
counterparts.

Each subsequent chapter documents one or more intrinsics, including a discussion of
each, their syntax (if different than IMAGE), and parameters (if different than
IMAGE). The intrinsics are listed in alphabetical order by name.

Enhancements

For every IMAGE intrinsic there is an equivalent SUPERDEX intrinsic that has the same name and
uses the same parameters. Some additional parameter values are available to achieve new
functionality.

The enhancements to standard IMAGE intrinsics are summarized alphabetically by intrinsic in the
table on the following page.

Because most SI-intrinsics are functionally and syntactically identical to their IMAGE counterparts,
the changes are transparent; therefore, generally only variations are documented here.

ummary of mtrlnste
DBBEGIN no changes; automatically imposed if missing on DBPUT, DBUPDATE,

DBDELETE, DBPUTIX, and DBDELIX and base enabled for logging. MDBX
not supported.

DBCLOSE no changes
DBDELETE automatically maintains SI-indices
DBDELIX new intrinsic; explicitly deletes SI-index
DBEND no changes; automatically imposed if missing on DBPUT, DBUPDATE,

DBDELETE, DBPUTIX and DBDELIX and the base is enabled for logging.
MDBX not supported.

DBERASE new intrinsic; erases dataset and associated SI-indices in a fast mode
DBERROR no changes, no enhancement intrinsic provided
DBEXPLAIN no changes, no enhancement intrinsic provided
DBFIND - works the same on master and detail dataset

- new mode 10 works same as mode 1 but does not return qualifying entry
count

- new modes 100-299 position SI-pointer
- argument may contain multiple values and operators
- multiple calls perform dynamic queries on multiple fields, sets, and bases
- can qualify a master entry based on its related detail entries in a super-group
- the results of the current and pJevious DBFIND are maintained

DBGET - works the same on master and detail datasets
- modes 5 and 6 retrieve entries in ascending and descending sorted order
- new modes 15 and 16 return all entries in the dataset alphabetically
- new I list reads SI-indices only;c>ptional SI-counter returns multiple SI-indices

DBINFO new modes 311 and 312 return information about SUPERDEX configuration
DBLOCK no changes; conditionally imposed for DB PUT, DBUPDATE, DBDELETE,

DBPUTIX, and DBDELIX
DBMEMO ignored if logging is not enabled
OBOPEN - internally establishes SUPERDEX configuration

- replaces first word of IMAGE base name with the SOU number, instead of the
DBU number

S

5-2 Intrinsics Version 3.1 March 1992

OBPUT - automatically maintains SI-indices
- entries with blank SI-keys are by default not indexed

OBPUTIX new intrinsic; explicitly adds SI-index
OBUNLOCK no changes; conditionally imposed for DBPUT, DBUPDATE, DBDELETE,

DBPUTIX, and DBDELIX
OBUPOATE - automatically maintains SI-indices

- may be used to update SI-keys
OBXBEGIN not supported
OeXEND not supported
OBXUNOO not supported
SITRANSLATE new procedure to convert an argument from Infix Notation to Reverse Polish

Notation
SIUSER new user-written procedure; permits customer-defined SI-indices

Version 3.1 March 1992 Intrinsics 5-3

DBBEGIN intrinsic

IThere are no syntax changes to the DBBEGIN intrinsic.

Ilf the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs (and DBENDs)
around several intrinsics, if a DBBEGIN is not already in effect. Those intrinsics are:

• DBPUT
• DBPUTIX
• DBDELETE
• DBDELIX
• DBUPDATE

The DBEND is imposed regardless of whether or not the intrinsic can is successful.

If the DBPUTIX and DBDELIX intrinsics are used in combination with DBPUT and DBDELETE, the
program should explicitly call DBBEGIN before the DBPUT or DBDELETE, and DBEND after the
DBPUTIX or DBDELIX.

I~ MuHiple database transactions (MDBX) is not supported at this time.

5-4 Intrinsics Version3.1 March 1992

DBCLOSE intrinsic

The OBCLOSE intrinsic is the same as in IMAGE, although it additionally releases the run-time
SUPEROEX structures.

~ SUPERDEX may be configured to perform two DBOPENs against a database for greater
efficiency. If this is the case, two DBCLOSEs are also performed automatically.

If the SI-indices are kept in a separate SI-index base, SUPEROEX automatically OBOPENs and
OBCLOSEs the SI-index base.

Version 3. 1 March 1992 Intrinsics 5-5

DBDELETE intrinsic

Functionally the same as IMAGE, with the addition that corresponding SI-indices are automatically
deleted, including super-grouped SI-indices and custom-defined SI-indices generated by the SIUSER
procedure.

Lo(:king

A DBDELETE against a SUPERDEX'ed set may also internally access the corresponding SI-dataset
to delete related SI-indices. This should be taken into consideration when locking, since the
appropriate SI-dataset must be locked during a DBDELETE, which may be done implicitly or
explicitly. Refer to the Locking chapter of the Programming section for a discussion of the various
locking methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBDELETE that does not already specify them. The DBEND is imposed regardless of
whether or not the DBDELETE is successful.

DBGET used to locate entry for DBDELETE

If all SI-keys are not included in the list of the DBGET used to locate an entry for deletion,
SUPERDEX will automatically change the list to @ (unless it is already@ or I).

Because the current list may change and therefore any subsequent calls done without re-initializing
the list may be faulty, it is recommended that the @ list or a list containing all SI-keys be used when
calling DBGET before DBDELETE (the : list may also be used but is inefficient), unless the
database has been opened by SUPERDEX a second time (see Section 3).

5-6 Intrinsics Version 3.1 March 1992

DBDELIX intrinsic

DBDELIX is a SUPERDEX intrinsic used to explicitly delete SI-indices from B-trees (its counterpart is
the SUPERDEX DBPUTIX intrinsic, which explicitly adds SI-indices).

The DBDELIX intrinsic accesses only the appropriate SI-dataset and is used to maintain independent
indices. It also provides a method for deleting custom SI-indices in addition to those removed
automatically by DBDELETE.

Refer to the Adding, updating, and deleting entries chapter of the Programming section for further
discussion.

Syntax DBDELIX (base, dset, mode, status, item, buffer)

The DBDELIX intrinsic is syntactically similar to DBDELETE except that the list parameter is replaced
by an item parameter and the buffer parameter contains the full SI-index, including the SI-extension.

Parameters

Base The base-ID (same as IMAGE).

Dset Name or number of the dataset in which the corresponding data entry exists.

If accessing an independent SI-path, this parameter should be left blank or set to
200.

Mode An integer with the value 1.

Status Only the condition word is set.

Item The name of the SI-path from whose B-tree to delete the specified SI-index.

Buffer The full SI-index value including the extension. The extension may be:

• the search field value for a master dataset
• the relative record number for a detail dataset
• a suitable user-defined value for independent SI-paths

Version 3.1 March 1992 Intrinsics 5-7

Locking

A DBDELIX against an SI-path internally accesses the corresponding SI-dataset to delete one or
more SI-indices. This should be taken into consideration when locking, since the appropriate SI-
dataset must be locked during a DBDELlX, which may be done implicitly or explicitly. Refer to the
Locking chapter of the Programming section for a discussion of the various locking methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBDELIX that does not already specify them. The DBEND is imposed regardless of
whether or not the DBDELIX is successful. If DBDELIX is used in combination with DBDELETE, the
program should include a DBBEGIN before the DBDELETE and the DBEND after the DBDELIX.

Error handling

Since SUPERDEX uses standard IMAGE messages to report all errors and exceptional conditions,
the same messages that are used by DBDELETE are displayed for DBDELIX.

5-8 Intrinsics Version3.1 March 1992

DBEND intrinsic

There are no syntax changes to the DB END intrinsic.

If the base is enabled for logging, SUPERDEX automatically imposes DBENDs (and DBBEGINs)
around several intrinsics if a DBBEGIN is not already in effect. Those intrinsics are:

• DBPUT
• DBPUTIX
• DBDELETE
• DBDELIX
• DBUPDATE

The DBEND is imposed regardless of whether or not the intrinsic call is successful.

If the DBPUTIX and DBDELIX intrinsics are used in combination with DBPUT and DBDELETE, the
program should explicitly call DBBEGIN before the DBPUT or DBDELETE, and DBEND after the
DBPUTIX or DBDELIX.

~ Multiple Database Transactions (MDBX) are not supported at this time.

Version 3. 1 March 1992 Intrinsics 5-9

DBERASE intrinsic

DBERASE is a SUPERDEX intrinsic that erases the contents of a dataset and also removes all
corresponding SI-indices for all associated SI-paths. It is considerably faster than DBDELETEing all
entries.

All entries in the dataset are read serially and erased, then the corresponding SI-indices are erased.
As with DBDELETE, a master dataset cannot be erased if any of its entries have related detail
entries--if they do, the erase will not be performed at all.

Syntax DBERASE (base,dset,mode,status)

Parameters

Base The base-ID (returned by DBOPEN).

Dset The name or number of the master or detail dataset to erase.

Mode An integer with the value 1.

Status Standard IMAGE status array. Only the condition word is set (to zero if
successful or to one of the IMAGE condition words returned by DBDELETE if
unsuccessful).

5-10 Intrinsics Version 3.1 March 1992

Improved speed in exclusive access mode

Although erasing a dataset with DBERASE is much faster than using DBDELETEs, its speed can be
increased further if run in exclusive access mode by logging on as the database creator and
executing the following DBUTIL commands:

:RON DBUTIL.PUB.SYS

»DISABLE base FOR ILR

ILR is disabled.
»DISABLE base FOR LOGGING

Logging is disabled.
»ENABLE base FOR AUTODEFER

Autodefer is enabled.
»EXIT

END OF PROGRAM

Don't forget to reset these run-time options back to their original status using the ENABLE command
after the DBERASE has completed.

Recovery after abnormal abort

If the DBERASE fails due to a program abort, system failure, or other interruption, erase the dataset
using a utility (such as DBGENERAL) or delete any remaining entries using QUERY.PUB.SYS and
use the SIMAINT utility to reorganize all SI-paths related to the dataset. If SIMAINT is unable to
successfully recover the database, use the SIMAINT with the DBLOAD entry-point.

Version 3.1 March 1992 Intrinsics 5-11

DBERROR and DBEXPLAIN intrinsics

There are no changes to the DBERROR or DB EXPLAIN intrinsics, and no enhancement intrinsics
are required.

The error conditions reported by DBERROR and DBEXPLAIN are standard IMAGE error messages,
but may reflect errors encountered not only on the dataset containing the entries but also against an
SI-dataset.

When analyzing an error, keep in mind that it may be related to an SI-dataset rather than (or in
addition to) the dataset containing the entries, even though the entry dataset may be reported as
being in error. The same is true when SUPERDEX is configured to maintain its SI-indices in a
separate SI-index base: an error on the SI-index base will be reported against the primary base
containing the data entries.

Refer to the table of SUPERDEX intrinsic error and exceptional conditions in the Error and
exceptional conditions appendix for different types of errors, their meanings, and recommended
actions.

Detecting structural inconsistency

If there is an inconsistency between a B-tree and its corresponding dataset such that an SI-index
refers to a non-existent entry, condition word 17 ("NO ENTRY FOUND") is returned. This would be
caused by deleting an entry but not its related SI-index. In this case, the SI-path should be
reorganized using the SIMAINT util~y.

If an internal inconsistency within a 8-tree is detected (due to program abort, system failure, etc.),
condition word 18 ("BROKEN CHAIN") is returned. In this case, reorganize all SI-paths using the
SIMAINT with the DBlOAD entry-point.

Refer to the Maintenance and utilities section for related information.

5-12 Intrinsics Version3.1 March 1992

DBFIND intrinsic

DBFIND accesses an SI-path and sets the SI-pointer within that SI-path's B-tree for subsequent
DBGETs. In addition to IMAGE, DBFIND works on both master and detail sets.

In using DBFIND against SI-paths, the argument may contain partial keys as well as generic values,
relational operations, ranges, and multiple values which are logically combined via boolean operators.
For keyworded SI-paths, the argument may contain a keyword; for concatenated SI-keys, it may
contain a concatenated value; both may include partial and generic keys, etc.

If qualifying entries using a super-grouped SI-path, DBFIND must be called against the master set,
although entries in all datasets in the super-group will be used to qualify the master entries.

SUPERDEX allows multiple DBFIND calls in succession to qualify entries across multiple SI-paths,
datasets, and even multiple databases. A similar technique may be used to refine a selection,
whereby further qualification may be performed against entries already found.

Refer to the Qualifying entries with DBFIND chapter of the PrQQramming section for further
discussion and examples.

Parameters

Base Same as IMAGE

Dset In addition to IMAGE, master sets as well as detail sets may be specified by
name or number. If the SI-path is super-grouped, must be a master set.

If accessing an independent SI-path, this parameter should be left blank or set to
200.

Mode While IMAGE allows only a single mode (mode 1) for DBFIND, SUPERDEX
extends the capabilities of mode 1 while maintaining compatibility, and provides
several additional modes for use on SI-paths.

Mode 1 Fully compatible with IMAGE mode 1. Also allows multiple values and various
operators to be included in the argument (explained later). If no entry is found
that matches the argument, condition word 17 (''NO ENTRY FOUND") is
returned.

~ Only DBFIND mode 1 returns the number of qualifying entries in
words 5-6 of the status array.

Version 3.1 March 1992 Intrinsics 5-13

Mode 10 Same as mode 1, but does not return the number of qualifying entries in the
status array and is therefore more efficient.

In mode 1, not only is the SI-pointer set to the first qualifying SI-index entry, but
the S-tree is traversed to locate all qualifying SI-indices. It is more efficient to
only set the SI-pointer, so mode 10 should be used in place of mode 1 whenever
the number of qualifying entries is not required.

In mode 10, the chain entry count in the status array is always set to 1, for
compatibility with programs that call DSFIND and test to make sure that the chain
count is not zero.

Mode 100 Positions the SI-pointer before the first SI-index in the S-tree (i.e. before the
lowest alphabetical entry in the set in ascending order). In this mode, the
argument is ignored and may be left blank.

Mode 1nnl-1 nn Reads nn words of the argument and sets the SI-pointer before the first qualifying
SI-index entry. If no matching entry exists, condition word 17 ("NO ENTRY
FOUND") is returned but the SI-pointer is set immediately before the nearest-
matching SI-index. If prefixed with a minus sign (-), reads nn bytes instead of
words.

Mode 200 Positions the SI-pointer after the last entry, in ascending order (i.e. after the
highest alphabetical entry in the set). In this mode, the argument is ignored and
may be left blank.

Mode 2nnl-2nn Reads nn words of the argument and sets the SI-pointer after the last qualifying
SI-index entry. If no matching entry exists, condition word 17 ("NO ENTRY
FOUND") is returned but the SI-pointer is set immediately after the nearest-
matching SI-index. If prefixed with a minus sign (-), reads nn bytes instead of
words.

Status Same as IMAGE, although the chain count (words 5-6) is set by mode 1 only: in
mode 10, the chain count is set to a constant value of 1. In relational access
mode, the chain count reflects the total number of SI-indices in the active SI-
subset.

The first-on-chain and Iast-on-chain pointers (words 7-10) are set only for IMAGE
paths and not SI-paths, unless the SISETLINK JCW has been set to 1. If the
SISETLINK JCW has been set, the first-on-chain and Iast-on-chain values will
contain the correct values for the given SI-path.

Additionally, a unique internal number utilized in performing logically-related
DSFINDs against multiple databases is either returned or specified in word 2,
which is unused by IMAGE.

SUPERDEX returns a condition word of 0 in the first word on a successful call
and a non-zero condition word on an unsuccessful call, like IMAGE; however, a
SUPERDEX DSFIND with a mode of 1nn or 2nn may return a condition word 17
error ("NO ENTRY FOUND") while still setting the SI-pointer before or after the
nearest qualifying entry, respectively.

5-14 Intrinsics Version 3. 1 March 1992

Item Specifies either an IMAGE path or an SI-path. If an IMAGE path, the name or
number of the IMAGE search field is specified as usual. If an SI-path, the name
or number of the SI-path or the item number of the first SI-subkey in the SI-key is
specified.

Ikir If there is more than one SI-path that starts with the same item
number, or if the SI-path is an independent SI-path, the SI-path name
or number must be specified.

If the SI-path number is to be used, it is recommended that the numbers NOT be
hard-coded in the program. A DBINFO mode 312 should be called against the
path to retrieve the SI-path number. SI-path numbers are assigned dynamically,
based on the configuration of the database. Therefore, if SI-paths are added or
deleted the SI-path number for any SI-path may change.

If both an IMAGE path and an SI-path with the same name exist in the same
dataset and DBFIND is called in mode 1, SUPERDEX will use the SI-path instead
of the IMAGE path. If the search of the SI-path is unsuccessful, the IMAGE path
is used. If the IMAGE-path search is unsuccessful, the condition word is set to
17.

In performing successive DBFINDs against multiple datasets, a common item
used to logically link the datasets together (called the SI-linK) may additionally be
specified. It is required that the item assigned as the SI-link be configured as an
SI-subkey; alt€!rnately, for SI-paths against a master dataset, it may be the
IMAGE search field.

The SI-link is separated from the SI-path name by a comma, with the combined
value terminated by a SPACE or ; as shown:

SI-path, sue«,
If the SI-path is passed as an item number rather than a name, the item number
of the SI-link should be specified in the second word of the item array.

If performing a projection, which is used to logically link two datasets that do not
contain a common item by reaSSigningthe SI-link, the item parameter takes the
form:

SI-path, new SI-link;

To locate entries that have been found by previous DBFINDs in the active SI-
subset rather than in the dataset, specify a null item of 0 or ;.

Version 3.1 March 1992 Intrinsics 5-15

Argument

5-16 Intrinsics

In IMAGE, the DBFIND argument must specify an exact search field value. In
SUPERDEX. the argument for DBFIND modes 1 and 10 may contain:

• an exact SI-key value (or concatenated value)
• a single@
• a partial SI-key value with one or two @surrounded with« »
• a generic SI-key value containing one or more embedded ?s (the

alphanumeric matchcode) or's (the numeric matchcode)
• a partial SI-key value preceded by either the >=. <=. or <> relational

operators
• a range of two or more values with embedded relational operators (e.g.

>=A@<=B@)
• an ASCII value prefixed by ==. which causes the value to be converted to

binary for comparison
• multiple SI-key values. with the argument beginning with the tilde C) and

ending with the semi-colon (;). and including one or more of the boolean
operators AND. OR. or NOT (specified in SOL Notation)

• multiple SI-key values. with the argument beginning with the tilde C) and
ending with the semi-colon (;). and including one or more of the boolean
operators +. r » or - (specified in Infix Notation)

• multiple SI-key values. delimited with square brackets ([]). and including
one or more of the boolean operators &. \. or !& (specified in Reverse Polish
Notation)

• the special operators. such as I. \. and $. used for manipulating the active
SI-subset and backup SI-subset

• the special operator A. used for swapping the active and backup SI-subsets
• the special operator *. used for projection
• the special operator @@.which rewinds the virtual SI-chain, and in mode 1

returns its entry count
• many combinations of these constructs

The following operators may be embedded in the argument for DBFIND modes 1
and 10:

I Conditional operators I
@ any variable number of alphanumeric characters
? any single alphanumeric character., any single numeric character

\ Relational operators I
>= greater than or equal to
<= less than or equal to
<> not equal to

Version 3.1 March 1992

Keywords

Terminator

I Boolean operators I
SOL Notation

AND and
OR or
NOT and not

Infix Notation

+ and
, or- and not

Reverse Polish Notation
& and
I or
!& and not

I Special Operators (for successive DBFIND calls) I
& ANDs backup SI-subset with active SI-subset, replaces active with

result, deletes backup
I ORs backup with active, moves result into active, deletes backup
!& AND NOT s backup with active, moves result into active, does not

change backup
/ moves copy of active into backup

\ moves backup into active, deletes backup
A

swaps the active and backup
f1 replaces backup with active, erase active
[*] performs a projection
@@ rewinds virtual SI-chain; returns entry count in mode 1

~In modes 100 and 200, the argument value is Ignored.

If DBFINO is called against a keyworded SI-path and the length of the specified
keyword exceeds the keyword length configured for the SI-path, the specified
keyword is truncated to the keyword length and matching is done on the truncated
value.

If OBFINO is called in mode 1 or 10 and the specified argument is not the full SI-
key value, either the buffer must be padded with spaces or the argument value
must be terminated by:

• for alphanumeric fields with arguments not surrounded with << > >, a single
SPACE followed by a single @

• for alphanumeric fields with arguments not surrounded with« », a single
@ (used for partial-key retrieval)

• for alphanumeric fields with the argument surrounded with« », up to two
@s.

• for numeric fields, a single SPACE

• for arguments beginning with the tilde (-), the semi-colon (;)
• for arguments ending with a] or boolean operator, a single SPACE or an @

Version 3.1 March 1992 Intrinsics 5-17

Delimiters

Booleans

Refinement

Data types

5-18 Intrinsics

If an argument begins with a tilde C) and ends with a semi-colon (;), or an
argument value is enclosed in square brackets, this specifies that SUPERDEX
should perform a relational retrieval:

->=C@;
[>=C@]

The tilde and semi-colon are required when using the SOL Notation or Infix
Notation operators. The square brackets are required when using the Reverse
Polish Notation operators. Using these relational accesses prevents entries from
being returned more than once when the search criteria would qualify them
multiple times.

Boolean operations between multiple values may be specified in a DBFIND
argument in SOL Notation, Infix Notation, or Reverse Polish Notation, as used in
HP calculators. In RPN, the operator always follows the values being compared,
while the other two require the operator to precede the value(s). For example:

-A@ or B@ or >=P@;
-A@,B@,>=P@;
[A@] [B@] I [>=P@] I

SOL Notation
Infix Notation
Reverse Polish Notation

These locate all entries that begin with "A" or "B", or that begin with "P" or an
alphabetically higher letter.

The special operators for managing the active and backup SI-subsets may be
used alone or in combination in the argument, if used alone, DBFIND will manage
the SI-subsets but not select any new entries. Alternately, the special operator(s)
may be used to prefix any argument value and both the selection and SI-subset
management operations will be performed in the same intrinsic call.

For DBFIND modes 1 and 10 in indexed access, ASCII numbers may be
specified for most numeric items (data types I, J, P, R, and Z) if prefixed with ==,

>=, <=, or <> or, if appropriate, a - (negative sign)--the == operator simply
converts an ASCII value specified to binary format for comparison.

~ The exception is data type K, for which values must be specified in
binary.

For concatenated SI-keys that contain SI-subkeys of mixed data types
(alphanumeric and numeric) there are many different ways to specify data. Refer
to the Finding entries in a concatenated SI-key paragraph in Section 4.

When performing relational access, the argument must be specified in ASCII.
Values are automatically converted to binary for comparison with binary data
values (do not prefix the argument with the == conversion operator).

For data types P and Z, SUPERDEX's DBFIND treats unsigned and positive
values equivalently. For data type P, the sign is held in the last nibble (4 bits); for
type Z, the sign is over-punched in the last byte.

Real numbers (items of data type R) may include embedded decimal points (.),
exponential signs (E), and positive (+) and negative (-) signs.

Version 3.1 March 1992

Restrictions

Data type Z

A few restrictions exist in arguments that may be specified:

• for range searches, the first value specified (start point) must be less than the
second value (end point)

• for range searches (as well as searches that use values that start with the
<=, >=, or <> relational operators), a ? embedded in a value is not
recognized as an operator but as a regular character

• the @ wildcard may only be specified as the last character in a value, unless
the argument value is surrounded with the« »operators. Any characters
that follow an @ are ignored except when performing a range or not-equal-to
retrieval

• exclusions (values preceded by <» must be the last value in the argument

Additional restrictions exist in arguments that may be specified for SI-keys of data
type Z:

• a? or @ embedded in a value is not recognized as an operator but as a literal
character. As the SI-key is numeric, this could result in "ILLEGAL ASCII
DIGITS" in COBOL or as condition word 17.

• leading zeroes must be specified unless the argument is prefaced with the
operator ==, <=, >=, <> or relational access is being used.

• mode 1nn or 2nn must be used to qualify entries when using a partial key
value for both simple and concatenated SI-keys

• for concatenated SI-keys, mode 1nn or 2nn must be used to qualify entries if
the full SI-key value is specified

• for concatenated SI-keys that contain SI-subkeys of mixed data types and for
which the first SI-subkey is numeric, a numeric value may be specified in
mode 1 or 10 for the first SI-subkey only. Characters specified after the first
SI-subkey will cause unpredictable results. Use mode 1nn or 2nn to qualify
partial or full concatenated SI-keys

Version 3.1 March 1992 Intrinsics 5-19

Effect of DBFIND on the SI-pointer and current path

The following table summarizes the effects of DBFIND on the SI-pointer and current SI-path:

mode condition word = 0 condition word <> 0
1 before entry current path not set**
10 before entry current path not set**
100* before first entry current path not set
1nn before entry if cw= 17, before next entry
200 after last entry current path not set
2nn after entry if cw = 17, after previous entry

* may be followed by either DBGET mode 5 or 15 or mode 6 or 16 and will start at either the
beginning or end of the dataset, respectively, as compatible with IMAGE
if using relational access, the current path is retained

5-20 Intrinsics Version 3.1 March 1992

DBGET intrinsic

Modes 5 and 6 return entries on a logical SI-chain rather than a physical IMAGE chain. Also,
DBGET mode 5 and 6 work the same in both master and detail sets (in IMAGE, mode 5 and 6
DBGETs against a master set traverse the synonym chain, and are rarely used).

New modes 15 and 16 are available. These modes operate the same as modes 5 and 6, except they
continue to retrieve entries even after the SI-keys no longer match the argument, all the way to the
end or beginning of the set. Effectively, they perform greater-than-or-equal to and less-than-or-equal
to retrievals, respectively.

Also, the new I list construct is available for reading SI-indices only, for greater efficiency.

If the next- and previous-record numbers in the chain are required, set the JCW SISETLINK to 1.
SUPERDEX will place the next- and previous-record numbers into the status array. This includes
any DBGET mode, or if relational access is being executed.

Refer to the Retrieving entries with DBGET chapter of the Programming section for further
discussion.

Parameters

Base Same as IMAGE

Dset Same as IMAGE--sets may be specified by name or number.

If accessing an independent SI-path, this parameter should be left blank or set to
200.

Mode Modes 5 and 6 are enhanced to work on SI-paths, and new modes 15 and 16
permit retrieval of entries in addition to those qualified by the previous DBFIND.

Mode 4 Mode 4 continues to function as in IMAGE.

If the SI-Path in the DBFIND is a one-to-one relationship index (simple index SI-
path or concatenated SI-path) and no relational accessing was executed, this
mode, in conjunction with modes 5 and 6, functions the same as IMAGE.

If relational access was executed, or the SI-Path is not a one-to-one index, set I
the JCW SISETLINK to 1 and SUPERDEX will function the same as IMAGE.

ModeS Mode 5 continues to function as in IMAGE if the DBGET is performed on an
IMAGE path.

Version 3.1 March 1992 Intrinsics 5-21

Mode 5 against an SI-path returns all entries qualified by the previous DBFIND in
ascending sorted sequential order if index access was used. Once all qualifying
entries have been returned, the condition word is set to 15 ("END OF CHAIN").

Mode 6 Mode 6 continues to function as in IMAGE if the DBGET is performed on an
IMAGE path.

Mode 6 against an SI-path returns all entries qualified by the previous DBFIND in
descending sorted sequential order if indexed access is used. Once all qualifying
entries have been returned, the condition word is set to 14 ("BEGINNING OF
CHAIN").

Mode 15 Same as mode 5, but continues to retrieve entries in ascending sorted sequential
order even after the SI-keys no longer match the argument (greater-than-or-
equal-to retrieval).

Mode 16 Same as mode 6, but continues to retrieve entries in descending sorted
sequential order even after the SI-keys no longer match the argument (Iess-than-
or-equal-to retrieval).

Status When using modes 5, 6, 15, and 16 against an SI-path, only the first four words of
the status array contain accurate information, unless the JeW SISETLINK has
been set to 1.

If the JeW SISETLINK has been set to 1, words 7-8 and 9-10 will be sent to the
previous- and next-record numbers on the chain.

List Same as IMAGE, but additional considerations for subsequent DBUPDATE and
DBDELETE exist, and a new list is available.

If the SIEXTLEN JeW was used to configure a concatenated SI-key with more
than four non-contiguous SI-subkeys, it is required that all items that were not
explicitly referenced when defining the SI-key be included in the list in the order in
which they appear in the dataset before calling DBUPDATE or DBDELETE.

! list The ! list returns the SI-index rather than the data entry. This is much faster
than any other list construct because SUPERDEX needs to access only an SI-
dataset.

5-22 Intrinsics Version 3.1 March 1992

SI-counter

DBUPDATE

DBDELETE

Several functions can be accomplished with the ! list by reading only the SI-index
rather than the entire data entry, for example:

• pattern matching and character validation
• intermediate storage of an SI-index to reset the SI-pointer after changing to

another SI-path
• checking for the existence of common SI-indices in two datasets, by

alternately reading SI-paths from each set

If the corresponding data entry is needed for any SI-index (to DBUPDATE or
DBDELETE the data entry, for example) use DBGET mode 1 (reread current
entry) with a list other than ! to read it.

The ! list is never seen by IMAGE, so the current list before the ! list was
specified will still be active (Le. the * list may still be used as usual).

In reading an independent SI-path, only the ! list is allowed.

If using the ! list, an SI-counter may optionally be appended as numeric literal to
specify the number of SI-indices that should be returned by a single DBGET call,
in the format:

!SI-counter

The SI-counter is terminated by ; or blank

If the DBGET used to locate an entry for updating specifies neither the @ list nor a
list that includes all the SI-subkeys whose values are being changed, SUPERDEX
will automatically perform one or more rereads (DBGET mode 1) with various lists
when performing the DBUPDATE.

This is both inefficient and causes the current list to change without the
knowledge of the program, and therefore any subsequent calls done without re-
initializing the list may be faulty. It is therefore recommended that the @ list or a
list that contains all SI-subkeys be used when calling DBGET before DBUPDATE
or when calling DBUPDATE.

~ Using the /2 database option in SIMAINT to allow two DBOPENs to be
performed eliminates this list concern.

Similarly, if all SI-keys are not included in the list of the DBGET used to locate an
entry for deletion, SUPERDEX will automatically change the list to @ (unless it is
already @ or ;).

