
OMNIDEX

B u s in e s s

S o lu tio n s fo r

th e 9 0 s

OMNIDEX ImagePlus SDK
API Guide for HP MPE/iX
Version 3.4

Dynamic Information Systems Corporation, Boulder 80301

Version 3.4
Fourth edition: June 1996

The information contained in this document is subject to change without notice.
Dynamic Information Systems Corporation makes no warranty of any kind with
respect to the sufficiency or fitness of this information for a particular purpose.
Dynamic Information Systems Corporation is not liable for errors contained
herein or incidental or consequential damages in connection with the furnishings,
performance, or use of this material.

©Copyright 1996 by Dynamic Information Systems Corporation. All rights reserved.
Permission is granted to reprint this document, but not for profit.

FDISC
Dynamic Information Systems Corporation
5733 Central Avenue
Boulder, Colorado 80301
(303) 444-4000

DISC Europe
25-29 High Street Leatherhead
Surrey, England KT228AB
+44 1372-362777o
PRINTED ON RECYCLED PAPER

Table of Contents
U sing this G u id e .. ix

Overview ... ix
Conventions.. ix

How this Guide is O rganized..x
Technical support... x

A cknow ledgm ents.. xi

Chapter 1: Introduction
W elcom e to O M N ID EX version 3 .. 1-2

What are keyword keys?... 1-2
What are sorted keys?... 1-5

W hy Use O M N ID EX ?.. 1-7

Speed of access to d a ta .. 1-7
Retrieval flexibility... 1-8
Ease of installation and m aintenance... 1-9
Faster application developm ent... 1-9
Reliability .. 1-10

D eveloping O M N ID EX Program s.. 1-11

Using OMNIDEX in trinsics... 1-12

Reducing your programming e ffo rt... 1-13

Com ponents of O M N ID E X .. 1-14

The OMNIDEX u tilities... 1-14
The OmniUtil installation and indexing utility .. 1-14
The DataView query and support p rogram .. 1-15

OMNIDEX API Guide Hi

Table of Contents

Intrinsic libraries.. 1-16
The OMNIDEX intrinsics lib rary .. 1-16
The OMNIDEX Call Conversion library .. 1-17
HPPA Switch Stub intrinsic library .. 1-17

Why Wait any Longer for Your D ata?... 1-17

Chapter 2: Intrinsics
General Intrinsic In fo rm atio n .. 2-2

The OMNIDEX Intrinsic Interface.. 2-2
Keyword access intrinsics.. 2-3
Sorted access intrinsics.. 2-3
General in trin sics.. 2-4
OMNIDEX intrinsic param eters... 2-4
Error handling.. 2-6

The TPI Interface.. 2-7
OMNIDEX retrievals through TurboIM A G E... 2-8
Automatic updating of indexes.. 2-9
Error handling.. 2-9

Choosing a retrieval interface... 2-10

Sorted Access and G eneral In trin sics.. 2-11

Mode options... 2-11
Normal m ode.. 2-11
IMAGE-only m ode.. 2-12
Index-only m od e... 2-12

Sorted sequential access.. 2-13
DBICLOSE.. 2-16

Param eters... 2-16
D iscussion.. 2-17

DBID ELETE... 2-18
Param eters... 2-18
D iscussion.. 2-19
OMNIDEX condition word values.. 2-19

DBIERRO R... 2-20
Param eters... 2-20
D iscussion.. 2-20

DBIEXPLAIN ... 2-22
Param eters... 2-22

iv OMNIDEX API Guide

Table of Contents

D iscussion... 2-22

D BIFIN D ... 2-23
Param eters... 2-23
D iscussion... 2-25
OMNIDEX condition word values.. 2-27

D B IG E T ... 2-28
P aram eters... 2-28
D iscussion... 2-30
OMNIDEX condition word values.. 2-32

DB1INFO... 2-34
Param eters... 2-34
OMNIDEX condition word values.. 2-41

D BILO C K.. 2-42
Param eters... 2-42
D iscussion.. 2-43

D BIO PEN .. 2-44
Param eters... 2-44
OMNIDEX condition word values.. 2-45

D B IPU T ... 2-46
Param eters... 2-46
D iscussion... 2-47
OMNIDEX condition word values.. 2-48

DBIUN LOCK... 2-49
Param eters... 2-49

DBIU PDA TE.. 2-50
Param eters... 2-50
D iscussion.. 2-51
OMNIDEX condition word values.. 2-51

Keyword Access In trin s ics... 2-52

Keyword retrieval.. 2-52
O D X FIN D ... 2-54

Param eters... 2-54
D iscussion... 2-57
OMNIDEX condition word values.. 2-69

O D X G E T ... 2-71
Param eters... 2-71
D iscussion.. 2-73
OMNIDEX condition word values.. 2-77

OMNIDEX API Guide v

Table of Contents

ODXGETW ORD... 2-78
Param eters... 2-78
D iscussion.. 2-79
OMNIDEX condition word values... 2-79

O D X IN FO .. 2-80
Param eters... 2-80
OMNIDEX condition word values... 2-85

O D XPRIN T.. 2-86
Param eters... 2-86
OMNIDEX condition word values... 2-87

ODXTRANSFER... 2-88
Param eters... 2-88
D iscussion.. 2-89
OMNIDEX condition word values... 2-91

ODXVIEW .. 2-92
Param eters... 2-92
D iscussion.. 2-93
OMNIDEX condition word values... 2-94

Standard Interface to Third Party Indexing... 2-95

Calling TurboIM AGE intrinsics... 2-95

How the interface w orks.. 2-95
OMNIDEX searches.. 2-96

About TurboIMAGE intrinsics... 2-98

D BCON TROL... 2-99
P aram eters... 2-99
D iscussion.. 2-100

DBFIND... 2-101
P aram eters... 2-101
D iscussion.. 2-106
Calling errors and exceptional conditions... 2-116

D BGET... 2-117
P aram eters... 2-117
D iscussion.. 2-119
Calling errors and exceptional conditions.. 2-122

DBINFO... 2-123
P aram eters... 2-123
Calling errors and exceptional conditions... 2-128

vi OMNIDEX API Guide

Table of Contents

Chapter 3: Programming
W riting Program s.. 3-2

Introduction... 3-2

The OMNIDEX Intrinsic Interface.. 3-2
Opening databases.. 3-2
Updating data.. 3-3
Error handling... 3-4
Active Error H andling.. 3-5
Passive Error H andling... 3-9

OMNIDEX keyword retrieval... 3-13
Sorted access... 3-22

Standard Interface to Third Party Indexing.. 3-27
Opening databases.. 3-27
Updating data... 3-28
Error handling... 3-28
OMNIDEX keyword retrieval.. 3-29
Sorted access... 3-31

Linking and Testing Program s.. 3-33

Introduction.. 3-33

Linking and testing native mode program s... 3-33
The OMNIDEX Call Conversion Library... 3-34

Testing compatibility mode applications... 3-36

Program capabilities.. 3-38

Interfacing w ith 3 G L s .. 3-40

COBOL program examples (OMNIDEX Intrinsic Interface)................................ 3-40
D B IFIN D .. 3-41
D B IG E T .. 3-43
ODXFIND... 3-44
ODXGET... 3-45
O DXGETW ORD.. 3-46
ODXTRAN SFER.. 3-47

COBOL program examples (TPI Interface)... 3-49
A sorted retrieval.. 3-49
A keyword search and retrieval.. 3-54

Interfacing w ith 4 G L s .. 3-60

OMNIDEX API Guide vii

Glossary... Glossary-1

Index... Index-1

Table of Contents

viii OMNIDEX API Guide

Using this Guide

Overview
This preface explains the document conventions used in the OMNIDEX
API Guide and gives you an overview of each chapter in the book.

Conventions
This guide uses the following conventions:

USER INPUT Commands that you enter LOOK LIKE THIS. For example:

RUN OMNIUTIL.PUB.DISC

After you type the command, always press [return] to process that
command.

Screen text Prompts and messages lo o k l i k e t h i s . Prompts require you to enter
some information; messages are for informational purposes only. For
example:

Enter the database name:
The database name is invalid.

variables Information that you must supply, including parameters, LOOKS LIKE
THIS. For example:

[XL .group.account]

Here, group and account could be any group and account.

OMNIDEX API Guide ix

How this Guide is Organized Using this Guide

[keys] When you are told to press a key on the keyboard, the key name is
surrounded by square brackets and [looks like this]. For example:

Press [return]

Press [ctrl]-Y

New terms Whenever a new term is introduced, it looks like this.

How this Guide is Organized
□ This OMNIDEX API Guide is organized as follows:

□ This preface tells you the document conventions used in the
guide and how this document is organized.

□ Chapter 1, "Introduction" explains the benefits and features of
OMNIDEX.

□ Chapter 2, "Intrinsics" tells you how to install OMNIDEX keys,
load the indexes, and test your installation.

□ Chapter 3, "Programming" tells you how to call the OMNIDEX
and TPI intrinsics to find records, and update OMNIDEX keys.

Technical support
If you have questions about OMNIDEX that are not addressed in this
manual, you can get technical support by calling one of these numbers:

USA and the Am ericas UK and Europe

V o ice (303) 444-6610 (production)
(303) 444-4000 (trial)

+(44) 1372-362777

Fax (303) 444-0208 +(44) 1372-386418

Email support@disc.com support@disceurope.co.uk

Address. 5733 Central Ave.
Boulder, CO 80301

25-29 High St. Leatherhead
Surrey, England KT228AB

Hours 7:30 AM - 6:00 PM MST 9:00 AM - 5:30 PM UK time

x OMNIDEX API Guide

mailto:support@disc.com
mailto:support@disceurope.co.uk

Acknowledgments

Dynamic Information Systems Corporation would like to acknowledge
the following products, which are mentioned in this manual, and their
distributors who are listed below alphabetically:

□ The following are registered trademarks of Cognos Corporation:
PowerHouse, QDD, QTP, QUICK and QUIZ.

□ DATA Express is a registered trademark of IMACS Systems
Corp.

□ The following are registered trademarks of Hewlett-Packard Co.:
BASIC/3000, COBOL 11/3000, Compatibility Mode, DBChange,
Dictionary 3000, Editor, FORTRAN/3000, HP, HP 3000, HP
FORTRAN/77, HPPA, HP Word, IMAGE, MPE V, MPE XL,
Native Mode, PASCAL/3000, Query, Rapid, RPG, SORT, SPL,
TRANSACT/3000 and TurboIMAGE.

□ Insight is a registered trademark of Unison Software Inc.

□ PROTOS is a registered trademark of PROTOS Software
Corporation.

□ The following are registered trademarks of Robelle Consulting
Ltd.: SUPRTOOL and Qedit.

□ Speedware is a registered trademark of Speedware Corp.

□ Synergist is a registered trademark of Gateway Systems Corp.

□ Visimage is a registered trademark of Ares Corporation.

OMNIDEX API Guide xi

Chapter 1: Introduction

This chapter provides a general overview of OMNIDEX, its many
powerful search capabilities and some related software products. It is
divided into four sections.

O "W elcome to OMNIDEX version 3", on page 1-2, provides a
general introduction to OMNIDEX's access capabilities.

□ "W hy Use OMNIDEX?", on page 1-7, describes a few of the
benefits that OMNIDEX provides to you and your users.

O "Developing OMNIDEX Programs", on page 1-11, describes the
three easy steps to using OMNIDEX.

□ "Components of OMNIDEX", on page 1-14, describes the
programs, utilities and procedure libraries that OMNIDEX
comprises.

OMNIDEX API Guide 1-1

Welcome to OMNIDEX version 3

Welcome to OMNIDEX version 3, the powerful enhancement to
TurboIMAGE. OMNIDEX uses indexes for extremely fast and flexible
information retrievals. Although these indexes are transparent to your
non-OMNIDEX applications, they are protected by TurboIMAGE's
security and data recovery features. You can index virtually any number
and type of fields in an TurboIMAGE database, including several fields in
a data set. You also can design composite keys from parts of
TurboIMAGE fields. OMNIDEX provides two types of keys to speed
access to your data: keyword keys and sorted keys. Each of these two
types of keys uses a different type of index structure to provide a
different set of access capabilities. Keyword keys are discussed next.
Sorted keys are discussed later.

What are keyword keys?
Keyword keys support keyword searches to find records. When you key
a field for keyword access, individual data values in that field (delimited
by spaces, commas and other special characters) are parsed and indexed
as keywords. When you use words as arguments in a search on a
keyword key, OMNIDEX searches the indexes to instantly locate all
records that contain those words. This enables you to instantly locate
information using words or values that may be contained anywhere in a
keyed field.

Keyword keys give you the flexibility to:

□ retrieve master records without knowing the search item value.

□ retrieve detail records directly, without chained reads

□ retrieve records by criteria in several fields simultaneously

O search on fields across sets to qualify a master and its related
detail records

□ search across sets in different databases

1-2 OMNIDEX API Guide

Welcome to OMNIDEX version 3

Keyword keys also support the following search operations:

□ range retrievals

□ relational retrievals (like greater than and less than)

□ Boolean searches (AND, NOT, OR)

□ generic (partial keyword) searches

O wildcard (#, ?, ®) searches

Searching with keyword keys
Three CUSTOMERS master records are shown below in Figure 1-1. The
underlined fields (COMPANY, CONTACT, STATE and COMMENTS)
are keyword keys and the CUSTOMER-NO field is the TurboIMAGE
search item (SI).

CUSTOMER-NO: 1

COMPANY: Dynamic Information
Systems

CONTACT: Dave Smith

ADDRESS: 5733 Central Ave

CITY: Boulder

STATE: CO

ZIP-CODE: 80301

COMMENTS: aka DISC, software
development company. DBMGR
Omnidex, OmniView, OmniQuest
OmniWindow. Sold Internationally.

CUSTOMER-NO: 2

COMPANY: Information Xpress

CONTACT: Dave Jones

ADDRESS: 2001 Hitek Blvd.

CITY: Broomfield

STATE: CO

ZIP-CODE: 80020

COMMENTS: software consulting
firm. Designs Omnidex application
programs for manufacturing
inventory and distribution.

CUSTOMER-NO: 3
COMPANY: Dynamic Data Storage

CONTACT: Joan Smith

ADDRESS: 931 Hennepin Ave.

CITY: Minneapolis

STATE: MN

ZIP-CODE: 55455

COMMENTS: aka DPS. Hardware
manufacturer of disk drives.

Figure 1-1: Three OMNIDEX master records

To quickly retrieve any master record with TurboIMAGE access alone,
you need to know its SI (CUSTOMER-NO) value. You can retrieve master
records based on the contents of a data field (like COMPANY), but that
involves a serial read, which can take a while.

With OMNIDEX installed, you can search on any keyword keys to find
any master record instantly. If, for example, you wanted to find a
CUSTOMERS record that has "inform ation" somewhere in the
COMPANY field you could search the OMNIDEX key installed on
COMPANY using the keyword argument INFORMATION.

OMNIDEX API Guide 1-3

Welcome to OMNIDEX version 3

This is called a keyword retrieval. In an online application, the search
might look like this:

Enter a company name: INFORMATION

Records 1 and 2 qualify because they both have the word "information"
somewhere in their COMPANY field. It doesn't matter where a keyword
occurs in a key field. OMNIDEX keyword searches are not position
sensitive.

You can install keyword keys on free form text fields, like the
COMMENTS field in the sample records in Figure 1-1. The next search
uses a combination of keywords to search against the OMNIDEX key
installed on COMMENTS. The Boolean AND operator tells OMNIDEX to
qualify records with the words "software" and "development" in the key
field being searched (COMMENTS).

Comments: SOFTWARE AND development

Records qualified: 1 List? Y

Customer number Company
1 Dynamic Information Systems

The search qualified the only record with both "software" and
"development" in the COMMENTS key field. Notice that the arguments
were entered in upper and lower case. OMNIDEX keyword searches are
not case sensitive by default, but can be if you want.

You can also perform keyword searches across fields. For example, if you
wanted to search for records that contain "dynam ic" in their COMPANY
field, and "M N " in their state field, OMNIDEX would let you do so. In
the prompting program, the search might look like this:

Enter a company name: DYNAMIC

Records qualified: 2 List? [return]

Enter the state: MN

Records qualified: 2 List? Y

Customer number
1
2

Company
Dynamic Information Systems
Information Xpress

1-4 OMNIDEX API Guide

Welcome to OMNIDEX version 3

Records qualified: 1
Customer number
3

List? Y

Company
Dynamic Data Storage

Of the two records with "dynam ic" in the COMPANY field, only one
record (record number 3) has "M N " in its state field. Notice how
OMNIDEX returns a qualifying count after each keyword search.
Sometimes, this count is all the information you need.