Because the current list may change and therefore any subsequent calls done
without re-initializing the list may be faulty, it is recommended that the @ list or a
list containing all SI-keys be used when calling DBGET before DBDELETE (the ;
list [nuillistj may also be used, but is inefficient).

~ Using the /2 database option in SIMAINT to allow two DBOPENs to be
performed eliminates this list concern.

Version 3.1 March 1992 Intrinsics 5-23

Buffer Same as IMAGE.

Argument Ignored for modes 5, 6, 15, and 16.

Effect of DBGET on the SI-pointer and current path

The following table summarizes the effects of DBGET on the SI-pointer:

mode/relationship condition word = 0 condition word <> 0
5 or 15* before next entry if cw = 15, no change
6 or 16* after previous entry if cw= 14, no change
other unique on entry no change
other non-unique no change no change

* if switching from mode 5 or 15 to mode 6 or 16, the same entry is not returned twice

5-24 Intrinsics Version 3. 1 March 1992

DBINFO intrinsic

Same as IMAGE with additional modes 311 and 312 implemented to return information about the
SUPERDEX SI-path configuration for a database.

Parameters

Base Base-id (same as IMAGE).

Qualifier For mode 311, name or number of the dataset for which to return SI-path
information.

For mode 312, name of the dataset to which the SI-path is related followed by the
name of the SI-path for which to return information, delimited by ;, as shown:

dataset name; SI-path name

Alternately, the dataset number may be specified as an integer followed by the SI-
path name of up to 16 characters (with no delimiter):

dataset number Sf-path name

Or, the dataset number may be specified as an integer followed by the item
number of the first SI-subkey as an integer (with no delimiter):

dataset number item number

~ If there are multiple SI-paths related to a dataset that contain the same
item as the first SI-subkey, the SI-path that appears first in the SI-
definitions is returned.

In addition, the path number can be used in the same format as item number
above.

Mode All IMAGE modes are acceptable.

Mode 311 Mode 311 is used to check for presence of SUPERDEX and to retrieve
information about the SI-paths related to a specified daltaset.

Version 3.1 March 1992 fntrinsics 5-25

Mode 312

Status

Buffer

5-26 Intrinsics

Mode 312 is used to determine the characteristics of a specific SI-path related to
a dataset.

This mode is intended for use in determining whether an SI-path is keyworded or
grouped and, for grouped paths, the items that are included in the group.

Only the condition word is set.

For mode 311, information about the related SI-paths is returned as the number
of SI-paths followed by 16 words of information for each SI-path, in the following
format:

word description
1 number (count) of SI-paths
2-9 SI-path name of SI-path #1
10 item number of first SI-subkey of SI-path #1; 0 for custom index
11 length in words of first SI-subkey of SI-path #1
12 item number of second SI-subkey of SI-path #1 (0 if not configured)
13 length in words of second SI-subkey (0 if not configured)
14 item number of third SI-subkey of SI-path #1 (0 if not configured)
15 length in words of third SI-subkey (0 if not configured)
16 item number of fourth SI-subkey of SI-path #1 (0 if not configured)
17 length in words of fourth SI-subkey (0 if not configured)
18-33 same information for SI-path #2
34-49 same information for SI-path #3
.. , same information for additional paths

" The space required for BUFFER is not larger than the length of the SI-item.
For grouped SI-Paths the information is returned only once. Use Mode 312
to find all members of the group. For Super-grouped SI-Paths use mode 312
for all related details.

Version 3.1 March 1992

For mode 312, information about the SI-path is returned in the following format:

word description
1 compound item flag (1 if IMAGE compound item, otherwise 0)
2 grouped SI-path flag (1 if grouped SI-path, 2 if super-grouped,

otherwise 0)
3 keyworded SI-path flag (1 if keyworded SI-path, otherwise 0)
4 index blanks flag (1 if blank values are indexed, otherwise 0)
5 SI-path number
6 offset for first SI-subkey
7 offset for second SI-subkey (0 if not configured)
8 offset for third SI-subkey (0 if not configured)
9 length in words of SI-index
10 length in words of SI-key
11 number of SI-subkeys (0 for non-concatenated SI-keys)
12 number of SI-keys in group (0 for non-grouped SI-paths)
13 minimum keyword length (0 for non-keyworded SI-paths)
14 average number of SI-indices (0 for non-keyworded and non-custom

SI-paths)
15 item number of first SI-subkey of first SI-key in group (0 for non-

grouped SI-paths)
16 item number of first SI-subkey of second SI-key in group (undefined if

non-grouped 51-paths)
... for additional SI-keys in group

Version 3.1 March 1992' Intrinsics 5-27

DBLOCK intrinsic

IThere are no syntax changes to the DBLOCK intrinsic.

Based on its configuration, SUPERDEX may automatically apply a dataset-Ievel DBLOCK against
one or more datasets, including the appropriate SI-dataset, when a program calls any of the following
intrinsics:

• DBPUT
• DBPUTIX
• DBDELETE
• DBDELIX
• DBUPDATE

If the database is configured for a separate DBOPEN for locking, SUPERDEX calls both DBLOCK
and DBUNLOCK against the appropriate SI-dataset. Refer to the Locking chapter at the beginning of
the Programming section for a complete discussion about SUPERDEX and locking.

5-28 Intrinsics Version 3.1 March 1992

DBMEMO intrinsic

DBMEMO is the same as in IMAGE, but if called against a database for which logging is not enabled,
it is ignored.

Version 3.1 March 1992 Intrinsics 5-29

DeOPEN intrinsic

The DBOPEN intrinsic is the same as in IMAGE, although it establishes the run-time SUPERDEX
structures and is therefore slightly slower. Additionally, it does NOT set the first wordl of the data
base variable as IMAGE does. SUPERDEX stores the pointer to the SUPERDEX User area (SOU)
in the first word. This then allows SUPERDEX to retrieve the pointer for the IMAGE DBU from within
the SOU, thus ALL calls to the data base must be executed by SUPERDEX.

SUPERDEX may be configured to perform two DBOPENs against a database for greater
efficiency: all access and locking of datasets containing data entries are performed via the
first open, while all access and locking of the SI-datasets are performed via the second open.
Refer to the Locking chapter of the Programming section for a discussion.

If the SI-indices are kept in a separate SI-index base, SUPERDEX automatically DBOPENs (and
DBCLOSEs) the SI-index base.

5-30 Intrinsics Version 3.1 March 1992

OSPUT intrinsic

Functionally the same as in IMAGE, except entries with blank SI-keys, and concatenated SI-keys for
which the first SI-subkey is blank, are not indexed whereas in IMAGE they would all be placed on a
null chain. This may be overridden as a configuration option.

Appropriate SI-indices, including SI-indices for super-grouped SI-paths and custom SI-indices
generated by the SIUSER procedure, are automatically added into the B-trees when DBPUT is
called.

LIST parameter

The list parameter used when calling DBPUT must include not only the IMAGE search fields but all
fields configured as SI-subkeys or SI-keys. If the list does not include all IMAGE search fields and
SI-keys, condition word -53 ("DBPUT IS MISSING A SEARCH OR SORT ITEM") is
returned.

Locking

A DBPUT against a SUPERDEX'ed dataset may also internally access the corresponding SI-dataset
to add corresponding SI-indices. This should be taken into consideration when locking, since the
appropriate SI-dataset must be locked during a DBPUT, which may be done implicitly or explicitly.
Refer to the Locking chapter of the Programming section for a discussion of the various locking
methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBPUT that does not already specify them. The DBEND is imposed regardless of
whether or not the DBPUT is successful.

Version 3. 1 March 1992 Intrinsics 5-31

------~---.----------.

DBPUTIX intrinsic

DBPUTIX is a new SUPERDEX intrinsic used to explicitly add SI-indices into B-trees (its counterpart
is the new DBDELIX intrinsic, which explicitly deletes SI-indices).

The DBPUTIX intrinsic accesses only the appropriate SI-dataset and is used to maintain independent
indices. It also provides a method for adding custom SI-indices in addition to those maintained
automatically by DBPUT.

Refer to the Adding. updating. and deleting entries chapter of the Programming section for further
discussion.

Syntax DBPUTIX (base,dset,mode,status,item,buffer)

The DBPUTIX intrinsic is syntactically similar to DBPUT except that the list parameter is replaced by
an item parameter and the buffer parameter contains the full SI-index, including the SI-extension.

Parameters

Base The base-ID (same as DBPUn.

Dset Name or number of the dataset in which the corresponding data entry exists.

If accessing an independent SI-path, this parameter should be left blank or set to
200.

Mode An integer with the value 1.

Status Only the condition word is set.

Item The name of the SI-path in whose B-tree to add the specified SI-index.

Buffer The full SI-index value including the SI-extension, which is:

• the search field value for a master dataset
• the relative record number for a detail dataset
• a suitable user-defined value for independent SI-paths

5-32 Intrinsics Version 3.1 March 1992

Locking

A DBPUTIX against an SI-path internally accesses the corresponding SI-dataset to add one or more
SI-indices. This should be taken into consideration when locking, since the appropriate SI-dataset
must be locked during a DBPUTIX, which may be done implicitly or explicitly. Refer to the Locking
chapter of the Programming section for a discussion of the various locking methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBPUTIX that does not already specify them. The DBEND is imposed regardless of
whether or not the DBPUTIX is successful. If DBPUTIX is used in combination with DBPUT, the
program should include a DBBEGIN before the DBPUT and the DBEND after the DBPUTIX.

Error handling

Since SUPERDEX uses standard IMAGE messages to report all errors and exceptional conditions,
the same messages that are used by DBPUT are displayed for DBPUTIX.

Version 3.1 March 1992 Intrinsics 5-33

DBUNLOCK intrinsic

IThere are no syntax changes to the DBUNLOCK intrinsic.

If the database is configured for a separate DBOPEN for locking, SUPERDEX calls DBUNLOCK
(after DBLOCK) against the appropriate SI-dataset. Refer to the Locking chapter at the beginning of
the Programming section for a complete discussion about SUPERDEX and locking.

5-34 Intrinsics Version 3. 1 March 1992

DBUPDATE intrinsic

Functionally the same as IMAGE, except it may also be used to change the value of an SI-key.
IMAGE does not permit critical fields (search and sort fields) to be updated by DBUPDATE.

SI-indices for super-grouped SI-paths and custom SI-indices generated by the SIUSER procedure
are automatically maintained by SUPERDEX when DBUPDATE is called. It is required that the full
(@) list be used in this case.

DBOPEN mode 2

If the database is opened in mode 2, DBUPDATE cannot be used to update fields used in SI-keys,
since this may require that an internal DBPUT and DBDELETE be performed against the
corresponding SI-dataset, which cannot be done in DBOPEN mode 2. If this is attempted, condition
word -41 ("DBUPDATE WILL NOT ALTER A SEARCH OR SORT ITEM") is returned.

Locking

A DBUPDATE against a SUPERDEX'ed set may also internally access the corresponding SI-dataset
to add and delete corresponding SI-indices. This should be taken into consideration when locking,
since the appropriate SI-dataset must be locked during a DBUPDATE against an SI-key, which may
be done implicitly or explicitly. Refer to the Locking chapter of the Programming section for a
discussion of the various locking methods.

Logical transactions

If the base is enabled for logging, SUPERDEX automatically imposes DBBEGINs and DBENDs
around each DBUPDATE that does not already specify them. The DBEND is imposed regardless of
whether or not the DBUPDATE is successful.

DBGET used to locate entry for DBUPDATE

If the DBGET used to locate an entry for updating specified a list that does not include all the SI-keys
in the dataset that are being changed, SUPERDEX will automatically perform one or more rereads
(DBGET mode 1) with various lists. This is both inefficient and causes the current list to change
without the knowledge of the program, and therefore any subsequent calls done without re-initializing
the list may be faulty.

It is therefore recommended that the @ list or a list that contains all SI-subkeys be used when calling
DBGET before DBUPDATE or when calling DBUPDATE; otherwise, DBUPDATE may internally
change the list.

~ Using the /2 database option in SIMAINT to allow two DBOPENs to be performed eliminatesI
this list concern. '

Version 3. 1 March 1992 Intrinsics 5-35

------------------------ -------~--~--- ---------------

DBXBEGIN intrinsic

I~ Dynamic transaction intrinsics (DBXBEGIN, DBXEND, DBXUNDO) are not supported at this
time.

5-36 Intrinsics Version 3. 1 March 1992

DBXEND intrinsic

~ Dynamic transaction intrinsics (DBXBEGIN, DBXEND, DBXUNDO) are not supported at this I
time.

Version 3.1 March 1992 Intrinsics 5-37

OBXUNOO intrinsic

I~ Dynamic transaction intrinsics (DBXBEGIN, DBXEND, DBXUNDO) are not supported at this
time.

5-38 Intrinsics Version 3.1 March 1992

SITRANSLATE intrinsic

SITRANSLATE is an procedure to translate input from Infix notation to the Reverse Polish Notation.

Infix operators are + (AND), - (AND NOT), and , (comma) (OR). The input string is evaluated from
left to right, with no precedence between operators. Parentheses can be used to change the order of
evaluation.

Operands containing imbedded blanks must be delimited by double quotes (II). The input string must
be terminated by a blank.

The OPERATOR parameter allows one infix operator to be supplied programmatically. This is useful
in applications prompting the user only for operands.

Parameters

Operator (byte)

Input (byte arrajIJ

Output (byte arrajIJ

Error (integer)

Examples

Values allowed are "+", "-", "," and blank (no operator supplied)

Input string to be translated, terminated by blank, in infix notation.

Output string of translation, terminated by blank, in Reverse Polish
Notation.

Zero (0) upon successful operation.

1) OPERATOR= blank

INPUT = NEW-"NEW YORK"
OUTPUT = [NEW] [NEW YORK] I&:

2) OPERATOR= blank

INPUT = (COMB+BLIND), (HOLD+DRILL) -FASTEN@
OUTPUT = [COMB] [BLIND] &:[HOLD] [DRILL] &:1[FASTEN@] I&:

3) OPERATOR= +
INPUT = "LOS ANGELES"
OUTPUT = [LOS ANGELES]&:

4) OPERATOR= blank

INPUT = +"LOS ANGELES"
OUTPUT = [LOS ANGELES] &:

Version 3.1 March 1992 Intrinsics 5-39

SIUSER procedure

SIUSER is an optional user-written procedure that is invoked by SUPERDEX to compute one or more
custom SI-indices for entries whenever DBPUT, DBUPDATE, or DBDELETE is called and from the
SIMAINT utility. It is useful for establishing SI-indices that cannot be composed of dataset fields as
they are represented but which can be calculated using values in the data entry, as well as for SI-
indices that require:

• more than four non-contiguous SI-subkeys
• date conversion
• reordering
• upshifting
• stripping
• other parsing

~ ASK customers should contact Bradmark's Technical Support office for additional information.

The SIUSER procedure is written by the user and installed in an SL or XL that contains the
SUPERDEX segments. Each SL or XL may contain a different SIUSER procedure, or the same
SIUSER procedure may be placed in various SLs or XLs. The SIUSER procedure is invoked once
for every DBPUT and DBDELETE and twice for each DBUPDATE (internally, the SI-index is deleted
and re-added).

~ The SIUSER procedure must be in the appropriate object code format for both the SUPERDEX
environment and the application(s) that will be updating the custom index. This means if the
application is a native-mode application, then SIUSER must be included in the SUPERDEX XL. If the
application is a compatibility-mode application, the procedure must be included in the SUPERDEX
SL. The native-mode version of SIMAINT will not access the compatibility-mode version of
SIUSER, and the compatibility-mode version of SIMAINT will not access the native-mode
version of SIUSER.

5-40 Intrinsics Version 3.1 March 1992

If multiple custom SI-paths have been configured, it is necessary to add conditional statements into
the SIUSER procedure to specify which statements are executed for which SI-path.

Syntax SIUSER (base,dset,item,buffer,index)

Parameters

The first four parameters are supplied by the program; the index value is returned by SIUSER.

Base The 8ase-id (returned by DBOPEN).

Dset The name or number of the dataset in which the corresponding data entry exists.
When called from DBPUT, DBUPDATE, or DBDELETE, its format is the same as
specified in those intrinsics. If called from the SIMAINT program, the dataset
name is used.

Item The name of the SI-path in which to add the specified SI-index.

Buffer The full data entry (@ list) used in the DBPUT or DBDELETE.

Index This is an output parameter only--its value is: returned by SIUSER.

The first word contains a count of the number of SI-indices to be created, followed
by their values in the length defined for the SI-path (use SIMAINT,LlST to look up
the length). Up to 16 indices may be returned.

To cause SUPERDEX not to generate any indices for an entry, specify 0 in the
first word of this parameter.

SUPERDEX will automatically add the appropriate SI-extension to form the SI-
index by appending either the entry's IMAGE search field value (if a master
dataset) or its relative record number (if a detail).

DBPUT, DBUPDATE, and DBDELETE

SI-indices generated by the SIUSER procedure are aU1tomatically maintained by DBPUT,
DBUPDATE, and DBDELETE.

If DBPUT or DBDELETE is called with a list other than @, SUPERDEX will perform a reread using the
@ list. If DBUPDATE is called with a list other than @, no update of the SI-indices will be done.

~ Using the /2 database option in SIMAINT to allow two DBOPENs to be performed eliminates
this list concern.

Version 3.1 March 1992 Intrinsics 5-41

SIMAINT utility

The SIMAINT utility, when generating or reorganizing SI-indices, calls SIUSER from the group or
account SL or XL in the same group in which SIMAINT is located and automatically generates the
corresponding indices. For this reason, if custom SI-paths have been configured, either place a copy
of the SL or XL that contains the SIUSER procedure into PUB.SUPERDEX and
NOPRIV.SUPERDEX or copy SIMAINT into the group in which the SL or XL resides and run that
copy.

If an SIUSER procedure is written to access an SI-path from within the procedure, the SI-path that is
accessed from within the SIUSER procedure must have been configured in a previous run of
SIMAINT and may not be changed in the current run. In this case, the SIMAINT must be run with
;LlB=G or ;LlB=P.

5-42 Intrinsics Versidn 3.1 March 1992

Section 6 Maintenance and utilities

This section discusses the various maintenance considerations for databases that contain SI-paths.
It also reviews the various utility programs that may be used with SUPERDEX'ed databases.

Chapter 1
Function

Chapter 2
Function

Chapter 3
Function

Chapter 4
Function

Chapter 5
Function

Chapter 6
Function

Chapter 7
Function

Clhapter 8

Database maintenance considerations
Includes tables listing the various operations that require maintenance of SI-paths
and the type of maintenance required.

SIMAINT utility
Used to reorganize and delete SI-paths. It also describes the D8l0AD, LIST,
SCHEMA, and STRUCT options, and running SIMAINT in batch.

SUPERDEX utility ,
This program is used to maintain and reorganize SI-Paths in an on-line full screen
environment.

SIPATH utility
Will display all IMAGE keys and SUPERDEX SI-Paths information in one concise
display.

SITEST and SIREPAIR utilities
Used to check the integrity of 8-trees and their correspondence to the data entries
they represent, and to repair the 8-trees.

SICOUNT utility
This utility will display the exact compression information on SI-Paths.

SITRACE facility
Available with SUPERDEX. This facility will trace all user IMAGE intrinsic calls,
along with the SUPERDEX IMAGE intrinsic calls.

SIDRIVER utility

Chapter 9 ALTPROG utility
Function Adds capabilities to and increase MAXDATA of object program files, as required for

5UPERDEX operation.

Chapter 10 SIBASE utility
Function This utility will automatically create the separate 51-Indexdatabase.

Chapter 11 SISIZE utility
Function This utility will modify the capacity of the 51dataset(s).

Chapter 12 QUERY/3000 utility

Database maintenance considerations

SI-indices are maintained automatically by SUPERDEX's DB PUT, DBDELETE, and DBUPDATE
intrinsics. However, because SI-indices reference data entries by search field value or relative record
number, certain database maintenance functions will cause the SI-indices to lose synchronization
with the data entries they map and require reorganization.

Examples of this are as follows:

• error conditions, such as a system failure
• database maintenance tasks, such as reorganizing a detail dataset
• database structural modifications, such as changing the length of an item used as an SI-key
• modifications to the KWEXCLUD keyword exclusion file

Following are tables listing various database conditions that can require SI-path maintenance.

Error and exceptional conditions that can require SI.path maintenance

Type Description
Condition System failure which is not successfully recovered by ILR or DBRECOV
Action Run SIMAINT,DBLOAD
Condition Overflow of insufficient capacity in SI-dataset
Action Reorganize all SI-paths in the affected SI-dataset using datasetjR. If unsuccessful,

run SIMAINT,DBLOAD
Condition Failed dataset erase
Action Erase the dataset with a utility or delete any remaining entries using

QUERY.PUB.SYS, then reorganize all SI-paths related to the dataset. If
unsuccessful, run SIMAINT,DBLOAD.

Version 3.1 March 1992 Maintenance and utilities 6-3

ata ase maintenance tas stat can requIre -pat maintenance
Type Description
Function Renaming an item or dataset.
Action Run SIMAINT (without the STRUCT entry-point) and press RETURN at the

DATASBT> prompt.
Function Changing SI-key values in a dataset by a method other than the SUPERDEX

DBPUT, DBUPDATE, or DBDELETE intrinsics.
Action Reorganize the SI-paths in the related dataset.
Function Any function that causes entries in a detail dataset to move to different

physical locations, such as a detail dataset reorganization.
Action Reorganize all SI-paths in the related dataset.
Function Database DBUNLOADIDBLOAD.
Action Run SIMAINT,DBLOAD
Function A database erase (such as with DI:JUTIL.PUB.SYS).
Action The SUPERDEX configuration will also be erased. MUST redefine all SI-paths.
Function Changing the length or data type et an item used in an SI-key.
Action Run SIMAINT,STRUCT. For items which the SI-key length may not be specified

(numeric), the SI-key length is readjusted automatically; otherwise, the SI-key
length is unchanged unless it would exceed the item length, in which case the SI-
key length is reduced.

Function Changing the name of an item uS4Kiin l!l SI-key.
Action Run SIMAINT and press RETURN at the DATASET> prompt.
Function Changing the name of a dataset that has at least one SI-path.
Action Run SIMAINT and press RETURN at the Dl~TASET> prompt.
Function Deleting all SI-datasets.
Action Delete the SI-item.

D b k h . SI h

Other conditions that can require SI-path maintenance

Type Description
Function Modifying the keyword exclude file (KWEXCLUD).
Action Reorganize the KWEXCLUDE SI-path and all of the keyworded SI-paths.

6-4 Maintenance and utilities Version 3.1 March 1992

Redefining and reorganizing 51-paths

To redefine an SI-path or all the Sl-paths related to a dataset, use the SIMAINT utility to Delete (lD)
and then redefine the configuration.

To reorganize a selected SI-path or all the Sf-paths related to a dataset, use the Reorganize (lR)
option of the SIMAINT utility on the a speCified SI-path or dataset.

To reorganize all SI-paths for a dataset or database while also regenerating the SI-definitions, run
SIMAINT with the DBLOAD entry point.

DBGENERAL interface

Bradmark's general-purpose database maintenance utility, DBGENERAL, automatically performs the
appropriate maintenance tasks against SUPERDEX structures whenever necessary (DBGENERAL
version 6.0 and later).

For example, when erasing a dataset using DBGENERAL option 4.4, the corresponding SI-indices
are automatically removed; when reorganizing a detail dataset using option 3.6, the corresponding
SI-indices are automatically reorganized; and when renaming a dataset that has SI-paths using
options 5.3 and 5.6, the internal SUPERDEX definitions are automatically updated.

Refer to the DBGENERAL User Manual for more information.

Version 3. 1 March 1992 Maintenance and Utilities 6-5

SIMAINT utility

The SIMAINT utility is used for both configuring new SI-paths and maintaining existing SI-paths. It
also contains functions for displaying the SUPERDEX configuration for a database and regenerating
the SI-definitions following structural changes to a database. These options are invoked by one of
the following entry points:

• (none)• DBLOAD
permits SI-paths to be added, reorganized, and deleted
reorganizes all the SI-paths for a dataset or database; regenerates the SI-
definitions
lists all the SI-paths configured for a database
generates a job stream to configure SI-paths based on current configuration
adjusts the SI-definitions to compensate for changes to database structure

• LIST• SCHEMA
• STRUCT

Although new SI-paths may be defined concurrently with maintenance of existing SI-paths, only the
SIMAINT functions for reorganizing and deleting SI-paths are discussed here--refer to the
Configuration/Establishing indices section for discussions about and examples of using SIMAINT to
configure new SI-paths and group existing SI-paths.

Access requirements

Before running SIMAINT, make sure:

• you have exclusive access to the database (except when using the LIST and SCHEMA
options)

• you are logged on as the database creator
• you are logged into the group and account in which the database resides

It is also recommended for performance reasons that you:

• disable ILR
• disable logging
• do not run SIMAINT with ; LIB=G or ; LIB=P

6-6 Maintenance and utilities Version 3.1 March 1992

Input rules

These rules govern SIMAINT input:

• all input may be in upper- or lower-case
• ? displays structural help (sets and items)
• \ flushes the current response and re-prompts
• lengths are reported and specified in words, not bytes (unless otherwise specified), and it is I

necessary to convert for alphanumeric (data types U and X) items (e.g.)(20 = 10 words).

SIEXTLEN JeW for special concatenated SI-keys

If you have configured SI-keys that contain more than four non-contiguous items by utilizing the
SIEXTLEN JCW, it is required that this JCW be set before running SIMAINT with the STRUCT or
SCHEMA entry points. To do so:

I.SETJCW SIEXTLEN=l

Invoking SIMAINT

Two versions of the SIMAINT program are provided, in PUB.SUPERDEX and NOPRIV.SUPERDEX.
They are identical except the PUB version uses techniques that require PM capability for improved
speed and is therefore much faster than the NOPRIV version. The PUB version should be used to
obtain the best performance.

Use the NOPRIV version, if you do not want to run the software with PM capability and on datasets
whose block sizes are not multiples of 128 words (128, 256, 384,512, etc.).

To invoke SIMAINT:

: RUN SIHAINT. PUB. SUPERDEX

SIMAINT VERSION 3.1 (06DEC91) COPYRIGHT DR. MATT / IABG (1988,1991)

~ SIMAINT is run without ; LIB=G or ; LIB=P.

Version 3. 1 March 1992 Maintenance and utilities 6-7

Specifying the database

Specify the name of a database, as shown:

IDATABASE > OEDB

~ The open characteristic with which the database was optionally defined is automatically retained
and need not be re-specltied. However, it may be explicitly changed from single open to
separate open by appending 11 or 12 to the base name (but not to or from 13).

Specifying data sets

After specifying the database name, a list of the datasets that contain SI-paths is displayed:

SI-PATHS EXIST FOR THE FOLLOWING DATASETS:
PRFD
CUST/l
SHIP
ORDM
PART
ITEM
SSHIP

- blank -
ENTER NAME OF SET TO BE MODIFIED OR NEW NAME

SIMAINT can be run against datasets that already have related SI-paths or those for which SI-paths
have not yet been configured. If a dataset already contains SI-paths, they are displayed.

Enter the name of a manual master or detail dataset in the current database that contains SI-paths,
optionally followed by one of the following suffixes:

ID Delete all dataset's related SI-paths
IR Reorganize all dataset's related SI-paths

This command instructs SIMAINT to reorganize all the SI-paths related to the CUST dataset:

IDATASET > CUST/R

6-8 Maintenance and utilities Version 3.1 March 1992

The SI-dataset suffix (/1 through 17) with which the dataset was optionally defined is
automatically retained and may not be overridden (to reassign a dataset's SI-indices to the
root SI-dataset or any other SI-dataset, it is necessary to delete and redefine all related SI-
paths).

Specifying 51-paths

All SI-paths related to the specified dataset and their attributes are displayed, as shown:

SI-PATHS EXIST FOR THE FOLLOWING DATASETS AND ITEMS:
CUNAME/K CUNAME L 6
CUADD/K CUADDl L = 5
CUADD/K CUADD2 L = 5
CUPHN CUPHNl L = 1
CUPHN CUPHN2 L = 1
CUPHN CUPHN3 L 1
ENTER SI-PATH WITH OPTION /D /R /G OR NEW NAME

Enter the name of one of the SI-paths shown appended by one of the following suffixes:

/D Delete specified SI-path
/G Group specified SI-path (refer to the Configuration/Establishing indices section)
/R Reorganize specified SI-path

Reorganizing 51-paths

SI-paths should be reorganized periodically to maintain optimum performance, and must be
reorganized after certain database maintenance operations. SI-paths may be selected individually or
by related dataset. Alternately, all the SI-paths for a dataset or database may be reorganized by
running SIMAINT with the DBLOAD option, which also regenerates the SI-definitions.

Refer to the tables near the beginning of this section for complete details on what database
maintenance tasks require SI-path reorganization.

For super-grouped SI-paths, the SI-indices for all SI-paths configured in the super-group are
automatically reorganized whenever any SI-path in the super-group is reorganized.

This example specifies the reorganization of all the SI-paths related to the CUST dataset:

IDATASET > CU'."
DATASET >

Version ;'3.1 March 1992 Maintenance and utilities 6-9

SI-paths may aHemately be specified individually; for keyworded SI-paths, the average number of
indices may be changed, as shown:

DATASET > CUST
SI-PATH > CUNAME/R
ENTER AVERAGE NUMBER OF INDICES PER ENTRY > 4
SI-PATH >

In this example, the keyworded SI-path CUNAME is being reorganized by suffixing it with /R, and
the number of indices per entry is being changed to 4.

Deleting 51-paths

SI-paths may be selected for deletion individually or by related dataset.

For super-grouped SI-paths, all SI-paths configured in the super-group are automatically deleted
whenever any SI-path in the super-group is deleted.

In this example, all the SI-paths related to the SHIP dataset are deleted:

IDATASET >
DATASET >

SHIP/D

In this example, the SI-path SHNAME is being deleted by suffixing HwHh /D:

DATASET > SHIP
THE FOLLOWING SI-PATHS AND ITEMS ARE DEFINED:
SHIP SHNAME L = 6
ENTER SI-PATH WITH OPTION /D /R /G OR NEW NAME
SI-PATH > SHNAME/D
SI-PATH >

DBlOAD Entry Point

The DB LOAD entry point is used to reorganize all the SI-paths for a dataset or database. This entry
point is recommended following an operation in which data entries are relocated in the database,
such as a DBUNLOAD and DBLOAD. It is also useful for giving users the ability to safely and easily
reorganize existing SI-paths--especially untrained users and those in turnkey environments--since
only the base name needs to be specified.