Keyword keys are discussed in greater detail in the O M N ID E X ImagePlus
SDK Administrator's Guide.

IMSAM (Image Sequential Access Method) sorted keys let you retrieve
records in sorted order (alphabetically or numerically) by key value. You
can retrieve the records in either ascending or descending order. This is
useful for a variety of applications, from generating mailing labels sorted
by zip-code, to listing transactions sorted by department and date.

Indexes reduce the data redundancy usually associated with maintaining
external files of sorted records, and the system overhead of maintaining
pointers for sort paths. Indexes also make OMNIDEX sorted keys faster
and more efficient than other means of sorting records.

Sorted keys support the following search operations:

□ range retrievals

O relational retrievals (like greater than and less than)

□ generic (partial key) searches

□ wildcard (#, ?, @) searches (through the TPI Interface)

Searching with sorted keys
Sorted searches differ from keyword searches in that they are position
sensitive. You must supply the first few (most significant) bytes of the
desired key value to find records using a sorted key. If you installed a
sorted key on a ZIP-CODE field, the values for that field would be stored
in sorted order in the index created for that key with a pointer
(CUSTOMER-NO) from each key value to its record.

What are sorted keys?

OMNIDEX API Guide 1-5

Welcome to OMNIDEX version 3

Figure 1-2, below, is a flattened, partial representation of the
CUSTOMERS master set and the index created for the sorted key
installed on ZIP-CODE (underlined).
CUSTOMERS master data set Index set for ZIP-CODE key

CUSTOMER-NO COMPANY ZIP-CO DE....

1 Dynamic Information Systems 80301
2 Information Xpress 80020
3 Dynamic Data Storage 55455
4 Tonawanda Tool and Die 14120
5 ACME Roadrunner Extermination 87109
6 Beads Unlimited 70177
7 Conglomerated Amalgams 13815
8 Flotsam Marine Salvage 21030
9 Theme-Park USA 92806
10 Five Big and Tall Guys 13815
11 McDonnels Haggisburgers 32306
12 Bates Motels of America 68504

Key value

13815-7
13815-10
14120-4
21030-8
32306-11
55455-3
68504-12
70177-6
80020-2
80301-1
87109-5
92806-9

Figure 1-2: Storing sorted key values

When you supply an argument in a search on a sorted key, the intrinsics
compare your argument, byte for byte, against the key values stored in
the index. The intrinsics then return records sorted in key order (by ZIP-
CODE) to your application program.

Sorted keys also support partial key (generic) searches. These are
especially useful when searching on hierarchical code fields. For
example, if you supply a partial argument, like 80 against a ZIP-CODE
key, you would find records whose ZIP-CODEs begin with 80.

A report of the qualifying records might look like this:

Customer
Number Company Zip Code

2 Information Xpress 80020
1 Dynamic Information Systems 80301

These records represent companies in the Denver, Colorado postal zone.
Imagine how useful it would be if you installed sorted keys on your
larger, more complex hierarchical fields.

Sorted keys and their uses are discussed in greater detail in the
OMNIDEX ImagePlus SDK Administrator's Guide.

1-6 OMNIDEX API Guide

Why Use OMNIDEX?

Three thousand sites world-wide use OMNIDEX. Some of the reasons
are:

O speed of access to data

□ retrieval flexibility

O ease of Installation and Maintenance

□ faster Application Development

□ reliability

Each of these reasons are discussed next.

Speed of access to data
Probably the biggest reason to use OMNIDEX is the speed with which it
can locate records. With TurboIMAGE you don't have to worry about
speed as long as you always search on key fields using full key values.
If you search on a field that is not an TurboIMAGE key you have to wait
while your application program serially reads every record and vacant
address in the data file. If you have half a million master records in your
data file, the search would take 55 minutes1, whether it qualified five
records or five thousand records.

If you were looking for a specific topic in a book, you wouldn't read the
book from cover to cover until you found the topic; you would look for
the topic in the index and go directly to the pages that contained
information about that topic. Because OMNIDEX uses indexes to locate
data, it eliminates the need for serial reads. OMNIDEX's indexes use
record identifiers like the index of a book uses page numbers. When you
search on a keyword or sorted key, OMNIDEX searches the indexes for
the requested key values. Then, OMNIDEX returns the record identifiers
to your application program, which uses them to get the actual records.

1. Assume that the blocking factor is 6 and that the disc access time is 30 IOs
per second.

OMNIDEX API Guide 1-7

Why Use OMNIDEX?

OMNIDEX can qualify between 40,000 and 225,000 records per second,
depending on CPU class. It can reduce search times from hours to
seconds in many cases. This savings in time and system overhead means
that you can get your data right away, in real time, online. It also means
increased throughput, and a more efficient use of system resources.

Retrieval flexibility
OMNIDEX lets you key any number of fields in any set, including
TurboIMAGE masters for instant keyword retrieval and. You can install
these keys on an existing database in minutes, without restructuring it.
Almost any field can be keyed for OMNIDEX access, which allows users
far greater flexibility when searching for records.

OMNIDEX lets you index and retrieve by individual words or values
(keywords) in a field. This means you can find a CUSTOMERS record, for
example, without knowing an TurboIMAGE SI value. All you need is
some part of the company name, the contact's first or last name, even the
city, or the name of a product that the customer may have purchased.
This capability is invaluable to customer service representatives, as well
as other users.

Sorted keys let you retrieve records in order, sorted by key values. If you
create a composite key that combines several fields, you can sort records
by several fields. This enables you to generate reports, like mailing labels,
or general ledgers, that are sorted for easy reference.

As you learn more about OMNIDEX's many features and discover new
uses for them, you can easily add them to your existing installation. Your
users will like OMNIDEX's many access features, which let them ask for
data in their own language instead of TurboIMAGE key values.
OMNIDEX also supports native language extended character sets (like
Roman8 and Turkish8).

In addition, OMNIDEX intrinsics can be called through many
programming languages. Therefore, you can use OMNIDEX through a
screen formatting language, like QUICK, to provide friendly screens and
menus for your end users.

1-8 OMNIDEX API Guide

Why Use OMNIDEX?

Ease of installation and maintenance
OMNIDEX's OmniUtil program lets you install OMNIDEX keys on your
database, or change how they are installed, in a matter of minutes.
OmniUtil is very easy to use, and contains online help at each prompt.
When you are finished specifying keys for installation, OmniUtil creates
the required indexes automatically at your convenience.

The data integrity of the OMNIDEX indexes is maintained automatically.
The OMNIDEX intrinsics update the indexes to reflect any data that is
added, updated, or deleted in your TurboIMAGE database. Your current
TurboIMAGE based data entry programs can be run, unchanged,
through OMNIDEX's Call Conversion library or through the Standard
Interface to Third Party Indexing (the TPI Interface) to automatically
update the indexes.

If your update programs call the OMNIDEX intrinsics, you can continue
to use them with the version 3 intrinsics.

The most work to installing OMNIDEX is in deciding what keys to install
on your database. The O M N ID E X ImagePlus SDK Adm inistrator's Guide
contains all the information you need to decide how you want to install
OMNIDEX.

Faster application development
OMNIDEX version 3 gives you the choice to use the traditional
OMNIDEX Intrinsic Interface, or the Standard Interface to Third Party
Indexing (TPI).

The OMNIDEX Intrinsic Interface
OMNIDEX intrinsics are similar to TurboIMAGE intrinsics, so they are
easy to learn and incorporate into your programs. They can be called
through many software packages and programming languages.

OMNIDEX intrinsics are portable. When OMNIDEX is ported to other
database management systems, and other operating systems, you can use
the applications you develop using the OMNIDEX Intrinsic Interface
with little or no change. So if you plan to migrate to a different database
management system or a different operating system, you may want to
develop applications using the OMNIDEX Intrinsic Interface.

OMNIDEX API Guide 1-9

Why Use OMNIDEX?

Because the OMNIDEX intrinsics are capable of Boolean and relational
logic, programmers benefit by being able to eliminate a substantial
amount of IF, THEN, ELSE logic from their program code. OMNIDEX
offers a wide variety of indexing options, which can eliminate much of
the upshifting, byte addressing, and other data manipulation from your
application programs.

Dynamic Information Systems Corporation (DISC) can provide specific
information, and in many cases, procedure source code examples, for
your programming language. To add OMNIDEX retrieval capability to
existing online programs without programming changes, you might
consider OmniWindow. OmniQuest, available from DISC, lets you
perform OMNIDEX retrievals from report writers and transaction
processors like QUIZ, QTP and Query, or from your batch programs.
Complete application interfaces to OMNIDEX are also available for ASK/
MANMAN, Multiview, MCBA, Jobscope, and Gerber-Alley.

The TPI Interface
If you use TurboIMAGE version C.04.03 or later, you can perform
OMNIDEX retrievals and updates by calling TurboIMAGE intrinsics at
the system level. Because this interface to OMNIDEX is integrated at the
system level, it optimally manages concurrent operations, and provides
automatic recovery of TurboIMAGE and OMNIDEX data if a system
failure occurs.

Reliability
OMNIDEX has been in use since 1985 and is installed on over three
thousand sites world wide. Many third party vendors have included
OMNIDEX into their information management software products.
DISC's product development staff continually refines OMNIDEX to make
it easier to use and better suited to individual applications.

OMNIDEX owes much of its reliability to its compatibility with
TurboIMAGE. The OMNIDEX indexes are protected by the umbrella of
TurboIMAGE security features, which includes transaction logging and
dynamic rollback recovery. They are also entirely compatible with your
current information management procedures.

1-10 OMNIDEX API Guide

Developing OMNIDEX Programs

Step 1:

Step 2:

Developing applications for use against an OMNIDEX-enhanced
database requires the few steps discussed below. The first of these steps
insures that your current applications can still be run against your
OMNIDEX-enhanced databases. Subsequent steps will acquaint you with
the things you can do through your programs, and how to do them.

Copy the OMNIDEX procedure
libraries
OMNIDEX comes with several procedure libraries. These include:

□ the OMNIDEX intrinsic library in XLOMNIDX.PUB.DISC

O the Call Conversion library in XL.PUB.DISC

□ switch stubs in SL.PUB.DISC, for converting compatibility mode
calls to native mode calls

You must copy the OMNIDEX intrinsic library (XLOMNIDX) to
PUB.SYS. If you used the SETUP program when you installed the
software tape, this was done automatically. Then, when your programs
reference the appropriate procedure library, your applications can use the
power of OMNIDEX. For information on installing and referencing the
OMNIDEX procedure libraries, see Appendix C of the OMNIDEX
ImagePlus SDK Administrator's Guide.

Use DataView to access your
OMNIDEX-enhanced database
DataView, DISC's powerful database access tool, uses OMNIDEX
intrinsics to perform searches. It is a good tool to use when developing
retrieval applications because it gives you ideas as to what your
OMNIDEX-based programs can do. You can also use it to test retrievals
that your programs perform. For more information about DataView, see
the "Utilities" chapter of the OMNIDEX ImagePlus SDK Administrator's
Guide.

OMNIDEX API Guide 1-11

Developing OMNIDEX Programs

Step 3: Develop your own applications
This manual provides general information about developing programs to
access OMNIDEX-enhanced databases. There are also source code files,
written in a variety of programming languages, in the DEMO group of
your DISC account. They can be compiled and run, or copied and
modified, to provide an introduction to OMNIDEX programming.

In addition to this manual, several specialized manuals are available for
the following topics:

□ The OMNIDEX Language Sampler provides information and
examples of OMNIDEX programs written in FORTRAN, BASIC,
PASCAL, and RPG.

O The OMNIDEX PROTOS Interface Guide discusses how to write
OMNIDEX-based applications through PROTOS.

O The OMNIDEX QUICK Interface Guide discusses how to create
OMNIDEX-based QUICK applications.

□ The OMNIDEX RAPID Interface Guide discusses how to create
OMNIDEX-based RAPID applications.

Using OMNIDEX intrinsics
Developing OMNIDEX-based applications is not difficult when you
consider that OMNIDEX is an enhancement to your DBMS. As such, its
intrinsics include OMNIDEX versions of most of the TurboIMAGE
intrinsics. For example, the parameters used by TurboIMAGE's DBPUT
intrinsic are the same as those used by OMNIDEX's DBIPUT.

The major differences between TurboIMAGE and OMNIDEX intrinsic
calls are:

O There are more OMNIDEX intrinsics than TurboIMAGE
intrinsics. Besides including enhanced versions of all of the
TurboIMAGE intrinsics, the OMNIDEX intrinsics provide a
variety of additional features.

O There are more OMNIDEX mode values than TurboIMAGE
mode values. These additional mode values are passed through
your programs to enable OMNIDEX's many features.

While there is more to learn when developing OMNIDEX applications,
the syntax for calling OMNIDEX intrinsics does not require a major
change in your thinking. What you can do with the OMNIDEX intrinsics
does require a leap of your imagination.

1-12 OMNIDEX API Guide

Reducing your programming effort Developing OMNIDEX Programs

Reducing your programming effort
The many features of OMNIDEX can actually simplify your programs.
These features are incorporated at the intrinsic level. This can eliminate
much of the coding effort involved in tailoring data retrieval programs to
meet user's needs. Many of the search operations that must be coded
through IF..ELSE logic can be replaced with the Boolean, relational, and
range operations supported through OMNIDEX. Similarly, ODXFIND
modes 3 and 5 (enhanced parsing) can convert date search arguments
into proprietary date formats, such as ASKDATE and PHDATE formats.

Direct access to masters and details through keyword and sorted keys can
eliminate many of the chained reads that were necessary through
TurboIMAGE. Because keys can be created from parts and combinations
of fields, the right keys can eliminate having to programmatically match
arguments against certain bytes of a field.

Because your TurboIMAGE update programs can automatically update
indexes, you don't have to worry about developing new update
programs. You can, however, modify them to call the OMNIDEX update
intrinsics, or to perform specialized updates to maximize performance.

OMNIDEX API Guide 1-13

Components of OMNIDEX

The OMNIDEX Information Management System consists of the
following components:

□ OMNIDEX utilities

O Intrinsic libraries

These components, which are listed below according to function, support
the complete implementation and maintenance of OMNIDEX on your
databases.

The OMNIDEX utilities
OMNIDEX includes two utilities:

O OmniUtil, used to install and maintain OMNIDEX keys

O DataView, used to find records using OMNIDEX keys

Both of these utilities are easy to use. You need only highlight a menu
selection and press [return] to install keys, reload indexes, or search for
records. Both utilities are discussed next.

The OmniUtil installation and
indexing utility
OmniUtil is a program that combines all the OMNIDEX installation,
indexing, configuration and maintenance operations into one menu-
driven interface. You can use OmniUtil to install and maintain
OMNIDEX.

To run OmniUtil, enter the following command at the system prompt:

RUN OMNIUTIL.PUB.DISC

1-14 OMNIDEX API Guide

The OMNIDEX utilities Components of OMNIDEX

The main OmniUtil menu screen appears, as shown in Figure 1-3.

Figure 1-3: The OmniUtil Main Menu

See the "OMNIDEX Installation" chapter in the O M N ID E X ImagePlus
SDK Administrator's Guide for detailed information about OmniUtil's
menus and its use in installation and index maintenance.

The DataView query and support program
DataView is a menu driven database query tool designed for OMNIDEX
databases. DataView lets you find records using OMNIDEX keyword
and sorted keys.

Almost anyone can learn to use DataView. It lets you test the OMNIDEX
keys you installed on your database while you develop more specialized
applications.

OMNIDEX API Guide 1-15

Components of OMNIDEX Intrinsic libraries

Intrinsic libraries
Intrinsics are callable procedures used in your application programs for
data retrieval, updating records and other functions related to your
TurboIMAGE database. Several intrinsic libraries are included in
OMNIDEX:

O The OMNIDEX intrinsics

O The OMNIDEX Call Conversion library

□ The HPPA switch stub library

Each of these libraries are discussed briefly below, and in more detail in
the OMNIDEX ImagePlus SDK Administrator's Guide.

The OMNIDEX intrinsics library
The OMNIDEX intrinsics are similar to TurboIMAGE intrinsics. Unlike
TurboIMAGE intrinsics, they perform OMNIDEX-related functions, like
maintaining the indexes, and performing keyword and sorted retrievals.

The OMNIDEX intrinsics used to perform sorted and multiple keyword
retrievals reside in the same library. Keyword and sorted keys, however,
each use different index structures to provide their different retrieval
capabilities.

Call OMNIDEX intrinsics through your application programs to provide
keyword retrieval and sorted access capabilities, which were described
earlier. OMNIDEX intrinsics also interact with TurboIMAGE intrinsics to:

□ transfer retrieved information to a file

O return information about a database and the OMNIDEX keys
installed on it

O handle OMNIDEX errors

When intrinsics perform general functions (such as OMNIDEX index
maintenance), they are called general intrinsics. The OMNIDEX general
intrinsics can be substituted for almost all of the TurboIMAGE intrinsics.
The exceptions are DBBEGIN, DBEND and DBMEMO, which have no
OMNIDEX counterparts.

OMNIDEX sorted access and keyword access intrinsics perform all of the
sorted sequential and keyword retrieval operations, discussed earlier,
plus any standard TurboIMAGE retrievals.

1-16 OMNIDEX API Guide

Why Wait any Longer for Your Data? Components of OMNIDEX

The OMNIDEX Call Conversion library
The OMNIDEX Call Conversion library intercepts calls to OMNIDEX and
TurboIMAGE intrinsics, and directs them to the OMNIDEX intrinsic
library. This Call Conversion library lets you run your existing update
applications to automatically update the OMNIDEX indexes as you
update your TurboIMAGE data. This is useful for databases that have not
been enabled for TPI, but require real time updating through
TurboIMAGE applications.

HPPA Switch Stub intrinsic library
A switch stub intrinsic library is provided to enable compatibility mode
programs to use MPE/iX based OMNIDEX software. The library is
shipped as SL.PUB.DISC. All you need to do is copy it, along with the
OMNIDEX Call Conversion library, into your compatibility mode
application accounts and run your applications with the appropriate LIB
parameter. The routines in the Switch Stub intrinsic library convert
compatibility mode calls to intrinsics into native mode calls to OMNIDEX
or TurboIMAGE intrinsics, as appropriate. For more information about
the Switch Stub intrinsic library, see Appendix C of the O M N ID E X
ImagePlus SDK Administrator's Guide.

Why Wait any Longer for Your Data?
In the pages that follow, you will learn how to install all of the features of
OMNIDEX on your databases. The OMNIDEX documentation provides
all the information you need to implement OMNIDEX.

For those of you who might benefit from hands-on training, DISC offers
intensive OMNIDEX training classes. The classes are taught by members
of our technical support staff. Training involves instruction combined
with extensive lab work in implementing OMNIDEX's capabilities on the
student's own applications. Classes are held at our home office in
Boulder, Colorado, and at other select locations throughout the United
States. For schedules or more information about OMNIDEX training
classes, contact your DISC sales representative at (303) 444-4000.

OMNIDEX API Guide 1-17

Chapter 2: Intrinsics

This chapter describes the intrinsics that your application programs can
call to provide OMNIDEX retrieval capabilities on an OMNIDEX-
enhanced database.

□ "General Intrinsic Information", on page 2-2, provides an
overview of the intrinsics.

□ "Sorted Access and General Intrinsics", on page 2-11, provides
detailed information about each OMNIDEX "D BI" intrinsic,
including syntax and parameters.

O "Keyword Access Intrinsics", on page 2-52, provides detailed
information about each OMNIDEX "OD X" intrinsic, including
syntax and parameters.

□ "Standard Interface to Third Party Indexing", on page 2-95,
provides detailed information, including syntax and parameters,
about the TurboIMAGE intrinsics that you can use to access
OMNIDEX.

You also should read the "Programming" chapter of this manual for
information about how to call the intrinsics through application
programs.

OMNIDEX API Guide 2-1

General Intrinsic Information

You can use either of two sets of intrinsics to search and maintain
OMNIDEX indexes. The OMNIDEX Intrinsic Interface includes all of the
intrinsics that past users of OMNIDEX are familiar with, such as
ODXFIND, ODXGET, and DBIGET. The OMNIDEX Intrinsic Interface
lets you easily migrate your applications as OMNIDEX is ported to other
operating systems and database management systems.

Sites that use TurboIMAGE version C.04.03 or later, or MPE/iX version
4.0 or later, can use the Standard Interface to Third Party Indexing (or
"TPI Interface"). This interface provides OMNIDEX retrieval capabilities
through the familiar TurboIMAGE DBFIND and DBGET intrinsics.
Because this interface is integrated at the operating system level, it
handles concurrent operations more efficiently, and provides full
recovery of OMNIDEX indexes along with TurboIMAGE data.

The OMNIDEX Intrinsic Interface
OMNIDEX provides retrieval intrinsics that access the OMNIDEX
keyword and sorted indexes. Additional intrinsics are provided to
perform maintenance tasks like locking and updating OMNIDEX
indexes. The retrieval intrinsics that access keyword keys are called
keyword access intrinsics. The retrieval intrinsics that access sorted keys are
called sorted access intrinsics. The remaining maintenance intrinsics are
called general intrinsics. When you use the keyword or sorted access
intrinsics to do your retrievals, you are using the OMNIDEX Retrieval
Interface.

2-2 OMNIDEX API Guide

General Intrinsic Information The OMNIDEX Intrinsic Interface

Keyword access intrinsics
The Keyword access intrinsics retrieve or process records using the
OMNIDEX keyword indexes. Keyword access intrinsics are called to:

□ qualify records based on any combination of keyword values
contained in OMNIDEX keyed fields

O return information about keyword keys, domains and databases

□ transfer qualified records or their items to files

The Keyword access intrinsics are:

O ODXFIND

□ ODXGET

O ODXGETWORD

□ ODXINFO

□ ODXPRINT

□ ODXTRAN SFER

□ ODXVIEW

Sorted access intrinsics
Sorted access intrinsics are called to do sorted-sequential retrievals, based
on partial, or full, key values entered for a sorted key. They accomplish
this by accessing the index for each sorted key. The sorted access
intrinsics are:

O DBIFIND

□ DBIGET

These intrinsics use the same number and types of parameters as their
corresponding TurboIMAGE intrinsics (DBFIND and DBGET). Note that
DBIFIND's and DBIGET's parameters are slightly different than their
TurboIMAGE counterparts. The major difference is that DBIGET and
DBIFIND support several additional mode values. However, DBIFIND
and DBIGET perform standard TurboIMAGE functions if a standard
TurboIMAGE mode value is used.

OMNIDEX API Guide 2-3

The OMNIDEX Intrinsic Interface General Intrinsic Information

General intrinsics
Some OMNIDEX intrinsics are called general intrinsics. They are used to:

□ open and close OMNIDEX-enhanced databases

□ perform puts, deletes, and updates and automatically perform
the corresponding put, update or deletion of keys or keywords in
the OMNIDEX indexes

O return error messages and information about a database

The general intrinsics replace, or supplement, most of the TurboIMAGE
intrinsics on a one-for-one basis. They are:

□ DBICLOSE

□ DBIDELETE

O DBIERROR

□ DBIEXPLAIN

□ DBIINFO

□ DBILOCK

□ DBIOPEN

O DBIPUT

□ DBIUNLOCK

O DBIUPDATE

OMNIDEX intrinsic parameters
OMNIDEX intrinsics use the same number and types of parameters as
their corresponding TurboIMAGE intrinsics. Most OMNIDEX intrinsics
(except for DBIEXPLAIN, see below) execute identically to their
TurboIMAGE counterparts if a standard TurboIMAGE mode value is
used. This means that a program where TurboIMAGE intrinsics are
replaced by OMNIDEX general intrinsics (with no other changes)
operates identically to the TurboIMAGE version. There are some
differences.

□ OMNIDEX permits several additional values for the mode
parameter. For example, DBIGET and DBIFIND provide
relational modes that support generic (partial) specification of the
argument value.

2-4 OMNIDEX API Guide

General Intrinsic Information The OMNIDEX Intrinsic Interface

□ Certain OMNIDEX intrinsics use mode options. These are integer
values that are added to the mode parameter values to augment
the specified mode's operation.

□ DBIEXPLA1N has an additional parameter called parm, which
enables you to configure how errors are handled.

□ The DBIGET dset parameter can be 16 words (32 bytes) long, and
can include an 8 word (16 byte) name of a sorted key.

□ OMNIDEX intrinsics require a 21 word status array instead of the
10 word array required in calls to TurboIMAGE intrinsics.Words
1-10 are still used for the information returned by the
TurboIMAGE call, word 11 is the OMNIDEX condition word,
and words 12-21 vary according to the intrinsic being called.

Types of modes and mode options
In addition to the standard TurboIMAGE mode values, the sorted access
and general intrinsics accept additional mode values when performing
sorted retrievals and other functions.

For general intrinsics, the three types of mode options are described by
the data they affect.

□ Normal mode affects both the TurboIMAGE data sets and the
OMNIDEX indexes, and is used in most cases.

□ IM AG E-only mode affects only the TurboIMAGE data sets, and is
used for extensive batch updates.

□ Index-only mode affects only the OMNIDEX indexes, and is used
to perform index-only mode retrievals and updates.

These mode options are discussed in "M ode options", on page 2-11.

Standard TurboIMAGE mode values for sorted access and general
intrinsics are marked with an asterisk (*) throughout in the “Sorted
Access and General Intrinsics” section of this chapter.

OMNIDEX API Guide 2-5

The OMNIDEX Intrinsic Interface General Intrinsic Information

Error handling
In the OMNIDEX Intrinsic Interface, there are two ways to handle errors:

□ Default, or "active", error handling returns all error condition
values to word 1 of status. This method of error handling is best
suited to OMNIDEX applications.

□ Passive error handling, when enabled for an XL, returns indexing
error conditions to word 12 of status. This method of error
handling is designed for non-OMNIDEX update applications
running through Call Conversion to enable automatic indexing.
Passive error handling is not supported for TPI-enabled
databases.

This section discusses the default, active error handling for the
OMNIDEX Intrinsic Interface. For more information about either type of
error handling, see "Error handling", on page 3-4 of the Programming
chapter.

The condition word
The status array for OMNIDEX intrinsics is a 21 word array. Under default
error handling, words 1 through 10 return TurboIMAGE errors, just like
the status array used by TurboIMAGE intrinsics. The first word of the
status array is used as the TurboIMAGE condition word, which indicates
whether or not a call has executed successfully. If this word contains a
nonzero value, an error was incurred by the calling intrinsic.

OMNIDEX status array values
Table 2-1, on the next page, lists the values that are returned in the status
array for any given intrinsic call.

2-6 OMNIDEX API Guide

General Intrinsic Information The TPI Interface

TurboIMAGE
cond ition
word 1 va lue

Status
w ord 11
va lue

Ind ica tion

0 0 Successful execution; no errors
and no warnings

+888 negative Keyword access calling error

+888 positive Keyword access exceptional
condition

+999 negative Keyword access or general calling
error

+999 positive Keyword access or general
exceptional condition

other nonzero 0 Primary TurboIMAGE call error;
words 1-10 contain TurboIMAGE
call data

other nonzero positive Secondary TurboIMAGE call
error; words 1-10 contain
TurboIMAGE call data

Table 2-1: How status array values indicate errors

The TPI Interface
With the release of TurboIMAGE version C.04.03 and the Standard
Interface to Third Party Indexing, you can perform OMNIDEX searches
and updates by calling TurboIMAGE intrinsics at the system level. If you
purchased TurboIMAGE with MPE/iX version 4.0 or later, you have this
capability. When a database is enabled for TPI, any programs you wrote
using the TurboIMAGE Retrieval Interface under version 2.09/2.10, and
your existing TurboIMAGE programs, can resolve through the system XL
to interface with OMNIDEX.

OMNIDEX API Guide 2-7

The TPI Interface General Intrinsic Information

The TPI Interface provides the following features:

□ record counts for both sorted and keyword keys

□ range retrievals on sorted keys

□ familiar DBFIND/DBGET programming logic for both sorted
and keyword keys

□ automatic updating of OMNIDEX indexes

V OMNIDEX versions 2.09 and 2.10 emulate the retrieval capabilities of the
Standard Interface to Third Party Indexing, but do not provide the level of
integration found in TurboIMAGE version C.04.03 and OMNIDEX version
3.

OMNIDEX retrievals through TurboIMAGE
You can perform keyword searches and sorted retrievals using DBFIND
and DBGET. These standard TurboIMAGE intrinsics have been enhanced
with new routines, available through new mode values. They support
many existing, and a few new, retrieval features including:

□ ranges on sorted keys

o relational (>, >=, <, <=) searches

□ Boolean operations (performed in the order NOT, AND,
then OR)

o pattern matched or "wildcard" searches

□ generic or partial key access

The only difference between the TurboIMAGE retrieval intrinsics and the
traditional TurboIMAGE intrinsics are new mode values. However,
DBFIND mode 1 is enhanced to provide sorted and keyword access. This
means that you can use the retrieval features of OMNIDEX through
existing applications (according to the conventions specified in Hewlett-
Packard's Standard Interface to Third Party Indexing).

V Programs that use the Standard Interface to Third Party Indexing can
access OMNIDEX databases that are not enabled for TPI by resolving
calls through the OMNIDEX Call Conversion library, as discussed in
Appendix C of the OMNIDEX ImagePlus SDK Administrator’s Guide.

2-8 OMNIDEX API Guide

General Intrinsic Information The TPI Interface

Automatic updating of indexes
When you run update programs against a TPI-enabled database,
additions, deletions, and updates of records are automatically reflected in
the OMNIDEX indexes. TurboIMAGE intrinsics like DBOPEN, DBPUT,
DBDELETE, and DBUPDATE have been modified to detect the presence
of indexes, and to update them synchronously with the TurboIMAGE
records in sets that contain keys. You can disable real time updating of
indexes by disabling the indexes for TPI through OmniUtil. This is
discussed under "Updating OMNIDEX Data" in the "Topics" chapter of
the OMNIDEX ImagePlus SDK Administrator's Guide.

Error handling
The TurboIMAGE intrinsics use a 10-word status array, just like the
TurboIMAGE intrinsics you are used to using. The major difference in
error handling between the TPI Interface and normal TurboIMAGE is the
error codes. As in normal TurboIMAGE, calling error codes are negative
numbers, and exceptional condition codes are positive numbers. Normal
TurboIMAGE error codes are unchanged. For example, error 14 is still an
exceptional condition, and means that the beginning of a chain has been
reached.

Error codes that pertain to OMNIDEX indexes are four digit codes that
begin with the number 3. For example, error -3304 is a calling error, the
same as OMNIDEX error -304, which means that the field passed in item is
not a sorted key.

OMNIDEX API Guide 2-9

Choosing a retrieval interface General Intrinsic Information

Choosing a retrieval interface
Before you begin developing OMNIDEX applications, you should decide
if you want to use the OMNIDEX Intrinsic Interface or the TPI Interface.
The OMNIDEX Intrinsic Interface requires the OMNIDEX intrinsics
library (XLOMNIDX.PUB.SYS), and provides capabilities beyond those
provided in the TPI Interface. Some of these additional capabilities
include:

□ keyword-only retrievals (keyword lookups)

O Soundex (phonetic) searches

□ index-only mode sorted retrievals (key value only)

O transfer of fields from records qualified in keyword searches

The TPI Interface provides capabilities beyond the OMNIDEX Intrinsic
Interface. These capabilities include:

□ range retrievals on sorted keys

O record counts on sorted searches

□ pattern matching in sorted searches

O familiar coding techniques

O automatic recovery of OMNIDEX indexes after a system failure

You should choose an interface based on the set of features you require,
and the possibility of migrating to another database management system
(such as SYBASE or Oracle) or operating system (such as HP-UX or
Open VMS).

2-10 OMNIDEX API Guide

Sorted Access and General Intrinsics

OMNIDEX sorted access intrinsics let you search OMNIDEX sorted
(IMSAM) keys. OMNIDEX general intrinsics perform the same function
as their TurboIMAGE counterparts, but they extend their actions to any
OMNIDEX indexes associated with their target data object.