Additionally, SIMAINT,DBLOAD regenerates the SUPERDEX configuration for a database, and is
required after certain database maintenance functions. A complete list of database maintenance
operations that require the use of SIMAINT,DBLOAD appears in tables near the beginning of this
section.

6-10 Maintenance and utilities Version 3.1 March 1992

In this example, aU the SI-paths for the OEDB database are reorganized:

DATABASE > OEDB
DBLOAD: 562 B-TREE RECORDS DELETED
SI-PATHS EXIST FOR THE FOLLOWING SETS:

- blank -
CUSTOMERS
ORDER-HEADERS
ORDER-LINES
ENTER NAME OF SET TO BE MODIFIED OR NEW NAME

CPU 0:00:07.6 Elapsed 0:00:12

:RUN SIMAINT.PUB.SUPERDEX,DBLOAD
SIMAINT VERSION 3.1 (06DEC91) COPYRIGHT DR. MATT / IABG (1988,1991)

DATASET > return
PROCESSING SI-PATH KWEXCLUDE
PROCESSING SI-PATH CUSTOMER-NAME

INPUT: 1003 RECORDS
SORT:
OUTPUT:

PROCESSING SI-PATH
INPUT:
SORT:
OUTPUT:

1003 INDICES

OF
OF CUSTOMERS # OF ENT: 1003

100 % CPU 0:00:01.2 Elapsed 0:00:02
CPU 0:00:00.0 Elapsed 0:00:00

1003 INDICES 100 % CPU 0:00:00.9 Elapsed 0:00:01
CUSTOMER-NAME-KW OF CUSTOMERS # OF ENT: 1003
1003 RECORDS 100 % CPU 0:00:02.7 Elapsed 0:00:03
2803 INDICES CPU 0:00:00.0 Elapsed 0:00:00
2788 INDICES 100 % CPU 0:00:01.6 Elapsed 0:00:04

PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS # OF ENT: 1003
INPUT: 1003 RECORDS 100 % CPU 0:00:04.2 Elapsed 0:00:06
SORT: 4448 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 4417 INDICES 100 % CPU 0:00:02.6 Elapsed 0:00:03

PROCESSING SI-PATH CUSTOMER-NUMBER OF ORDER-HEADERS # OF ENT: 2620
INPUT: 2620 RECORDS 100 % CPU 0:00:02.3 Elapsed 0:00:04
SORT: 2620 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 2620 INDICES 100 % CPU 0:00:01.4 Elapsed 0:00:02

PROCESSING SI-PATH ORDER-TYPE OF ORDER-HEADERS # OF ENT: 2620
INPUT: 2620 RECORDS 100 % CPU 0:00:02.2 Elapsed 0:00:03
SORT: 2620 INDICES CPU 0:00:00.0 Elapsed 0:00:00
OUTPUT: 2620 INDICES 100 % CPU 0:00:01.3 Elapsed 0:00:02

PROCESSING SI-PATH ORDER-PART OF ORDER-LINES # OF ENT: 9272
INPUT: 9272 RECORDS 100 % CPU 0:00:08.7 Elapsed 0:00:17
SORT: 9272 INDICES CPU 0:00:00,1 Elapsed 0:00:00
OUTPUT: 9272 INDICES 100 % CPU 0:00:06.7 Elapsed 0:00:08

OF ORDER-LINES # OF ENT: 9272
100 % CPU 0:00:08.8 Elapsed 0:00:10

CPU 0:00:00.1 Elapsed 0:00:00

PROCESSING SI-PATH PART-ORDER
INPUT: 9272 RECORDS
SORT: 9272 INDICES
OUTPUT: 9272 INDICES

TOTAL TIME :
100 % CPU 0:00:06.9 Elapsed 0:00:08

CPU 0:01:03.0 Elapsed 0:01:42

END OF PROGRAM

Version 3.1 March 1992 Maintenance and utilities 6-11

There are three function keys available from this screen:

_~ustom Path Screen Function Keys
Kej' Label Description
Fl HELP Displays the Help Screen.

F2 (Not Defined)
F3 PATH Returns to the Path Screen, without accepting the data currently

SCREEN displayed on the screen.
F4 (Not Defined)
F5 iNot Definedl
F6 (Not Defined)
F7 (Not Defined)
Fa EXIT Exits back to the Main Menu.

Once all of the data has been keyed, press the BNTER key. The process will then return to the
Path Screen.

6-26 Maintenance and utilities Version 3.1 March 1992

When running SIMAINT,SCHEMA, you are prompted for the base name and name of a file in which
to write the job stream as shown:

: RON SIKAINT. PUB. SUPERDEX, SCHEMA

SIMAINT VERSION 3.1 (06DEC91) COPYRIGHT DR. MATT I IABG (1988,1991)

Enter NEW filename for SIMAINT job> OEDBSI

DATABASE > OEDB
SIMAINT Job File Generation

:END OF PROGRAM

If the name of an existing file is specified, you are prompted for whether or not to overwrite it;
otherwise, a new file is created and the job stream is written into it, as shown:

>OEDB

!JOB MGR.SUPERDEX,DEMO
!COMMENT Patch PASSWORD if necessary !
!COMMENT TimeStamp: THU, DEe 12, 1991, 10:46 AM!
RUN SIMAINT.PUB.SUPERDEX;INFO=" "
<BASE
<DATASET
<SI-PATH
<KW LENGTH
<SI-PATH
<DATASET
<SI-PATH
<ITEM LEN=15 - SHORTER LEN
<OFFSET (IN BYTES)
<ITEM 2
<SI-PATH
<ITEM 1
<ITEM LEN=15 - KW LENGTH
<MIN CHARS PER KW
<AVERAGE KEYWORDS PER ENTRY
<ITEM 2

Version 3.1 March 1992

>
>KWEXCLUDE
>4
>11
>CUSTOMERS
>CUSTOMER-NAME
>-30
>1
>//
>CUSTOMER-NAME-KW/K
>CUSTOMER-NAME
>4
>1
>6
>11

Maintenance and utilities 6-13

Below is a description of all of the fields:

Label
IPath Display Screen Fields

Dataset:
Selection Order:
SI-Path Name:
Path Type:
Key Length:
Number of Keys:

Min Key Word Length:

Index Length:

Avg No Key Words:
Sl, S2, S3, S4

Items
Type
Length

Description
Current dataset being accessed
Selection order of dataset
Name of the SI-path
Full description of the type of path
Byte length of the SI-key
Total number of IMAGE items from the dataset that are
included in this SI-path

Minimum number of characters required to create a keyworded
index

Total length of the SI-index (includes the SI-key and SI-
extension) in bytes

The defined average number of keywords per record
These designations are used to identify the items that are
included in a concatenated SI-path. Sl is for SI-subkey-1, S2
for st-suokey-z, etc. If the SI-path is not concatenated, none
of the designations will be displayed.

Names of the IMAGE items included in the SI-path
The IMAGE item type (as returned by DBINFO mode 102)
The IMAGE item length (as returned by DBINFO mode 102)

The function keys available from this screen are:

Path Display Screen Function Keys
Key Label Description
Fl HELP Displays the Help Screen.
F2 (Not Defined
F3 (Not Defined
F4 (Not Defined
FS (Not Defined
F6 NEXT Displays the next screen of items

SCREEN
F7 PREV Displays the previous screen of items

SCREEN
F8 (Not Defined

To return to the Path Screen, press the ENTER key.

6-28 Maintenance and utilities Version 3.1 March 1992

STRUCT Entry Point

The STRUCT entry point causes SIMAINT to compare the SUPERDEX configuration with the
database structure and correct any inconsistencies found. It is used after making certain structural
changes to a database, but is automatically invoked by DBGENERAL. It should, however, not be run
after performing a DBUNLOADIDBLOAD--the SIMAINT program should be run with the DBlOAD
option instead.

Refer to the tables near the beginning of this section for a list of maintenance functions that require
the use of the STRUCT option (you will note that the STRUCT option is never used after renaming
sets or items).

This example shows SIMAINT,STRUCT being used after changing the length of an item used as an
SI-key:

:RON SIMAINT.PUB.SUPERDEX,STRUCT

SIMAINT VERSION 3.1 (06DEC91) COPYRIGHT DR. MATT / IABG (1988, 1991)

DATABASE > OEDB
DATASET > return

Running SIMAINT in batch

SIMAINT can be run in batch, and uses similar dialog as the on-line. The method for creating a job I
stream by which to run SIMAINT in batch is to run SIMAINT with the ,STRUCT entry-point.

The discrepancies between on-line and batch use is:

• some prompts are asked in batch at all times, while on-line the prompts are asked depending
on previous answers

• a line containing only a SPACE is represented in batch by a blank line
• a line containing only a RETURN (which is normally specified in a batch job as a blank line)

should is represented by a line containing a double slash (J/) in the first two character
positions

SIMAINT will QUIT (not TERMINATE) normally upon encountering any error in batch, permitting
testing of the system JCW.

Version 3.1 March 1992 Maintenance and utilities 6-15

For existing SI-Paths, the items already included will be displayed with an appropriate letter
designation. These CANNOT be removed or changed. Only new items can be marked.

If creating a Supergroup SI-Path for a Detail dataset only one item can be selected (using A). If there
are no related Master dataset(s) with the same SI-Path, the process will advance to the Related
Masters Menu.

The function keys available from this screen are:

ITEM Screen Function Keys J
Key Label Description
Fl HELP Displays the Help Screen.
F2 DEFINE Advances to the Item Definition Screen

SI-ITEMS
F3 PATH Returns to the Path Screen, without updating the item data

SCREEN
F4 (Not Defined)
FS (Not Defined)
F6 NEXT Displays the next screen of items

SCREEN
F7 PREV Displays the previous screen of items

SCREENFa (Not Defined)

To update the data, press the ENTER key. If the items are not numeric, you must also press the F2
key to define the item specific information.

6-30 Maintenance and utilities Version 3.1 March 1992

Function Key Operation

The function keys are used extensively in the SUPERDEX program to allow for easy movement
through the screens. The values of each function key will change between screens, and depending
on available options, on the same screen.

There are two function keys that are always the same throughout the SUPERDEX program; F 1 and
Fa. F1 is the HELP function key and can be accessed at any time on any screen. Fa is the EXIT
function key. Pressing this key will return control back to the Main Menu screen, or if at the
Main Menu screen, it will exit the SUPERDEX program.

Main Menu

SUPERDEX VERSION 3.1 BRADMARK TECHNOLOGIES, INC. (c)BRADMARK 1987, 1992

1 INSTALLATION 2 PATH MAINTENANCE

1.1 Install SUPERDEX 2.1 Maintain SI-Path(s)
1.2 Build SI-Index Base 2.2 > Generate Path File
1.3 Add DS/MR to Prog. 2.3 > Reorg All SI-Paths

2.4 > Change SI capacity

3 DIAGNOSTICS 4 OTHER FEATURES

3.1 General Path Info 4.1 > Command Driven Maint.
3.2 Detail Path Info
3.3 Test SI-Path(s)
3.4 > Repair SI-Path(s)
3.5 Compression Info
3.6 > Structural Change

Please enter the number
of the desired selection:

> Exclusive Access

The Main Menuprovides access to most of the programs in the SUPERDEX environment. Each
can be accessed by entering the number associated with the particular program (1.1 through" .1).
Upon completion of the selected program, control will return back to this point. Refer to the other
chapters in this section for more information on each of the programs.

There are only two function keys available on this screen. F1 accesses the HELP Screen and
Fa will EXIT the SUPERDEX program.

Once the option has been keyed, press the ENTER key.

Version 3.1 March 1992 Maintenance and utilities 6-17

The Average Number of Keywords: is used to calculate the size of the sort file and the
worst case capacity for the SI datasets. The default is set to the size of the field, divided by seven
(7), always rounded up. For example, a CUSTOMER-NAME item defined in IMAGE as an X30
would have a default of 5 (30 divided by 7 equals 4.29, then rounded up to 5). A 60 character
description item would be defaulted to 9 (60 divided by 7 equals 8.57, rounded to 9). This value
must be 16 or less.

The function keys available from this screen are:

Item Definition Screen Function Keys
Key Label Description
Fl HELP Displays the Help Screen.

F2 (Not Defined)
F3 ITEM Returns to the Item Screen, without updating the item data

SCREEN
F4 (Not Defined)
FS (Not Defined)
F6 (Not Defined)
F7 (Not Defined)
F8 EXIT Exits back to the Main Menu

To update the data, press the ENTER key. Once the data has been updated, the process will return
to the Path Screen.

6-32 Maintenance and utilities Version 3. 1 March 1992

Dataset Menu

AUG 28, 1991 10:53 AMSUPERDEX BASE MENU

Please enter base name: Password (Dflt=Creator) :

SUPERDEX Open parameter (1(Default),2,3): _

* XXXXXXXXXXXXXXXX __ * XXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX
* XXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX
*XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX __ * xxxxx.'OCXXXXXXXXX

*XXXXXXXXXXXXXXX *XXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX
*XXXXXXXXXXXXXXXX __ * XXXXXXXXXXXXXXXX __ *XXXXXXXXXXXXXXXX
*XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX
*XXXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX

* XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX __ *XXXXXXXXXXXXXXXX

*XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX

*XXXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX

*XXXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX
* XXXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX

* XXXXXXXXXXXXXXXX * XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX

* XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX *XXXXXXXXXXXXXXXX

"RR" - Reorganize all paths for dataset

"DD" - Delete all paths for dataset

SUPERDEX (C) Bradmark Technologies, Inc. 1991

The Dataset Menu is actually a subscreen of the Base Menu. Once a database has been
selected, all the datasets in the database are displayed. There are three sections of columns that
include dataset names and options.

The first column is to select a dataset for maintenance during this execution. To select a dataset,
enter one or two letters (A-Z) in the two character field. The datasets are processed in the
alphabetical order of this two character field (Le. A is processed before Il and Z is processed before
AA).

There are two reserved designations; RR and DD. The RR is used to specify that all of the SI-Paths
in the dataset should be reorganized. The DD is used to specify that all of the SI-Paths in the
dataset should be deleted.

The second column is used to specify which SI dataset (valid values: 1-7, or the default-blank) should
be used when adding SI-Paths. If the dataset already contains at least one SI-Path, this field must
be left empty.

The third column is a display-only field used to denote whether the dataset already has existinq SI-
Paths. If the * (asterisk) is displayed, the dataset has at least one SI-Path defined for it. If this field
is blank, the dataset has no SI-Paths associated with it.

Version 3.1 March 1992 Maintenance and utilities 6-19

Grouped Item Offset Screen

Aug 28, 1991 SUPERDEX GROUPED ITEM OFFSET SCREEN 10:53 AM

Selection Order: _Dataset:
SI-Path Name:
SI-Subkey1 : Key Length: __ Start :__

STARTING
POSITION

STARTING
POSITION

STARTING
POSITION ITEM ITEMITEM

SUPERDEX (C) Bradrnark Technologies, Inc. 1991

The Grouped Item Offset Screen is used to accept the offset (starting position in
characters) of each grouped item. This screen is only displayed for those grouped paths that are of
an alphanumeric type.

Each grouped item has a default offset of 1, which can be either accepted or overridden. The
maximum offset for any item cannot excede the length of the item itself.

For existing paths that are having additional items grouped to them, this screen will only display the
new items being grouped (currently existlnq grouped items will not be displayed).

There are two function keys available for this screen.

Grouped Item Offset Screen Function Keys
Key Label Description
Fl HELP Displays the Help Screen.
F2 (Not Defined)
F3 (Not Defined)
F4 (Not Definedl
F5 (Not Defined)
F6 (Not Defined)
F7 (Not Defined)
F8 EXIT Exits back to the Main Menu.

Once all of the data has been keyed, press the ENTER key. The process will then return to the
PATH screen.

6-34 Maintenance and utilities Version 3.1 March 1992

Path Screen

AUG 28, 1991 10:53 AMSUPERDEXPATH SCREEN

Dataset: Selection Order: __
SI-Path Name: Action: _ Delete _ Reorg _ Display
Path Type: _ Group _ Supergroup _ Keyword _ Blank _ Custom

*(Default Path Type is Simple/Concatenated) *

Existing Paths:

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXXXXXXXXXXX xxxxxxxxxxxxxxxX
XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

SUPERDEX (C) Bradmark Technologies, Inc. 1991

The Path Screen is the primary processing screen for the SI-Paths. It is used to execute
several functions, including creating new SI-Paths, deleting SI-Paths, reorganizing SI-Paths and
maintaining SI-Paths. This screen is not used to maintain the SI-Paths for the **SPECIAL**
dataset (refer to the Special Path Screen).

The first two fields are display only fields. They display the current dataset being processed and the
selection order value entered from the Dataset Menu.

The next field is the SI-Pa th Name:. This field is used to enter the name of either an existing
SI-Path or a new SI-Path. If the name entered is an existing SI-Path, only the Action: options
and the Group option are available. If the name entered is not an existing SI-Path, the Action:
options is not available. If you wish to modify the Path Type: on an existing SI-Path (other than
Group), it must first be deleted and then added back.

The Action: options are next. As stated earlier, these options are only available for existing SI-
Paths. The Delete option will mark the SI-Path to be deleted. The Reorg option will mark the
SI-Path to be reorganized, and the Display option will advance to the Path Display
Screen. To select one of these options enter any chara.cter,such as X, in the field. If any of these
options are selected, no other options can be selected.

Version 3.1 March 1992 Maintenance and utilities 6-21

-------.----~-------~--.-'- .. ~- -----~~ - -------- --- ----"--------~~-, .-"--~

The Group Name: is used to enter the group name of where the database is located. It is set to
either the current logon GROUP or to the qualiified database group name from the Database
Menu, if it was specified. Again, the Password: field is used to enter the group log<l>npassword,
if necessary.

The Account Name: is displayed, and can not be modifiedl. If an ACCOUNT password exist, it
must be entered in the Password: field.

~ If this is the first 5UPERDEX mcdlflcatlon made to tbe database there will be questions
about capacities for the 51 datasets during the maintenance process. The processes
will use the default values for the capaeltles calcutated by 5IMAINT. These are always
the worst case calculation based on the capacity of the user dataset(s) with the
5UPERDEX indices, therefore none of the options selected will fail because of a full 51
dataset. Once the process has completed, an adjustment to the capacity of the 51
dataset(s) may be done.

The function keys available from this screen are:

Path Display Sc:reen Functiion Keys
Key Label Description
Fl HELP Displays the Help Screen.

F2 DATA Returns to the Dataset Menu for addition maintenance
SCREEN

F3 (Not Defined)
F4 (Not Defined)
F5 (Not Defined)
F6 (Not Defined)
F7 (Not Defined)
Fa EXIT Returns back to the Main Menu and does not save the entered

information

To update the data, press the ENTER key. If on-line was chosen, the process will run the
maintenance program, SIMAINT, displaying the progress as it processes, and then return to the
Main Menu. If the selection to execute the process in batch immediately was chosen. the job file
will be streamed and the process will return to the Main Menu. If the choice was made to save
the job file, the information will be saved and the process will return to the Main Menu.

6-36 Maintenance and utilities Version 3.1 March 1992

Special Path Screen

Dataset:
SI-Path Name:
Path Length (2/63):

Selection Order:
Action: _ Delete

Use NLS-Sorting (Y/N): _
(answer only if * is displayed)

AUG 28, 1991 SUPERDEX SPECIAL PATH SCREEN 10:53 AM

Existing Paths:
Len Path Len Path Len Path

* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX

* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX
* ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX * ## XXXXXXXXXXXXXXXX

SUPERDEX (C) Bradmark Technologies, Inc. 1991

This screen is the processing screen for **SPECIAL** SI-Paths. **SPECIAL** Sl-Paths
include the Independent SI-Paths and the keyword exclude SI-Path, KWEXCLUDE (see Section 3 for
more information). It is used to create or delete **SPECIAL** SI-Paths.

The first two fields are display only fields. They display **SPECIAL** for the dataset name and
the selection order value entered from the Dataset Menu.

The next field is the SI-Path Name:. This field is used to enter the name of either an eXisting
SI-Path or a new SI-Path. If the name entered is an existing SI-Path, only the Action: Delete
option can be selected, If the name entered is not an existing SI-Path the 'Action: option is not
available. If you wish to modify an existing SI-Path, it must first be deleted and then added back.

The Action: Delete option is next. As stated earlier, this option is only available for existing
SI-Paths. To mark the path for deletion, key any character, such as X, in the field.

The next two flelds, Path Length and NLS-sorting, are for new SI-Paths. The Path
Length is used to define the entire length, in words, for the new path, and can be any numeric
value between 2 and 63. The NLS-Sorting option will only accept a value if an * (asterisk) is
displayed next to the field. The asterisk will only be displayed if the database has been marked for
Native-Language" other than English. If the NLS collating sequence should be used to sort the
indices, type Y, otherwise the default N will be used. Only select NLS if the independent path will
contain alphanumeric data. If it will contain only binary numeric values, use the default of N.

Version 3.1 March 1992 Maintenance and Utilities 6-23

SIPATH Example

:RUN SIPATH.PUB.SUPERDEX

SIPATH Version 3.1 (12DEC91) Copyright Bradmark Technologies, Inc.
DATABASE>OEDB.DEMO.SUPERDEX
PASSWORD>
IMAGE (Y/N» Y

NUMBER OF DATA SETS 4

*** IMAGE KEYS ***

*** DATA SET *** *** SET TYPE *** ** KEY/PATHS ** DATA KEY
TYPE LNGTH

CUSTOMER-NUMBER
ORDER-NUMBER
lORDER-NUMBER
NO PATHS

I

I

I

2
2
2

MANUAL MASTER
MANUAL MASTER
DETAIL DATASET
DETAIL DATASET

CUSTOMERS
ORDER-HEADERS
ORDER-LINES
SI

*** SUPERDEX KEYS ***

*** DATA SET *** *** SI-PATH
- ITEM(S}

*** TYPE KEY INDEX NO OF MIN KW AVE NO
LENGTH LENGTH KEYS LENGTH KWDS

CUSTOMERS
SI-PATH# = 10002 CUSTOMER-NAME SIM 30 34 1

- CUSTOMER-NAME X 30
(OFFSET = 1 SUBKEY LENGTH 30)

SI-PATH# 10003 CUSTOMER-NAME-KW K 8 12 1 1 6
- CUSTOMER-NAME X 30

(OFFSET = 1 SUBKEY LENGTH 8)
SI-PATH# 10004 ADDRESS1-CITY-KW GK 8 12 2 1 4

- ADDRESS-1 X 26
(OFFSET = 1 SUBKEY LENGTH 8)

- ----------------
- CITY X 16

SI-PATH# 10005 CUSTOMER-NUMBER SIM 4 4 1
- CUSTOMER-NUMBER I 2

(OFFSET = 1 SUBKEY LENGTH 4)

6-38 Maintenance and utilities Version 3.1 March 1992

Custom Path Screen

AUG 28, 1991 10:53 AMSUPERDEX CUSTOM PATH SCREEN

Dataset: Selection Order:
SI-Path Name:
SI-KEY Length (2/63): __
Average number of indexes per record (1/16): __

Use NLS-sorting (Y/N): _
(answer only if "*" is displayed)

SUPERDEX (Cl Bradmark Technologies, Inc. 1991

The custom Path Screen is used to enter the information for a custom path (set Section 3 for
more information). Since a custom path does not have any IMAGE items, this screen is used instead
of the Item Screen used for regular SI-Paths.

The first three fields are display only fields. They display the current dataset being processed, the
selection order value entered from the Dataset Menu,and the name of a new SI-Path from the
Path Screen.

The next field, SI-KEY Length is used to define the length, in words, for the new path not
including the SI-Extension (see Appendix B for more information), and can be any numeric value
between 2 and 63, inclusive.

Next is the Average number of indexes per record field. This is used to calculate
the proper capacity for the corresponding SI dataset and to calculate the proper size for sorting the
indexes. The value can be any numeric value from 1 to 16.

Finally, the NLS-sorting option will only accept a value if an * (asterisk) is displayed next to the
field. The asterisk will only be displayed if the database has been marked for Native-Language other
than English. If the NLS collating sequence should be used to sort the indices, type y, otherwise the
default Nwill be used. Only select NLS if the custom path will contain alphanumeric data. If it
will contain only binary numeric values, use the default of N.

Version 3. 1 March 1992 Maintenance and utilities 6-25

SITEST and SIREPAIR utilities

The SITEST utility is used for checking the integrity of the SUPERDEX B·trees and their
correspondence to the data entries they represent. Additionally, SITEST verifies the KWEXCLUDE
keyword exclusion SI-path against the KWEXCLUD disk file.

SIREPAIR adds the capability to actually repair the SUPERDEX B-trees, so they will match the data.
SIREPAIR will repair 1% of the indexes based on the number of entries in the dataset. There is an
upper limit of one million indexes that can be repaired. This is because the process of repairing the
indexes is slower than the process of reorganizing the indexes. If more than 1% of the indexes are
corrupted, it shows major corruption on the B-tree and therefore the B-tree should be completed
reorganized. This can only happen when a maintenance program is executed without the
SUPERDEX libraries included during the process.

Inconsistencies are reported by an ASCll/octaVhex dump of the SI-indices in error. Also, each
inconsistency indicates whether it is an SI-index with no corresponding entry or an entry with no
corresponding SI-index.

Access requirements

IBefore running SITEST or SIREPAIR, make sure:

• you have shared (DBOPEN mode 5) access to the database
• you are logged on as the database creator
• you are logged into the group and account in which the database resides

IBecause SITEST and SIREPAIR do extensive locking, it is recommended that they not be run during
heavy user access.

IThe rules and processes of SIREPAIR are the same as SITEST. Therefore, first SITEST will be
covered, then the differences between SITEST and SIREPAIR.

Invoking SITEST

Two versions of the SITEST program are provided, in PUB.SUPERDEX and NOPRIV.SUPERDEX.
They are identical except the NOPRIV version does not use techniques that require PM capability.
The PUB version should be used to obtain the best performance.

IUse the NOPRIV version if you do not want to run software with PM capability and on datasets
whose block sizes are not even multiples of 128 words (128, 256, 384, 512, etc.).

6-40 Maintenance and utilities Version 3.1 March 1992

Path Display Screen

AUG 28, 1991 10:53 AMSUPERDEX PATH DISPLAY SCREEN

selection Order:Dataset:
SI-Path Name:
Path Type:
Key Length: __ Number of Keys: _ Min Key word length: _
Index Length: Avg No Key Words:

(or Avg No of Indexes for Custom Index)
Items Type Length Items Type Length

S2
S4

S1
S3

SUPERDEX (C) Bradmark Technologies, Inc. 1991

The Path Display Screen is used to display all related information about a path. SI-Paths
that have been added during this execution of SUPERDEX, along with the previously existing SI-
Paths can be displayed. Of course, all of the fields on this screen are display only.

Version 3.1 March 1992 Maintenance and Utilities 6-27

Specifying mode of operation
SITEST has two modes of operation:

Mode 1 checks the integrity of the 8-tree itself and does not validate its relationship to the data
entries.

Mode 2 checks the integrity of the 8-tree (same as mode 1) and the correspondence of the SI-
indices to the data entries they represent. Mode 2 is slower than mode 1 but performs a more
thorough analysis.

iMODE (l=TREE, 2=FULLI >

Mode 1 processing

If mode 1 was selected, SITEST processes each 8-tree in succession and displays the phase
TREETEST while processing. Once the processing has completed, the number of SI-indices
checked is displayed:

MODE (l=TREE, 2=FULL) > 1

PROCESSING SI-PATH KWEXCLUDE OF
TreeTest 0 INDICES CPU 0:00:00.0 Elapsed 0:00:00
PROCESSING SI-PATH CUSTOMER-NAME OF CUSTOMERS
TreeTest 1003 INDICES CPU 0:00:00.3 Elapsed 0:00:01
PROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS
TreeTest 3059 INDICES CPU 0:00: 00.4 Elapsed 0:00:01
PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS
TreeTest 4418 INDICES CPU 0:00:00.5 Elapsed 0:00:01
PROCESSING SI-PATH CUSTOMER-NUMBER OF ORDER-HEADERS
TreeTest 2620 INDICES CPU 0:00:00.3 Elapsed 0:00:00
PROCESSING SI-PATH ORDER-TYPE OF ORDER-HEADERS
TreeTest 2620 INDICES CPU 0:00:00.2 Elapsed 0:00:00
PROCESSING SI-PATH ORDER-PART OF ORDER-LINES
TreeTest 9272 INDICES CPU 0:00:01.7 Elapsed 0:00:03
PROCESSING SI-PATH PART-ORDER OF ORDER-LINES
TreeTest 9272 INDICES CPU 0:00: 01. 7 Elapsed 0:00:03

END OF PROGRAM

6-42 Maintenance and utilities Version 3. 1 March 1992

Item Screen

AUG 28, 1991 10:53 AMSUPERDEX ITEM SCREEN

Dataset:

SI-Path Name:

Path Type:

Selection Order:

Items in Dataset:

_ XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ xxxx.xxxxxxxxxx _ XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX _ XXXXXXxxxxxxxxxx _ XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX _ XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

SUPERDEX (e) Bradmark Technologies, Inc. 1991

The Item Screen is used to select the IMAGE item(s} that will be included in the SI-Path being
built. If the SI-Path already exists, the IMAGE item(s} that were selected previously will be marked
appropriately. Otherwise, no items will be mark.

The first four fields are all display only and are passed from the Path Screen. The Dataset:
is the name of the dataset being accessed, the Selection Order: is the selection order
keyed from the Dataset Menu, the SI-Path Name: is the name of the SI-Path being
accessed, and the Path Type: is the description of the type of the SI-Path as defined on the
Path Screen.

Next, is a table of the IMAGE item names that are contained in the dataset. The first field is used to
select the item for inclusion in the SI-Path. The field can be any group of two characters (i.e, A, ex,
FF, B, etc.). A designation can only be used once per SI-Path.

Numeric designations are not allowed, except when adding a Concatenated SI-Path. In this case,
the SI-SUBKEY-1 must be marked with an Al, SI-SUBKEY-2 must be marked with an A2, SI-
SUBKEY-3 with A3, and SI-SUBKEY-4 with A4.

If the SI-Path was NOT marked as grouped on the Path Screen, then the items must be marked
with Al, A2, A3, A4 or A (if a simple SI-Path).

If a new SI-Path is being created with the same name as an IMAGE item, the IMAGE item will be
designated with Al, and can not be modified.