Mode options
One of the differences between TurboIMAGE and OMNIDEX mode
parameter values is OMNIDEX's use of mode options. Mode options
enable you to control what data structures are targeted by the general
intrinsics through the use of three mode designations, which are
discussed next:

□ normal mode

□ IMAGE-only mode

□ index-only mode

Normal mode
Normal mode operations affect both TurboIMAGE data sets and the
OMNIDEX indexes. For the DBIFIND and DBIGET sorted access
intrinsics, a key is first located in an index. DBIFIND uses this key to
locate a chain head and set up chained access to a detail set. DBIGET uses
the key to retrieve a record from the data set.

V Normal mode calls to DBIPUT must use an @ item list.______________

For the update intrinsics, DBIPUT, DBIDELETE and DBIUPDATE, an
entry is first added to, or deleted from, the data set specified by the dset
parameter. Then, the corresponding OMNIDEX indexes are updated
automatically.

OMNIDEX API Guide 2-11

Mode options Sorted Access and General Intrinsics

IMAGE-only mode
An IMAGE-only mode option is available for the update intrinsics
DBIPUT and DBIDELETE. The IMAGE-only mode option causes these
update intrinsics to affect only the TurboIMAGE data sets. The
OMNIDEX indexes are not updated by intrinsics called in IMAGE-only
mode.

IMAGE-only updates enable you to eliminate the overhead associated
with updating OMNIDEX indexes in real time. The indexes can be
updated later by an OmniUtil indexing operation.

Index-only mode
The index-only mode option is available for the retrieval intrinsics
DBIFIND and DBIGET.

Index-only mode DBIGET is used to retrieve only a sorted key, not its
corresponding entry. This is useful because it is much faster than normal
mode. An index-only mode DBIGET need only retrieve the desired key
from an index; a normal mode DBIGET also must read the corresponding
record from the data set.

An index-only mode DBIGET can be used whenever only the key value is
needed. Often, a database administrator designs composite sorted keys to
be accessed in index-only mode. They combine fields to be searched (as
the first components in the key) with fields that contain the desired data
(as the last components in the key). This is useful for reporting, in that the
overhead required to get TurboIMAGE records is eliminated.

If several sequential retrievals are being performed, index-only mode is
much faster than normal mode. The sorted access intrinsic keeps the most
recently accessed tree block in the user's stack. Because many keys reside
in one physical block, a full block of keys can be retrieved with a single
read to disk.

Index-only mode usually returns keys 20-100 times faster than normal
mode for sequential retrieval operations. This advantage is greater for
smaller keys.

Index-only mode is also used to mark a place during a sorted read. This
technique is necessary when using a sorted key to find records for
updating. If you update the sorted key that is used to read records in
sorted order, the old sorted key value is removed from the index, and the
new, updated key value is placed in the proper location in sort order. So,

2-12 OMNIDEX API Guide

Sorted Access and General Intrinsics Sorted sequential access

the next sorted sequential read (mode 90 or 91) reads from the new key
value, not from where the old key value was deleted.

To avoid this, and continue reading from where you deleted the old key
value, use index-only mode to store the full internal key value before the
update. Then, use this stored key value and mode 300 to redirect DBIGET
to the old key's location before continuing your read.

Sorted sequential access
The DBIFIND and DBIGET sorted access intrinsics provide keyed
sequential access and partial-key (generic) retrieval capabilities through
sorted keys:

□ DBIFIND locates detail chain heads using a sorted key installed
on the search item of a master.

□ DBIGET retrieves records or key values using all other sorted
keys.

The initial record is found by matching an argument value (passed
through the argument parameter) against the key values stored in the key's
index. When a key value that matches the argument value is found, the
record that it corresponds to is retrieved. Subsequent records can be
returned in sorted order by calling DBIGET to read up or down through
the index, depending on the mode value.

DBIFIND and DBIGET let you find or retrieve records without fully
specifying the key value passed through the argument parameter. This is
called a generic retrieval. Generic (partial) key values are specified starting
with the leftmost character. The mode parameter specifies the length of the
partial key value in bytes or words. It also specifies a relation between the
argument value supplied and the key value to be retrieved.

The DBIFIND and DBIGET relational operations and modes, where nn
represents the partial arguments length, are:

equal to mode Inn

greater than mode Inn

greater than or equal to mode 3/7/7

less than mode 4/7/7

less than or equal to mode 5/7/7

OMNIDEX API Guide 2-13

Sorted sequential access Sorted Access and General Intrinsics

For example, a CUSTOMERS master data set might have a sorted key on
the 32-byte COMPANY field. The COMPANY key values, and pointers to
the records that contain them, are stored in an associated index. The key
values and their records are accessible through DBIGET.

To retrieve a CUSTOMERS master entry, call DBIGET, specify from 1 to
32 characters of a COMPANY name (in argument, starting with the
leftmost character). Then, specify the desired relationship (like > or <)
between the argument value and the key sought using one of the relational
mode values shown above. Substitute the length of the argument, if it is
generic, for nn in mode.

Note that the scope of a relational retrieval is determined by the length of
the argument specified for the key value. The number of leading
characters that are matched against indexed key values determines which
record is initially selected.

For example, an equal to (=) relational search on a COMPANY key using
the generic argument A (mode -101) would retrieve the first record that
begins with an A (like AARDVARK). Subsequent DBIGET reads (via the
sequential modes listed below) would return records with key values like
ABEL, and ACME. The argument AC qualifies the records for ACE and
ACME, but not ABC, because the two characters do not match the
partially specified argument value AC.

The more characters that are specified, the more precise the retrieval
criteria, and the more selective the retrieval.

The key value returned by a sorted retrieval depends on the specified
relation and argument. For the relational operations =, > and >=, the first
value returned is the first matching key value in ascending sequence, or
the lowest key value that qualifies. For the relational operations < and <=,
the first value returned is the first key value in descending key sequence,
or the highest key value that qualifies.

For example, an index for a sorted key might contain several key values
starting with L, ranging from LABEL to LUCKY. A partial key = or >=
operation using the argument value L would return LABEL, while a <=
operation would return LUCKY.

Similarly, a > operation using the argument value L would return the
lowest key starting with M, and a < operation using the argument value L
would return the highest key starting with K. Some possible results of
relational retrievals are listed below.

2-14 OMNIDEX API Guide

Sorted Access and General Intrinsics Sorted sequential access

Operation and Value First Key Value Found

<L KUDOS

= L LABEL

>= L LABEL

<= L LUCKY

> L MAN

After you locate a key value using a DBIFIND or DBIGET relational mode
value, use one of DBIGET's sequential modes to read through the
indexed (sorted) key values. The DBIGET sequential reads and their
modes are:

90 ascending read next higher value

91 descending read next lower value

92 reread same value

For more information about sorted access, see the DBIFIND and DBIGET
headings in this chapter, and "W riting Programs", on page 3-2 of the
"Programming" chapter.

The rest of this section discusses each of the OMNIDEX sorted access and
general intrinsics. The intrinsics sections are arranged alphabetically.
Each includes information about the intrinsic's parameters, a discussion
of what it does, and a list of possible error numbers and messages.

OMNIDEX API Guide 2-15

DBICLOSE Sorted Access and General Intrinsics

DBICLOSE
DBICLOSE (base, dset, mode, status)

DBICLOSE terminates an access path to a database, or closes or rewinds a
data set. It also recovers any resources used by OMNIDEX to access the
database.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is the name of an array that contains the left-justified name, or the 16-bit
number, of the data set being accessed. The data set name may be up to 16
characters long or, if shorter, terminated by a semicolon (;) or a space (for
example, CUSTOMERS; or ORDER-LINES).

mode is a 16-bit word integer from 1 to 3. The values with asterisks (*)
correspond directly to the TurboIMAGE DBCLOSE mode values as
follows:

1 * terminates access to the database via a path. The path is iden­
tified by the first word of the base parameter, which was
assigned by TurboIMAGE during DBIOPEN.

2 * closes the data set specified in the dset parameter.

3 * rewinds (re-initializes) the data set specified in the dset
parameter.

status is the name of an array of 21 16-bit words used to return information
about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes.

2-16 OMNIDEX API Guide

Sorted Access and General Intrinsics DBICLOSE

Discussion

V DBIOPEN must be used to open an OMNIDEX database when using the
OMNIDEX Intrinsic Interface. Multiple databases may be opened, and
each database may be opened multiple times. The number of databases
you can have open at any one time is roughly 10, depending on the size
and complexity of the databases and the number of excluded words.

DBICLOSE modes 2 and 3 are identical to the corresponding DBCLOSE
mode values.

DBICLOSE mode 1 first issues a DBCLOSE mode 1 to terminate access to
the database via the path specified by the base ID (the first word in the
base parameter) and releases resources that are used to control access
against the database. If multiple databases are accessed serially instead of
concurrently, you should close one database before opening the next to
conserve memory resources.

OMNIDEX API Guide 2-17

DBIDELETE Sorted Access and General Intrinsics

DBIDELETE
DBIDELETE (base, dset, mode, status)

DBIDELETE deletes the current entry from the master or detail set
referenced in dset and updates any affected indexes.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is the name of an array that contains the left-justified name, or the 16-bit
number, of the data set being accessed. The data set name may be up to 16
characters long or, if shorter, terminated by a semicolon (;) or a space (for
example, CUSTOMERS; or ORDER-LINES).

mode contains a single, 16-bit word integer, which corresponds exactly to a
TurboIMAGE DBDELETE mode value of 1. Mode 1 deletes the current
entry from a manual master or detail data set. Then, it automatically
updates the OMNIDEX indexes to remove the sorted key values and
OMNIDEX keywords associated with that record.

M o d e options
Mode options are integer values that are added to the mode value (1) to
elicit the following:

100 IMAGE-only mode. The current entry is deleted. OMNIDEX
indexes are not changed.

200 Index-only mode. Rereads the current entry and removes the
key values and keyword occurrences associated with that
record without deleting the entry itself.

status is the name of an array of 21 16-bit words used to return information
about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes.

2-18 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIDELETE

Discussion
In normal mode, DBIDELETE calls DBDELETE to delete the desired
entry, then updates any associated indexes as necessary. When a database
has been enabled for Third Party Indexing, DBDELETE calls DBIDELETE
to update OMNIDEX indexes after a TurboIMAGE record is deleted.

If an error occurs during an index update, a nonzero number is returned
to status word 1, as described previously in "OM NIDEX status array
values", on page 2-6. An abnormal termination of a calling application
during a delete could cause an indexing error.

Indexing errors are easy to correct by performing an OmniUtil "Reindex
Specific Tables" operation on the affected OMNIDEX data set or domain.

OMNIDEX condition word values

Exceptional conditions
496 ILCB damaged or OLCB damaged

497 Bad base ID, or database not opened using DBIOPEN

4/7/7 Any other 400 level value: IMSAM internal error

Calling errors
-400 Illegal mode specified

OMNIDEX API Guide 2-19

DBIERROR Sorted Access and General Intrinsics

DBIERROR
DBIERROR (status, buffer, length)

DBIERROR interprets the TurboIMAGE and OMNIDEX condition words
and places an error message in the buffer parameter.

Parameters
status is the name of an array of 2 1 16-bit words used to return information

about the success of a call. See Table 2-1 on, page 2-7, for a list of error
condition codes.

buffer is a 36 16-bit word (72 byte) array where the TurboIMAGE or OMNIDEX
error message is returned.

length is a 16-bit word integer containing the byte length of the message, up to
72 characters.

Discussion
DBIERROR interprets TurboIMAGE errors by calling the TurboIMAGE
DBERROR intrinsic internally. OMNIDEX errors are interpreted directly
by DBIERROR.

TurboIMAGE errors comprise calling errors and exceptional conditions,
which can result from a call to TurboIMAGE by an OMNIDEX intrinsic.
For example, using DBIPUT to add an entry to a data set that is
inaccessible to your user class would result in a TurboIMAGE error. The
failing OMNIDEX intrinsic returns nonzero values to the TurboIMAGE
condition word and the OMNIDEX condition word of status. If the
application calls DBIERROR, it in turn calls DBERROR to interpret
TurboIMAGE errors.

Sorted access and general intrinsic calling errors and exceptional
conditions cause the TurboIMAGE condition word (word 1) to be set to
+999. Keyword access calling errors and exceptional conditions cause the
TurboIMAGE condition word to be set to +888. In either case, status word
11 is set to the value (code) that identifies the OMNIDEX error.

2-20 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIERROR

For example, a beginning of file error for a descending sequential read
would result in an OMNIDEX exceptional condition. Attempting a
partial-key retrieval on an item that isn't a sorted key would result in an
OMNIDEX calling error.

A list of OMNIDEX error codes is included with each intrinsic's
description. Consult the TurboIM AG E/XL Database Management System
Reference M anual for TurboIMAGE error codes.

OMNIDEX API Guide 2-21

DBIEXPLAIN Sorted Access and General Intrinsics

DBIEXPLAIN
DBIEXPLAIN (status, parm)

DBIEXPLAIN interprets the TurboIMAGE and OMNIDEX error codes
and prints an error message to SSTDLIST. At the end of the message, the
value of parm is displayed after the words, Program Error. Note that
parm is an additional parameter not used by TurboIMAGE's DBEXPLAIN.

Parameters
status is the name of an array of 21 16-bit words used to return information

about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes.

parm is a 16-bit word integer. The value of parm determines what happens
when there is an error, as listed below.

=0 suppresses the Program Error <parm> message. Only the
TurboIMAGE or OMNIDEX error message is displayed.

<0 aborts the user process immediately after displaying the
Program Error <parm> and error messages.

>0 displays the Program Error <parm> and error messages,
but does not abort the program.

Discussion
Note that you can use different values for parm on different intrinsic calls
when debugging a program. This helps to identify which call is causing
problems.

OMNIDEX calling errors and exceptional conditions are explained by a
one or two line message. For errors that occur when an OMNIDEX
intrinsic calls a TurboIMAGE intrinsic, DBIEXPLAIN calls DBEXPLAIN
to interpret the error.

Errors that occur when an OMNIDEX intrinsic calls a TurboIMAGE
intrinsic are first interpreted using DBEXPLAIN. Then the OMNIDEX
internal error code is displayed.

DBIEXPLAIN calls DBEXPLAIN to interpret errors whenever necessary.
Therefore, it is best to call DBIEXPLAIN immediately after returning from
the failing intrinsic to ensure the display of a valid error message.

2-22 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIFIND

DBIFIND
DBIFIND (base, dset, mode, status, item, argument}

DBIFIND locates a detail chain head using a sorted key installed on the
TurboIMAGE search item (SI) of a master set. The SI is specified by the
item parameter. The detail set is specified by the dset parameter.

DBIFIND sets up pointers in preparation for DBIGET chained access. A
chain consists of detail entries that share the same value for the SI
specified in item. The first detail record whose SI values matches the
argument \a \u e is the first chain head. You can locate the chain head by full
key value in mode 1, or by partial key value in sorted-key sequence, using
modes 100-500. The argument parameter contains the full or partial-key
value that is used to locate the chain head.

Index-only mode access can be used for all relational and sequential
retrieval modes by adding 1000 to the mode value. For more information
about index-only mode, see "Index-only m ode", on page 2-26.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is the name of an array that contains the left-justified name, or the 16-bit
set number, of the data set being accessed. The data set name may be up
to 16 characters long or, if shorter, terminated by a semicolon (;) or a
space (for example, CUSTOMERS; or ORDER-LINES).

mode is a 16-bit word integer, used to pass any of the following values:

TurboIM AG E m od es
1 * same as TurboIMAGE DBFIND mode 1 with TPI disabled.

Locates the chain head that matches the full key value in
argument.

OMNIDEX API Guide 2-23

DBIFIND Sorted Access and General Intrinsics

status

item

argument

R elational m o d es
To perform a relational operation, add one of the mode values on the next
page to the key length of the value passed in the argument parameter.

100 = operation. Locates the first chain head in ascending key
order whose key value equals the value in argument to the
precision specified. For index-only mode, use 1100.

200 > operation. Locates the first chain head in ascending key
order whose key value is greater than the specified
argument. For index-only mode, use 1200.

300 >= operation. Locates the first chain head in ascending key
order whose key value is greater than or equal to the speci­
fied argument. For index-only mode, use 1300.

400 < operation. Locates the first chain head in descending key
order whose key value is less than the specified argument.
For index-only mode, use 1400.

500 <= operation. Locates the first chain head in descending key
order whose key value is less than or equal to the specified
argument. For index-only mode, use 1500.

Sequentia l m o d es
After a call to DBIFIND using a relational mode, these modes let you read
through key values. The argument parameter is ignored for these modes.

90 locates the next higher SI value.

91 locates the next lower SI value.

92 locates the current chain head. Resets the pointer to the
beginning of the chain.

M o d e options
1000 add to the mode value to specify index-only mode

is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes.

is an array of eight 16-bit words, which contain the left-justified name of a
TurboIMAGE SI. For all mode values except 1, the referenced SI must be a
sorted key.

passes the full, or partial, key value used to locate the chain head for
relational retrieval modes. Returns the retrieved key value for index-only
mode.

2-24 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIFIND

Discussion

Relational mode values and argument \eng\h
For DBIFIND mode 1, the argument parameter must contain a full key
value as a search argument.

For the relational modes (100-500), the argument parameter can contain a
partial key value. The length of argument is expressed in mode, as discussed
below, along with the relational condition. The relational condition
specified in models limited to the partial key argument. For example, if
you supply a partial key argument like 2392A, and reflect its length
through mode, DBIFIND compares the first five characters of the indexed
key values against that partial key argument. The chain head found is the
first key value that satisfies the relation to the argument parameter,
expressed by the relational mode value.

When using a full key argument value (one equal to the defined length of
the sorted key), add nothing to the relational mode value. For example, to
specify a "greater than" relational operation using a full key argument,
the mode would be 200. You may need to pad the argument value with
trailing blanks to make it a full key value. For example, when searching
an X14 PRODUCT-NO sorted key for detail records that contain 2392A,
you would pad that value with nine trailing blanks (2392A), to
make it 14 characters long.

When using a partial key value in argument, add its length to the relational
mode value, arguments length can be passed in either words or bytes.

□ To express the length in words, add the number of words to the
relational mode value and use a positive mode value.

□ To express the length in bytes, add the number of bytes to the
relational mode value and use a negative mode value.

For example, to specify a two word argument value (like 2392) in a greater
than or equal to operation (mode 300), use 302 for the mode. To specify a
five-byte argument (like 2392A), use -305 for the mode.

When using partial key lengths of 100 bytes or longer, specify the partial
key length in words. If you try to add a partial-key length greater than
100 bytes to a mode value, it results in the next higher mode. For
example, a relational mode of 100 (equal to) with a partial-key length of
102 bytes results in a mode of -202, which is a greater than operation with
a byte length of "2 " instead of an equal to operation with a byte length of
"102".

OMNIDEX API Guide 2-25

DBIFIND Sorted Access and General Intrinsics

Therefore, if you have sorted keys longer than 100 bytes, use partial-key
values on word boundaries. Using the example above, a mode of 100 plus
a partial-key value of 51 words results in a mode of 151, which yields the
desired retrieval.

More examples of mode values for partially specified arguments are
included with the DBIGET command description.

Index-only mode
An index-only mode DBIFIND differs from a normal mode DBIFIND in
two respects:

□ An index-only mode DBIFIND retrieves the first key value that
qualifies, and returns that key value to the calling program via
the argument parameter, overwriting the value that was passed in
the call. A normal mode DBIFIND uses the first key value that
qualifies in a call to DBFIND, and does not alter the argument
parameter.

□ An index-only mode DBIFIND does not set up pointers for
chained access (DBIGET mode 5 or 6) to the detail set, but a
normal mode DBIFIND does.

To specify index-only mode, add 1000 to the relational or sequential
mode value. Some examples are: 1090,1091,1100,1302 and -1505.

Index-only mode calls to DBIFIND can be used to retrieve all key values
that match a partial value entered by a user in an application program.
For example, the first DBIFIND does a partial-key retrieval, usually in an
equals operation, to retrieve the first key that qualifies. Then index-only
sequential mode (1090) calls to DBIFIND are performed to retrieve
subsequent SI values in sorted order.

2-26 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIFIND

OMNIDEX condition word values

Exceptional conditions
201 Operation stopped by user

210 Beginning of file

211 End of file

213 IMSAM tree empty

217 Key not found

296 ILCB damaged

297 Bad base ID, or database not opened using DBIOPEN

2nn Any other 200 level value: IMSAM or OMNIDEX internal
error or TurboIMAGE error

Calling errors
-200 Illegal mode specified

-201 Data set not an IMSAM detail

-202 Key value exceeds defined key length

-204 Item not an IMSAM key

-212 No current key

OMNIDEX API Guide 2-27

DBIGET Sorted Access and General Intrinsics

DBIGET

base

dset

mode

DBIGET (base, dset, mode, status, list, buffer, argument!

DBIGET provides several different methods for retrieving all or part of a
record via a sorted key. You can also call DBIGET to perform standard
TurboIMAGE retrievals.

Use DBIFIND to find detail chains via the SI of a master set.

Parameters
is the name of the integer array used as the base parameter when opening
the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

is the name of an array of 16 16-bit words (32-bytes) that contains the
left-justified name or number of the data set to be accessed and the name
or number of the sorted key. Note that this differs from the standard
TurboIMAGE dset parameter.

The data set name must be in the first 8 words (16 bytes), and the sorted
key name must begin in word 9 (byte 17). If the data set name is shorter
than 8 words, it must be terminated by a semicolon (;) or a space.

If a master set's search item is the only sorted key defined in the set, the
last 8 words (16 bytes) are ignored.

If a TurboIMAGE mode is used, the last 8 words (16 bytes) are ignored,

is a 16-bit word integer, that contains any of the following values:

TurboIM AG E m od es
1 * reread. Standard DBGET mode 1.

2 * serial read. Standard DBGET mode 2.

3 * backward serial read. Standard DBGET mode 3.

4 * directed read. Standard DBGET mode 4.

5 * chained read. Standard DBGET mode 5.

6 * backward chained read. Standard DBGET mode 6.

2-28 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIGET

status

7 * calculated read. Standard DBGET mode 7.

8 * primary calculated read. Standard DBGET mode 8.

R elational m o d es
Base values to which the number of bytes or words are added.

100 = operation. Retrieves the first entry in ascending key order
whose key equals the specified key value. For index-only
mode, use 1100.

200 >operation. Retrieves the first entry in ascending key order
whose key is greater than the specified key value. For
index-only mode, use 1200.

300 >= operation. Retrieves the first entry in ascending key order
whose key is greater than or equal to the specified key value.
For index-only mode, use 1300.

400 < operation. Retrieves the first entry in descending key order
whose key is less than the specified key value. For index-only
mode, use 1400.

500 <= operation. Retrieves the first entry in descending key
order whose key is less than or equal to the specified key
value. For index-only mode, use 1500.

S equentia l m o d es
90 retrieves the next entry in ascending key sequence. The

argument parameter is ignored. For index-only mode, use
1090.

91 retrieves the previous entry in ascending key sequence (the
first entry in descending order). The argument parameter is
ignored. For index-only mode, use 1091.

92 rereads the current entry. The argument parameter is ignored.
For index-only mode, use 1092.

M o d e options
1000 specifies index-only mode when added to a mode value.

is the name of an array of 21 16-bit words used to return information
about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes.

OMNIDEX API Guide 2-29

DBIGET Sorted Access and General Intrinsics

list is the name of an array that contains either an ordered set of data item
names or numbers, an at sign (@) to specify all items in the database, or
an asterisk (*) to re-specify items passed in the last list.

See the TurboIM AGE/XL Database Management System Reference Manual
discussion of DBGET for more information about the list parameter.

buffer is the name of the array to which the values of data items specified in the
list array are moved. The defined array must be large enough to hold the
values from the fields that correspond to the items in list. If the buffer array
is to small, a memory error will result.

argument contains the full or partial key value used to locate the master or detail
record for all relational retrieval modes.

Discussion
DBIGET is used for retrieval on all sorted keys, except when locating
chain heads via sorted keys installed on TurboIMAGE search items. To
locate chain heads and perform chained reads, use DBIFIND instead.

Relational mode values and argument length
For all relational retrieval modes, add the length of any partial key value
supplied for the argument parameter to the relational mode value.

When using a full key argument va\ue (one equal to the defined length of
the sorted key) with a relational mode value, add nothing to the mode
value. For example, to specify a "greater than" relational operation using
a full key argument v alue, the mode value would be 200. You may need to
pad an argument with trailing blanks to make it a full key value. For
example, when searching an X14 PRODUCT-NO sorted key for records
that contain 2392A, you would pad the argument with nine trailing
blanks (2392A).

The length of a partial key value contained in the argument parameter can
be passed in either words or bytes.

□ To express the length in words, add the number of words to the
relational mode value and use a positive mode value.

□ To express the length in bytes, add the number of bytes to the
relational mode value and use a negative mode value.

For example, to specify a two-byte (one word) key value, like HE, in a
greater than or equal to operation (mode 300), you would use 301 for the
length in words or -302 for the length in bytes.

2-30 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIGET

The scope of the relational search is limited to the key length specified in
mode. If you are searching an X14 key, and the mode value is 102, DBIGET
retrieves the record of the first key value whose first (two words) four
bytes match the argument.

Some examples of this follow.

□ Get the first entry whose key value starts with "P ". Argument
length is 1 byte and the relational mode is 100, therefore:
mode = -101.

□ Get the first entry whose key value is greater than "M A " in the
first two bytes. Argument length is 2 bytes or 1 word and the
relational mode is 200, therefore: mode = -202 or 201.

□ Get the highest key value that is less than or equal to "R5A ".
Argument length is 3 bytes and the relational mode is 500, add 1000
for index-only mode (see below), therefore: mode = -1503.

□ Get the first entry whose key value is greater than
“Smith, John Q .", assuming the key's length is 14 bytes. Argument
length is 14 bytes or 7 words, or the full defined length, and the
relational mode is 200, therefore mode = -214 or 207 or 200.

For sorted keys whose total length is equal to or greater than 100 bytes
(including the search item or relative record number for index-only
mode), specify partial key lengths on word boundaries, as discussed on
page 2-25.

Normal mode and index-only mode
In normal mode, a record is retrieved and the field values specified in the
list parameter are returned to the calling program.

In index-only mode, DBIGET retrieves only the key values from an index.
No record is accessed. Index-only mode is available for all relational and
sequential retrieval modes by adding 1000 to the mode value. Use an
index-only relational mode to retrieve the first key value, and index-only
sequential modes to retrieve subsequent key values.

In index-only mode, the list parameter is ignored and the retrieved key
value is returned to the calling program via the buffer parameter. It has the
following format:

Word Contents of buffer parameter

1 — n key value, where n = key length in words
n — n+ID ID value, where ID represents an SI value (for masters) or a

4-byte relative record number (for details).

OMNIDEX API Guide 2-31

DBIGET Sorted Access and General Intrinsics

If the key is a sorted-only key (not also a TurboIMAGE search item), the
full key value is returned. The full key is the sorted key value plus the
record's search item (for a master data set) or the relative record number
(for a detail data set). See page 2-26 for some applications of index-only
mode.

Programming tips
For TurboIMAGE search items that are also sorted keys, if the full key
value is known and a relational equals operation is desired, use
TurboIMAGE mode 7 instead of mode 100. Mode 7 (TurboIMAGE
calculated access) eliminates a needless index search to locate the key
value.

To find the highest value for a key, use DBIGET mode 500 (less than or
equal to) with a high argument v alue.

When using partial key values or ranges of key values, you can perform
mode 90 or 91 calls to DBIGET to retrieve records (or key values) in
sequence. However, you must provide a programmatic check to
determine when the records retrieved no longer match the partial key
value, or are out of range.

OMNIDEX condition word values

Exceptional conditions
301 Critical flag set

310 Beginning of file

311 End of file

313 Index file empty

314 No keys in the specified range

317 Key not found

347 Index file has wrong data format for this computer system

396 ILCB damaged

397 Bad base ID, or database not opened using DBIOPEN

3nn Any other 300 level value: IMSAM or OMNIDEX internal
error or TurboIMAGE error

2-32 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIGET

Calling errors
-300 Illegal mode specified

-301 Data set not an IMSAM data set

-302 Key value exceeds defined key length

-304 Item not an IMSAM key

-305 DBIFIND followed by chained DBIGETs required for Tur­
boIMAGE search items

-312 No current value for this key

-315 Not an IMSAM database

OMNIDEX API Guide 2-33

DBIINFO Sorted Access and General Intrinsics

DBIINFO
DBIINFO (base, qualifier, mode, status, buffet)

DBIINFO provides information about a database. This includes:

O keys installed on a data set

O data type of a particular item

O type of access permitted for each item

□ information about Intrinsic Level Recovery

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

qualifier is the name of an array of 8 16-bit words (16 bytes), which contains a data
set name or number or a sorted key's item number.

In mode 312, qualifier is an array of 16 16-bit words (32 bytes), which
contains a data set name or number followed by a sorted key name or
number starting at word 9 (byte 17). See the tables which follow.

mode is a 16-bit word integer that specifies the type of information desired.

DBIINFO can be used with the TurboIMAGE modes and functions
almost identically to the corresponding TurboIMAGE DBINFO call.
There are four (4) additional modes that are used by OMNIDEX only.

status is the name of an array of 21 16-bit words used to return information
about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes.

Word 2 contains the number of words of information returned to the buffer
parameter.

buffer is the name of the array that contains the returned information.

The following pages list each mode, its purpose, and the contents of the
qualifier and buffer parameters.

2-34 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIINFO

mode

va lue
Purpose qualifier

contents
buffer a rray contents
e lem ent

Com m ents

101 * Returns the
type of access
available for
an item

data item
name or
number

1 ±data item number If negative, write access is
available to the item in at least one
set. Item numbers > 2000 indicate
a composite sorted key. Item
numbers > 1024 indicate a
composite keyword key.

102 * Returns
description
of data item

data item
name or
number

I

8

9

10
I I

12
13

data item name

data type

sub-item length

sub-item count

zero

zero

Left-justified and padded with
blanks if required

I ,J , K, R, U, X, Z, P. CO for
composite keyword key. Cl for
composite sorted key

103* Identifies all
items
available in

(ignored) 1 number (n) of data
items available

database and
type of access
supported

2

n+1

±data item number
for each item in the
database

Size of array depends on number
of items. Items are arranged in
item definition order. Negative
item number indicates that the
item is write accessible in at least
one set. Item numbers > 2000
indicate a composite sorted key.
Item numbers > 1024 indicate a
composite keyword key.

104* Identifies all
items avail­
able in data
set referenced
in buffer, and
type of access
supported

data set
name or
number

(same as mode 103) Item numbers are listed in the
order that they occur in the data
set. Information returned by item
numbers is the same as for mode
103.

Table 2-2: DBIINFO m ode values

OMNIDEX API Guide 2-35

DBIINFO Sorted Access and General Intrinsics

mode Purpose qualifier buffer array contents Com m ents
va lue contents e lem ent

201 * Defines type data set l ±data set number If negative, write access is
of access name or permitted.
available for number
the
referenced
data set

202* Describes the data set 1 data set name left-justified and padded with
referenced name or blanks if required.
data set number

8

9 set type Manual master; Detail; Auto
abbreviation master.

10 entry-word length Words 10 and 11 are integer
values.

11 blocking factor

12 sorted key I means sorted keys on data
information items. M means master with

sorted key on search item. A
means auto master with sorted
key on search item.

13 zero

14 number of entries in Words 14 through 17 are integer
set values.

15

16 capacity of set
17

2 03* Identifies all (ignored) 1 number of sets
data sets available (n).
available in 2 ±data set number Data set numbers are returned in
the database order. Negative number means
and the type write access. Positive means read
of access and possibly update access.
supported for n +1 ±data set number
each

Table 2-2: DBIINFO m ode values

2-36 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIINFO

mode

va lue
Purpose qualifier

contents
buffer a rray contents
e lem ent

C om m ents

204 * Identifies all
data sets that
contain the
referenced
data item

data item
name or
number

(same as mode 203) (same as mode 203)

301 * Identifies the
paths defined
for the
referenced
data set

data set
name or
number

1

2

3

4

3n-l

3 n
3m-\

number of paths (n)

±data set number

SI number

sort item number

±data set number

SI number

sort item number

If set number is negative, write
access is permitted for that set. If
set referenced in qualifier is a
master, the set in element 2 is a
detail. If referenced set is a detail,
the set in element 2 is a master.
Item numbers in elements 3 and 4
refer to items in detail.

Words 2-4 repeat for each path.
Path designators are listed in
order of their appearance in the
schema.