When creating a new grouped SI-Path, it is important to designate the IMAGE Item you want first in
the group as A (please refer to Section 3 for information on the first item in a group).

Version 3.1 March 1992 Maintenance and Utilities 6-29

PROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS
TreeTest 3062 INDICES CPU 0:00:00.4 Elapsed 0:00:00
INPUT 1004 RECORDS 100 % CPU 0:00:02.4 Elapsed 0:00:03
SORT 3077 INDICES CPU 0:00:00.0 Elapsed 0:00:00
COMPARE 3062 INDICES 100 % CPU 0:00:01.4 Elapsed 0:00:02
PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS
TreeTest 4418 INDICES CPU 0:00:00.5 Elapsed 0:00:01
INPUT 1004 RECORDS 100 % CPU 0:00:03.7 Elapsed 0:00:04
SORT 4449 INDICES CPU 0:00:00.0 Elapsed 0:00:00
COMPARE 4418 INDICES 100 % CPU 0:00:02.1 Elapsed 0:00:02
PROCESSING SI-PATH ORDER-TYPE OF ORDER-HEADERS
TreeTest 2620 INDICES CPU 0:00:00.2 Elapsed 0:00:00
INPUT 2620 RECORDS 100 % CPU 0:00:02.2 Elapsed 0:00:02
SORT 2620 INDICES CPU 0:00:00.0 Elapsed 0:00:00
COMPARE 2620 INDICES 100 % CPU 0:00:01.1 Elapsed 0:00:01
PROCESSING SI-PATH ORDER-PART OF ORDER-LINES
TreeTest 9272 INDICES CPU 0:00:01.5 Elapsed 0:00:02
INPUT 9272 RECORDS 100 % CPU 0:00:08.6 Elapsed 0:00:09
SORT 9272 INDICES CPU 0:00:00.0 Elapsed 0:00:00
COMPARE 9272 INDICES 100 % CPU 0:00:05.4 Elapsed 0:00:06
PROCESSING SI-PATH PART-ORDER OF ORDER-LINES
TreeTest 9272 INDICES CPU 0: 00: 01. 6 Elapsed 0:00:02
INPUT 9272 RECORDS 100 % CPU 0:00:08.9 Elapsed 0:00:10
SORT 9272 INDICES CPU 0:00:00.0 Elapsed 0:00:00
COMPARE 9272 INDICES 100 % CPU 0:00:05.8 Elapsed 0:00:06

END OF PROGRAM

For each inconsistency detected, the SI-index is displayed with a counter indicating the relative
position in the 8-tree. If the counter is on the left side of the output, it indicates an SI-index with no
corresponding entry; if the counter is on the right side, there is an entry with no corresponding SI-
index.

Running SITEST in batch

SITEST can be run in batch, and uses the same dialog as on-line. The method for creating a job
stream by which to run SITEST in batch is to anticipate the on-line prompts and provide responses
for them.

SITEST will QUIT (not TERMINATE) normally upon encountering any error in batch, permitting
testing of the system Jew.

6-44 Maintenance and utilities Version 3.1 March 1992

Item Definition Screen

AUG 28, 1991 10:53 AMSUPERDEX ITEM DEFINITION SCREEN

Selection Order:Dataset:
SI-Path Name:
Path Type:

Item: Item Selection Order:

Item length (in bytes) :

Starting Position (in bytes) :

Minimum Number of Characters:
per Keyword (Keyword only)

(1 - 4)

Average Number of Keywords:
per record (Keyword only)

(1 - 16)

SUPERDEX (C) Bradmark Technologies, Inc. 1991

The Item Definition Screen is used to define detailed information about the IMAGE
items that were selected on the previous screen. This screen will only allow information for fields
based the 51-Path type and the IMAGE item type. For example, a numeric item will not be displayed
because the IMAGE definition must be used, or if the 51-Path is not a keyword path the fields marked
Keyword only do not apply.

The first four fields are all display only and are passed from previous screens, the Dataset: is the
name of the dataset being accessed, the Selection Order: is the selection order keyed from
the Dataset Menu,the SI-Path Name:is the name of the 51-Path being accessed, and the
Path Type: is the description of the type of the 51-Path as defined on the Path Screen.

The next two fields, Item: and Item Selection Order: are also display fields (Passed
from the Item Screen).

The Item length: field is used to enter the length of the SI-Subkey in bytes. By default, for
non-keyworded 51-Paths, the length will be set to the length of the IMAGE item. For keyworded 81-
Paths, the length will be defaulted to eight (8) bytes.

The Starting Position: is used to define the position of where the index should begin. For
non-keyworded 51-Paths, the value can be any starting position (relative to 1), as long as the starting
position is not longer then the length of the IMAGE item. For keyworded 51-Paths, this value will be
forced to one (1).

The next two fields are only valid for keyworded 51-Paths. The first, MinimumNumber of
Characters:, is used to define the minimum number of characters that must be in the word
before it will be index. The default is two (2). This means that single character words, such as "a"
will not be indexed. The valid values are 1 through 4, inclusive.

Version 3.1 March 1992 Maintenance and Utilities 6-31

SICOUNT utility

SICOUNT was created to provide the exact compression information in the 8-trees. SUPERDEX
compresses 8-trees based on the full index values for a physical SI data record. This means all of
the indexes in a given physical SI data record will be compressed the same.

SUPERDEX begins compressing with the left most word and will compress up to the whole length of
an SI-INDEX, including the SI-EXTENSION. The default size of the SI-ITEM is set with this
compression algorithm taken into consideration. It is possible to increase, or decrease, the
compression by manually setting up the SI-ITEM and SI dataset structures (although this is not
recommended). Depending on the data and the type of items in the SI-Path, a smaller SI-ITEM can
produce a greatly increased compression ratio.

1:r Since there are several items to consider, contact Bradmark Technical Support before
adjusting the structure lof the SI-ITEM and SI datasets.

SICOUNT will not only provide the information on the compression, but will also give the height of the
8-trees, the number of leaf and tree records, and the number of indexes in the path.

Invoking SICOUNT

Two versions of the SICOUNT program are provided, in PU8.SUPERDEX and
NOPRIV.SUPERDEX. They are identical except the NOPRIV version does not use techniques that
require PM capability. The PUB version should be used to obtain the best performance.

IUse the NOPRIV version if you do not want to run software with PM capability and on datasets
whose block sizes are not even multiples of 128 words (128, 256, 384, 512, etc.).

To invoke SICOUNT:

~ SICOUNT is run without ;LIB=G or ;LIB=P.

Specifying the database

Specify the name of a SUPERDEX'ed database, as shown:

/DATABASE > OBns

6-46 Maintenance and utilities Version 3.1 March 1992

Related Masters Screen

Aug 28, 1991 SUPERDEX RELATED MASTERS SCREEN 10:53 AM

SELECT WITH AVAILABLE MASTERS REQUIRED MASTERS UNQUALIFIED MASTERS
AN ·X·

SUPERDEX (C) Bradmark Technologies, Inc. 1991

The Related Master Screen is used to identify the related Master datasets to be included
in the Supergrouped path being built. This screen has three columns of Master datasets identified.
The AVAILABLE MASTERS column lists those master datasets that can optionally be included in the
current Supergrouped path. The REQUIRED MASTERS column lists those master datasets that
must be included in the current Supergrouped path (e.g. the same path already exists in a particular
master set). The UNQUALIFIED MASTERS column identified those master datasets that cannot be
included in the current Supergrouped path.

Mark any desired optional master dataset(s) to be included in the current Supergrouped path with an
·X". This program will automatically create the necessary paths for each of the master selected
datasets (or modify the existing master path to become a Supergrouped path).

Related Musters Screen IFuncth:mKeys
Key Label Description
Fl HELP Displays the Help sc reen,
F2 (Not o.efined)
F3 (Not D,efined}
F4 (Not D,efined)
F5 (Not Defined)
F6 (Not Defined}
F7 (Not Defined}
Fa EXIT Exits back to the Main ME:Du.

Once all of the data has been keyed, press the ENTER key. The process will then return to the
PATH screen.

Version 3.1 March 1992 Maintenance and Utilities 6-33

Following is a table explaining all of the Hems displayed:

Label Description
KeyLength The total length of the SI-index, including the SI-extension, in

words.
BTree Height The height of the 8-tree. This will defined the maximum number of

physical I-Os to qualify a record. If the 8-tree records are in
memory, there will be no physical I-Os.

Tree Records The total number of physical records that make up the 8-tree.
Contiguous pairs The number of physical records included in the 8-tree, that are

contiguous in the SI-dataset (Also called "lndex Efficiency-). The
percentage of efficiency is also reported.

Leaf Records The number of physical records that are located on the bottom of
the tree.

Keys The total number of SI-indices in the 8-tree.
LenPrefix The number of words in the SI-index that are compressed. ·0" is

no compression. -3" is three words compressed in every index in
the physical record.

#Records The number of physical records that are compressed at the level.
#Keys The number of SI-indices that are compressed at the level.
Avg Keys/Rec The average number of SI-indices that are contained on one

physical record.
Max Keys/Rec The maximum number of SI-indices that are contained on one of

the physical records.
Optimal Keys/Rec The optimal number of SI-indices that can be contained on one

physical record.

6-48 Maintenance and utilities Version 3.1 March 1992

Execute Screen

AUG 28, 1991 SUPERDEX EXECUTE SCREEN 10:53 AM

(1) Execute On-line
(2) Execute in Batch
(3) Save Job file [Enter file name] :

file.group

(1) Modify Index Structure and Populate Indices
(2) Modify Index Structure, only

Job Name:

User Name: Password:

Group Name: Password:

Account Name: XXXXXXXX Password:

SUPERDEX (C) Bradmark Technologies, Inc. 1991

This screen is used to select how the modification process should be executed. By default, the
process will execute the SUPERDEX maintenance program, SIMAINT, as a son process using the
information captured.

The first field is used to select the execution option. 1, the default, runs the process immediately on-
line, 2 streams the process for batch immediately, and 3 is used to save the information entered in a
job file that can be streamed at a later time.

If 2 was chosen, a job file named SIBCHFLE will be created and streamed. If for some reason
SIMAINT does not complete successfully (i.e. the SI dataset did not have enough free space to add
the new index), this file will not be automatically purged. Otherwise, it will be purged by the job
stream itself. If 3 was chosen, the second field is used to enter a valid MPE file name (with the
group optional) to save the job file.

The third field selects whether the process will only define the new SUPERDEX index structure, or
will also populate the SUPERDEX indices for the new structure. The default is to populate the
indices during the definition execution. To not process the indices, simply enter 2 and at some later
point, it may be necessary to reorganize the newly created indices.

The last group of fields are used to define the logon necessary for the job file. The Job Name: is
an optional name that defaults to SIBATCH and can be modified.

The User Name: and Password: are required fielcls for logon. The name will default to the
current logon USER name and can be modified. The password field is used to enter the user's logon
password, if it exists.

Version 3.1 March 1992 Maintenance and Utilities 6-35

SITRACE utility

SITRACE is used to trace all IMAGE intrinsics and SUPERDEX intrinsics called in a program. It is
very useful for debugging or logging all data base updates with SUPERDEX.

Activating SITRACE

To active the trace, the JCW SI-TRACE has to be set to a non-zero value before running the
program to be traced:

: SETJCW SITRACE = 1 (or 111 for more detail)

Function

When processing DBOPEN, SUPERDEX checks if the SITRACE JCW is set to a non-zero value. If
so, an internal flag is set to generate trace information.

~ The JCW is checked only by DBOPEN, so it must be set before opening the data base.
BREAKing a running program and RESUMEing it after setting the JCW will produce trace
information only for data bases opened after the BREAK.

Redirection of Output

Trace output is sent to the file SITRACEF, which is defaulted to $STDLlST and opened with
AccessOptions "share" and "append". This allows you

a) to trace access via several access paths (multiple DBOPENs to one or more databases),
and

b) to append more trace information to an existing file.

Output can be redirected by specifying a file equation for SITRACEF.

6-50 Maintenance and utilities Version 3. 1 March 1992

SIPATH utility

SIPATH is a program that will display the IMAGE keys and chains, along with the SUPERDEX
SIPATH information. This information is given in a concise and is complete.

To use SIPATH, simply:

I'RUB SnATH. PUB. SOPBRDBX

At this point you will be asked to enter the data base name you wish to look at.

The data base name can be fully qualified with group and account. You must have correct access
to look at data bases outside your logon group or account. Entering RETURN at the data base
name will exit SIPATH.

Type Description
Code
B??? Index blank values
C Concatenated Index
CG Concatenated-Grouped Index
CK Concatenated-Grouped-Keyworded Index
CUS Custom Index
G Grouped Index
GK Grouped-Keywordedlndex
IND Independent Index
K Keyworded Index
KEX Keyword Exclude Index
S Supergrouped Index
sc Supergrouped-Concatenated Index
SCK Supergrouped-Concatenated-Keyworded Index
SIM Simple Index
SK SUper9rou~-Ke~orded Index

Version 3.1 March 1992 Maintenance and Utilities 6-37

--.~--

SIDRIVER utility

ISIDRIVER is a utility which permits IMAGE intrinsics to be "driven" interactively for various utility
functions. It executes an intrinsic and returns the elapsed and CPU times.

The commands are very similar to HP's DBDRIVER utility. There have been some modifications and
additions to the standard DBDRIVER utility to support all advanced SUPERDEX retrieval capabilities,
new intrinsic parameters and modes, and new intrinsics. To execute:

I,RUN SIDRIVER. pUB. soPE"""X

~ Only the differences between SIDRIVER and DBDRIVER are documented.

The modified commands are:

!B new format is #{;base}, where:
is a number 1 to 5 (used to assign multiple databases)
{;base} is the base name to open (only used during open)

!Q Always upshifted
!L Always upshifted
II Always upshifted

The new commands are:

!P Password parameter, if lower case is necessary

ISTON
ISTOF
IOCON
IOCOF
/HXON
/HXOF

Set a switch to always print the status array after a call
Turns status print off
Report octal status, in addition to decimal
Turns octal status print off
Report hex status, in addition to decimal
Turns hex status print off

New intrinsics are callable by the following commands:

DE DBERASE
DX DBDELIX
PX DBPUTIX

This version of SIDRIVER does not support the PRIV entry point and can be excecuted in either
compatibility mode or native mode, depending on your machine.

6-52 Maintenance and utilities Version 3. 1 March 1992

ORDER-HEADERS
SI-PATH# = 10006 CUSTOMER-NUMBER SIM 4 8 1

- CUSTOMER-NUMBER I 2
(OFFSET = 1 SUBKEY LENGTH 4)

SI-PATH# 10007 ORDER-NUMBER BSIM 4 4 1
- ORDER-NUMBER I 2

(OFFSET = 1 SUBKEY LENGTH 4)

ORDER-LINES
SI-PATH# = 10008 ORDER-PART C 18 22 2

- ORDER-NUMBER I 2
(OFFSET = 1 SUBKEY LENGTH 4)

- PART-NUMBER X 14
(OFFSET = 1 SUBKEY LENGTH 14)

SI-PATH# 10009 PART-ORDER C 18 22 2
- PART-NUMBER X 14

(OFFSET = 1 SUBKEY LENGTH 14)
- ORDER-NUMBER I 2

(OFFSET = 1 SUBKEY LENGTH 4)
SI-PATH# 10010 PART-DESCRIPTION K 8 12 1 2 4

- PART-DESCRIPTION X 26
(OFFSET = 1 SUBKEY LENGTH 8)

SI

SPECIAL PATHS
SI-PATH# = 10001 KWEXCLUDE KEX 12

DATABASE> RETURN

END OF PROGRAM

Version 3.1 March 1992 Maintenance and Utilities 6-39

Specify the SI dataset(s) Capacities

You will now be asked to enter the desired capacities for each of the SI datasets you want to create.

Enter the CAPACITIES for each set separated by comma's OR
enter one CAPACITY followed by @ to be used for ALL sets: 2500@

From here, the program will build the new SI-Index database and all the requested SI datasets.

NUMBER OF ERROR MESSAGES: 0
ROOT FILE OEDBSI CREATED.

The dataset OEDBSI was successfully built. You may now proceed
with your SUPERDEX installation.

This program will also add the necessary SI item and SI dataset to the database being indexed. This
is necessary because the SI dataset in the main database instructs SUPERDEX that the indices are
being maintained in a separate database.

6-54 Maintenance and utilities Version 3.1 March 1992

To invoke SITEST:

:RON SITEST.PUB.SUPERDEX

SITEST VERSION 3.1 (12DEC91) COPYRIGHT DR. MATT/IABG (1991)

~ SITEST is run without ; LIB=G or ; LIB=P.

Specifying the database

Specify the name of a SUPERDEX'ed database, as shown:

IDATABASE > OEDB

Specifying datasets

Specify @ to diagnose all datasets, the name of a dataset that contains SI-paths, or SPACE + REWRN
to diagnose a independent SI-path:

IDATA SET > •

Specifying SI-paths

If a value other than @ was specified for dataset, a prompt is issued to determine whether to
diagnose a specific SI-path for the current dataset or all SI-paths for the dataset. Enter an SI-path
name or @ to diagnose all SI-paths for the dataset:

IS! PATH> •

Version 3.1 March 1992 Maintenance and Utilities 6-41

Specifyingl the data sets

Specify the name of the appropriate SI dataset that you want to change the capacity for:

ISETNAME' S_I_1 ~

If you want to review a list of the SI datasets available for capacity change, enter a "?" in the dataset
field and a list of the available SI datasets will be displayed:

5ETNAME: 511

Enter the name or number of the detail set to have its capacity changed.

Enter the name of number of one of the detail sets in this base:

Dataset Type Capacity Entries % Full

1 S11 Detail 1500 1079 71. 9
2 S12 Detail 3 0 0

Enter the dataset NAME or NUMBER:

The program will now display some supporting information about the dataset identified for capacity
change:

Absolute capacity number (e.g. "5501")
Relative change +/- number (e.g. "+500")
Percent change +/- change % (e.g. "-25%")
CTA trending if available for set (e.g. ·C")

The new capacity may be specified in any of the following formats

Current set capacity 1500 (71.9% full)
Current High Water Mark 1129
Current set entries 1079
Current blocking factor 2
Current block size 1024 words

Current file size 6016 sectors

6-56 Maintenance and utilities Version 3.1 March 1992

Mode 2 processing

If mode 2 was selected, SITEST processes each 8-tree in succession and displays the phase
TREETEST while performing the 8-tree check. Following the TREETEST, the phases INPUT,
SORT, and COMPARE are executed and displayed accordingly. Once the processing of each SI-
path is completed, the number of SI-indices checked is displayed:

SI Key # Key Value (SI Chain or Dataset) DSet Key #

MODE (l=TREE, 2=FULL) > 2
PROCESSING SI-PATH KWEXCLUDE
TreeTest 0 INDICES

OF
CPU 0:00:00.0 Elapsed 0:00:00

PROCESSING SI-PATH CUSTOMER-NAME
TreeTest 1004 INDICES
INPUT 1004 RECORDS 100 %
SORT
COMPARE

1004 INDICES
o INDICES

OF CUSTOMERS
CPU 0:00:00.2 Elapsed 0:00:00
CPU 0:00:00.9 Elapsed 0:00:01
CPU 0:00:00.0 Elapsed 0:00:00

*** Inconsistency: Keys from SI Chain vs. Keys from Dataset *****

052105 051524 020055 020116 047440 044516 042105 054040 957
T EST N 0 I N D E X

54 45 53 54 20 2D 20 4E 4F 20 49 4E 44 45 58 20
020040 020040 020040 020040 020040 020040 020040 000020

20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 10
172107

G

F4 47

957 052105 051524 020055 020116 047440 051105 041517 051104
T EST NOR E COR D

54 45 53 54 20 2D 20 4E 4F 20 52 45 43 4F 52 44
020040 020040 020040 020040 020040 020040 020040 000041

20 20 20 20 20 20 20 20 20 20 20 20 20 20 00 21
164216

E8 8E

1004 INDICES FROM SI CHAIN, 1004 INDICES FROM DATASET COMPARED
2 ERROR(S) found

Version 3.1 March 1992 Maintenance and Utilities 6-43

ALTPROG utility

The ALTPROG utility is used to add capabilities to and increase the MAXDAT A of object program
files. Native Mode programs on MPElXL cannot be changed with ALTPROG.

ALTPROG unconditionally:

• adds DS and MR capability
• increases MAXDAT A to 32000

Access requirements

Before running ALTPROG, make sure:

• you have write access to the program files
• you are logged into the group and account in which the program files reside

Invoking ALTPROG

To invoke ALTPROG:

ALTPROG Vl.O (30Jan90) COPYRIGHT IABG

:RUN ALTPROG.PUB.SUPERDEX

Changes PROG File(s): Capabilities DS, MR are switched ON,
MAXDATA is set to 32000.

Specifying the program file

Specify the name of an object program file, which may be qualified with group name. The @ wildcard
may be specified for either program file name or group name or both, as shown:

Expects File Specification in LISTF format

Enter File Specification (RETURN to end program) @.PROG

6-58 Maintenance and utilities Version 3.1 March 1992

Invoking SIREPAIR

As stated earlier, while discussing SIREPAIR, we will only identify the differences.

To invoke SIREPAIR:

:RON SIREPAIR.PUB.SUPERDEX;LIB.P

SIREPAIR Version 3.1 (12DEC91) COPYRIGHT DR. MATT/IABG (1991)

~ SIREPAIR MUSTbe executed with; LIB=P

Specifying Input

The input for database, datasets, and si-paths are the same for SIREPAIR as they are for SITEST.

Specifying request before update

SIREPAIR will now prompt to see if the updating should be done immediately, or should the user I
specify that the si-path should be repaired.

IPROMPT BEFORE REPAIR (Y,N) >

After this, SIREPAIR will do the same processing as SITEST mode 2. After it displays the indexes I
that are corrupt, it will prompt the user if the previous question was answered yes.

IRepair this path? (Y,N) >

If the SI-path should be repaired, SIREPAIR will repair the reported problems and then go on to the I
next SI-path.

Version 3.1 March 1992 Maintenance and Utilities 6-45

QUERY/3000 utility

QUERY/3000 is compatible with SUPERDEX in that any entries added, deleted, or modified in
QUERY while referencing the SUPERDEX SL will automatically adjust the SI-indices, although no
advanced retrieval capabilities are available.

To use QUERY to add, delete, and update entries, copy QUERY.PUB.SYS into a group or account in
which the SUPERDEX SL segments reside (e.g. new group SUPERDEX.SYS), and then run it to
reference the SL:

I'RUN QUERY.SOPERDEX.SYS;LIB=G

It is recommended that QUERY be run to reference the SUPERDEX SL only for adding, updating,
and deleting entries and not for retrieving entries.

If using QUERY via the SUPERDEX SL to find entries using a positive value in an item of data type P
or Z for which an identically-named SI-path exists, qualifying entries may be returned twice. This is
because QUERY internally issues two DBFINDs--one with a signed argument, one with an unsigned
argument--whereas SUPERDEX treats them identically. To avoid this, configure the SI-paths with
names different than the item names.

6-60 Maintenance and utilities Version 3.1 March 1992

Specifying datasets

Specify @ to diagnose all datasets, the name of a dataset that contains SI-paths, or SPACE + RETURN

to diagnose a independent SI-path:

IDATA SET> •

Specifying SI-paths

If a vafue other than @ was specified for dataset, a prompt is issued to determine whether to
diagnose a specific SI-path for the current dataset or all Sf-paths for the dataset. Enter an Sf-path
name or @ to diagnose all Sf-paths for the dataset:

IS1 PATH> •

Process

At this point SICOUNT will process the SI-Paths selected and will display detailed information about
each path:

LenPrefix #Records #Keys Avg.Keys/Rec .Max Keys/Rec Optimal Keys/Rec
CPU 0:00:00.0 Elapsed 0:00:00

KeyLength
BTree Height
Tree Records
Leaf Records
Keys

Version 3.1 March 1992 Maintenance and Utilities 6-47

The first is the DATASET prompt:

IDATASET>

Enter the name of the dataset that is located in the database opened by the user program to use
against the selection. Press return to exit SuperSELECT.

Next, the SIPATH prompt will be displayed:

ISIPATlb

Enter the SI-Path name to use against the selection. The SI-Path must be one that is located in the
dataset specified in the previous prompt. Pressing RETURN will cause SuperSELECT to return to the
DATASET prompt.

Finally, the argument will be prompted for:

Enter any valid SUPERDEX argument, including relational and Boolean operators. Once the
argument has been entered the message "Record written", will be displayed for verification to
the user.

SuperSELECT will then prompt for more arguments, until RETURN is pressed at the prompt. This
allows for multiple search values to be entered. When RETURN is pressed, SuperSELECT will back
up to prompt for another SI-Path.

:RUN SUPERSEL.PUB.SUPERDEX

SuperSELECT Version 3.1 (12DEC91) Copyright Bradmark Technologies, Inc. (1991)
DATASET> CUSTOMERS
SIPATH> CUSTOMER-NAME-KW
ARGUMENT>
-UNI@. AND CHU@.;
Record written
ARGUMENT>
RETURN
SIPATH> RETURN
DATASET> RETURN
End of Program
:RUN USERPROG

In the above example, SuperSELECT is used to change the serial search in USERPROG. When
USERPROG executes, a SUPERDEX selection against the CUSTOKER-NAHE-KW keyworded SI-

7-2 SuperSELECT Version 3.1 March 1992

Here is an example of SICOUNT.

SICOUNT VERSION 3.1 (19NOV91) COPYRIGHT DR. MATT / IABG (1991)
DATABASE > OEDB
DATA SET > CUSTOMERS

PROCESSING SI-PATH CUSTOMER-NAME

KeyLength 17
BTree Height 3
Tree Records 39
Contiguous pairs 37 (97.37 %)
Leaf Records 36
Keys 1004

LenPrefix #Records #Keys Avg.Keys/Rec
0 26 679 26
1 10 290 29

CPU

OF CUSTOMERS

Max Keys/Rec
28

Optimal Keys/Rec
29
3029

0:00:00.4 Elapsed 0:00:01

PROCESSING SI-PATH CUSTOMER-NAME-KW OF CUSTOMERS

KeyLength
BTree Height
Tree Records
Contiguous pairs
Leaf Records
Keys

LenPrefix #Records
o
1
4

32
3
1

6
2

37
35 (97.22 %)

36
3062

#Keys Avg.Keys/Rec Max Keys/Rec Optimal Keys/Rec
2601 81 83 84
294 98 98 99
132 132 132 249

CPU 0:00:00.4 Elapsed 0:00:00

PROCESSING SI-PATH ADDRESS1-CITY-KW OF CUSTOMERS

KeyLength
BTree Height
Tree Records
Contiguous pairs
Leaf Records
Keys

LenPrefix #Records
o 41
1
4

Version 3.1 March 1992

6
2

49
48 (100.00 %)

48
4418

3
4

#Keys Avg.Keys/Rec Max Keys/Rec Optimal Keys/Rec
3353 82 83 84
288 96 98 99
730 183 248 249

CPU 0:00:00.4 Elapsed 0:00:00

Maintenance and Utilities 6-49

If the SuperS ELECT temporary file still exists, SuperS ELECT will then display a message and ask if
the older file should be purged.

Error Closing SuperSELECT file!
Temporary file already exists. Purge File (Y/N)?

If the older temporary file should be purge, enter Y, otherwise enter If.

SuperSELECT - Method 3

Method 3 of SuperS ELECT is used primarily for a process that will accept the argument values from
the user, and then a batch job is run, USing the values. This allows a Simple program to be written
that will prompt the user for the arguments and then write the selection criteria to a flat file. The
batch job will always run SuperS ELECT, specifying that the flat file should be used.

This is done by running SuperS ELECT like:

I ,RUN SUPERSEL. PUB. SUPERDEX; INFO=" AARGFILE"

This tells SuperS ELECT to read the dataset, SI-path, and argument from the file ARGFILE. The file
name can be fully qualified, including the group and account. The format of the ; INFO string is:

: RUN SUPERSEL. PUB. SUPERDEX; INFO= II A filename.group.account"

The file layout is similar to the ; INFO string format used in method 2. It should be a unnumbered
flat file, that includes the dataset name, si-path name, and the argument, separated by semi-colon,
and no blank lines:

dataset;sipathl;argumentl;
dataset;sipath2;argument2;

For our example, the ARGFlLE would contain one line:

7-4 SuperSELECT Version 3.1 March 1992

Examples:

A. Redirect output to another free terminal:

:FILE SITRACEF;DEV=nn
B. Append output to an eXisting trace file:

:FILE SITRACEF=oldtrace,OLD
C. Create a new file and redirect output to it:

:BUILD mytrace;REC=-80,3,F,ASCII;DISC=1000
:FILE SITRACEF=mytrace,OLD
D. Specify file to be created by SUPERDEX:

:FILE SITRACEF=mytrace,NEW;REC=-80,3,F,ASCII;DISC=lOOO;SAVE
~ Examples A. B, and C allow a trace access via multiple access paths (multiple DBOPENs to

one or more databases), whereas D only allows a trace access via the access path of the first
DBOPEN.

Since QUERY first issues a DBOPEN wnh an empty BASE parameter and mode 0 (to get
TurbolMAGE version information) before prompting, example D is can not be used (only the first
DBOPEN will be traced, and nothing else).

Version 3.1 March 1992 Maintenance and Utilities 6-51

The screen file is a file buiH and designed by the programmer. It simply has a two (2) character
command code, followed by a 78 character command or comment:

CCX7YXXYYYYXXXXXYXXXXXXXXXYXXXXXXXXXXXXXXX
A..Command or Comment

A-Command Code

The valid command codes are:

Code Command Description
Spaces Any comment or blank Does nothing, only for internal comments.

AA DATASET;SIPATH; ACCEPT-ARGUMENT: Accepts any valid
SuperSELECT argument from the user, and writes
out the data.

0 Any string, including escape DISPLAY: Displays the Command portion without a
sequences carriage return.

DC Any string, including escape DISPLAY-CARRIAGE RETURN: Displays the
sequences Command portion and then executes a carriage

DP Any string, including escape return.
sequences DISPLAY-PROMPT: Displays the Command portion,

then waits for the user to press RETURN. No data is
accepted.

R Any valid program name RUN: Executes the program specified as a son
process. No RUN parameters are valid.

S DATASET;SIPATH;ARGUMENT; SET: Sets a fixed argument value for the dataset and
SI-path

7-6 SuperSELECT Version 3.1 March 1992

SIBASE Utility

The SIBASE utility is provided to allow you to automatically create an SI-Index database, which is a
separate database used to hold the indexes. This option is mainly chosen for those databases that
are enabled for logging. By moving the indexes to a separate database, the log files will not fill up
with the accesses to the SI dataset(s).