302 * Describes
referenced
data set

master data
set name or
number

OR

detail data
set name or
number

1

2

OR

1

2

SI number

zero

OR

primary path item
number

data set number of
related master set

This is zero if the SI is
inaccessible

Words 1 and 2 are zero if the SI is
inaccessible

310 Identifies all
IMSAM data
sets

(ignored) 1

2

n+1

number of IMSAM
sets (n)

set number

set number

(same as mode 203)

Table 2-2: DBIINFO m ode values

OMNIDEX API Guide 2-37

DBIINFO Sorted Access and General Intrinsics

mode Purpose
va lue

qualifier buffer array contents
contents e lem ent

311 Identifies
sorted keys in
referenced
data set

data set
name
(UPPER
CASE) or
number
(16 bit
integer)

1

2

n+l

number of sorted
keys (n)

item number of key

item number of key

Com m ents

An item number greater than
2000 indicates a composite sorted
key.

This element repeats n times, once
for each key.

312 Returns 32 byte
information array. First
about 16 bytes
referenced contain
sorted key data set

name
(UPPER
CASE) or
number
(16 bit
integer).
Bytes 17-32
contain
sorted key
name or
item
number.

3

4

5

6

n + 4

item number of key

byte 1:
installation type
byte 2: bit map of key
options

key length (in bytes)

number of
components (n)

byte offset

length of each
component

Byte 1 :1 means sorted key on data
items. M means sorted key on
master's search item. A means
sorted key on auto master's
search item.
Byte 2: 8:1 Batch indexing

9:1 No Translate
10:1 No Exclude

For sorted keys on data items in a
master, contains byte offset and
length of SI. For sorted keys on
data items in a detail contains two
zeros.

Elements 5 and 6 are repeated for
as many components as are
counted in element 4.

313 Identifies
sorted keys

item
number

sorted key's name

key type Cl means composite sorted
CO means composite keyword

320 Returns
number of
IMSAM keys
in Base

none number of indexes

Table 2-2: DBIINFO m ode values

2-38 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIINFO

mode Purpose qualifier buffer array contents Com m ents
va lue contents e lem ent

321 Identifies name 1 version number of for example 30408 means
version of (UPPER 2 the intrinsics version 3
intrinsics CASE) or release 04

number fix level 08
(16-bit
integer) of
data set
that
contains a
sorted key

401 * Returns (ignored) 1 log identifier name left-justified and padded with
logging blanks if required
information

4

5 database log flag 1 if logging is enabled
0 if logging is disabled.

6 user log flag 1 means user is logging.

7 transaction log flag 1 means user has a transaction in
progress.

8 user transaction
9 number

402 * Returns ILR (ignored) 1 ILR log flag 1 if ILR enabled for database.
information 2 calendar date Date ILR enabled (mmddyy)

3
4

clock time Time ILR enabled (hhm m sstt)

5

6

zero

blank

14

15 reserved

16

Table 2-2: DBIINFO m ode values

OMNIDEX API Guide 2-39

DBILOCK Sorted Access and General Intrinsics

DBILOCK
DBILOCK (base, qualifier, mode, status)

DBILOCK calls DBLOCK to lock entries, data sets or the database,
depending upon the qualifier parameter. DBILOCK is provided only for
backward compatibility with programs written for earlier versions of
OMNIDEX.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

qualifier is the name of an array that contains a data set number, a data set name or
a set of lock descriptors, depending on the mode value, as discussed
below:

Modes 1 and 2 ignored

Modes 3 and 4 a 16-bit integer variable referencing the data set
number, or the name of an eight 16-bit word (16
byte) array containing a data set name. Could
also be @ to apply a base level lock.

Modes 5 and 6 the name of the array that contains the lock
descriptors. The format for lock descriptors is
discussed in the TurbolM AGE/XL Database M an­
agement System Reference Manual.

Be careful when changing modes; the qualifier parameter may also change.

mode is a 16-bit word integer that specifies the type of locking through one of
the following values:

1 * base level, unconditional locking

2 * base level, conditional locking

3 * set level, unconditional locking

4 * set level, conditional locking

5 * item (entry) level, unconditional locking

6 * item (entry) level, conditional locking

2-42 OMNIDEX API Guide

Sorted Access and General Intrinsics DBILOCK

status is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes.

Discussion
DBILOCK is provided so that OMNIDEX version 3 is backwardly
compatible with programs written under previous versions of
OMNIDEX. OMNIDEX indexes are locked automatically during puts,
deletes, and updates. This is similar to Optimized Locking under versions
2.05 through 2.10.

Because OMNIDEX index files must be locked during updates, a
program must have Multi-RIN (MR) capability if it calls DBIPUT,
DBIUPDATE, or DBIDELETE after a call to DBLOCK or DBILOCK.

OMNIDEX API Guide 2-43

DBIOPEN Sorted Access and General Intrinsics

DBIOPEN
DBIOPEN (base, password, mode, status)

DBIOPEN initiates access to a database and establishes the user class
number and access mode for all subsequent database access.

Parameters
is the name of an integer array that contains a string of ASCII characters.
The string must contain two leading spaces, followed by a left-justified
database name, and terminated by a semicolon (;) or space, for example,
SALES; or SALES . The database can be qualified to the group and account
level, for example, SALES.DEMODB.DISC;.

If the database is successfully opened, TurboIMAGE replaces the two
leading spaces with a value called the base ID. The base ID uniquely
identifies the access path between the database and the process calling
DBIOPEN. In all subsequent accesses to the database the first word of
base must be this base ID; therefore, the array should not be modified for
subsequent calls to intrinsics that use a base parameter.

is the name of a 16-bit word array that contains a left-justified string of
ASCII characters of an optional password followed by an optional user
identifier.

mode is a 16-bit word integer from 1 to 8, identical to TurboIMAGE's DBOPEN
modes.

1 * MODIFY with enforced locking. Allow concurrent modify

2 * UPDATE, allow concurrent update

3 * MODIFY exclusive

4 * MODIFY, allow concurrent read

5 * READ, allow concurrent access in modes 1 or 5

6 * READ, allow concurrent access in modes 2, 4, 6, or 8

7 * READ, exclusive

8 * READ, allow concurrent read

is the name of an array of twenty-one 16-bit words used to return infor-
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes.

base

password

2-44 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIOPEN

OMNIDEX condition word values

Exceptional Conditions
901 Rootfile corrupt

904 OMNIDEX expired

905 IMSAM expired (IMSAM error message) or OMNIDEX
expired (OMNIDEX error message)

912 ILCB stack overflow - too many databases open

913 Index inaccessible

941 Memory allocation failure - cannot create control blocks

949 Not a current version 3 rootfile. Reinstall
IMSAM/OMNIDEX

9nn IMSAM or OMNIDEX internal error or TurboIMAGE error

OMNIDEX API Guide 2-45

DB/PUT

DBI PUT

Sorted Access and General Intrinsics

DBIPUT (base, dse~ mode, status, /is~ bu，船内

DBIPUT adds entries to the data set specified in dset, placing the data that
is in the buffer parameter into the fields speci白edin list.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The白rstelement of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is the name of an array that contains the left-justified name, or the 16・bit
number, of the data set being accessed. The data提tname may be up to 16
characters long o乙ifshorter, terminated by a semicolon (;) or a space (for
example, CUSTOMERS; or ORDER-LINES).

mode is a 16-bit word integer value of 1. It adds an entry to a manual master or
detail data set. Any IMSAM or OMNIDEX indexes associated with the
entry are updated automatically.

Mode op制ons

An integer value which when added to the mode elicits the following:

100 IMAGE-only mode. OMNIDEX indexes are not changed.

200 Index-only mode. Indexes the OMNIDEX keys for an entry
without adding the entry itself. An@ item list must be used
or all fields must be specified in民tdefinition order.

S飽tus is the name of an array of twenty-one 16・bitwords used to return infor-
mation about the success of a call. See Table 2・1,on page2・7,for a list of
error condition codes.

list is the name of an array, also called the item list, that contains an ordered set
of data item identifiers, which can be names, numbers, or an at sign (@).

2・46

For most data sets that contain OMNIDEX keys, an@ list or the equivalent
(all item numbers or names in set definition order) must be used. The
exceptions are民 tsin Transparent domains, or unlinked (Detail Record
indexed) detail sets, which need not use an@ item list. Use ODXINFO
modes 7 and 8 to determine the presence of a Transparent ID or Detail
Record indexing for a set.

OMNIDEX API Guide

Sorted Access and General Intrinsics DBIPUT

buffer is the name of an array that contains the data to be added as an entry.

Discussion

OMNIDEX ID assignment
When using DBIPUT mode 1 to add a record to a master data set (table)
that uses an 12, J2, or K2 search item, you can let it assign the integer SI
value for you. To assign the next free ID , when adding the record, supply
a value of -1 in the area of buffer that corresponds to the SI/ID field. The
next available ID is the lowest ID value that once belonged to a deleted
master record. Note that if no such IDs are available, DBIPUT assigns the
next unused ID, as discussed below.

To assign the next unused ID , supply a value of 0 (zero) in the area of buffer
that corresponds to the SI /ID field. The next unused ID is the ID value
that is one higher than the highest used value. For example, if the highest
(integer) ID value for the customers set is 5878972, the highest unused
value is 5878973.

Abnormal termination
If a system failure or program abort occurs while DBIPUT is adding a key
value to an index, the index may not be updated. It is structurally intact,
but it is missing a key value.

In normal mode, DBIPUT first adds the desired entry, then updates the
associated indexes. Thus, if the abnormal termination occurred after the
entry was added but before the index was modified, the index would be
corrupted. This situation occurs very rarely and is easy to correct by
reindexing the affected table or domain using OmniUtil.

OMNIDEX API Guide 2-47

DBIPUT Sorted Access and General Intrinsics

OMNIDEX condition word values

Exceptional conditions
105 FLOCK failure; program may lack MR capability

141 IMSAM tree full

196 ILCB damaged or OLCB damaged

197 Bad base ID, or database not opened using DBIOPEN

Calling errors
-100 Illegal mode specified

-101 An @ item list required in index-only mode

-114 OMNIDEX ID must be greater than 0

-119 Deferred updates restricted to one domain

2-48 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIUNLOCK

DBIUNLOCK
DBIUNLOCK (base, dset, mode, status)

DBIUNLOCK releases all locks set by previous calls to DBLOCK or
DBILOCK against the database identified in base.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is ignored.

mode must be a 16-bit word integer value of 1.

status is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes.

OMNIDEX API Guide 2-49

DBI UPDATE Sorted Access and General Intrinsics

DBIUPDATE
DBIUPDATE (base, dset, mode, status, list, buffet)

DBIUPDATE updates the current entry in the specified data set, placing
the data that is contained in the buffer array into the fields specified by the
list parameter. It also updates any indexes to reflect the updates to
TurboIMAGE fields.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is the name of an array that contains the left-justified name, or the 16-bit
number, of the data set being accessed. The data set name may be up to 16
characters long or, if shorter, terminated by a semicolon (;) or a space (for
example, CUSTOMERS; or ORDER-LINES).

mode is a 16-bit word integer value of 1. It updates the current entry, then
updates the OMNIDEX indexes as necessary.

M o d e options
An integer value that you can add to the mode to elicit the following:

100 IMAGE-only mode. OMNIDEX indexes are not changed.

status is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes.

list is the name of an array that contains an ordered list of data item identi­
fiers. These can be either names or numbers, an asterisk (*) , or an at sign
(@) .

If the structure of the database you are updating was not altered before
installing OMNIDEX, you may need to change programs that open a
database in mode 3 to use an "@ " item list, or the equivalent, in calls to
DBIUPDATE. This is necessary for most sets that have OMNIDEX keys.
Master sets (tables) with a character search item, and unlinked detail sets
are the exceptions.

buffer is the name of an array that contains the data item values to be added.

2-50 OMNIDEX API Guide

Sorted Access and General Intrinsics DBIUPDATE

Discussion
Use DBIUPDATE to update records in data sets that contain OMNIDEX
keys. DBIUPDATE automatically updates any indexes affected when
data is changed in an indexed field (a keyed field, or component in a
composite key). It is recommended for updates on all data sets. Note that
DBIUPDATE does not support critical item updates. That is, if you
change TurboIMAGE search item values, OMNIDEX keys will not be
indexed correctly.

OMNIDEX condition word values

Calling errors
-612 OMNIDEX SI cannot be modified

OMNIDEX API Guide 2-51

Keyword Access Intrinsics

The Keyword access intrinsics are:

□ ODXFIND

□ ODXGET

□ ODXGETWORD

□ ODXINFO

□ ODXPRINT

□ ODXTRANSFER

□ ODXVIEW

These intrinsics are similar to TurboIMAGE intrinsics in terms of the
parameters they use. ODXFIND qualifies records based on any
combination of keywords (words and values) for a given keyword key or
group of keys. ODXGET retrieves the qualified records' TurboIMAGE
search values item or relative record numbers. Then, DBFIND and/or
DBGET are used to retrieve the qualifying records.

Keyword retrieval
The ODXFIND and ODXGET intrinsics provide keyword searches on
keyword keys. When you install a keyword key on a field, an index is
created for that key (and other keys in the same O M N ID E X domain).
When the index is loaded, data values are parsed into keywords, based
on the spaces (or non-alphanumeric characters) that separate them.

Use ODXFIND to search the index for records that contain keyword
arguments. Then, use ODXGET to retrieve the search item values for
those records. Finally, use DBGET in mode 7 or mode 4, or DBFIND
followed by DBGET mode 5 to retrieve the actual records.

2-52 OMNIDEX API Guide

Keyword Access Intrinsics Keyword retrieval

The Keyword access intrinsics support a variety of search operations
using either fully specified, or partial (generic) keyword arguments.
Among the operations supported are:

□ Boolean (AND, OR, and NOT) operations

□ relational (<, <=, =, >=, >) operations

□ range (startvalue.slopvalue) operations

For more information about keyword searches, see ODXFIND, discussed
next, or "OM NIDEX keyword retrieval," on page 3-13 of the
"Programming" chapter.

OMNIDEX API Guide 2-53

ODXFIND Keyword Access Intrinsics

ODXFIND
ODXFIND (base, dset, mode, status, field, keywords)
ODXFIND searches the indexes for keywords and the records that
contain them. It returns the Sis, relative record numbers, or just
keywords, depending on the type of domain being searched, and the
mode value used. It stores these values in memory pending a call to
ODXGET, or ODXGETWORD.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

dset is the name of an array that contains the left-justified name, or the 16-bit
number, of the data set being accessed. The data set name may be up to 16
characters long or, if shorter, terminated by a semicolon (;) or a space (for
example, CUSTOMERS; or ORDER-UNES).

mode is a single, 16-bit word integer. Modes 1, 2, 3, 5, and 30 are used before an
ODXGET; modes 10 and 11 are used before an ODXGETWORD intrinsic
call.

1 returns the number of qualifying OMNIDEX ID values based
on the arguments and operations passed in the keywords
parameter.

2 same as mode 1.

3 enables the parsing of literal and parenthetical operators in
the keywords parameter. When mode 3 is specified, the key­
word list must be terminated by a semicolon (;) . See "Modes
3 and 5 enhanced argument parsing", on page 2-58.

5 like mode 3, but precedence of operations matches that of the
TPI Interface. See "M odes 3 and 5 enhanced argument pars­
ing", on page 2-58.

10 returns the number of qualifying keywords within the single
range or generic value specified, and sets a pointer to the first
qualifying keyword.

2-54 OMNIDEX API Guide

11 sets a pointer to the first qualifying keyword, as in mode 10,
but does not return a qualifying count.

30 converts the record IDs of a search on a linked detail set from
record-specific (relative record numbers) to record complex
(masters' search items). The list of qualifying IDs is
compressed, since multiple occurrences of any SI are reduced
to a single occurrence, and record number information is
discarded.

M o d e options
To select mode options, add their values, individually or combined, to the
mode value. For example, mode 301 specifies a mode 1 ODXFIND with
mode options 100 and 200 enabled.

100 enables [ctrlJ-Y interrupts during ODXFIND.

200 disables block mode during ODXFIND.

(300) enables [ctrl]-Y interrupts, and disables block mode.

400 disables the ID preservation feature on ODXFIND calls that
qualify no IDs (see page 2-68).

(500) disables the ID preservation feature and enables [ctrl]-Y
interrupts.

(600) disables block mode and the back-out feature.

(700) enables [ctrlJ-Y interrupts, disables block mode and the
back-out feature.

Keyword Access Intrinsics ODXFIND

Both mode options 100 and 200 (mode option 300), are recommended
with V/3000 to permit [ctrl]-Y interrupts.

OMNIDEX API Guide 2-55

ODXFIND Keyword Access Intrinsics

status

field

is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1 on, page 2-7, for a list of
error condition codes. Information is returned to status as follows:

Word Contents of status array

1 TurboIMAGE condition word is zero.

2 zero

3-4 in searches on non-Record Complex (record specific) keys in
detail sets, contains the number of qualified detail records
(represented by their relative record numbers). In searches
on keys in master sets, or Record Complex keys in detail sets,
contains the number of record complexes (represented by
their Sis).

5-6 in most searches, contains the number of qualified masters'
search items (a record complex count). In searches on
unlinked detail sets, contains the number of qualified detail
records (represented by their relative record numbers).

7-8 contains the OMNIDEX ID count for the current search
before the IDs are applied to any internal ID list stored in
memory

11 OMNIDEX condition word is zero.

12-13 number of qualifying IDs (modes 1, 2, and 30) or number of
qualifying keywords (mode 10)

14-15 not used

16-21 contains the first 12 characters of the keyword that caused a
calling error (if the call was unsuccessful because of an incor­
rect word in the keywords parameter)

If status word 1 is nonzero, word 11 contains the OMNIDEX condition
word. DBIERROR or DBIEXPLAIN can be called to interpret the error.
See the "OM NIDEX condition word values", on page 2-69, for a list of
error numbers and their corresponding error messages.

is the name of an 8 16-bit word (16 byte) array containing the left-justified
name or 16-bit integer item number of a key within dset.

All records that contain the keywords specified in the keywords parameter
for this field qualify. If this field was grouped with others during
installation, all the records that contain the specified keywords in this
field or any other field in its group qualify.

2-56 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

keywords is the name of an array containing a list of keywords or partial keywords
separated by search operators. See page 2-59 for more information about
the types of operations supported.

Use a semicolon (;) to terminate the keywords list. In mode 1 or 2, you can
use a space to terminate the list. Spaces will not terminate the keywords list
if they are enclosed in quotes. In mode 3 or 5, a space is parsed as an AND
operator, so use a semicolon to terminate the keywords list.

When ODXFIND is called with mode 3 or 5, the keywords list must be
terminated by a semicolon (;).

In mode 3 or 5, the keywords parameter cannot be longer than 1024
bytes. In mode 1 or 2, the keywords parameter cannot be longer than 512
bytes.

Discussion

Modes 1 and 2
Modes 1 and 2 are used in preparation for calls to ODXGET. ODXFIND
mode 1 or 2 qualifies record complexes or individual detail records based
on a list of keywords, then returns a qualifying count of how many it
found. Record complexes are identified by the OMNIDEX search item
(SI) of the specified data set. Individual detail records are identified by
record number, or by SI value if the Record Complex key option is used.
These identifiers are called OMNIDEX IDs.

OMNIDEX API Guide 2-57

ODXFIND Keyword Access Intrinsics

Modes 3 and 5 enhanced argument parsing
Modes 3 and 5 are used to parse the keywords list for advanced retrieval

options before a search. Modes 3 and 5 work like mode 1, but enable a
user to refine a search through enhanced parsing logic.

ODXFIND modes 3 and 5 support parsing operations that let you:

□ use literal operators (like AND, OR, NOT and TO) and spaces (for
AND) in a keyword list.

O override the precedence of Boolean operations through
parenthetical nesting (like (SOFTWARE AND CONSULT®) OR
CONTRACT®).

O search on date fields without having to programmatically
translate keyword search values into the correct storage format

Each of these parsing enhancements are described below.

O rd er o f p re c e d e n c e
The only difference between ODXFIND modes 3 and 5 is the order in
which they perform operations:

Mode 3 TO, >, <, and so on OR NOT AND

P aren th etica l opera tors
Use parenthetical operators to override the precedence of operations. For
example, in mode 3 all OR operations are performed before AND
operations. If you wanted to search for all the software consultants and
systems engineers, your keyword list would look like this:

(SOFTWARE AND CONSULT@) OR (SYSTEM AND ENGINEER®)

Without the parentheses, ODXFIND would search for records with the
keywords CONSULT@ or SYSTEM, and intersect them with records that
contain SOFTWARE and ENGINEER.

Literal opera tors
ODXFIND modes 3 and 5 parse tokens into equivalent, internal
OMNIDEX operators. In the following table, each operation is listed with
the equivalent internal operator, and the acceptable literal values. Literal
values are not case sensitive.

(range and relational)

Mode 5 TO, >, <, and so on
(range and relational)

(Boolean)

NOT AND
(Boolean)

OR

2-58 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

O peration Internal
OMNIDEX
opera to r

M odes 3 and 5
equ iva len t tokens
(literal operators)

Boolean and i AND o r sp aces b etw een
k e y w o rd s

Boolean not i” NOT
Boolean or + OR
Range to TO
Relational equal to N/A* =

Relational greater than or equal to N/A >=

Relational greater than N/A >

Relational less than or equal to N/A <=

Relational less than N/A <

Table 2-3: ODXFIND m ode 3 o r 5 operations and tokens

* See Table 2-5, on page 2-65, for information about simulating relational retrievals in
mode 1 or 2.

ODXFIND mode 1 accepts only the internal operators and does not
accept parentheses. ODXFIND modes 3 and 5 accept either the internal
operators or their equivalent tokens.

D o u b le quo tes
Use double quotes around a keyword value to prevent it from being
parsed. This is useful when searching No Parse keys using an argument
that contains special characters or spaces (for example, "2392-A") or when
an argument could be interpreted as an operator (for example, "OR" in a
search on a STATE key).

D a te fields
The %DATE function supports the entry and conversion of several
different date formats. This feature enables:

□ searches and keyword-only searches on proprietary date fields
(like ASK, and PowerHouse JDATE and PHD ATE date fields)

□ consistent entry formats despite inconsistent storage formats

□ partial-date arguments (like YYMM, YYYYMM, YY, etc.)

OMNIDEX API Guide 2-59

ODXFIND Keyword Access Intrinsics

date

entry

storage

ASKDATE, JDATE, and PHDATE fields should be type cast as type K, if
they are not defined as such, to support the %DATE function.

%DATE can be entered as a keyword in a keyword list using the
following syntax:

%DATE(da/e, entry, storage)

Each of the parameters are discussed below:

represents the date argument value. For example, 930509 or 050993.

represents the order of the date value. The acceptable values for entry are:
YYMMDD (the default format), YYYYMMDD, YY, YYYY, YYMM,
YYYYMM, MMDDYY, MMDDYYYY, MMYY, MMYYYY, DDMMYY and
DDMMYYYY.

If no value is entered, the entry format defaults to YYMMDD. This
parameter is positional and must be delimited by commas.

represents the storage format of the date field on which you are
searching. This could be any of the following proprietary formats:
PHDATE (PowerHouse internal date format), JDATE (PowerHouse
Julian and HP calendar date format) and ASKDATE (ASK Computer
Systems internal date format). In addition, the following are supported:
YYMMDD, YYYYMMDD, MMDDYY, MMDDYYYY, DDMMYY,
DDMMYYYY.

When a partial date entry format (i.e., YY, YYYY, YYMM, YYYYMM,
MMYY or MMYYYY) is used, the storage format must be one of the
following: ASKDATE, PHDATE, JDATE, YYMMDD, YYYYMMDD. Also
note that partial date entry formats are not supported for range opera­
tions.

Conversion of partial dates to any other format besides ASKDATE,
PHDATE, JDATE, YYMMDD, YYYYMMDD (like MMDDYY) is not
currently supported. To support partial searches on an MMDDYY field,
for example, you could create a composite keyword key that reorders the
field into YYMMDD format. See the O M N ID E X ImagePlus SDK
Administrator's Guide for more information.

2-60 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

Below are some examples of the %DATE function's uses.

To convert a YYMMDD date argument into an ASK proprietary date
format, you would enter:

%DATE(900101, YYMMDD,ASKDATE)

You could perform the same search perform without specifying an entry
format because it is the default (YYMMDD). Note, however, that double
commas are used to pass a null value for the entry format:

%DATE(900101 „ASKDATE)

To convert a century date entry format into the typical ASCII YYMMDD
storage format, you would enter:

%DATE(01011990,MMDDYYYY, YYMMDD)

As discussed above, the %DATE function also supports partial entry
formats. When a partial entry format is used, ODXFIND converts the
partial date value into an equivalent range operation. Here, %DATE is
used to convert a partial century date (MMYYYY) into a keyword range
suitable for a search on a PowerHouse internal date field.

%DATE(011990,MMYYYY,PHDATE)

Each of the %DATE expressions in the examples above is treated as a
single keyword, and can be combined in any of the operations supported
for keyword keys. In the example below, two %DATE expressions are
combined in a range operation:

%DATE(09301990,MMDDYYYY, YYMMDD):%DATE(01011991,MMDDYYYY,YYM­
MDD)

Note that partial date entry-formats (like YYMM) are not supported for
range operations.

Pattern m a tc h in g
ODXFIND modes 3 and 5 support the following wildcard characters
anywhere in a character keyword argument:

? represents any single printable character

represents any single digit (0-9) of an ASCII number

@ represents any number of ASCII characters, including spaces

In relational expressions, wildcard tokens can only be used at the end of
an argument string.

OMNIDEX API Guide 2-61

ODXFIND Keyword Access Intrinsics

Modes 10 and 11
Modes 10 and 11 are used to qualify a list of indexed keyword values.
This is referred to as a keyword-only search. Keyword-only searches are
discussed under the "Using DataView" heading in the "Utilities" chapter
of the O M N ID E X ImagePlus SDK Administrator's Guide.

In mode 10 or 11, the list must contain only one partial keyword
(followed by an @), or a keyword range immediately followed by a
semicolon (;) or space. This partial keyword or keyword range defines a
list of keywords, each of which can be retrieved using ODXGETWORD.

ODXFIND mode 10 or 11 finds all the keywords that match a partial
keyword value or fall within the range of two keyword values. These
modes are used before retrieval of those keywords using
ODXGETWORD. In mode 10, the number of qualifying keywords
contained within the generic/range specification is also returned.

For example, DataView calls a mode 10 ODXFIND when a user enters an
exclamation point (!) followed by a partial keyword or a keyword range
at a prompt for a keyword key.

Mode 30
ODXFIND mode 30 lets you compress a qualified list of record numbers

into a list of OMNIDEX SI values after a retrieval on a keyword key in a
linked detail, which effectively converts individual records into record
complexes. This is useful when continuing a search from a linked detail
into other sets within the same domain.

The keywords parameter
The keywords parameter supports any of the operations discussed below.
You can combine different operations in the same keyword list.

B oolean opera tions
ODXFIND supports the combining of arguments in Boolean operations.
The operators and their operations are listed in Table 2-4, on the next
page.

2-62 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

Internal
opera to r

ODXFIND
m ode 3 or 5
operators

Boolean opera tion

(Comma)
AND
or a space

an intersection of records that contain the
keywords it separates. A key must contain
all keywords combined in an AND
operation to qualify records.

+
(P lu s sig n)

OR a union of records that contain the
keywords it separates. A key can contain
either keyword combined in an OR
operation to qualify records.

(Minus sign)
NOT an exclusion of records that contain the

keyword it precedes. Keys must not
contain the keyword preceded by the NOT
operator to qualify records.

If NOT begins the keyword list of the first
ODXFIND in succession, it qualifies only
those records that do not satisfy the
keyword arguments that follow it.

* * or a leading
AND or OR
operator

loads the records qualified in the most
recent keyword search into memory. An
asterisk is typically used to progressively
qualify a list of records.

A leading AND or OR operator can precede
additional search arguments, to reload
and progressively qualify records (internal
ID list).

N/A 0 used to nest Boolean expressions, and
override the precedence of operations,
discussed next.

Table 2-4: ODXFIND Boolean operations and tokens

OMNIDEX API Guide 2-63

ODXFIND Keyword Access Intrinsics

When you combine several keywords in several different operations (as
in DISK OR DISC AND DRIVE NOT PC), the order of operations for all
ODXFIND modes except 5 is (range or relational operation, then) OR,
then NOT, then AND. For ODXFIND mode 5, the precedence is (range or
relational operation, then) NOT, then AND, then OR.

To change the order of operations for a search, nest Boolean and range
expressions in parentheses. For example, the following keyword list for
an ODXFIND mode 3 call qualifies all records with either SOFTWARE
AND DEVELOPMENT, OR APPLICATION AND PROGRAM@ in the
name, but NOT records with CONSULT®.

(SOFTWARE AND DEVELOPMENT) OR (APPLICATION AND PROGRAM®) NOT CON­
SULT®

The ODXFIND order of operations (without parentheses) would qualify
records with DEVELOPMENT OR APPLICATION, NOT CONSULTING,
AND SOFTWARE AND PROGRAM®.

Ranges
A keyword range may be specified by entering a starting value, the range
operator and an ending value. The default range operator is a colon (:) .
Either the starting value or the stopping value is optional.

The syntax is: [startvalue].[stopvalue]

startvalue.stopvalue means all keywords from startvalue through
stopvalue.

startvalue. means all keywords greater than or equal to
startvalue.

■.stopvalue means all keywords less than or equal to
stopvalue.

When mode 3 or 5 is used, the tokens TO and THRU can be used in place of
the colon.

If the startvalue and stopvalue values are numbers and the field is a character
field (TurboIMAGE types U, X and Z), they must contain the same
number of digits. A numeric ordering is used to determine the list.

If either value is non-numeric (TurboIMAGE types U or X), the values
need not contain the same number of characters, and an alphanumeric
ordering is used. For example, ASCII values like 1 2 3 ,12BA, 12/22,123.5
and 12.3 fall within the alphanumeric range 110:130A, but only 123 and
123.5 fall within the numeric range 110:130.

2-64 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

ASCII ranges also can be generic (partially specified), by appending an at
sign (@) to a partial startvalue or stopvalue.

ASCII ranges must have the same number of characters in the start and
stop values. A range of 130:3000 would return the error message Start
and stop values must have the same number of digits. The
range could, however, be specified as 130:999+1000:3000.

R elational operations
You can perform relational operations either by calling ODXFIND in
mode 3 or 5, or by combining open-ended range operations with Boolean
operations.

In mode 3 or 5 calls, any of the following relational operations can be
performed using one of the tokens listed. For all other modes, a range
operation, combined with a Boolean operation, can be used to simulate a
relational retrieval. Relational operations are summarized in Table 2-5:

Relational operation M ode 3 and 5 M ode 1 or 2
Tokens R an ge equ ivalent

equal to = keyword

greater than > keyword:,-keyword

greater than or equal to >= keyword:

less than < ■.keyword,-keyword

less than or equal to <= -.keyword

Table 2-5: O DXFIND relational operations and tokens

G e n e ric argum en ts
Keyword arguments also may be generic (partially specified), by
appending an at sign (@) to a partial keyword. @ is a wildcard, so a
generic keyword includes all the words or values that begin with the
same characters. For example, MANAG@ includes MANAGE,
MANAGER, MANAGING, etc.

Generic values are not supported for searches on binary fields.

OMNIDEX API Guide 2-65

ODXFIND Keyword Access Intrinsics

S o undex p h o n e tic searches
To specify a phonetic, or Soundex, search on a designated Soundex key,
append the Soundex operator (!) to the keyword(s) in question, for
example ALAN! AND ANDERSON!. When used on any field other than
a Soundex field, error m essage-224, Not a Soundex field, is returned.

If a Soundex field is grouped with other fields, be sure to specify the
Soundex field name in the field parameter when calling ODXFIND for a
Soundex retrieval.

External ID files
External ID files can be created by ODXTRANSFER mode 201. These files
are used to select records using IDs qualified from one or more previous
calls to ODXFIND in the same OMNIDEX domain. External ID files are
often used to save an OMNIDEX search for future reference.

The IDs in the file are then passed through the ODXFIND keywords
parameter by placing the file name, preceded by $, in the keyword list
(like $ filename). $filename can be used like and combined with other key­
word arguments. ODXTRANSFER mode 201 is discussed on page 2-90.

When loading an ID file where two files with the same name exist, one
permanent and one temporary, ODXFIND will load the permanent file
and ignore the temporary.