Access Requirements

Before running SIBASE, make sure:

• No other process is accessing the database
• You are logged on as the CREATOR of the database in the group and account in which the

database resides

Invoking SIBASE

To invoke SIBASE:

:RUN SIBASE.PUB.SUPERDEX

SIBASE VERSION 3.1 (30DEC91) COPYRIGHT BRADMARK TECHNOGIES, INC (1991)

Specifying the database

Specify the name of the SUPERDEX'ed database, as shown:

Please enter the PRIMARY data base name, (ENTER to exit): OEDB

Specifying the number of SI datasets to build

Specify the number of SI datasets you wish to build. Up to seven (7) different SI datasets can be
built if desired.

Please enter the NUMBER of SI datasets you wish to build=> 2

Version 3.1 March 1992 Maintenance and Utilities 6-53

SISIZE Utility

The SISIZE utility is provided to allow you to change the capacity of an SI (SUPERDEX Index)
dataset. The SI set(s) can reside in either the original database being indexed or the external SI-
Index database. This utility will only function on SI type datasets.

Access Requirements

Before running SISIZE, make sure:

• No other process is accessing the database
• You have a current backup of the database
• You are logged on as the CREATOR of the database in the group and account in which the

database resides

Invoking SISIZE

To invoke SISIZE:

:RUN SISIZE.PUB.SUPERDEX

SISIZE VERSION 3.1 (30DEC91) COPYRIGHT BRADMARK TECHNOLOGIES, INC. (1991)

Specifying the database

Specify the name of the SUPERDEX'ed database, as shown:

!SOURCE DATABASE, OEDB
PASSWORD: (N/A)

~ The PASSWORD is not applicable if you are the CREATOR of the database.

Confirmation of the backup

You will be asked to verify that a current backup of the database does exist:

Do you have a current backup of the Database ? (Y/N) : Y

Version 3.1 March 1992 Maintenance and Utilities 6-55

Retrieving all entries in a set in ascending sorted order

This example retrieves all the entries in the ORDER dataset in ascending sorted sequential order. It
uses DBFIND mode 100 to position at the alphabetic beginning of the set, and DBGET mode 15 to
perform a greater-than-or-equal-to retrieval.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUMBER PIC 9 (6)
05 ORDER-NUMBER PIC 9 (6) .
05 ORDER-DATE PIC 9 (6) .
05 ARTICLE-NUMBER PIC 9 (10) .
05 AMOUNT PIC 9 (11) COMP-3.

01 BASE PIC X(8) VALUE • OEDB
01 DSET PIC X (16) VALUE ·ORDER
01 ITEM PIC X (16) VALUE "ORDER-DATE
01 LIST PIC XX VALUE "@H •

01 STAT.
05 CONDITION-WORD PIC S9 (4) COMPo
05 STAT2 PIC S9 (4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STAT5-6 PIC S9(9) COMPo
05 STAT7-8 PIC S9(9) COMPo
05 STAT9-l0 PIC S9(9) COMPo

01 MODElS PIC 59(4) COMP VALUE 15.
01 MODE100 PIC S9(4) COMP VALUE 100.
01 DUMMY PIC X.

A-2 Program examples Version 3. 1 March 1992

Specifying the new capacity:

Specify the desired capacity for the SI dataset as follows:

IEnter new capacity 2500

The program will now display some additional supporting information:

Proposed capacity 2500 (43.2% full)

Proposed file size
Change in file size

10016 sectors
+4000 sectors

The program will ask for verification of the new capacity:

Is the new capacity of 2500 correct? (Y/N) : Y

The program will now execute the requested capacity change while displaying the following
information:

1079 entries copied

Capacity change in progress

Detail set change successfully completed

At this point, the program will prompt for another dataset. You may enter the name of another SI
dataset or press RETURNto exit the program.

Version 3. 1 March 1992 Maints!nanceand Utilities 6-57

Retrieving all entries In a set in descending sorted order

This example retrieves all the entries in the ORDER dataset in descending sorted sequential order. It
uses DBFIND mode 200 to position at the alphabetic beginning of the set, and DBGET mode 16 to
perform a less-than-or-equal-to retrieval.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUMBER PIC 9 (6)
05 ORDER-NUMBER PIC 9 (6).
05 ORDER-DATE PIC 9 (6).
05 ARTICLE-NUMBER PIC 9 (10) .
05 AMOUNT PIC 9 (ll) COMP-3.

01 BASE PIC X(8} VALUE " OEDB
01 DSET PIC X(16} VALUE "ORDER
01 ITEM PIC X(16} VALUE "ORDER-DATE
01 LIST PIC xx VALUE "@".

01 STAT.
05 CONDITION-WORD PIC S9(4} COMPo
05 STAT2 PIC S9(4} COMPo
05 STAT3-4 PIC S9(9} COMPo
05 STATS-6 PIC S9(9} COMPo
05 STAT7-8 PIC S9(9} COMPo
05 STAT9-10 PIC S9(9} COMPo

01 MODE16 PIC S9 (4) COMP VALUE 16.
01 MODE200 PIC 89(4) COMP VALUE 200.
01 DUMMY PIC X.

A-4 Program examples Version 3.1 March 1992

ALTPROG will optionally verify for each program file whether to change or not. Respond Y to be
prompted for each program file or N to change all program files without verification:

Processing Account AR, Group PROG

Verify before changing file? (Y/N) N

Processing File ARADDHS.PROG.AR
Processing File ARADDRP.PROG.AR
WARNING: Native Mode Program ARCHGRP.PROG.AR not changed.
Processing File ARREPSM.PROG.AR
Processing File ARREPDM.PROG.AR
**** File ARREPDM.PROG.AR could not be opened:
EXCLUSIVE VIOLATION: FILE BEING ACCESSED (FSERR 90)
Processing File ARREPTT.PROG.AR

As shown above, ALTPROG displays an error message for each program file that it cannot change.

Once all program files in the specified fileset are changed, ALTPROG prompts for a new file
specification. Enter H,or hHRETURN to exit the program:

Enter File Sp~"cification (RETURN to end program) RETURN

END OF PROGRAH

Running ALT'PROG in batch

ALTPROG cannot be run in batch.

Version 3. 1 March 1992 Maintenance and Utilities 6-59

Retrieving entries using a partial or generic key

This example illustrates a partial-key retrieval against the CUST dataset, in which the SI-path CUST-
NAME is accessed. The user enters a value, and the program appends an @ to perform partial-key
retrieval.

WORKING-STORAGE SECTION.
01 CUST.

05 CUST-NUMBER PIC 9 (6) .
05 CUST-NAME PIC X (20) .
05 CUST-ADDRESS1 PIC X (20) .
05 CUST-ADDRE8S2 PIC X (20) .

01 SEARCH-NAME PIC X(20) .

01 BASE PIC X(8) VALUE •. OEDB
01 DSET PIC X (16) VALUE "CUST
01 ITEM PIC X (16) VALUE "CUST-NAME
01 LIST PIC XX VALUE 'I@" .

01 ARGUMENT PIC X (20) .

01 STAT.
05 CONDITION-WORD PIC S9 (4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9 (9) COMPo
05 STATS-6 PIC 89(9) COMPo
05 STAT7-8 PIC 89(9) COMPo
05 8TAT9-10 PIC S9(9) COMPo

01 MODEl PIC S9 (4) COMP VALUE 1.
01 MODES PIC S9(4) COMP VALUE S.
01 DUMMY PIC X.

A-6 Program examples Version 3. 1 March 1992

Section 7 SuperSELECT

SuperSELECT was create to provide a simple means of changing serial reads to SUPERDEX reads
with no program changes to existing software. This is especially helpful when using third-party
software, or when source code is not available.

SuperSELECT works by interrupting a serial read being executed and replacing it with a SUPERDEX
read. It can be executed using one of four methods.

The only restriction is that the multi-database relational access is not available. This is because
SuperS ELECT does not open or process any data. It sets some switches and builds a temporary file
of the selection information. When the user program executes, the serial read will be intercepted and
the data stored in the temporary file will be used to replace the serial read with a SUPERDEX read.

Within any of the four methods of execution, it is Important to remember that only
datasets and SI-Paths that exists In the database that the user program serially reads
are valid.

Invoking SuperSELECT

There are no special requirements to invoke SuperSELECT. Simply execute SuperSELECT
immediately prior to the normal execution of the user program.

SuperSELECT - Method 11

The first method for executing SuperSELECT is for testing and on-the-fly selections. SuperS ELECT
wi/lloop through the prompts, allowing multiple arguments for a single SI-Path, multiple SI-Paths for a
single dataset, and multiple datasets for a single database. This allows for full relational access
within the database of the user program.

Run the SuperS ELECT program:.

:RUN SUPERSEL.PUB.SUPERDEX

SuperSELECT Version 3.1(12DEC91)Copyright Bradmark Technologies, Inc.

At this point SuperS ELECT will loop through three prompts.

Retrieving entries using a concatenated key

This example shows a lookup against the concatenated SI-key comprised of the items ORO-OAT
(X6) and ARTICLE-NUMBER (X10). The OBFINO mode -116 represents the combined length, in
bytes, of the two fields.

WORKING-STORAGE SECTION.
01 ORDER.

OS CUST-NUMBER PIC 9 (6)
OS ORDER-NUMBER PIC 9 (6) .
OS ORDER-DATE PIC 9 (6) .
OS ARTICLE-NUMBER PIC 9 (10) .
OS AMOUNT PIC 9 (11) COMP-3.

01 BASE PIC XiS) VALUE " OEDB
01 DSET PIC X (16) VALUE "ORDER
01 ITEM PIC X (16) VALUE "ORDER-DATE
01 LIST PIC XX VALUE II@".

01 ARGUMENT.
OS SEARCH-DATE PIC 9 (6) .
OS SEARCH-ARTICLE PIC 9 (10) .

01 STAT.
OS CONDITION-WORD PIC S9(4) COMPo
OS STAT2 PIC S9 (4) COMPo
OS STAT3-4 PIC S9(9) COMPo
OS STATS-6 PIC S9 (9) COMPo
OS STAT7-S PIC S9 (9) COMPo
OS STAT9-10 PIC S9 (9) COMPo

01 SI-MODE PIC S9(4) COMP VALUE -116.
01 MODES PIC S9 (4) COMP VALUE 5.
01 DUH}~Y PIC X.

A-a Program exemptes Version 3.1 March 1992

Path in the COSTOMERS dataset will be done. The records selected will be the records that contain
a word starting with ONI and a word starting with CHO.

If SuperSELECT is executed twice, before any serial read program, the temporary file will still exist.
SuperSELECT will then display a message and ask if the older file should be purged.

Error Closing SuperS ELECT file!
Temporary file already exists. Purge File (Y/N)?

If the older temporary file should be purge, enter Y, otherwise enter N.

SuperSELECT - Method 2

The second method for running SuperSELECT is used primarily prior to a batch run of a program,
where there will only be one argument entered and that argument is known prior to when the batch
job executes.

On the RUN command, the ; INFO string is used to pass the dataset name, S/-Path name, and the
single argument value. For example:

:RON SUPERSEL •PUB .SUPERDEX; INFO="CUSTOKERS;CUSTOKER-NAHE-KW; -ONI@ AND CHU@;"

SuperSELECT Version 3.1 (12DEC91)Copyright Bradmark Technologies, Inc.
DATASET>
CUSTOMERS
SIPATH>
CUSTOMER-NAME-KW
ARGUMENT>
-UNI@ AND CHU@;
Record written

This run command will set the same selection criteria as the example for method 1. The format of
the ; INFO string is:

: RUN SUPERSEL. PUB•SUPERDEX; INFO= ••dataset; si-path; argument; ••

The rules for dataset, sf-path, and argument are the same as described in the introduction of
SuperSELECT.

Version 3.1 March 1992 SuperSELECT 7-3

Retrieving entries in a range of values

This example locates all the entries in the range between START-DATE and END-DATE. The >=
and <= operators are embedded with the values entered to form the argument.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUMBER PIC 9 (6)
05 ORDER-NUMBER PIC 9 (6) .
05 ORDER-DATE PIC 9 (6) .
05 ARTICLE-NUMBER PIC 9 (10) .
05 AMOUNT PIC 9 (11) COMP-3.

01 BASE PIC X(8) VALUE • OEDB
01 D8ET PIC X(16) VALUE ·ORDER
01 ITEM PIC X (16) VALUE "ORDER-DATE
01 LIST PIC xx VALUE II@II •

01 ARGUMENT.
05 FILLER PIC XX VALUE ">=".
05 START-DATE PIC 9 (6) .
05 FILLER PIC XX VALUE "<=".
05 END-DATE PIC 9 (6) .
05 FILLER PIC X VALUE "@".

01 STAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC 89(9) COMPo
05 STATS-6 PIC 89(9) COMPo
05 STAT7-8 PIC S9(9) COMPo
05 STAT9-10 PIC S9 (9) COMPo

01 MODEl PIC S9(4) COMP VALUE 1-
01 MODES PIC S9(4) COMP VALUE S.
01 DUMMY PIC X.

A-10 Program examples Version 3.1 March 1992

When SuperS ELECT runs it will display the values as it processes:

:RUN SUPERSEL.PUB.SUPERDEX;INFO=-AARGFILE-
SuperSELECT version 3.1(12DEC91)Copyright Bradmark Technologies, Inc.
DATASET>
CUSTOMERS
SIPATH>
CUSTOMER-NAME-KW
ARGUMENT>
-UNI@ AND CHU@i
Record written

If the SuperS ELECT temporary file still exists, SuperS ELECT will then display a message and ask if
the older file should be purged.

Error Closing SuperSELECT file!
Temporary file already exists. Purge File (Y/N)?

If the older temporary file should be purge, enter Y, otherwise enter N.

SuperS ELECT - Method 4

Method 4 is a very powerful and user-friendly way to execute SuperSELECT on-line. It is used to
allow a user to run SuperS ELECT, input the argument(s), and automatically run the user's program,
all through a data-entry screen.

This allows for great flexibility and automation for SuperSELECT, without having to train the user on
how SuperS ELECT works. Screens can be customized to match the appearance that the user
expects, which will allow SuperS ELECT to become an integral part of the user's application.

Before SuperSELECT is executed, enter a file equation for SSSCREEN, which can be fully qualified.
Then run SuperS ELECT without the : INFO string. SuperS ELECT will open and process the
customized screen.

:FILE SSSCREEN=CUSTOH.group.account
:RUN SUPERSEL.PUB.SUPERDEX

Version 3.1 March 1992 SuperSELECT 7-5

Retrieving entries using multiple values

This example illustrates a search using multiple values OR'ed together. The user is prompted for
names of cities in a loop, with one city entered per prompt, and presses RETURN when all cities have
been specified. The program strings together the cities entered, delimits them with square brackets
and embeds I operators to form a single argument for DB FIND.

WORKING-STORAGE SECTION.
01 CUST.

05 CUST-NUMBER PIC 9 (6) .
05 CUST-NAME PIC X(20) .
05 CUST-ADDRESS1 PIC X(20).
05 CUST-ADDRESS2 PIC X(20).

01 CITY PIC X(20).

01 BASE PIC X(8) VALUE " OEDB
01 DSET PIC X(16) VALUE "CUST
01 ITEM PIC X(16) VALUE "CUST-OFFICE
01 LIST PIC xx VALUE -@ ••.

01 ARGUMENT PIC X(200) .

01 8TAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 8TAT2 PIC 89(4) COMPo
05 8TAT3-4 PIC 89(9) COMPo
05 8TATS-6 PIC 89(9) COMPo
05 8TAT7-8 PIC 89(9) COMPo
05 STAT9-10 PIC 89(9) COMPo

01 MODEl PIC S9(4) COMP VALUE 1.
01 MODES PIC 89(4) COMP VALUE 5.
01 DUMMY PIC X.
01 ITERATION PIC 89(4) COMP VALUE o.

A-12 Program examples Version 3. 1 March 1992

Following is an example (the Command Codes are in bold for documentation purpose):

This is an example of a SuperSELECT Screen file.
All of the commands codes are used in this example. Of
course, they can be used in any order, and they are not
case sensitive.

DC{escape home and clear}
DC
DC

SuperSELECT Example

DC This is
DC built .
DC keyword
DC It will
DC SI-Path
DC
DC
DC

an example of how SuperSELECT screen files should be
This example will prompt for a part description
for dataset ORDER-LINES and SI-Path PART-DESC.
also force an argument of ·S· (shipped) for the
SHIPPED-FLAG.

First, is the prompt for PART-DESC.

[notice we do not carriage return now)
D Please enter the Part Description argument:
AAORDER-LINES;PART-DESC;
DC

Next, we force the shipped status.
S ORDER-LINESiSHIPPED-FLAGiSi

DP Press RETURN to continue:
Now start the user's program

R USERPROG

Now, the screen display of how to execute SuperSELECT with method 4 and what is displayed:

:FILE SSSCREEN=USERSCRN
:RUN SUPERSEL.PUB.SUPERDEX
{screen is homed and cleared}

SuperSELECT Example

This is an example of how SuperSELECT screen files should be
built. This example will prompt for a part description
keyword for dataset ORDER-LINES and SI-Path PART-DESC.
It will also force an argument of ·S· (shipped) for the
SI-Path SHIPPED-FLAG.

First, is the prompt for PART-DESC.

Please enter the Part Description argument: -RED AND BEAR~;

Press RETURN to continue: RETURN

At this point the user's program (USERPROG)from the R command would be executed. The program
may display the report on the screen, or actually write out a print file.

Version 3.1 March 1992 SuperSELECT 7-7

Refining and undoing a selection

The following example illustrates a generalized search routine in which the user is prompted in a loop
for full or partial keywords contained in part descriptions and whether to AND, OR, or AND NOT each
pair, undo the last selection, or display the qualifying entries, start a new search, or exit. After each
keyword is entered, DBFIND is called and the number of qualifying entries is displayed, so the user
can decide whether to continue to refine the selection; if too few entries qualify, the user can undo the
last selection and impose an alternate keyword.

01 BASE PIC X (8) VALUE " OEDB
01 DSET PIC X(l6) VALUE "PART
01 ITEM PIC X(16) VALUE "PART- DESCRI PTION" .
01 LIST PIC XX VALUE "@".
01 ARGUMENT PIC X(260) VALUE SPACE.

01 STAT.
05 CONDITION-WORD PIC 89(4) COMPo
05 STAT2 PIC S9 (4) COMPo
05 STAT3-4 PIC 89 (9) COMPo
05 STAT5-6 PIC S9(9) COMPo
05 8TAT7-8 PIC S9(9) COMPo
05 STAT9-10 PIC S9 (9) COMPo

01 MODEl PIC S9 (4) COMP VALUE l.
01 MODES PIC S9(4) COMP VALUE 5.
01 SEARCH-STRING PIC X (20) •
01 WHAT-TO-DO PIC X.
01 RELOP PIC XX SPACE.
01 QUALIFY PIC Z(8)9.

01 PART-ID.
05 PART-NUMBER PIC X (10) .
05 PART-DE8CRIP PIC X (SO) •

WORKING-STORAGE SECTION.

A-14 Program examples Version 3.1 March 1992

Appendix A COBOL Program examples

Examples of COBOL programs that perform various types of SUPERDEX access appear on the
following pages, as shown below:

• Retrieving all entries in a set in ascending sorted order
• Retrieving all entries in a set in descending sorted order
• Retrieving entries using a partial or generic key
• Retrieving entries using a concatenated key
• Retrieving entries in a range of values
• Retrieving entries using multiple values
• Refining and undoing a selection
• Retrieving entries using multiple SI-paths in a single dataset
• Retrieving entries using multiple data sets
• Retrieving entries using multiple databases
• Retrieving entries in multiple sets and bases using projection
• Reading 51-indices only
• Customizing SI-key valuets) with SIUSER
• Manually adding SI-indices with DBPUTIX
• Manually deleting SI-indices with DBDELIX
• Adding SI-dataset to the lock descriptor
• Calling SITRANSLATE

PROMPT-STRING.
DISPLAY "Enter part description keyword:".
ACCEPT SEARCH-STRING.
STRING ARGUMENT DELIMITED BY SPACE

"[" DELIMITED BY SIZE
SEARCH-STRING

DELIMITED BY SPACE
DELIMITED BY SIZE"@l ••

RELOP DELIMITED BY SPACE
INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET, MODEl, STAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0 AND <> 17

GO TO DB-ERROR.

MOVE STATS-6 TO QUALIFY.
DISPLAY QUALIFY "entries qualify
MOVE ../..TO ARGUMENT.
MOVE" ..TO RELOP.

GO TO PROMPT-WHAT-TO-DO.

DISPLAY-PART-ID.
CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, PART-ID, DUMMY
IF CONDITION-WORD <> 0

IF CONDITION-WORD = lS
DISPLAY "End of Selection"
MOVE SPACES TO ARGUMENT
GO TO PROMPT-STRING

ELSE
GO TO DB-ERROR.

DISPLAY PART-NUMBER" ..PART-DESCRIP.
GO TO DISPLAY-PART-ID.

A-16 Program examples Version 3. 1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

CALL "DBFIND" USING BASE, DSET, MODEI00, STAT, ITEM, DUMMY.

IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17

DISPLAY "no entry" STOP RUN
ELSE

GO TO DB-ERROR.

DISPLAY "Cust# Order# Date Article Amount".
PERFORM GET-NEXT UNTIL CONDITION-WORD = 11.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODE15, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0 AND <> 11 GO TO DB-ERROR.

" ORDER-NUMBER •
• AMOUNT.

" ORDER-mITE •DISPLAY CUST-NUMBER •
ARTICLE-NUMBER •

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-3

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer number:".
ACCEPT SEARCH-CUST.
DISPLAY "Enter first order date;".
ACCEPT START-DATE.
DISPLAY "Enter last order date;".
ACCEPT END-DATE.

CALL "DBFIND" USING BASE, DSET, MODEl, STAT, ITEM1, ARGUMENT1.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

CALL "DBFIND" USING BASE, DSET, MODEL STAT, ITEM2, ARGUMENT2.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Order# Date Article
PERFORM GET-NEXT STAT5-6 TIMES.
STOP RUN.

Amount" .

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODE5, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUMBER" "ORDER-NUMBER" "ORDER-DATE"

ARTICLE-NUMBER" "AMOUNT.

GET-NEXT-EXIT.
EXIT.

A-18 Program examples Version 3. 1 ' March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

CALL "DBFIND" USING BASE, DSET, MODE200, STAT, ITEM, DUMMY.

IF CONDITION-WORD <> 0
IF CONDITION-WORD = 17

DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "cust# Order# Date Article Amount".
PERFORM GET-NEXT UNTIL CONDITION-WORD = 10.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODE16, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0 AND <> 10 GO TO DB-ERROR.
DISPLAY CUST-NUMBER" "ORDER-NUMBER· "ORDER-DATE"

ARTICLE-NUMBER" "AMOUNT.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-5

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer name:".
ACCEPT SEARCH-NAME.
STRING " [" DELIMITED BY SIZE

SEARCH-NAME DELIMITED BY SPACE
"@l " DELIMITED BY SIZE

INTO ARGUMENTl.
DISPLAY "Enter first order date:".

ACCEPT START-DATE.
DISPLAY "Enter last order date:".
ACCEPT END-DATE.

CALL "DBFIND" USING BASE, DSETl, MODEl, STAT, ITEMl, ARGUMENTl.

IF CONDITION-WORD <> 0
IF CONDITION-WORD =17

DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

CALL "DBFIND" USING BASE, DSET2, MODEl, STAT, ITEM2, ARGUMENT2.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Name Order# Date"
Article ".

PERFORM GET-CUST UNTIL CONDITION-WORD <> O.

GET-CUST SECTION.
CALL "DBGET" USING BASE, DSETl, MODE5, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO GET-CUST-EXIT.
CALL "DBFIND" USING BASE, DSET2, MODEl, STAT, NULL-ITEM,

CUST-NUM OF CUST.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
PERFORM GET-ORDER STAT5-6 TIMES.

GET-CUST-EXIT.
EXIT.

A-20 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer name:".
ACCEPT SEARCH-NAME.
STRING

SEARCH-NAME DELIMITED BY SPACE
"@" DELIMITED BY SPACE

INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET, MODEL STAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD =17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Name
PERFORM GET-NEXT STATS-6 TIMES.
STOP RUN.

Address" .

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUMBER" "CUST-NAME" "CUST-ADDRESS1

" CUST-ADDRESS2.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-7

Retrieving entries using multiple databases

This example illustrates a relational retrieval between two databases. The user is prompted for a
customer name and a starting and ending date for the customer's orders. A partial-key DBFIND is
performed to locate the customer, and the HISTORY-FLAG on the customer record is checked to
see if additional orders exist in the OEHIST history database. If so, these orders are also looked up
with DBFIND (using the I operator to perform an OR operation, and the & operator to relate the two
DBFIND calls), and all related orders are returned and displayed.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUM PIC 9 (6).
05 ORDER-NUM PIC 9 (6).
05 ORDER-DATE PIC 9 (6) .
05 ARTICLE-NUM PIC 9 (10) .
05 AMOUNT PIC 9 (11) COMP-3.

01 CUST.
05 CUST-NUM PIC 9 (6) .
05 CUST-NAME PIC X (20) .
05 CUST-ADDRESSl PIC X (20) .
05 CUST-ADDRESS2 PIC X(20) .
05 HISTORY-FLAG PIC X.

01 SEARCH-NAME PIC X (20) .
01 BASEl PIC X(8) VALUE " OEDB
01 BASE2 PIC X (8) VALUE " OEHIST" .
01 DSET1 PIC X (16) VALUE "CUST
01 DSET2 PIC X (16) VALUE "ORDER
01 ITEMl PIC X (16) VALUE "CUST-NAME
01 ITEM2 PIC X (22) VALUE "ORDER-DATE,CUST-NUM".
01 NULL-ITEM PIC X VALUE " ...,
01 LIST PIC XX VALUE "@" •

01 ARGUMENT1 PIC X (24) .
01 ARGUMENT2.

05 FILLER PIC XXX VALUE fI [>=" .

05 START-DATE PIC 9 (6) .
05 FILLER PIC XX VALUE "<= II.

05 END-DATE PIC 9 (6).
05 FILLER PIC X VALUE " 1 " .
05 RELOP PIC XXX.

01 STAT.
05 CONDITION-WORD PIC S9(4) CaMP.
05 STAT2 PIC S9(4) CaMP.
05 STAT3-4 PIC S9(9) CaMP.
05 STATS-6 PIC S9 (9) CaMP.
05 STAT7-8 PIC S9(9) CaMP.
05 STAT9-10 PIC S9(9) CaMP.

01 MODEl PIC 89 (4) CaMP VALUE 1.
01 MODES PIC S9(4) CaMP VALUE 5.
01 DUMMY PIC X.
01 ID-SAVE PIC S9 (4) CaMP.
01 BASE PIC X(8) .

A-22 Program examples Version 3. 1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter order date:".
ACCEPT SEARCH-DATE.
DISPLAY "Enter article number:".
ACCEPT SEARCH-ARTICLE.

CALL "DBFIND" USING BASE, DSET, SI-MODE, STAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Order# Date Article Amount".
PERFORM GET-NEXT UNTIL CONDITION-WORD = 15.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODE5, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0 AND <> 15

GO TO DB-ERROR.
DISPLAY CUST-NUMBER" "ORDER-NUMBER" "ORDER-DATE"

ARTICLE-NUMBER· "AMOUNT.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-9

GET-CUST SECTION.
CALL "DBGET" USING BASE, DSET1, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO GET-CUST-EXIT.
CALL "DBFIND" USING BASEl, DSET2, MODEl, STAT, NULL-ITEM,

CUST-NUM OF CUST.
IF CONDITION-WORD <> 0 AND <> 17

GO TO DB-ERROR.
MOVE BASEl TO BASE.
PERFORM GET-ORDER STATS-6 TIMES.
CALL "DBFIND" USING BASE2, DSET2, MODEl, STAT, NULL-ITEM, CUST-NUM OF CUST.
IF CONDITION-WORD <> 0 AND <> 17

GO TO DB-ERROR.
MOVE BASE2 TO BASE.
PERFORM GET-ORDER STATS-6 TIMES.

GET-CUST-EXIT.
EXIT.

GET-ORDER SECTION.
CALL "DBGET" USING BASE, DSET2, MODES, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUM OF CUST" " CUST-NAME "
ORDER-NUM" "ORDER-DATE" "ARTICLE-NUM.

GET-ORDER-EXIT.
EXIT.

A·24 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter first order date:".
ACCEPT START-DATE.
DISPLAY "Enter last order date:".
ACCEPT END-DATE.

CALL "DBFIND " USING BASE, DSET, MODEl, STAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLp.y "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Order# Date Article
PERFORM GET-NEXT STAT5-6 TIMES.
STOP RUN.

Amount" .

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODE5, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUMBER" "ORDER-NUMBER" "ORDER-DATE"

ARTICLE-NUMBER" "AMOUNT.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-11

CALL "DBFIND" USING BASE, DSET1, MODEl, ITEM1, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "Entry not found"
STOP RUN

ELSE
GO TO DB-ERROR.

MOVE "[*J" TO ARGUMENT.
CALL "DBFIND" USING BASE, DSET2, MODEl, ITEM2, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No corresponding entry in QUOTE-MASTER"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Enter start date:".
ACCEPT SEARCH-DATE-START.
DISPLAY "Enter end date:".
ACCEPT SEARCH-END-DATE.
STRING " [>=" DELIMITED BY SIZE

SEARCH-DATE-START DELIMITED BY SPACE
N<= •• DELIMITED BY SIZE
SEARCH-DATE-END DELIMITED BY SPACE
"J &" DELIMITED BY SIZE

INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET2, MODEl, ITEM3, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No entry in specified date range"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Enter coverage type:".
ACCEPT SEARCH-TYPE.
STRING "l" DELIMITED BY SIZE

SEARCH-TYPE DELIMITED BY SPACE
"J &" DELIMITED BY SIZE

INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET3, MODEl, ITEM4, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No entry with this coverage type"
STOP RUN

ELSE
GO TO DB-ERROR.

A-26 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

GET-CITIES.
DISPLAY "Enter city:".
ACCEPT CITY.
IF CITY <> SPACE

IF ITERATION = 0
STRING

MOVE 1

" [" DELIMITED BY SIZE
CITY DELIMITED BY SPACE
"] fI DELIMITED BY SIZE

INTO ARGUMENT
TO ITERATION

GO TO GET-CITIES
ELSE

STRING ARGUMENT DELIMITED BY SPACE
II [II DELIMITED BY SIZE
CITY DELIMITED BY SPACE
"]1" DELIMITED BY SPACE

INTO ARGUMENT
GO TO GET-CITIES.

CALL "DBFIND" USING BASE, DSET, MODEL STAT, ITEM, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Name
PERFORM GET-NEXT STATS-6 TIMES.
STOP RUN.

Address".

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUMBER" "CUST-NAME" • CUST-ADDRESS1

" CUST-ADDRESS2.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-13

Reading 51-indices only

In this example, the concatenated SI-key for the ORDER dataset is comprised of the CUST-
NUMBER and AMOUNT. By using the ! list, only the SI-indices are returned; because the
AMOUNT is part of the SI-key, sufficient information is available in the SI-index without having to
read the corresponding data entries.

WORKING-STORAGE SECTION.
01 SI-INDEX

05 CUST-NUMBER PIC 9 (6).
05 AMOUNT PIC 9 (11) COMP-3.
05 FILLER PIC 9 (9) COMPo

01 TOTAL PIC 9 (11) COMP-3.
01 TOTAL-OUT PIC Z(8)9.99.

01 BASE PIC X(8) VALUE" OEDB
01 DSET PIC X (16) VALUE "ORDER
01 ITEM PIC X(16) VALUE "CUST-NUMBER
01 LIST PIC XX VALUE " ! i ••

01 ARGUMENT PIC 9 (6).

01 STAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STATS-6 PIC S9(9) COMPo
05 ST.l>.T7-8 PIC S9(9) COMPo
05 STAT9-10 PIC S9(9) COMPo

01 SI-MODE PIC 89(4) COMP VALUE -106.
01 MODES PIC 89(4) COMP VALUE s.
01 DUMMY PIC X.

A-28 Program examples Version 3.1 March 1992

GO TO PROMPT-WHAT-TO-DO.

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.
GO TO PROMPT-STRING.

PROMPT-WHAT-TO-DO.
DISPLAY "Enter mode: [Alnd, [O]r, and [Nlot, [U]ndo,".
DISPLAY" [D]isplay, new [Slearch, [E]xit:"
ACCEPT WHAT-TO-DO.
IF WHAT-TO-DO "E"

STOP RUN.
IF WHAT-TO-DO "S"

MOVE SPACE TO ARGUMENT
RELOP

GO TO PROMPT-STRING.
IF WHAT-TO-DO = "U"

MOVE "\/M TO ARGUMENT
MOVE SPACE TO RELOP
GO TO PROMPT-WHAT-TO-DO.

IF WHAT-TO-DO = "A"
MOVE "&" TO RELOP
GO TO PROMPT-STRING.

IF WHAT-TO-DO = "0"
MOVE "I" TO RELOP
GO TO PROMPT-STRING.

IF WHAT-TO-DO = "N"
MOVE "!&" TO RELOP
GO TO PROMPT-STRING.

IF WHAT-TO-DO = "D"
PERFORM DISPLAY-PART-ID
GO TO PROMPT-WHAT-TO-DO.

Version 3.1 March 1992 Program examples A-15

Customizing SI-key value(s) with SIUSER

This example shows an SIUSER procedure that builds a custom SI-key in the ORDER-DETAIL
dataset consisting of the second half of the ARTICLE-NUMBER (digits 5 through 10) and the
ORDER-DATE for the ARTICLE-DATE SI-path. For the ASCII-DATE si-path it converts the passed
double integer date (LAST-UPDATE) in the CUSTOMERS dataset to ASCII so generic and partial
lookups can be done.

DATA DIVISION.
WORKING-STORAGE SECTION
01 ORDER.

05 CUST-NUMBER PIC 9(6).
PIC 9(6).
PIC 9(6).

05 IB-ARTICLE-DATE REDEFINES IB-INDEX.
10 INDEX-ART-CODE PIC 9(6).
10 INDEX-DATE PIC 9(6).

05 IB-ASCII-DATE REDEFINES IB-INDEX.
10 INDEX-AD-YY PIC 99.
10 INDEX-AD-MM PIC 99.

IDENTIFICATION DIVISION.
PROGRAM-ID. SIUSER.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

05 ORDER-NUMBER
05 ORDER-DATE
05 ARTICLE-NUMBER.

10 FILLER
10 ARTICLE-CODE

05 AMOUNT

01 CUSTOMERS.
05 CUST-NUMBER
05 CUST-NAME
05 CUST-ADDRESS
05 LAST-UPDATE

LINKAGE SECTION.
01 BASE
01 DSET
01 ITEM
01 BUFFER

01 INDEX-BUF.
05 INDEX-COUNT
05 IB-INDEX

10 INDEX-AD-DD PIC 99.

A-30 Program examples

PIC 9999.
PIC 9 (6).

PIC 9(11) COMP-3.

PIC 9 (6).
PIC X(30).
PIC X(50) .
PIC S9(9) COMPo

PIC X(8) .
PIC X(16) .
PIC X(16) .
PIC X(2000).

PIC S9(4) COMPo
PIC X(50) .

Version 3. 1 March 1992

Retrieving entries using multiple 51-paths in a single dataset

This example shows a relational access retrieval involving two SI-paths in a single dataset. Two
DBFIND calls are performed in succession, with square brackets imposed and the & boolean
operator appended to the argument in the second DBFIND.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUMBER PIC 9 (6) .
05 ORDER-NUMBER PIC 9 (6) .
05 ORDER-DATE PIC 9 (6) .
05 ARTICLE-NUMBER PIC 9 (10) .
05 AMOUNT PIC 9 (11) COMP-3.

01 BASE PIC X(B) VALUE " OEDB
01 DSET PIC X (16) VALUE "ORDER
01 ITEM1 PIC X(16) VALUE "CUST-NUMBER
01 ITEM2 PIC X (16) VALUE "ORDER-DATE
01 LIST PIC XX VALUE tl@u.

01 ARGUMENT1.
05 FILLER PIC X VALUE u [" •

05 SEARCH-CUST PIC 9 (6) .
05 FILLER PIC XX VALUE " 1 "

01 ARGUMENT2.
05 FILLER PIC XXX VALUE •. [>=".

05 START-DATE PIC 9 (6) .
05 FILLER PIC XX VALUE M<=' ".

05 END-DATE PIC 9 (6) .
05 FILLER PIC XXX VALUE "l & "

01 STAT.
05 CONDITION-WORD PIC S9 (4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STATS-6 PIC S9(9) COMPo
05 STAT7-B PIC S9(9) COMPo
05 STAT9-10 PIC S9(9) COMPo

01 MODEl PIC S9(4) COMP VALUE 1.
01 MODES PIC S9(4) COMP VALUE 5.
01 DUMMY PIC X.

Version 3. 1 March 1992 Program examples A-17

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer number:".
ACCEPT SEARCH-CUST.
DISPLAY "Enter first order date:".
ACCEPT START-DATE.
DISPLAY "Enter last order date:".
ACCEPT END-DATE.

CALL "DBFIND" USING BASE, DSET, MODEl, STAT, ITEM1, ARGUMENT1.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

CALL "DBFIND" USING BASE, DSET, MODEL STAT, ITEM2, ARGUMENT2.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Order# Date Article
PERFORM GET-NEXT STATS-6 TIMES.
STOP RUN.

Amount".

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUMBER· "ORDER-NUMBER" "ORDER-DATE"

ARTICLE-NUMBER" "AMOUNT.

GET-NEXT-EXIT.
EXIT.

A·18 Program examples Version 3.1 March 1992

Retrieving entries using multiple data sets

This example performs a relational access retrieval against the datasets CUST and ORDER which
both contain the common item CUST-NUM. Two DBFIND calls are performed in succession with
varying parameters, and DBGETs are performed against both datasets to retrieve all the qualifying
entries.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUM PIC 9 (6) .
05 ORDER-NUM PIC 9 (6) .
05 ORDER-DATE PIC 9 (6) .
05 ARTICLE-NUM PIC 9 (10) .
05 AMOUNT PIC 9 (11) COMP-3.

01 CUST.
05 CUST-NUM PIC 9 (6) .
05 CUST-NAME PIC X (20) .
05 CUST-ADDRESS1 PIC X (20) .
05 CUST-ADDRESS2 PIC X (20) .

01 SEARCH-NAME PIC X (20) .

01 BASE PIC X(8) VALUE .. OEDB
01 DSET1 PIC X (16) VALUE ·CUST
01 DSET2 PIC X (16) VALUE "ORDER
01 ITEM1 PIC X (16) VALUE "CUST-NAME
01 ITEM2 PIC X(22) VALUE "ORDER-DATE,CUST-NUM".
01 NULL-ITEM PIC X VALUE N i If

C1 LIST PIC XX VALUE "@".
01 ARGUMENT1 PIC X (24) .
01 ARGUMENT2.

05 FILLER PIC XXX VALUE 11[>=" .

05 START-DATE PIC 9 (6) .
05 FILLER PIC XX VALUE 11<=" .

05 END-DATE PIC 9 (6) .
05 FILLER PIC XXX VALUE "J & "

01 STAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STAT5-6 PIC S9(9) COMPo
05 STAT7-8 PIC S9(9) COMPo
05 STAT9-10 PIC S9(9) COMPo

01 MODEl PIC S9 (4) COMP VALUE l.
01 MODE5 PIC S9(4) COMP VALUE 5.
01 DUMMY PIC X.

Version 3.1 March 1992 Program examples A-19

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer name:".
ACCEPT SEARCH-NAME.
STRING " [" DELIMITED BY SIZE

SEARCH-NAME DELIMITED BY SPACE
"@l " DELIMITED BY SIZE

INTO ARGUMENT1.
DISPLAY "Enter first order date:".

ACCEPT START-DATE.
DISPLAY "Enter last order date:".
ACCEPT END-DATE.

CALL "DBFIND" USING BASE, DSET1, MODEl, STAT, ITEM1, ARGUMENT1.

IF CONDITION-WORD <> 0
IF CONDITION-WORD =17

DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

CALL "DBFIND" USING BASE, DSET2, MODEl, STAT, ITEM2, ARGUMENT2.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Cust# Name Order# Date"
Article ".

PERFORM GET-CUST UNTIL CONDITION-WORD <> O.

GET-CUST SECTION.
CALL "DBGET" USING BASE, DSET1, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO GET-CUST-EXIT.
CALL "DBFIND" USING BASE, DSET2, MODEl, STAT, NULL-ITEM,

CUST-NUM OF CUST.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
PERFORM GET-ORDER STATS-6 TIMES.

GET-CUST-EXIT.
EXIT.

A-20 Program examples Version 3. 1 March 1992

GET-ORDER SECTION.
CALL "DBGET" USING BASE, DSET2, MODES, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUM OF CUST" • CUST-NAME •
ORDER-NUM· "ORDER-DATE" • ARTICLE-NUM.

GET-ORDER-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-21

Retrieving entries using multiple databases

This example illustrates a relational retrieval between two databases. The user is prompted for a
customer name and a starting and ending date for the customer's orders. A partial-key OBFINO is
performed to locate the customer, and the HISTORY-FLAG on the customer record is checked to
see if additional orders exist in the OEHIST history database. If so, these orders are also looked up
with OBFINO (using the I operator to perform an OR operation, and the' operator to relate the two
OBFINO calls), and all related orders are returned and displayed.

WORKING-STORAGE SECTION.
01 ORDER.

05 CUST-NUM PIC 9 (6).
05 ORDER-NUM PIC 9 (6).
05 ORDER-DATE PIC 9 (6).
05 ARTICLE-NUM PIC 9 (10) .
05 AMOUNT PIC 9 (11) COMP-3.

01 CUST.
05 CUST-NUM PIC 9 (6).
05 CUST-NAME PIC X (20) .
05 CUST-ADDRESSl PIC X (20) .
05 CUST-ADDRESS2 PIC X (20) .
05 HISTORY-FLAG PIC X.

01 SEARCH-NAME PIC X (20) .
01 BASEl PIC X(8) VALUE " OEDB
01 BASE2 PIC X(8) VALUE •. OEHIST" .
01 DSETl PIC X (16) VALUE "CUST
01 DSET2 PIC X (16) VALUE ·ORDER
01 ITEMl PIC X (16) VALUE ·CUST-NAME
01 ITEM2 PIC X (22) VALUE ·ORDER-DATE,CUST-NUM".
01 NULL-ITEM PIC X VALUE " i ••

01 LIST PIC XX VALUE "@tI.

01 ARGUMENTl PIC X (24) .
01 ARGUMENT2.

05 FILLER PIC XXX VALUE tI [>= H •

05 START-DATE PIC 9 (6).
05 FILLER PIC XX VALUE "<=" .
05 END-DATE PIC 9 (6).
05 FILLER PIC X VALUE " 1 •.
05 RELOP PIC XXX.

01 STAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STATS-6 PIC S9(9) COMPo
05 STAT7-8 PIC S9(9) COMPo
05 STAT9-10 PIC S9(9) COMPo

01 MODEl PIC S9(4) COMP VALUE 1.
01 MODES PIC S9(4) COMP VALUE 5.
01 DUMMY PIC X.
01 ID-SAVE PIC S9(4) COMPo
01 BASE PIC X(8) .

A-22 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASEl.

DISPLAY "Enter customer name: ".
ACCEPT SEARCH-NAME .
STRING .[" DELIMITED BY

SEARCH-NAME DELIMITED BY
"@l " DELIMITED BY

INTO ARGUMENT1.
DISPLAY "Enter first order date:".
ACCEPT START-DATE.
DISPLAY "Enter last order date:".
ACCEPT END-DATE.

SIZE
SPACE
SIZE

CALL "DBFIND" USING BASEl, DSET1, MODEl, STAT, ITEM1, ARGUMENT1.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

IF HISTORY-FLAG = SPACE
MOVE "& " TO RELOP

ELSE
MOVE SPACE TO RELOP.

CALL "DBFIND" USING BASEl, DSET2, MODEl, STAT, ITEM2, ARGUMENT2.
IF CONDITION-WORD <> 17 AND <> 0

GO TO DB-ERROR.

IF HISTORY-FLAG <> SPACE
MOVE STAT2 TO ID-SAVE
PERFORM OPEN-BASE2
MOVE ID-SAVE TO STAT2
MOVE "1& " TO RELOP
CALL "DBFIND" USING BASE2, DSET2, MODEl, STAT, ITEM2, ARGUMENT2
IF CONDITION-WORD <> 17 AND <> 0

GO TO DB-ERROR.

IF STATS-6 = 0
DISPLAY "no entry"
STOP RUN.

Order# Date Article "DISPLAY ·Cust# Name
PERFORM GET-CUST UNTIL CONDITION-WORD <> O.
STOP RUN.

Version 3.1 March 1992 Program examples A-23

GET-CUST SECTION.
CALL "DBGET" USING BASE, DSET1, MODE5, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO GET-CUST-EXIT.
CALL "DBFIND" USING BASEl, DSET2, MODEl, STAT, NULL-ITEM,

CUST-NUM OF CUST.
IF CONDITION-WORD <> 0 AND <> 17

GO TO DB-ERROR.
MOVE BASEl TO BASE.
PERFORM GET-ORDER STAT5-6 TIMES.
CALL "DBFIND" USING BASE2, DSET2, MODEl, STAT, NULL-ITEM, CUST-NUM OF CUST.
IF CONDITION-WORD <> 0 AND <> 17

GO TO DB-ERROR.
MOVE BASE2 TO BASE.
PERFORM GET-ORDER STAT5-6 TIMES.

GET-CUST-EXIT.
EXIT.

GET-ORDER SECTION.
CALL "DBGET" USING BASE, DSET2, MODE5, STAT, LIST, ORDER, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUM OF CUST" " CUST-NAME "
ORDER-NUM" "ORDER-DATE" "ARTICLE-NUM.

GET-ORDER-EXIT.
EXIT.

A·24 Program examples Version 3.1 March 1992

Retrieving entries in multiple sets and bases using projection

This example locates all the quotations for earthquake insurance coverage given to policyholders in
Los Angeles in November and December of 1987. This requires four DBFIND calls against three
datasets, with the second DBFIND performing the projection.

01 MODEl
01 MODE5

PIC S9(4) COMP VALUE 1.
PIC S9(4) COMP VALUE 5.

WORKING-STORAGE SECTION.
01 BASE PIC X(8) VALUE " INSURE
01 DSET1 PIC X(16) VALUE "INSURED-MASTER
01 DSET2 PIC X(16) VALUE "QUOTE-MASTER
01 DSET3 PIC X(16) VALUE "QUOTE-DETAIL
01 ARGUMENT PIC X (26) .

01 INSURED-MASTER.
05 POLICY-NUM PIC 9 (8).
05 CITY PIC X(20) .

01 QUOTE-MASTER.
05 QUOTE-NUM PIC 9 (6).
05 QUOTE-DATE PIC 9 (6).
05 POLICY-NUM PIC 9 (8) .

01 QUOTE-DETAIL.
05 QUOTE-NUM PIC 9 (6).
05 COVERAGE-TYPE PIC xx.

01 ITEM1 PIC X(32) VALUE "CITY,POLICY-NUM".
01 ITEM2 PIC X(32) VALUE "POLICY-NUM,QUOTE-NUM".
01 ITEM3 PIC X(32) VALUE "QUOTE-DATE,QUOTE-NUM".
01 ITEM4 PIC X(32) VALUE "COVERAGE-TYPE,QUOTE-NUM".

01 SEARCH-CITY PIC X (20) .
01 SEARCH-DATE-START PIC 9 (6).
01 SEARCH-DATE-END PIC 9 (6).
01 SEARCH-TYPE PIC xx.

PROCEDURE DIVISION.

MAIN.
DISPLAY "Enter city:".
ACCEPT SEARCH-CITY.
STRING "[" DELIMITED BY SIZE

SEARCH-CITY DELIMITED BY SPACE
"J" DELIMITED BY SIZE

INTO ARGUMENT.

Version 3.1 March 1992 Program examples A-25

CALL "DBFIND" USING BASE, DSET1, MODEl, ITEM1, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "Entry not found"
STOP RUN

ELSE
GO TO DB-ERROR.

MOVE "[*J" TO ARGUMENT.
CALL "DBFIND" USING BASE, DSET2, MODEl, ITEM2, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No corresponding entry in QUOTE-MASTER"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Enter start date:".
ACCEPT SEARCH-DATE-START.
DISPLAY "Enter end date:".
ACCEPT SEARCH-END-DATE.
STRING " [>=" DELIMITED BY SIZE

SEARCH-DATE-START DELIMITED BY SPACE
M<=M DELIMITED BY SIZE
SEARCH-DATE-END DELIMITED BY SPACE
"J &" DELIMITED BY SIZE

INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET2, MODEl, ITEM3, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No entry in specified date range"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY "Enter coverage type:".
ACCEPT SEARCH-TYPE.
STRING "[" DELIMITED BY SIZE

SEARCH-TYPE DELIMITED BY SPACE
"J&" DELIMITED BY SIZE

INTO ARGUMENT.

CALL "DBFIND" USING BASE, DSET3, MODEl, ITEM4, ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No entry with this coverage type"
STOP RUN

ELSE
GO TO DB-ERROR.

A-26 Program examples Version 3.1 March 1992

GET-ORDER.
CALL "DBGET" USING BASE, DSET3, MODES, STAT, LIST, QUOTE-DETAIL, DUMMY.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 15
DISPLAY "End of selection"
STOP RUN

ELSE
GO TO DB-ERROR.

DISPLAY QUOTE-NUM OF QUOTE-DETAIL" "COVERAGE-TYPE.
GO TO GET-ORDER.

Version 3.1 March 1992 Program examples A-27

Reading 51-indices only

In this example, the concatenated SI-key for the ORDER dataset is comprised of the CUST-
NUMBER and AMOUNT. By using the ! list, only the SI-indices are returned; because the
AMOUNT is part of the SI-key, sufficient information is available in the SI-index without having to
read the corresponding data entries.

WORKING-STORAGE SECTION.
01 SI-INDEX

05 CUST-NUMBER PIC 9 (6) .
05 AMOUNT PIC 9 (11) COMP-3.
05 FILLER PIC 9 (9) COMPo

01 TOTAL PIC 9 (11) COMP-3.
01 TOTAL-OUT PIC Z(8)9.99.

01 BASE PIC X(8) VALUE " OEDB
01 DSET PIC X(16) VALUE "ORDER
01 ITEM PIC X(16) VALUE "CUST-NUMBER
01 LIST PIC XX VALUE " ! i II

01 ARGUMENT PIC 9 (6) .

01 STAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 STAT2 PIC S9(4) CaMP.
05 STAT3-4 PIC S9(9) COMPo
05 STAT5-6 PIC S9(9) COMPo
05 STAT7-8 PIC S9 (9)'COMPo
05 8TAT9-10 PIC 89(9) COMPo

01 SI-MODE PIC S9(4) COMP VALUE -106.
01 MODES PIC S9(4) COMP VALUE 5.
01 DUMMY PIC X.

A-28 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer number:".
ACCEPT CUST-NUMBER.
MOVE CUST-NUMBER TO ARGUMENT.
CALL "DBFIND" USING BASE, DSET, SI-MODE, STAT, ITEM ,.ARGUMENT.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

PERFORM GET-NEXT UNTIL CONDITION-WORD = 15.
MOVE TOTAL TO TOTAL-OUT.
DISPLAY "Total for customer: " TOTAL-OUT.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODE5, STAT, LIST, SI-INDEX, DUMMY.
IF CONDITION-WORD <> 0 l~ND <> 15

GO TO DB-ERROR.
ADD AMOUNT TO TOTAL.

GET-NEXT-EXIT.
EXIT.

Version 3.1 March 1992 Program examples A-29

----- ..----.---~~ ..

Customizing 51-key value(s) with SIUSER
This example shows an SIUSER procedure that builds a custom SI-key in the ORDE11-DETAIL
dataset consisting of the second half of the ARTICLE-NUMBER (digits 5 through 10) and the
ORDER-DATE for the ARTICLE-DATE SI-path. For the ASCII-DATE si-path it converts the passed
double integer date (LAST-UPDATE) in the CUSTOMERS dataset to ASCII so generic and partial
lookups can be done.

DATA DIVISION.
WORKING-STORAGE SECTION
01 ORDER.

05 CUST-NUMBER PIC 9(6).
PIC 9(6).
PIC 9 (6).

01 INDEX-BUF.
05 INDEX-COUNT PIC S9(4) COMPo
05 IB-INDEX PIC X(SO) .
05 IB-ARTICLE-DATE REDEFINES IB-INDEX.

10 INDEX-ART-CODE PIC 9(6).
10 INDEX-DATE PIC 9(6).

05 IB-ASCII-DATE REDEFINES IB-INDEX.
10 INDEX-AD-YY PIC 99.

IDENTIFICATION DIVISION.
PROGRAM-ID. SIUSER.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

05 ORDER-NUMBER
05 ORDER-DATE
05 ARTICLE-NUMBER.

10 FILLER
10 ARTICLE-CODE

05 AMOUNT

01 CUSTOMERS.
05 CUST-NUMBER
05 CUST-NAME
05 CUST-ADDRESS
05 LAST-UPDATE

LINKAGE SECTION.
01 BASE
01 DSET
01 ITEM
01 BUFFER

10 INDEX-AD-MM
10 INDEX-AD-DD

A-30 Program examples

PIC 9999.
PIC 9 (6).

PIC 9(11) COMP-3.

PIC 9 (6).
PIC X(30).
PIC X(~iO).
PIC S9(9) COMPo

PIC X (8).
PIC X(16).
PIC X(16).
PIC X(2000:'.

PIC 99.
PIC 99.

Version 3.1 March 1992

PROCEDURE DIVISION USING BASE, DSET, ITEM, BUFFER, INDEX-BUF.

USER.

IF DSET = "ORDER-DETAIL" AND
ITEM = "ARTICLE-DATE"

MOVE BUFFER TO ORDER
MOVE 1 TO INDEX-COUNT
MOVE SPACES TO IB-INDEX
MOVE ARTICLE-CODE TO INDEX-ART-CODE
MOVE ORDER-DATE TO INDEX-DATE
GOBACK.

IF DSET = "CUSTOMERS" AND
ITEM = "ASCII-DATE"

MOVE BUFFER TO CUSTOMERS
MOVE 1 TO INDEX-COUNT
MOVE SPACES TO IB-INDEX
COMPUTE INDEX-AD-YY
COMPUTE INDEX-AD-MM
COMPUTE INDEX-AD-DD
GOBACK.

LAST-UPDATE I 1000000
(LAST-UPDATE - INDEX-AD-YY) I 10000
LAST-UPDATE - INDEX-AD-YY - INDEX-AD-DD

ITEM and DSET did not match any of our custom SI-Paths.
GOBACK.

*

Version 3.1 March 1992 Program examples A-31

- ---------~-.------.----------.--.----------------~-~~~~

Manually adding SI-indices with DBPUTIX

In this example, the user is prompted for information about a new customer, including the customer's
initials, if any. The customer is DBPUT into the CUST dataset, and if any initials are specified, a
separate SI-index is created with the initials. (This permits the customer to later be accessed by its
name or its initials). The customer number assigned is determined by reading the last record in the
dataset using DBFIND mode 200 followed by DBGET mode 6 and incrementing it by one.

WORKING-STORAGE SECTION.
01 CUST.

05 CUST-NUMBER PIC 9 (6).
05 CUST-NAME PIC X (20) .

*

01 CUST-INDEX.
05 CUST-INITIALS PIC X(6) .
05 CUST-NUMBER-X PIC 9 (6).

01 BASE PIC X(8) VALUE • OEDB
01 DSET PIC X(16) VALUE ·CUST
01 ITEM PIC X(16) VALUE ·CUST-NUMBER
01 LIST PIC xx VALUE .@ ••

01 INDEX-LIST PIC xx VALUE ••! ; ••

01 ARGUMENT PIC X(20).

01 STAT.
05 CONDITION-WORD PIC S9(4) CaMP.
05 STAT2 PIC S9(4) CaMP.
05 STAT3-4 PIC S9(9) COMPo
05 STAT5-6 PIC S9(9) CaMP.
05 STAT7-8 PIC S9(9) CaMP.
05 STAT9-l0 PIC S9(9) CaMP.

01 MODEl PIC S9(4) CaMP VALUE l.
01 MODE6 PIC S9(4) CaMP VALUE 6.
01 MODE200 PIC S9(4) COMP VALUE 200.
01 DUMMY PIC (X).

A-32 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

CALL "DBFIND" USING BASE, DSET, MODE200, STAT, ITEM, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
CALL "DBGET" USING BASE, DSET, MODE6, STAT, INDEX-LIST, CUST-NUMBER.
ADD 1 TO CUST-NUMBER.
DISPLAY "Enter customer name :".
ACCEPT CUST-NAME.
DISPLAY "Enter customer initials:".
ACCEPT CUST-INITIALS.

CALL "DB PUT " USING BASE, DSET, MODEL STAT, LIST, CUST.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.

IF CUST-INITIALS <> SPACE
MOVE CUST-NUMBER TO CUST-NUMBER-X.

CALL "DBPUTIX· USING BASE, DSET, MODEl, STAT, ITEM,
CUST-INDEX.

IF CONDITION-WORD <> 0
GO TO DB-ERROR.

Version 3.1 March 1992 Program examples A-33

Manually deleting SI-indices with DBDELIX

This example deletes the customer entry and all associated SI-indices that were added in the last
example, using DBDELETE and DBDELIX.

WORKING-STORAGE SECTION.
01 CUST.

05 CUST-NUMBER PIC 9 (6) .
05 CUST-NAME PIC X(20).

*

01 CUST-INDEX.
05 CUST-INITIALS PIC X(6) .
05 CUST-NUMBER-X PIC 9 (6) .

01 BA3E PIC X(8) VALUE • OEDB
01 DSET PIC X(16) VALUE ·CUST
01 ITEM PIC X(16) VALUE ·CUST-NUMBER
01 LIST PIC xx VALUE "@" .

01 INDEX-LIST PIC XX VALUE •• t i"

01 ARGUMENT PIC X(20) .

01 STAT.
05 CONDITION-WORD PIC 39(4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STATS-6 PIC S9(9) COMPo
05 STAT7-8 PIC 39(9) COMPo
05 STAT9-10 PIC S9(9) COMPo

01 MODEl PIC S9(4) COMP VALUE 1.
01 MODES PIC S9(4) COMP VALUE 5.
01 MODE7 PIC S9(4) COMP VALUE 7.
01 MODE10 PIC 39(4) COMP VALUE 10.
01 DUMMY PIC (X) .

A-34 Program examples Version 3.1 March 1992

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

DISPLAY "Enter customer number to delete:".
ACCEPT CUST-NUMBER.
CALL "DBGET" USING BASE, DSET, MODE7, STAT, LIST, CUST-NUMBER.
IF CONDITION-WORD <> 0

IF CONDITION-WORD = 17
DISPLAY "No entry" .
STOP RUN

ELSE
GO TO DB-ERROR.

CALL "DBDELETE" USING BASE, DSET, MODEl, STAT.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.

MOVE ALL "?" TO CUST-INITIALS.
MOVE CUST-NUMBER TO CUST-NUMBER-X.

CALL "DBFIND" USING BASE, DSET, MODE10, STAT, ITEM, CUST-INDEX.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.

CALL "DBGET" USING BASE, DSET, MODE5, STAT, INDEX-LIST, CUST-INDEX, DUMMY.
IF CONDITION-WORD <> 0 AND <> 15

GO TO DB-ERROR.

CALL "DBDELIX" USING BASE, DSET, MODEL STAT, ITEM,
CUST-INDEX.

IF CONDITION-WORD <> 0
GO TO DB-ERROR

ELSE
STOP RUN.

Version 3. 1 March 1992 Program examples A-3S

Adding SI-dataset to the lock descriptor

This example shows the root SI-clataset being added to the lock descriptor, which already includes
the CUST and SHIP clatasets. The Jockdescriptor is used by DBLOCK modes 5 and 6.

WORKING-STORAGE SECTION.

01 DB-LOCK-DESCRIPTOR.
05 LOCK-COUNT PIC S9(4) COMP VALUE 3.
05 LOCK-ENTRY.

10 LOCK-l-LENGTH PIC S9(4) COMP VALUE 22.
10 LOCK-l-DSET PIC X (16) VALUE "CUSTi
10 LOCK-l-ITEM PIC X(16) VALUE "@i
10 LOCK-l-RELOP PIC X(02) VALUE -:-
10 LOCK-l-VALUE PIC X(OB) .
10 LOCK-2-LENGTH PIC 89(4) COMP VALUE 22.
10 LOCK-2-D8ET PIC X (16) VALUE "SHIP;
10 LOCK-2-ITEM PIC X (16) VALUE "@i
10 LOCK-2-RELOP PIC X(02) VALUE =
10 LOCK-2-VALUE PIC X(OB) .
10 LOCK-3-LENGTH PIC S9(4) COMP VALUE 22.
10 LOCK-3-DSET PIC X(16) VALUE ·SIi
10 LOCK-3-ITEM PIC X(16) VALUE "@i
10 LOCK-3-RELOP PIC X(02) VALUE It="

10 LOCK-3-VALUE PIC X(OB).

A-36 Program examples Version 3.1 March 1992

Calling SITRANSLATE

This example illustrates calling SITRANSLA TE after accepting an argument. The code is the same
as the partial-key retrieval example. except for the call to SITRANSLATE and the WORKING-
STORAGE modifications.

WORKING-STORAGE SECTION.
01 CUST.

05 CUST-NUMBER PIC 9 (6) .
05 CUST-NAME PIC X(20) .
05 CUST-ADDRESS1 PIC X(20) .
05 CUST-ADDRESS2 PIC X(20) .

01 SEARCH-NAME PIC X(20) .

01 BASE PIC X(8) VALUE " OEDB
01 DSET PIC X(16) VALUE "CUST
01 ITEM PIC X(16) VALUE "CUST-NAME
01 LIST PIC xx VALUE "@" .

01 SITRANSLATE-AREA.
05 OPERATOR PIC X VALUE SPACES.
05 INPUT-ARGUMENT PIC X (20) VALUE SPACES.
05 OUTPUT-ARGUMENT PIC X (20) VALUE SPACES.
05 SITRANS-ERROR PIC S9 (4) COMP VALUE ZEROES.

01 STAT.
05 CONDITION-WORD PIC S9(4) COMPo
05 STAT2 PIC S9(4) COMPo
05 STAT3-4 PIC S9(9) COMPo
05 STATS-6 PIC S9(9) COMPo
05 STAT7-8 PIC S9(9) COMPo
05 STAT9-10 PIC S9(9) COMPo

01 MODEl PIC S9(4) COMP VALUE 1.
01 MODES PIC S9(4) COMP VALUE S.
01 DUMMY PIC X.

Version 3.1 March 1992 Program examples A-37

-------~ -----

PROCEDURE DIVISION.

MAIN.
PERFORM OPEN-BASE.

*
DISPLAY "Enter customer name:".

Accept the input argument
ACCEPT INPUT-ARGUMENT.

* Make sure the OPERATOR and OUTPUT-ARGUMENT are initialized
MOVE SPACES TO OPERATOR, OUTPUT-ARGUMENT.
The first three parameters must be passed using the "@" in COBOL

CALL "SITRANSLATE" USING @OPERATOR, @INPUT-ARGUMENT,
@OUTPUT-ARGUMENT, SITRANS-ERROR.

The SITRANS-ERROR should always be zero. If not, display the
the error number and exit.

*

*
*

* Notice in the call to DBFIND, use OUTPUT-ARGUMENT with no
modifications.

CALL "DBFIND" USING BASE, DSET, MODEl, STAT, ITEM,
OUTPUT-ARGUMENT.

IF CONDITION-WORD <> 0
IF CONDITION-WORD =17

DISPLAY "no entry"
STOP RUN

ELSE
GO TO DB-ERROR.

*

DISPLAY ·Cust# Name Address· .
PERFORM GET-NEXT STATS-6 TIMES.
STOP RUN.

GET-NEXT SECTION.
CALL "DBGET" USING BASE, DSET, MODES, STAT, LIST, CUST, DUMMY.
IF CONDITION-WORD <> 0

GO TO DB-ERROR.
DISPLAY CUST-NUMBER· "CUST-NAME· • CUST-ADDRESSl

• CUST-ADDRESS2.

GET-NEXT-EXIT.
EXIT.

A-38 Program examples Version 3. 1 March 1992

Appendix B Internal structures

SI-dataset structure

Between one and eight SI-datasets may be allocated for any database. Each dataset is a standalone
detail set with the name SI, conditionally followed by the relative set number 1-7.

The root SI-dataset contains the SUPERDEX definitions and must always exist--even if it does not
contain any B-trees. It is normally named SI, but may alternately be named SIO if and only if a
regular dataset named SI already exists.

If built by SIMAINT, the block size of each SI-dataset is equal to the database BLOCKMAX at the
time the set is created.

The SI-datasets must appear consecutively in the dataset list in continuous numeric order starting
with SI (l.e. SI or SIO immediately followed by SI1, S12, etc.).

Additionally, write access must be granted to all user classes configured for write access to any
SUPERDEX'ed dataset in the database.

SI-dataset capacity

The capacity of the SI-dataset is based on the space required to store the SI-indices, which depends
on the actual value of the SI-keys. The calculation of the recommended SI-dataset capacity is
performed by the SIMAINT utility under the assumption that the values of all SI-keys are different--
the worst case condition. If there are many occurrences of the same SI-key values--especially for
keyworded SI-paths--the actual space requirements may be considerably less than that calculated.

If you foresee this situation and there are B-trees for several SI-paths stored in a single SI-dataset,
you may override the recommended capacity and specify one that is lower. It is safer, though, to use
the recommended capacity and reduce it after the SI-indices have been !~enerated. In fact, SIMAINT
verifies that the SI-dataset capacities are sufficiently high based on the worst-case calculation.

Ilaf'lt is also important to note that the SI-dataset c:apacities calculated by SIMAINT do not
allow for future capacity changes in the datasets they index nor additional SI-paths that
may Ibe added at some later time. You may want to specify higher SI-dataset capacities
to leave room for dataset capacity increases and additional sl-paths.

SIMAINT initially generates Bvtrees that are optimized for space utilization. When performing heavy
updates to the SI-indices, this optimization may be lost and the B-tree must expand. Therefore, it is
recommended that 20 percent tree space be left in each SI-dataset to accommodate this situation.
The extra space utilized can always be regained by reorganizing all the SI-paths in the SI-dataset.

-----------------~------------------------

51-item

The item named 51 which is the only field in each SI-dataset.

The SI-item is buiHas a compound item by the SIMAINT.PUB utility program in the format nX254,
where n is the subitem count as determined by the block size of the SI-dataset, with a maximum
value of 16.

AHernately,as some software systems do not permit compound items, muHiple individual items may
be defined instead. These items should be named SI1 - Sin, with nthe same as the subitem count.

Additionally, write access must be granted to all user classes configured for write access to any
SUPERDEX'ed dataset in the database.

51-index base

A separate database which may be optionally used to maintain the SI-indices, rather than locating
them in the primary database with the data entries. If utilized, SI-datasets starting with 511 reside in
the SI-index base; the root SI-dataset (51or 510), which contains only the SI-definitions, must reside
in the primary database. Both the primary and SI-index base must contain the SI-item.

The SI-index base must reside in the same group and account as the primary base. Its name must
be the same as the primary base with 51 as the last two characters. For database names of 4
characters or less, append 51; for 5 or 6 character database names, replace the last one or two
characters with 51. For example, the SI-index base for the base OEDB would be OEDB51; for
CUSTDB, it would be CU5TSI.

The SI-index base may contain additional items and datasets in addition to the SI-item and SI-
dataset(s), and the SI-datasets must be in consecutive order. The block size and blocking factor of
the SI-dataset(s) must be the same as that of the root SI-dataset in the primary base. Additionally,
the SI-index base must have the same user classes and passwords as the primary base.

51-index

The SI-index is comprised of an SI-key followed by an SI-extension. The SI-index differs for SI-paths
related to master and detail datasets.

For master sets, the SI-index consists of up to three SI-subkeys plus the IMAGE search field value,
as shown:

The search field may be specified as the last significant SI-subkey of a concatenated SI-key. In this
case, the search field value is contained only once and is used for both selection and indexing.

B-2 Internal structures Version 3.1 March 1992

For detail sets, up to four SI-subkeys are allowed, followed by a double-word! relative record number:

There are compression techniques that are used to save space when th4~re are repeating SI-key
values. For example, the SI-key value will not be stored twice if there are two records with the same
SI-key and different master key values or relative record numbers.

Additionally, no duplicate SI-indices are stored. This means that if a detail record has a keyworded
key, if a word is repeated in the field, there will only be one SI-index for that record.

51-pointer

The SI-pointer consists of the last SI-index accessed plus one bit indicating whether the pointer is
located in front of or after the current SI-index.

51-subset

An extra data segment (XDS) that contains the results of a DBFIND performed in relational access
mode. Ordinarily, the SI-subset contains only the SI-extensions that map the qualifying entries, as
shown:

Master set:
I IMAGE search field value

Detail set:
I relative record number

The contents of the SI-subset are used for comparison with subsequent DBFIND calls.

If an SI-link is specified in addition to the SI-path in the DBFIND item parameter, the SI-subset also
contains the value of the SI-link, as shown:

Master set:
IMAGE search field valueISI-link

Detail set:
relative record numberISI-link

In this case, both the SI-link and SI-extension are used for comparison. Also, the value of the SI-link
is used to determine the sorting order when entries are returned.

Version 3.1 March 1992 Internal structures B-3

Appendix C Maximum limits

The following table identifies SUPERDEX's internal limits. Most limits are not checked, and results
when exceeded are unpredictable.

SUPERDEX maximum limits
Facility Maximum Limit

Number of Datasets per database with SI-paths 198

Number of SI-paths per database (with SI-index length under 30 words) 400
Number of SI-paths per database (with SI-index length of 99 words) 270

Number of SI-paths per dataset (with an SI-item length of 508 words) 22
Number of SI-paths per dataset (with an SI-item length of 1016 words) 53

SI-index length 127 words
SI-subkey length 63 words

Number of SI-indices per SI-dataset (with average SI-index length of 10 words) 102,400,000
Number of SI-indices per SI-dataset (with average SI-index length of 30 words) 68,266,000
Number of SI-indices per SI-dataset (with average SI-index length of 99 words) 20,686,000

Number of keywords per simple SI-key (or first SI-subkey when concatenated) 16

Number of items allowed in a grouped SI-path 32

Number of words in the keyword exclude path (with length of 4 words) 18,000

Total number of qualified entries in both SI-subsets (without SI-link):
Detail dataset 300,000

Total number of qualified entries in both SI-subsets (without SI-link):
5 word Master key (i.e. X10) 200,000
2 word Master key (i.e. (2) 300,000

Appendix D Error and exceptional conditions

SUPERDEX intrinsic error and exceptional conditions

SUPERDEX returns standard IMAGE condition codes and messages upon encountering an error or
exceptional condition. These condition codes and messages describe SUPERDEX conditions that
are equivalent to IMAGE conditions.

Also, because SUPERDEX uses standard IMAGE intrinsics to manage its 8-tree structures, an error
may indicate a problem in the SI-dataset rather than the dataset referenced by the dset parameter.
Additionally, if SUPERDEX has been configured to maintain its SI-indices in a separate SI-index
base, an error may indicate a problem in the SI-index base rather than the base referenced by the
base parameter.

Some of the more common and noteworthy condition word values that may be returned by various
intrinsics in accessing a SUPERDEX'ed base and what they mean are shown in the SUPERDEX
intrinsic error and exceptional conditions table on the following pages.

SUPERDEX utility error and exceptional conditions

The SUPERDEX utility error and exceptional conditions table lists the various error messages
that could be issued by the SIMAINT utility program, their meanings, and their corrective actions.

Program failures related to SUPERDEX

Programs that are run through the SUPERDEX SL or XL require certain capabilities and sufficient
stack; otherwise, an error will occur. The Program failures related to SUPERDEX table lists these
errors, their causes, and remedies.

SUPERDEX intrinsic error and exceptional conditions

Type Condition word/descriJ~tion
Message -21 BAD PASSWORD
Intrinsic DBOPEN
Meaning Inconsistency in SI-definitions.
Action Use SIMAINT,STRUCT against the database.
Message -31 BAD (UNRECOGNIZED) DBFIND MODE: xxx
Intrinsic DBFIND mode 1nn or 2nn
Meaning The length imposed by the specified mode exceeds the length of the argument

value.
Action Specify a mode that does not exceed the argument length.
Message -41 DBUPDATE WILL NOT ALTER A SEARCH OR SORT ITEM
Intrinsic DBUPDATE
Meaning Database was opened in mode 2 and an update against one or more SI-key was

attempted.
Action Use a DBOPEN mode other than mode 2 if updating SI-keys.
Message -52 ITEM SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE

SPECIFIED SET
Intrinsic DBFIND
Meaning The specified item is neither an IMAGE key or a SUPERDEX SI-path.
Action Use SI PATH to show the configured IMAGE keys and SUPERDEX SI-paths.
Message -53 DBPUT LIST IS MISSING A SEARCH OR SORT ITEM
Intrinsic DBPUT
Meaning All IMAGE keys and 5UPERDEX 51-keys are not included in the list parameter.
Action Change the list to include all IMAGE keys and SUPERDEX SI-keys.
Message 10 BEGINNING OF FILE
Intrinsic DBGET mode 16
Meaning After calling DBFIND mode 100 or 200 and DBGET mode 16, the entry with the

lowest alphabetic SI-key in the dataset has been returned.
Action Depends on the program design.
Message 11 END OF FILE
Intrinsic DBGET mode 15
Meaning After calling DBFIND mode 100 or 200 and DBGET mode 15, the entry with the

highest alphabetic SI-key in the dataset has been returned.
Action Depends on the program design.
Message 14 BEGINNING OF CHAIN
Intrinsic DBGET mode 5 or 15
Meaning In mode 5, the entry with the lowest alphabetic SI-key that matches the specified

DBFIND argument has been returned. In mode 15, the entry with the lowest
alphabetic SI-key in the dataset has been returned.

Action Depends on the program design.

0-2 Error and exceptional conditions Version 3.1 March 1992

Message 15 END OF CHAIN
Intrinsic DBGET mode 6 or 16
Meaning In mode 6, the entry with the highest alphabetic SI-key that matches the specified

DBFIND argument has been returned. In mode 16, the entry with the highest
alphabetic SI-key in the dataset has been returned.

Action Depends on the program design.
Message 16 THE DATA SET IS FULL
Intrinsic OBPUT
Meaning Either the dataset referenced in the dset parameter or the SI-dataset that

corresponds with the dset is full (the dset with be displayed in either case).
Action Increase the ~city of the dset, or the SI-dataset.
Message 17 THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE
Intrinsic DBFIND
Meaning 1. No entry exists that matches the specified argument.

2. An SI-index that has no corresponding data record was detected.
Action 1. Even though an error is returned, if called in mode 1nn or 2nn, the internal SI-

pointer is set and DBGET mode 15 and 16 may be used to retrieve the entries with
SI-keys greater than and less than the specified argument.
2. Reorganize the suspected corrupt SI-~th using SIMAINT.

Message 18 BROKEN CHAIN - FORWARD AND BACKWARD POINTERS NOT
CONSISTENT

Intrinsic DBGET
Meaning Possible inconsistency in B-tree, due to program abort or system failure
Action Reorganize the SI-paths related to the suspected dataset, or all the SI-paths in the

database.
Message 60 DATABASE ACCESS DISABLED
Intrinsic DBOPEN
Meaning The copy of SUPERDEX has expired, or the database has not been stamped by a

new version of SIMAINT.
Action If a current version SUPERDEX is available, either demo or permanent, run

SIMAINT against the database, otherwise delete the SI-item and SI-dataset(s)
from the database.

Version 3. 1 March 1992 Error and exceptional conditions 0-3

SUPERDEX utility error and exceptional conditions

Type Description
Message CAPACITY EXCEEDS MPE LIMIT - SI DATASET CANNOT BE CREATED
Meaning The capacity calculated for a newly defined SI-dataset requires a worst-case

dataset file that exceeds the MPE limits.
Action Specify additional SI-dataset as necessary, or ~if'y a smaller capacity size.
Message CAPACITY OF Sin DATASET NOT SUFFICIENT - NO LOADING

RECOMMENDED CAPACITY FOR Sin: xxxxxxxx
Meaning The capacity of the current SI-dataset is not high enough to accommodate the new

SI-indices, so the SI-path configuration is saved but no SI-indices are generated.
Change the capacity of the SI-dataset indicated to at least the recommended

Action capacity, and run SIMAINT to populate the related SI-paths.
Message COMPOUND ITEM NOT ALLOWED HERE
Meaning A compound item was specified for an SI-subkey as other than the first SI-subkey
Action Compound items may only be used as the first SI-subkey in an SI-key
Message CREATOR ACCESS REQUIRED
Meaning You are not logged on as the creator of the database you are attempting to

access.
Action Li>9 on as the creator of the database and rerun the process.
Message DEFINITIONS CANCELLED FOR CURRENT DATASET
Meaning \ was entered after defining an SI-path for a dataset, so any SI-paths defined for

this dataset in the current run of SIMAINT are flushed
Action None (status message only)
Message EXTENSION FAILED - DATABASE IS OK
Meaning An error was detected during processing, but the database was not damaged.
Action Correct the condition that caused the error and rerun SIMAINT.
Message EXTENSION FAILED - PLEASE GO TO BACKUP OF DATABASE
Meaning An error was detected during the extension phase of SIMAINT and the database is

damaged.
Action Correct the error condition displayed, restore the database from backup, and rerun

SIMAINT.
Message FILE ERROR ACCESSING SI-DATASET
Meaning An MPE file system error was detected while accessing the newly-created SI-

dataset.
Action Correct the error condition displayed, and rerun SIMAINT.
Message FILE ERROR ACCESSING NEW ROOT FILE
Meaning An MPE file system error was detected while accessing the newly-rebuilt database

root file.
Action Correct the condition that caused the error, and rerun SIMAINT.
Message FILE ERROR ACCESSING OLD ROOT
Meaning An MPE file system error was detected while accessing the current database root

file.
Action Correct the condition that caused the error, and rerun SIMAINT.
Message GROUPING NOT ALLOWED FOR THIS SI-PATH
Meaning An independent SI-path was configured as grouped.
Action This configuration is illegal.

D-4 Error and exceptional conditions Version 3.1 March 1992

Message NONEXISTENT DATASET
Meaning A dataset name was specified that does not exist in the database.
Action Enter? for a list of datasets.
Message ILLEGAL OPTION
Meaning An unrecognized suffix was specified on either the database, dataset or the SI-

path name.
Action Valid database suffixes are /1, /2, and /3. Valid dataset suffixes are /1 - /7,

ID, and IR. Valid SI-path suffixes are iB, ID, IG, IlC, and /R.
Message ILLEGAL OPTION - NO CORRESPONDING SI-DATASET EXISTS
Meaning Either the referenced SI-dataset (specified via. datasetln) does not exist, or the SI-

datasets do not appear in numerical consecutive order in the database.
Action The assigned SI-dataset does not exist and SIMAINT.PUB was not executed, so

the SI-dataset must be built by hand. In the latter case, the SI-datasets must
appear in sequential order.

Message INPUT ERROR READING DATASET
Meaning A file system error was detected when readin~~the dataset. _ _
Action Print a copy of the error tombstone and call Bradrnark Technical Support D
Message INPUT SORTLlB: TOO MANY RECORDS
Meaning The average number of keywords specified in configuring a keyworded SI-path or

average number of indices for a custom SI-path is not high enough.
Action Use SIMAINT to reorganize the SI-path, and specify a higher average number of

keywords or indices.
Message INVALID SI-DATASET
Meaning 1. For a database with one or more SI-paths, the root SI-dataset has been

corrupted.
2. For a database with no SI-paths, a regular dataset named SI already exists.

Action 1. Erase the root SI-dataset using a utility (l.e. DBGENERAL) or delete all its
entries, and redefine all SI-paths for the database.
2. Configure SUPERDEX with a root SI-dataset of SIO (refer to Section 3
Confiauration/Establishina 51-indices for details).

Message ITEM NOT TYPE U OR X - SI-PATH CANNOT BE KEYWORDED
Meaning The specified item may not be configured as the first SI-subkey in a keyworded SI-

path because it is not alphanumeric (data tYPE~U or X).
Action Numeric data types are not supported for keywording.
Message ITEM NOT IN DATASET
Meaning The specified item does not exist in the current dataset.
Action Enter? for a list of items in the current dataset.
Message LENGTH CONFLICT IN GROUP
Meaning The item specified for grouping is of a longer length than other items in the group.
Action Configure the longest SI-key in the group first.
Message MAXIMUM OF 199 SETS EXCEEDED
Meaning Creating the configured SI-dataset(s) would cause the database to have more

than 199 dataset (99 for non-Turbo IMAGE databases).
Action Specify fewer SI-datasets.

Version 3.1 March 1992 Error and exceptional conditions 0-5

Message NO SI-PATHS DEFINED FOR SPECIFIED DATASET
Meaning A dataset was specified with a suffix of /D or /R, but no SI-paths are related to

the dataset
Action /D and /R are only allowed on datasets with existing SI-paths.
Message ODD NIBBLES NOT ALLOWED
Meaning The specified item is of data type P and its subitem length is odd.
Action The subitem length for type P items must be even.
Message SI-PATH ALREADY EXISTS
Meaning An SI-path with the specified name already exists for the dataset.
Action Specify a unique SI-path name or append /G to group the SI-path.
Message SI-PATH DOES NOT EXISTS
Meaning An SI-path that does not exist in this database was specified with either /D, /G,

or /R.
Action Specify the name of an existing SI-path.
Message SORTLIB ERROR: TOO MANY INPUT RECORDS
Meaning The average number of keywords specified in configuring a keyworded SI-path or

average number of indices for a custom SI-path is not high enough.
Action Reorganize the SI-path, and specify a higher average number of keywords or

indices.
Message TOO MANY SI-PATHS DEFINED FOR dataset
Meaning More SI-paths have been specified for a related dataset than the maximum limit.
Action Refer to the table in the Appendix C Maximum Limits, or call Bradmark Technical

Support for information on how to define more. ~
Message TURBO IMAGE IS REQUIRED TO EXTEND DATABASE
Meaning SIMAINT.PUB was run against an non-Turbo IMAGE database, and there were no

SI-paths defined previously.
Action Add the SI-item and SI-dataset(s) manually and then rerun SIMAINT to configure

the SI-paths, or convert the non-Turbo IMAGE database to a TurbolMAGE
structure.

Message TYPE CONFLICT IN GROUP
Meaning The item specified for grouping is of a different data type than the already existing

SI-path.
Action All items in a group must be of the same data type.
Message WARNING: ILR ENABLED
Meaning Non-critical message indicating the ILR is enabled for the database when SIMAINT

is executed, and therefore processing may be slower.
Action In the future, disable ILR prior to executing SIMAINT.
Message WARNING: LOGGING ENABLED
Meaning Non-critical message indicating that logging is enabled for the database when

SIMAINT is executed, and therefore processing may be slower.
Action In the future, disable logging prior to executing SIMAINT.
Message WARNING: RUN WITHOUT ;LlB=G OR ;LlB=P
Meaning Non-critical message indicating that SIMAINT was run with ; LIB=G or ; LIB=P,

therefore processing may be slower.
Action Run SIMAINT without specifying any external libraries.

D-6 Error and exceptional conditions Version 3.1 March 1992

Message WARNING! INCONSISTENCY DETECTED. RERUN WITH ,STRUCT
Meaning An inconsistency between the database structure and the SUPERDEX

configuration was detected.
Action Run SIMAINT,STRUCT against the database.
Message WARNING! OPTION IGNORED, PREVIOUS DEFINITION RETAINED
Meaning The specified SI-dataset option does not match the existing SI-dataset option for

the dataset.
Action Once an SI-path has been defined for a dataset, the SI-dataset option can not be

modified. To change the SI-dataset, the existing SI-path(s) must be deleted and
reconfigured with the new SI-dataset option specified.

Version 3. 1 March 1992 Error and exceptional condftions 0-7

----- --.---~---------------.-~-----------~---~-.--.-----------------~----

rogram a ures re at to :
Type ErrorlDescription
Message STACK OVERFLOW (PROGRAM ERROR 4120)
Cause Available program stack space is insufficient for SUPERDEX access.
Remedy Increase stack by 2 - 3 Kwords or more.
Message PROCESS QUIT; PARM = 61 (PROGRAM ERROR 118)
Cause Available program stack space is insufficient for SUPERDEX access.
Remedy Increase stack by 2 - 3 Kwords or more.
Message PROCESS QUIT; PARM = 62 (PROGRAM ERROR 118)
Cause Exceeds available SUPERDEX table
Remedy Call Bradmark Technical Support. 1:1'
Message PROCESS QUIT; PARM = 63 (PROGRAM ERROR 118)
Cause Exceeds available SUPERDEX table
Remedy Call Bradmark Technical Support. 1:1'
Message PROCESS QUIT; PARM = 64 (PROGRAM ERROR #18)
Cause Exceeds available SUPERDEX table
Remedy Call Bradmark Technical Support. 1:1'
Message ILLEGAL CAPABILITY (LOADER ERROR 139)
Cause Group and/or account where program resides lacks capabilities granted to

program.
Remedy Determine which capabilities group and/or account lack and add them.
Message ILLEGAL CAPABILITY (RUN- TIME ERROR #2)
Cause Program referencing SUPERDEX SL or XL lacks DS and conditionally MR

capability.
Remedy Add OS capability and, if required by locking strategy, MR capabllity to program.

P f II I ed SUPERDE"X

D-8 Error and exceptional conditions Version 3.1 March 1992

Business Basic interface

Installation

BUSINESS BASIC does not call IMAGE intrinsics directly; rather, it calls its own special intrinsics in
the system SL or XL (e.g. BB_DBPUT) which in turn call the IMAGE intrinsics. For this reason, it is
not sufficient to simply run programs to access the SUPERDEX SUXL, since their IMAGE externals
will still be resolved in the system SUXL and the SUPERDEX intrinsics will be bypassed.

The solution is to place both the BUSINESS BASIC intrinsics and SUPERDEX intrinsics in the same
group or account SL or XL. This way, the BUSINESS BASIC intrinsics call the SUPERDEX intrinsics
rather than the standard IMAGE intrinsics.

Unfortunately, this is often a somewhat involved process, since HP does not provide a USL
containing the BUSINESS BASIC intrinsics. It is therefore necessary to make a copy of the system
SUXL, purge all the segments that are not reserved for BUSINESS BASIC, add in the SUPERDEX
intrinsics segments, and then use this new SUXL as the SUPERDEX SUXL.

The following job stream creates an SL that contains both the BUSINESS BASIC and SUPERDEX
intrinsics in a new group BBASIC.SUPERDEX, which it builds. Before streaming it, :RELEASE
SL.PUB.SYS and then :SECURE it when done.

EXIT

!JOB MAKEBBSL,MGR.SUPERDEX;OUTCLASS=, 1
!CONTINUE
!PURGEGROUP BBASIC
!NEWGROUP BBASIC
!SEGMENTER
SL SL.PUB.SYS
COPYSL 1,SL.BBASIC;USERFORMAT

!BUILD LIST.BBASIC;REC=-80,1,F,ASCII;DISC=20000,32,8;DEV=DISC
!FILE SEGLIST=LIST.BBASIC,OLD;SAVE
!SEGMENTER
SL SL.BBASIC
LISTSL
EXIT
!FCOPY FROM=LIST.BBASIC;TO=PURGESL.BBASIC;NEWiSUBSET="SEGM",l
!PURGE LIST.BBASIC

!EDITOR
TEXT PURGESL.BBASIC
CHANGEQ 29/80,· ·,ALL
CHANGEQ l,·PURGESL ·,ALL
CHANGEQ 16/20,·,·,ALL
ADDQ .1
SL SL.BBASIC
//
ADDQ
CLEANSL
USL SIUSL.PUB.SUPERDEX
ADDSL SIPROCO
ADDSL SIPROC1
ADDSL SIPROC2
ADDSL SIPROC3
ADDSL SIPROC4
COPYSL 1
EXIT
II
LISTQ 1
WHILE
FINDQ "HPBB"
DELETEQ *
KEEP PURGESL.BBASIC,UNN;EXIT
!RUN SEGDVR.PUB.SYS;STDIN=PURGESL.BBASIC
!PURGE PURGESL.BBASIC
!EOJ

Once created, copy the new SL into the account in which the object programs reside, either in the
PUB group or the group in which the programs reside.

1r For Native Mode Business Basic, please contact Bradmark's Technical Support for information
on copying the XL.

Running programs

All programs that access databases that have been modified for SUPERDEX access must be run
through an SL or XL that contains both the BUSINESS BASIC intrinsics and the SUPERDEX
intrinsics, using ; LIB=P (if the SUXL is in the PUB group) or ; LIB=G (if the SUXL is in the object
program group).

For programs run interactively, HPB8.PUB.SYS and HPBBCNFG.PUB.SYS must be copied to a
group/account in which the SUPERDEX SL or XL resides and HPBB run with ; LIB=P or ; LIB=G.

SUPP-2 Supplement Version 3.1 March 1992

Adding, updating, and deleting entries

BUSINESS BASIC programs are run through SUPERDEX's SL or XL, so that entries added,
updated, and deleted from BUSINESS BASIC programs also cause the SHndices to be added,
updated, and deleted automatically.

Qualifying and retrieving entries

Entries are qualified and retrieved in BUSINESS BASIC using the same methods as for other 3rd
generation languages, with SUPERDEX's DBFIND and DBGET.

Because BUSINESS BASIC's DBFIND does not have a mode parameter, it always calls
SUPERDEX's DBFIND in mode 1. Fortunately, the majority of SUPERDEX retrievals can be
accomplished with only DBFIND mode 1.

For retrievals that can only be performed by SUPERDEX using a mode other than 1, such as
approximate match retrieval, SUPERDEX's DBFIND intrinsic may be called as an external procedure.

~ SUPERDEX does not support the floating-point decimal elements as SUPERDEX Path
Items for Native Mode Business Basic at this time.

Version 3.1 March 1992 Supplement SUPP-3

TRANSACT interface

Installation

TRANSACT.PUB.SYS is copied to a group/account where the SUPERDEX SL or XL resides and run
with ;LIB=G or ;LIB=P. UDCs, menus, job streams, etc... must be changed accordingly.

If using Native Mode TRANSACTIXL, it is also necessary to duplicate the module named HP30138
from XL.PUB.SYS into the SUPERDEX XL. This can be facilitated using the COPYXL command of
the LinkEditor.

It is recommended that SI-paths be defined in the data dictionary, although they may alternately be
defined in programs that access them.

If defining SI-paths in the dictionary, they should not be specified as elements in any files. Each SI-
path should be configured as TYPE X (alphanumeric) with a SIZE long enough to accommodate the
SI-key length plus operators and multiple values. It is recommended that SI-paths be identified using
an appropriate DESCription to distinguish them from items.

Adding, updating, and deleting entries

TRANSACT is run through SUPERDEX's SL or XL, so that entries added, updated, and deleted from
TRANSACT programs also cause the SI-indices to be added, updated, and deleted automatically.

Using (CHAIN)

TRANSACT has the capability of updating or deleting entire detail data sets using the (CHAIN)
option. Because SUPERDEX modifies the IMAGE pointers, it is possible to confuse IMAGE during a
(CHAIN) process, especially when doing PROCEDUREs within the (CHAIN) process.
Therefore, it is recommended NOT to use the (CHAIN) option for UPDATEs or DELETEs. A
FIND (CHAIN) should be used to find the chain, followed by individual record UPDATEs.

Qualifying and retrieving entries

Entries are qualified and retrieved using the same method as chained retrieval of entries in detail
datasets. The SI-path name is placed into the key register and the SUPERDEX search argument
into the argument register.

SUPP-4 Supplement Version 3. 1 March 1992

If SI-paths were not defined in the dictionary, define each SI-path in the program, for example:

DEFINE (ITEM):
CUSTOMER-NAME-KW X(40):
ADDRESS-CITY-KW X(40):
PART-ORDER X(20);

Then, place the search argument (as defined for SUPERDEX's DBFIND intrinsic) into the argument
register by moving it to the item that represents the SI-path, as shown:

/HOVE 51-path - "argument",

Then, place the SI-path name to be accessed into the key register, as shown:

/SET (KEY) LIST (51-path) ;

To retrieve entries in ascending sorted order:

/FIND (CHAIN) deteset,

or in descending order:

/FIND (RCHAIN) deieset,

To return the number of qualifying entries in the status register, use the same technique as for an
IMAGE path:

This same method is used when performing relational access against multiple SI-paths and datasets:
just set the key and argument registers as shown and perform one or more PATH commands as
necessary against the dataset(s). For example, when using the RPN boolean format, make sure to
enclose values in square brackets and append the appropriate boolean operator as required when
performing relational access.

Version 3. 1 March 1992 Supplement SUPP-5

Match register

Entries that are retrieved using an SI-path may be restricted using the match register, as for IMAGE
paths. It may, however, be more efficient to instead configure the SI-path to use a concatenated SI-
key that includes the field being matched on as an SI-subkey. In this case, the concatenated value
(for both fields) would be specified in the argument register. The advantage is that only the entries
that match on both fields would be initially selected, rather than selecting entries that qualify on one
field and filtering out those that do not match on the other.

LIST change

TRANSACT programs (including those compiled with FAST RAN) use the * list once the list is first
established. SUPERDEX may change the list, especially when updating an entry. For this reason, it
is recommended to include all the fields that are used as SI-keys in the list or use the @ list when
updating entries.

PRoe DBFIND

The vast majority of SUPERDEX retrievals can be performed using the methods described, which
access SUPERDEX's DBFIND intrinsic in mode 1.

For retrievals that can only be performed by SUPERDEX USing a mode other than 1, such as
approximate match retrieval, SUPERDEX's DBFIND intrinsic may be called as an external procedure
using PROC DBFIND. Once this has been called, qualifying entries can be retrieved using:

/'IND(CBAIN) dataset, LIST=(••i. STATUS,

SUPP-6 Supplement Version 3.1 March 1992

FASTRAN

The FASTRAN compiler from Performance Software Group may be used to compile and prepare
TRANSACT programs that use SUPEROEX. These programs would be run through the SUPEROEX
SL or XL using ; LIB=G or ; LIB=P, just as interpreted TRANSACT programs. Additionally,
existing object programs would require that OS and MR capability be added, which could be done
with the ALTCAP. POB. FASTRAN program.

Alternately, the SUPEROEX procedures may be prepared directly into FASTRAN object programs,
which would be run without specifying ; LIB=G or ; LIB=P. In this case, OS and MR capability
would be included in the program capability list on the: PREP. To do so, with the FASTRAN UOCs
(ODe. POB • FASTRAN) set locally:

:FASTSEG
=MAIN systemname, $OLDPASS
=INCLUDE FSTN' 'LIBC',LUSL.PUB.FASTRAN
=INCLUDE SIPROCO,SIUSL.PUB.SUPERDEX
=INCLUDE SIPROC1,SIUSL.PUB.SUPERDEX
=INCLUDE SIPROC2,SIUSL.PUB.SUPERDEX
=INCLUDE SIPROC3,SIUSL.PUB.SUPERDEX
cINCLUDE SIPROC4,SIUSL.PUB.SUPERDEX
=PREP object;CAP=IA,BA,DS,MR
=EXIT
:SAVE object

« FASTRAN segmenter»

:FASTCOMP sou~e,,$NULL,qpD~ «creates USL in$OLDPASS »

Version 3.1 March 1992 Supplement SUPP-7

NetBase interface

Installation and configuration

SUPERDEX is installed and configured as documented in the SUPERDEX User Manual, with the
following restrictions.

SUPERDEX is installed for each database on each system using a separate SI-index database to
maintain the SI-indices rather than maintaining the SI-indices in the primary database. Refer to the
Separate database for SI-indices chapter in the Configuration/Establishing SI-indices section of the
SUPERDEX User Manual for instructions.

The SUPERDEX SL is located at the group level in the same group as object programs, with the
NetBase SL located at the account level (PUB group). Programs are run with; L:IB=G.

If programs are already located in the PUB group, it is necessary to move them to a different group in
which the SUPERDEX SL resides. NetBase's SCANJOB program or MPEX's %EDIT command may
be used for changing "L:IB=P" to "L:IB=G" in job streams and UDCs.

Note that due to the way in which NetBase handles the CREATEPROCESS intrinsic, any program
which is created as the son process of another program is automatically directed to the same SL as
the father program--regardless of the LlBSEARCH parameter used in the CREATEPROCESS call.

SIGROUPSL JeW

In order for SUPERDEX to access the NetBase procedures in the account SL, it is necessary to set a
special JCW, as shown:

,i'SETJCW SrGROUPSL • 1

Unless the SIGROUPSL JCW is set, SUPERDEX will bypass the NetBase procedures altogether.

It is recommended that the SET JCW command be included in a system wide logon UDC to make
sure that it is set for all users at all times.

SUPP-8 Supplement Version 3.1 March 1992

Shadowing

In enabling databases for shadowing, only each primary database which contains the data is enabled.
Shadowing is not enabled on any SI-index base.

A special version of the NBPOST program which has been : PREPped with the SUPERDEX
procedures is run on the remote system to automatically perform the necessary SUPERDEX indexing
on the remote system whenever entries on the local system are added, updated, and deleted.

Network File Access

SUPERDEX procedures are resolved on the local system and the resulting IMAGE procedure calls
are transported to the remote system where they are resolved by IMAGE.

Version 3.1 March 1992 Supplement SUPP-9

A
INDEX

SIMAINT 6-8

Account

Capabilities 1·19

Active SI·subset 4·23

Adding entries .4·5

ALTACCT ...•..... 3-3

ALTGROUP 3-3

ALTPROG•.................. 6-58

Access requirements 6-58

Running in batch 6-59

ALTPROG.PUB.SUPERDEX 3-4

ALTUSER•................................... 3-3

AND 1·10. 2·21. 4·9

Boolean operators•...........•.•.....•................ 1·5

DBFIND 4·20
Multiple value retrieval 4·20

AND NOT 1·10. 4·9

DBFIND 4·18. 4·21

Application programs

Integrating SUPERDEX 1-18

Approximate match retrieval 1·9. 2·13

Ascending sorted retrieval A·2

ASK2 1·18

Autodefer 5-11

Automatic master 3·8

Replacing with SI·path 1·18

Vs B-tree 1·11

!Ust 2·25. 4·34. 5-22

!& 2·21

1·5.2·12.3-14.4·16

$CONTROL SORTSPACE:nnnnn

COBOL. 4·38

& 2·21

+ 2· 21

Boolean operators 1·5

•.. 2·21

Boolean operators 1·5

•.. 2·21.3-14.4·11

Boolean operators 1·5

Ii

12

DBOPEN 3·19

SIMAINT 6-8

13

DBOPEN 3·19, 3·31

SIMAINT 6-8

IB 3·11,3·21.3·25,3·26

ID 3·19.3-21,6-5.6-8.6-9

IG 2·17, 2·20, 3·10. 3·21, 3-25, 3·26, 3·28, 6-9

1K 2·8. 3-9, 3·21. 3·24. 3·25. 3·26, 3·27, 3·28

IN 3·30

In 3-19

IR 3·19, 3·21. 6-5, 6-8, 6-9

; 4·10

; list

Nulllist 4·35, 5-6, 5-23

«» 1·5, 2·11. 4·16

<: 1·9, 2·15, 4·11, 4·17

<> 1·9, 2·15, 4·11. 4·18

= 4·11

>: 1·9.2·15.4·11.4·17

? 2·12.3-14,4·16

@ 2·11. 3-14. 4·16. 4·18

Multiple 1·5

@ list 5-6. 5-23

DBDELETE 4·35

DBUPDATE ..4·5, 4·34. 5-35

SIUSER procedure 5-41

0 · · · · ·..4·10.4·18,4·23
1 2·21

- 4·10

B

B-tree

Standalone 2·25

Vs automatic master 1·11

Backup sl-subeet 4·23

BASIC/3000 1-18, 3·3, 4·37
Batch

SIMAINT 3·35

Blank SI·key•.......... 3-11. 5-31

BLOCKMAX ...•......................................•............. B-1

DBINFO•........................... 5-26

Boolean operations•..................... 2·21. 4·9

Boolean operators 1·10.4·23.4·27.4-28.4-30

!& 4-21

& 4·20

+ 1·5. 4·20

•...............•.. 1·5. 4-21

•..................•... 1·5, 4-21

1 4·21

AND 1.5, 4.20

Combined 4·21

DBFIND 4-26

NOT 1·5.4·21

OR 1-5. 4·21

Version 3.1 March 1992 Index

B (Continued) Current path
DBFIND 4-32

Effect 5-20

DBGET 4-35

Effect 5-24

Effects of SI-intrinsics 4-38

Custom SI-key 1-10, 2-24, 3-11

Defining 3-28

SIUSER procedure 2-24, 4-6, 5-40

Customization string 3-14

BRW 1-18, 4-37

Business Basic 1-18,3-3,4-37

Native Mode SUPP-2

BUSINESS BASIC interface SUPP-1

Business Report Writer 1-18, 4-37

C Language 1-18, 4-37

Calling SITRANSLATE A-37

Capabilities

Account... 1-19,3-3

Group 1-19,3-3

Program 1-19,3-4,4-37

User 3-3

Capacity
SI-dataset 3-30

Chain count 5-14

Chains

Vs SI-indices 1-11

COBOL 1-18, 4-38, A-1

$CONTROL SORTSPACE=nnnnn .4-38

Combined boolean operators 4-21

Complex DBFIND 4-24

Compound item 1-12, 3-9, 4-8

Restrictions 3-11

Compound SI-key

Keywording 2-9

Concatenated SI-key 1-8, 2-5, 2-24, 3-8, 4-8

DBFIND 4-14

Defining 3-22

Keyworded 3-24

Restrictions 3-11

Retrieval A-8

Vs sorted chains 1-11

Condition word

DBGET 4-33

Condition word -21 4-32

Condition word -41 .4-5, 5-35

Condition word -52 4-32, 4-35

Condition word -53 5-31

Condition word 14 5-22

Condition word 15 5-22

Condition word 17 4-32, 5-12, 5-13, 5-14

Condition word 18 5-12

Corresponding entries

DBFIND 4-27
Creating

SI-dataset 3-16

SI-item 3-16

D

Data type conversion 2-24

Data type K 4-11

Data types 1-17,4-11,5-18
Database

Defining 3-18

Database maintenance 6-4
Dataset

Defining 3-19

Defining associated 51-datasets 3-20

Date reformatting 2-24, 4-6

DBBEGIN 1-17, 4-5

51-intrinsic 5-4, 5-9

DBCLOSE

Sl-intrinsic 5-5

DBDELETE 4-35, 5-10

51-intrinsic 5-6

DI3DELIX 2-25, 4-6

Example A-34

SI-intrinsic 5-4, 5-7

SIDRIVER 6-52

DBEND 1-17, 4-5

Sl-intrinsic 5-4, 5-9

DBERA5E

Recovery 5-11

Sl-intrinsic 5-10

SIDRIVER 6-52

DBERROR

SI-intrinsic 5-12

DBEXPLAIN
Sl-intrinsic 5-12

ii Index Version 3.1 March 1992

D (Continued) DBINFO

BLOCKMAX 5-26

Mode 311 4-36, 5-25

Mode 312 1-6, 4-36, 5-25

SI-intrinsic 5-25

DBLOCK

SI-intrinsic 5-28
DBMEMO

SI-intrinsic 5-29

DBOPEN

1 3-7

12 3-6,3-19

13 3-19, 3-31

Locking 3-6,3-19,4-3

Mode 2 4-5,5-35

Separate SI-index base for locking 4-4

SI-index base 5-30

SI-intrinsic 5-30
DBPUT

Locking 5-31

Logging 5-31

SI-intrinsic 5-31

DBPUTIX 2-25, 4-6

Example A-32

Locking 5-33

Logging 5-33

SI-intrinsic 5-4,5-32

SIDRIVER 6-52

DBUNLOCK

SI-intrinsic 5-34

DBUPDATE

@ list. 4-5, 4-34, 5-35

Locking 5-35

Logging 5-35

SI-intrinsic 5-35

DBXBEGIN

SI-intrinsic 5-36

DBXEND

SI-intrinsic 5-37

DBXUNDO

SI-intrinsic . 5-38

Deadlocks 4-3

Default characters 3-14

Deferring indexing

SIMAINT 3-29

Deleting

SI-path 3-21

Deleting entries 4-5

Descending sorted retrieval A-4

DICTDBL 3-3

DS capability 3-3, 3-4, 4-37

ALTPROG 6-58

Dynamically-joined indices 2-23

DBFIND

AND 4-20

AND NOT.. 4-18, 4-21

Argument... 4-11,4-18

•.. 4-29

@@ 4-25

Boolean operators 4-26

Complex 4-24

Compound item 4-15

Concatenated SI-key 4-14

Corresponding entries 4-27

Current path 4-32

Effect 5-20

Examples 4-12

Generic retrieval 4-16

Greater-than 4-17

Group SI-key 4-14

Independent SI-key 2-26

Indexed access 4-11

Keyword SI-key 4-15

Less-than 4-17

Modes 2-11,4-10

Multiple calls 2-23

Multiple databases 4-28

Multiple datasets 4-26

Multiple sets/bases

Projection 4-29

Multiple SI-paths 4-25

Not-equal 4-18

OR 4-21

Partial retrieval 4-16

Pattern matching 4-18

Projection

Multiple sets/bases 4-29

Range 4-18

Relational access 4-18

Restrictions 5-19

SI-intrinsic 5-13

SI-pointer 4-32

Effect 5-20

Summary 4-8

Super-grouped SI-key 4-15

DBGENERAL interface 6-5

DBGET 4-5

Condition word 4-33

Current path 4-35

Effect 5-24

Independent SI-key 2-26

Retrieving entries 4-33

SI-intrinsic 5-21

SI-pointer 4-35

Effect 5-24

Version 3.1 March 1992 Index iii

E Grouped 51-key " 3-10,4-8
Compound item 3-9

DBFIND 4-14

Defining 3-25

Keyworded 3-2S

Restrictions 3-11

Effects of SI-intrinsics

Current path 4-36

SI-pointer 4-36

Efficiency 2-4, 2-6

Generic retrieval 2-12

Keywording 2-9, 3-9

Partial retrieval 2-12

Relational access 2-22

Entry count 4-25

Entry points

SIMAINT 6-6

Error handling

Compatibility 1-17

Errors 6-3

File system 0-1, D-S

Intrinsic 0-1, 0-2

Programs 0-1, D-S

SIMAINT 0-1, 0-4

Exceptional conditions 6-3

Exclusion words

Defining 3-29

Keywording 3-10, 3-12

Explicit locking 4-2

Example A-36

Extension phase

SIMAINT 3-30

Extra Data Segments 3-5

F

ILR 5-11

IMAGE

Access 3-8

condition codes 0-1

Intrinsics enhancements 5-2

Path 3-S

Implicit locking 4-2

Independent SI-key 1-10, 2-25, 3-11

Accessing 4-7

Defining 3-20, 3-29
Index value

SIUSER procedure 5-41

Indexed access 4-33

Vs Relational access 4-10

Vs relational access 1-16
Indexing phase

SIMAINT 3-31

Infix Notation 1-12, 4-18, 4-19, 5-39

Processinq 4-22

INFO

SIMAINT 3-14, 3-15

Installation 3-2

Intrinsics

Compatibility 1-17

Errors and exceptional conditions D-1, 0-2
FASTRAN 4-39, SUPP'7

First-on-chain 5-14

FORTRAN 1-1S, 4-38

SORTINIT 4-38

FSERRORs 0-1,0-8

Function Keys

SUPERDEX(Program) 6-17

Item

Parameter 3-8

SI-path,SI-link 4-26

J

G JCW
SIEXTLEN 5-22, 6-7, 6-14

SISETLlNK 5-14, 6-21, 5-22

Job stream

SIMAINT 6-13

Generic retrieval 1-8,2-11,3-14,4-9, A-6

DBFINO 4-16

Efficiency 2-12

Greater-than

DBFIND 4-17

Retrieval 1-9, 2-15

Group
Capabilities 1-19

Grouped retrieval 1-9, 2-17

iv Index Version 3. 1 March 1992

K Separate SI-index base ..4-4

Set-level 4-3

SIREPAIR 6-40

SITEST 6-40
Logging 3-7,3-8,4-5,5-4,5-6,5-8,5-9,5-11

DBPUT 5-31

DBPUTIX•......................... 5-33

DBUPDATE 5-35

K datatype 4-11

Keyword

Average number of indices 2-8

Average number of keywords 3-9

Duplicate words in SI-key 2-9

Efficiency 2-9, 3-9

Exclusion words 3-10, 3-12

Hyphenated words 2-9

KWEXCLUDE SI-path 2-8

Length 2-8, 3-9, 3-12

Maximum Iimits 2-9

Minimum number of characters 2-8, 3-9

Keyword retrieval 1-8, 2-8

Compound item 2-9

Keyword SI-key 3-9, 3-14, 4-8, 5-17

DBFIND 4-15

Defining 3-24

Grouped 3-28

Restrictions 3-11

KWEXCLUD

Default File 3-13

File 3-12

MPE file 6-3, 6-40

KWEXCLUDE SI-path 2-8, 3-10, 3-12, 6-40

Defining 3-20, 3-29

M

L

Master dataset

Access vs detail dataset.. 1-11

Multiple keys 2-3

Master search field

Restriction 3-11

MAXDATA 1-19, 3-4, 4-37

ALTPROG 6-58

Maximum Iimits C-1
Mode 2

DBOPEN 4-5, 5-35

Mode 311

DBINFO 4-36, 5-25
Mode 312

DBINFO 4-36, 5-25
Modes

SITEST 6-42

MPEfile

KWEXCLUD 6-3, 6-40

MPE flat file 2-25

MPEN 3-5

MPElXL

Program capabilities 4-37

MR capability 1-19, 3-3, 3-4, 4-3, 4-4, 4-37

ALTPROG 6-58

Multiple @ signs 1-5, 4-16

Multiple criteria , 2-23
Multiple databases A-22

DBFIND 4-28

Multiple datasets A-19

DBFIND 4-26
Multiple field retrieval

Application 2-23

Multiple keys 2-3

Multiple retrieval

Multiple databases A-22

Multiple datasets A-19

Multiple SI-Paths A-17

Projection A-25

Multiple setslbases

DBFIND
Projection 4-29

Multiple SI-keys 1-S

Last-on-chain 5-14

Less-than

DBFIND 4-17

Retrieval 1-9, 2-15
LIB:

SIMAINT 5-42

LlB=G 3-3, 3-4

LlB:P 3-4

Ust

! 4-34
LOADER SEGMENT TABLE 3-5

Locking 3-3, 4-2, 5-6, 5-8, 5-28, 5-30

DBOPEN 3-6

Defining number 3-19

DBPUT 5-31

DBPUTIX 5-33

DBUNLOCK 5-34

DBUPDATE 5-35

Explicit.. 4-2

Explicit example A-36

Implicit 4-2

Introduction 1-19

Separate DBOPEN 4-3

Version 3.1 March 1992 Index v

M (Continued)

N

Processing

Infix Notation 4-22

SQL Notation 4-22

Program

Capabilities 1-19, 4-37

Errors 0-1,0-8

Projection 4-28, 5-15

OBFINO

Multiple setslbases 4-29

Retrieval A-25

SI-link 4-26

Multiple SI-Paths

Single dataset A-17

Multiple value retrieval

OR'd A-12

Native Language Support

.................................. 1-19,2-7,3-28, 3-29, 4-40

Native Mode;Business Basic SUPP-2

Negative values

Sorting 2-7

NetBase interface SUPP-8

NLS 1-19, 2-7, 3-28, 3-29, 4-40

NOCB 1-19, 3-4, 4-37

NOT 2-21

Boolean operators 1-5

Not-equal

OBFINO 4-18

RetrieVal 2-15

Null list

; list 4-35, 5-6, 5-23

Q

QTP 1-18, 4-38
Qualified entries 5-13

Qualifying entries 4-8

Overview 1-16

QUERY/3000 1-18, 3-3, 3-4, 6-60

QUICK 1-18, 4-38

QUIZ 1-18, 4-38

R

o

p

Range

OBFINO 4-18

Retrieval 1-9, 2-15, A-10

Reading Sl-indices A-28

Real numbers 4-11, 4-17

Recovery 3-7

OBERASE 5-11

Redefining SI-path 6-5

Refining retrieval A-14

Related detail datasets 2-19

Relational access 3-8,4-9,4-11,4-30,4-33

OBFINO 4-18

Efficiency : 2-22

Multiple criteria retrieval 1-10, 2-21

Multiple databases 1-10,2-23

Multiple datasets 1-10, 2-23

Multiple fields 1-10, 2-23

Vs Indexed access 1-16, 4-10

Relational Operator. 4-9

Reorganizing

SI-path 3-21, 6-5

Restrictions

OBFIND 5-19

SI-key 3-11

Reverse Polish Notation 1-12, 4-18, 4-19, 5-39
Root SI-dataset... 3-7

Offset

SI-path 3-23

OR 1-10, 2-21, 4-9

Boolean operators 1-5

DBFIND 4-21

Multiple value retrieval. A-12

Parameter

Item 3-8

Partial retrieval 1-8, 2-11,3-14, A-6

DBFIND .4-16

Efficiency 2-12

Pascal 1-18, 4-38

SORTINIT 4-38

Path Numbers 1-5

Pattern matching

OBFIND .4-18

PowerHouse 1-18, 4-38

PREP 3-4

Privilege Mode and SUPERDEX 4-37
Procedure

SIUSER 5-40

vi Index Version 3. 1 March 1992

R (Continued)

s

DBEND 5-4. 5-9

DBERASE 5-10

DBERROR 5-12

DBEXPLAIN 5-12

DBFIND 5-13

DBGET 5-21

DBINFO 5-25

DBLOCK 5-28

DBMEMO•............... 5-29

DSOPEN 5-30

DBPUT 5-31

DBPUTIX 5-4.5-32

OBUNLOCK 5-34

DBUPDATE•..................... 5-35

DBXBEGIN 5-36

DBXENO 5-37

DBXUNOO 5-38

Definition 1-15

SITRANSLA TE 5-39

sl-ltem

Characteristics B-2

Creating 3-16

Definition 1-14

SI·key 2-5

Defining 3-6

Blank value 3-21

Definition 1-13

Extracting 2-24

Length 2-4

Restrictions 3-11

SI-key value

Determining .4-6

Sl-link 2-7.3-8.4-26.4-28.4-29.4-30.5-15

Definition 1-14

Projection 4-26

SI-path 3-8.5-13

Defining 3-6. 3-21

Definition 1-13

Oeleting 3-21. 6-10

KWEXCLUOE 6-40

Narne 3-8

Numbers 5-15

Offset 3-23

Redefining 6-5

Reorganizing 3-21. 6-5. 6-9

Starting Position 3-23

SI.path.SI.link

ltem 4-26

RPG 1-18.4-38

RPN 4-18.4-19

RUN 3-4

Sample applications 1-7

semi-colcn 4-10

Sequential Access 4-35

Serial Access 4-35

Set·levellocking 4-3

SI

Definition 1-13

SI root dataset. B-1

SI-chain

Definition 1-14

Repositioning 4-33

st-counter 4-34. 5-23

Definition 1-14

SI-dataset

Capacity 3-30. B-1

Creating 3-16

Defining multiple 3-20

Definition 1-14

Name 3-7

Structure B-1

SI·definitions

Definition 1-14

Sl-extension

Oefinition 1-13

Independent SI-key 2-25

SI-index

Definition 1-13

Layout. B-2

Managing explicitly 4-6

Reading 5-22
SI·index base 3-7. 5-12

DSOPEN 5-30

Defining 3-19

Definition 1-14

Name 3-7

Structure B-2

SI-indices 6-3

Reading 4-33. A-28

Reading multiple indices 4-34

Vs chains 1-11

S !-intrinsic 5-1

OBBEGIN 5-4.5-9

DBCLOSE 5-5

DBDELETE 5-6

DBDELlX 5-4. 5-7

Version 3.1 March 1992 Index vii

5 (Continued) SIPATH 6-37
Enhancements 1-6

SIREPAIR 1-4, 6-40

Access requirements•.................... 6-40

Invoking 6-45

Locking 6-40

Specifying Input 6-45

Specifying request before update 6-45

SISETLINK JCW 5-14.5-21,5-22

SISIZE Uitlity 6-55

SITEST 6-40

Access requirements 6-40

Locking 6-40

Modes 6-42

PUB vs NOPRIV versions 6-40

Running in batch 6-44

TREETEST 6-42

SITRACE 6-50

SITRANSLATE

Calling example A·37

Example 5-39

SHntrinsic 5-39

SIUSER procedure 3-11, 4-6, 5-6, 5-40

@ list 5-41

Custom SI-key 2·24

Example A·3D

Index value 5-41

SIUSL.PUB.SUPERDEX 3-2

SL.PUB.SUPERDEX 3-2

Sorted chains 2-5. 2-7

Vs concatenated SI-key 1-11

Sorted sequential access 2-7, 3-8

Sorted sequential order 4-33

Sorted sequential retrieval 1-8

Ascending A-2

Descending A-4

SORTINIT

FORTRAN 4·38

Pascal 4-38

SPL 4-38

SOUNDEX 4-6

Special characters 3-14

SPL 1-18. 4-38

SORTINIT 4-38

SOL Notation 1-12, 4·18

Processing 4·22

Stack

Requirements 1-19

Stack Overflow 3-4, 4·37

Starting Position

SI-path 3-23

Status array

Compatibility 1-17

Super-grouped retrieval 1·9. 2·19

SI·pointer 2-13, 5-13

DBFIND 4·32

Effect. : 5-20

DBGET 4-35

Effect 5-24

Definition 1-15

Effects of SHntrinsics 4·36

Structure B-3

SI·subkey 2-5

Definition 1-13

st-subset 1-6

Active 4-23

Backup 4-23

Definition 1.14

Internal structure B-3

SIBASE Utility 6-53

SICOUNT 1-4, 6-46

JCW 3-32

PUB vs NOPRIV versions 6-46

SIDRIVER 1-4, 6-52

SIEXTLEN JCW 2-5, 3·18, 3·23, 5-22, 6-7, 6-14

SIMAINT 3-6, 6-6

Access requirements 3-17, 6-6

DBLOAD entry point... 5-11,5·12,6-10

Default Progress Interval 3-32

Deferring indexing 3-29

Dialog phase 3-17

Enhancements 1-5

Entry points 6-6

Errors and exceptional conditions D-1, D·4

Example 3-33

Full Screen 6-16

In batch 3-35

INFO 3-14, 3-15

Inputrules 3·17, 6-7

Job stream 6-13

LlB= 5-42

LIST entry point 3-15, 6-12

NOPRIV.SUPERDEX 3-16

Options 6-6

Performance 3-17, 6-6

PUB vs NOPRIV versions 6-7

PUB.SUPERDEX 3-16

Restrictions 3-16

Running in batch 6-15

SCHEMA entry point 6-12

SI-indices

Establishing 3-16

STRUCT entry point... 6-15

Simple SI-key 2·3, 3-8

Defining 3-21

viii Index Version 3.1 March 1992

S (Continued)

v
Super-grouped SI-key 3-10, 3-20, 5-13

DBFIND 4-15

Defining 3-26

Keyworded 3-27

SUPERDEX

Testing for existence 4-36

SUPERDEX and Privilege Mode 4-37

SUPERDEX 11 ...•...•......•.. 2-8,2-17,2-19,2-21,2-23

SUPERDEX{Program) 1-4, 6-16

Access requirements 6-16

Base Menu 6-18

Custom Path Screen 6-25

Dataset Menu 6-19

Execute Menu 6-35

Function Keys 6-17

INFO string 6-16

Internal table 6-16

Invoking 6-16

Item Definition Screen 6-31

Item Screen 6-29

Main Menu 6-17
Path Display Screen 6-27

Path Screen 6-21

Special Path Screen 6-23

SuperSELECT 1-4, 7-1

Invoking 7-1

Method 1 7-1

Method 2 7-3

Method 3 7-4

Method 4 7-5

SWAP TABLE 3-5

Swedish language 1-19

SYDAID 1-18

Virtual memory 3-5

Virtual SI-chain .4-25

Entry count 4-25

VISIMAGE 1-18

x

XDS 3-5
XL.PUB.SUPERDEX 3-2

T

Tilde 4-10

TRANSACT 1-18, 3-3, 4-39

TRANSACT interface SUPP-4

Transaction logging

Compatibility 1-17

TREETEST

SITEST 6-42

u

Undoing retrieval 1-12, A-14

Updating entries 4-5

Upshifting 2-24, 4-6

Version 3.1 March 1992 Index ix