Multiflnd
Multifind operations are used to link ODXFIND searches across
OMNIDEX domains, even if the target domain is in another database.

In Multifind, values from records that qualified in a previous ODXFIND
can be used to qualify records in a second, target, domain. The keyword
values used in a Multifind search can be supplied either from memory, or
from an external file.

For a Multifind search to use values supplied from memory, they must
be SI values returned from a previous ODXFIND. When a Multifind is
using SI values returned from a previous ODXFIND, an ampersand (&)
in the keywords parameter is all that is required to supply the SI values
from memory.

2-66 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

ヤ
If you qualified r舵 ordsusing the Record Specific key (a keyword key
installed on a detail without the Record Complex option), be sure to
compress the ID list before perfonning a Multifind from memory against a
Record Complex key or a key in a master. To compress the ID list call
ODXFIND mode 30.

Multifind can use search values that have been written to an external
file. The file, created by ODXTRANSFER (see page 2・90),is passed
through the keywords parameter preceded by an ampersand (&). For
example, the keywords parameter would contain ＆偽name,where filename
rep re民ntsthe name of the external file containing the search values. For
more information about creating files for Multifind searches, see the
ODXTRANSFER section of this chapter.

Multifind requires that the target field in the target data set is a keyword
key. The name of the target field for a Multifind search is p節目dvia the
field parameter, as in any ODXFIND.

The Multifind operator (&) must be specified as the first character in the
keywords parameter. Any keywords or operations that follow a Multifind
operation (& or &filename) are ignored.

When no『・ecordsqualify

If a keyword in the keyword list does not exist for the specified
OMNIDEX field or group, no entries qualify unless the non-existent
keyword is combined with other keywords that do exist via an OR
operation. Otherwise, error 217, No entries contain <keyword> is
returned.

Even if all keywords in the list exist, no entries may qualify, based on the
Boolean conditions specified in the list. For example, if two keyword
arguments in an AND operation exist, but not in the姐 merecord or
record complex, no entries qualify. Here, status word 1 is日tto zero to
indicate a successful call, while status words 12・13returns a qualifying
count of zero. This is consistent with a TurbolMAGE DBFIND, which
succeeds if the specified search item exists, even if the chain count is zero.

This affects error checking in programs. Following an ODXFIND, your
program must check for a nonzero value in s飽似sword one and perform
error processing. It also must check for a qualifying count greater than
zero. If the quali今ingcount equals zero, it should display a message
saying No entries qualify and re-prompt for keywords. See the
COBODXS.DEMO.DISC program for an example of error processing.

OMNIDEX AP/ Guide 2・67

E

ODXFIND Keyword Access Intrinsics

In batch applications, however, there is often no way to re-try a search if
no records qualify. In fact, a reporting application could return erroneous
results if a keyword search qualified no records, but the internal ID list
was preserved. In most report applications, it is better to purge the
internal ID list if a search qualifies no records. To purge the internal ID
list, and avoid erroneous results in batch applications, use mode option
400 when calling ODXFIND to further qualify records. To use this mode
option, add 400 hundred to the base mode value. For example, to perform
a mode 5 ODXFIND without preserving the internal ID list, call
ODXFIND in mode 405.

B a c k -o u t fea tu re
After every call to ODXFIND in mode 1, 2, 3 or 5, except those that
qualify no records, ODXFIND stores the list of currently qualified records
in memory. This is called the internal ID list.

OMNIDEX maintains two internal ID lists:

O the ID list that resulted from the ODXFIND keyword search that
you just performed

O the ID list, if one exists, that resulted from the ODXFIND
keyword search that immediately preceded the search you just
performed

This lets you back out of, or undo, the most recent ODXFIND keyword
search. For example, suppose you qualified 100 CUSTOMER records, and
you narrowed the list to 6 records by searching the STATE keyword key
using the keyword CA (for California). If you then changed your mind,
and decided you wanted to include records for the states of California,
Washington and Arizona, you could back out to the previous internal ID
list that reflected 100 CUSTOMER records. You could then retry your
search of the STATE key using the argument CA AND AZ AND WA.

To back out of the most recent search, call ODXFIND in mode 1 ,2 , 3 or 5
and pass a less-than operator followed by a semicolon (<;) in the keywords
parameter. Note that you can only back out of the last search you did. If
you attempt several undo operations in succession, ODXFIND returns an
error.

2-68 OMNIDEX API Guide

Keyword Access Intrinsics ODXFIND

R elo ad in g th e internal ID list
Records from prior retrievals can be qualified by using either of two

operations:

□ For mode 1, start the keyword list with an asterisk (*) .

□ For mode 3 or 5, start the keyword list with a leading AND or OR
operator.

After performing an ODXFIND, you can use an asterisk, or a leading AND
or OR operator (mode 3 or 5) to reload the last internal ID list. You can
then further qualify the list, add to it or subtract from it by specifying
additional keywords in Boolean operations.

A leading AND operator (or *, for mode 1) and any keywords that follow it
intersects the IDs qualified in the current search to the ID list. A leading
OR operator (or *+ for mode 1) and any keywords that follow it adds the
IDs qualified in the current search to the ID list. A leading AND NOT
operator (or *- for mode 1) and any keywords that follow it removes the
IDs qualified by the current search from the ID list.

To reload the ID list without further qualifying it, place an asterisk (*)
alone in the keyword list. A single asterisk reloads the internal ID list
regardless of the mode value used in the call to ODXFIND.

OMNIDEX condition word values

Exceptional conditions
201 Operation stopped by user

205 Limit of undo stack reached

213 Too many keywords in list

217 No entries contain keyword

230 Can't open ID file

313 Index file empty

OMNIDEX API Guide 2-69

ODXFIND Keyword Access Intrinsics

Calling errors
-201 Keyword an excluded word

-202 Illegal ODXFIND mode

-203 Data set not an OMNIDEX set

-204 Illegal use of NOT operator

-205 Bad keyword list

-206 Illegal use of range operator

-207 Keywords must start with an alphanumeric character or
decimal point

-208 Start and stop values must have same number of digits

-209 Bad item name specified

-210 Item not an OMNIDEX keyword field

-211 Only one generic keyword or one keyword range permitted

-212 List must contain a generic keyword or keyword range

-213 Samelist not allowed in index-only modes (10 and 11)

-214 Not an OMNIDEX database

-216 Generic keywords not allowed on binary fields

-217 Keyword contains a non-numeric character

-218 Missing keyword in list

-219 Unmatched quote

-220 Missing terminator (semicolon or blank)

-221 Start and stop values must have same sign

-222 Split retrievals, RS/ RC or RC/ RS, not allowed with Samelist OR

-223 Dset must be same as in previous RS retrieval

-224 Not a Soundex field

-226 Range start and stop values must be keywords

-227 Number exceeds maximum allowed for this field

-228 Negative values not allowed for unsigned fields

-231 Not an ODXTRANSFER ID file

-232 Multifind cannot reference an ODXTRANSFER ID file

-233 File record size exceeds max keyword size

-234 File name cannot exceed 36 characters

2-70 OMNIDEX API Guide

Keyword Access Intrinsics ODXGET

ODXGET
ODXGET (base, mode, status, si-list, si-countj

ODXGET moves one or more OMNIDEX Sis (search items) or record
numbers into the si-list parameter in preparation for a DBGET.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

mode is a single, 16-bit word integer (0-4) that indicates the type of retrieval and
the pointer movement.

0 rewind. Resets the pointer. The pointer is reset to the begin­
ning of the list if the next operation is a forward read or spac­
ing (mode 1 or 3). The pointer is set at the end of the list if the
next operation is a backward read or spacing (modes 2 or 4).
If the previous ODXFIND was performed on a record specific
field, status word 16 contains the value -1. Otherwise it con­
tains zero.

1 forward read. Reads the next si-countS\s, or relative record
numbers, into the si-list array, and updates the internal
pointer.

2 backward read. Reads the previous si-countSis or relative
record numbers into the si-list array and updates the internal
pointer.

3 space forward. Moves the pointer forward by the integer
count specified in si-count. Does not return any Sis or relative
record numbers.

4 space backward. Moves the pointer backward by the count
specified in si-count. Does not return any Sis or relative record
numbers.

OMNIDEX API Guide 2-71

ODXGET Keyword Access Intrinsics

status

si-list

si-count

M o d e options
In addition, mode options are used to return the IDs of individual detail
records after record specific retrievals. To use a mode option, add its
value to the appropriate mode value. For example, to perform a forward
read of record numbers after an ODXFIND on a key in a linked detail set,
add mode option 10 to mode option 1 to get mode 11.

10 returns the relative record numbers of qualified records in
linked detail sets only.

20 returns the search item and the relative record numbers of
qualified records in linked detail sets only.

is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes. If a call is successful the contents of status array are:

Word Contents of status array

1 TurboIMAGE condition word is zero.

2-10 not used.

11 OMNIDEX condition word is zero.

12-13 number of Sis or record numbers returned in si-list for modes
1-4. Number of qualifying IDs for mode 0

14 search item length in bytes

15 current OMNIDEX data set number

16 contains a nonzero value if the previous ODXFIND was per­
formed on a record specific (non-Record Complex) key in a
detail set; otherwise contains zero.

17-21 not used

If status word 1 is +888, status word 11 contains the OMNIDEX condition
word. Call DBIERROR or DBIEXPLAIN to interpret the error. See the
"OM NIDEX Condition Word Values" section at the end of this intrinsic
description for a list of error numbers and conditions.

is the name of the array into which the requested Sis or record numbers
are moved. The array must be defined as binary or ASCII, depending on
the data type of Sis to be returned, and must be large enough to hold the
number of Sis specified by si-count.

is a single 16-bit word integer (between 1 and 4096) that tells how many
Sis or record numbers to move into si-list. If si-count exceeds the number of
IDs remaining in the ODXFIND internal ID list, all the remaining Sis are
returned. If no IDs are left to be moved, ODXGET returns an error, status
words 12-13 contain the number of Sis moved.

2-72 OMNIDEX API Guide

Keyword Access Intrinsics ODXGET

In mode 3 or 4, si-count specifies the number of positions the pointer is to
be moved forward or backward through the internal ID list. This number
can be between 1 and 32,767. If the requested si-count would move the
pointer to a position before the beginning, or past the end, of the file, an
error is returned and the pointer's position is left unchanged.

Discussion

The internal ID list
After a successful call to ODXFIND, a list of one or more OMNIDEX IDs
is accumulated. This internal ID list represents qualified records or record
complexes. The OMNIDEX IDs in the internal ID list can take one of three
forms, as discussed below.

S earch item s
After an ODXFIND (keyword search) on a key in a master set, or on a key
installed with the Record Complex (RC) option, or after an ODXFIND
mode 30, the internal ID list consists of TurboIMAGE search items (Sis).
In this case, do not use any mode options when calling ODXGET to
retrieve the Sis. Allocate the si-list parameter to receive one or more Sis, as
specified by the value in si-count.

R elative reco rd num bers
If the ODXFIND (keyword search) was performed on a key in an
unlinked (Detail Record indexed) detail set, the internal ID list consists of
TurboIMAGE relative record numbers. In this case, do not use any mode
options when calling ODXGET to retrieve the relative record numbers.
Allocate the si-list parameter to receive one or more 32-bit integer record
numbers, as specified by the value in si-count.

Search ite m /re c o rd n u m b e r co m binations
If the ODXFIND (keyword search) was performed on a record specific
(non-Record Complex) key in a linked detail set, the internal ID list
consists of search item/relative record number combinations that
represent the individual detail records of detail chains. You can use
ODXGET to retrieve either Sis, relative record numbers or a combination
of the two, depending on the mode option you use. To use either mode
option, add it to the base mode value, as discussed next.

OMNIDEX API Guide 2-73

ODXGET Keyword Access Intrinsics

To return relative record numbers, use mode option 10. Allocate the si-list
parameter to receive one or more 32-bit integer record numbers, as
specified by the value in si-count. For example, ODXGET mode 11 returns
the next n relative record numbers from the internal ID list, where n is the
value of si-count. ODXGET mode 13 moves the record pointer n positions
forward in the internal ID list, where n is the value of si-count.

To return search item/relative record number combinations, use mode
option 20. Allocate the si-list parameter1 to receive one or more search
item/relative record number combinations, as specified by the value in
si-count. For example, ODXGET mode 21 returns the search item plus the
relative record number for the next n detail records qualified in the
search, where n is the value of si-count. ODXGET mode 24 moves the
record pointer n positions backward in the internal ID list, where n is the
value of si-count.

ODXGET pointer movement and record ID retrieval
Each time ODXGET is called, OMNIDEX moves an internal pointer
through the list of qualifying IDs. This pointer can move forward or
backward, or be reset to the beginning of the ID list. ODXGET can either
move the pointer alone, or move the pointer and return Sis, relative
record numbers, or both, to the calling application. The SI or record
number values are then used to retrieve records using standard
TurboIMAGE calls to DBGET for master records, or DBFIND plus
DBGET for detail records.

Immediately after an ODXFIND, or after an ODXGET mode 0, the pointer
is at the beginning and end of the ID list. This means you can do a
forward read from the beginning of the list, or a backward read from the
end of the list. If you try to read past the end of a list, an error is returned.

The following examples of ODXGET retrievals assume that you have just
qualified 10 IDs (Sis) using ODXFIND against keyword keys on a master.
They illustrate how ODXGET would retrieve Sis and/or place the pointer
in the marked positions. In all of the examples below, point A represents
the pointer position immediately after an ODXFIND, or after a mode 0
ODXGET. This is the beginning and end of the ID list. Returned Sis (like
SI 1 in the example on the next page) are represented by a lighter box
around them.

1. The size of si-list depends on the size of the SI. For example, if the detail's OMNIDEX's
SI is an X14 field, allocate 18 bytes for each combination retrieved.

2-74 OMNIDEX API Guide

Keyword Access Intrinsics ODXGET

Immediately after ODXFIND, starting at point A, an ODXGET mode 1
with an si-count of 1 retrieves SI number 1 and sets the pointer at the next
ID (point B):

1 l 2 l 3 l 4 I 5 I 6 I 7 I 8 I 9 » 10 I
A A

A B

Starting at point A, an ODXGET mode 1 with an si-count of 5 retrieves Sis
1-5 and sets the pointer at point C (the sixth ID):

1 2 3 4 5 m m m m m
A

A
A

c
Starting at point A, an ODXGET mode 2 with an si-count of 1 retrieves SI
number 10 and sets the pointer at point D:

1 1 1 2 1I 3 1 4 1 5 1 6 1 7 1\ 8 1 9 10

A

A

A

D

Starting at any point, an ODXGET mode 0 resets the pointer to point A,
the beginning and end of the ID list:

L L 2 3 5 ! 6 1 7 1 8 1 9 1 10 1

A

A

Starting at point A, an ODXGET mode 3 with an si-count of 10 would
return an exceptional condition error, End of ID List, and would
leave the pointer at point A:

> 1 i 2 i 3 i 4 i 5 i 6 i 7 » 8 i 9 i 10 i
A

A end

OMNIDEX API Guide 2-75

ODXGET Keyword Access Intrinsics

Starting at point A, an ODXGET mode 3 with an si-count of 9 would not
retrieve any Sis and would move the pointer to point E l. A subsequent
ODXGET mode 1 with an si-count of 1 would retrieve SI number 10 and
would set the pointer at point E2 (the end of the list):

I 1 I 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

A A A

A E l E2

Immediately after an ODXFIND, an ODXGET mode 4 with an si-count of 6
returns no Sis and moves the pointer to point F I . Here, it moves
backward by six positions in the list. A subsequent ODXGET mode 2
(backward read) with an si-count of 1 retrieves SI number 4, and sets the
pointer at point F2:

m P H P H
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |

A A A

A F2 FI

If ODXGET mode 1 were used instead, SI number 5 would be retrieved
and the pointer would be set at F3:

1 ' 11 2 11 3 1
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |

A A A

A FI F3

For OMNIDEX retrievals on unlinked detail sets, ODXGET returns the
record number instead of the SI value. The record number is then used
with DBGET mode 4 to perform the retrievals.

For OMNIDEX retrievals on record-specific (non-Record Complex) keys
in a detail set, ODXGET mode option 10 or 20 may be added to modes 1
through 4. Mode option 10 returns the record number, instead of the SI
value, for the qualifying detail record, which enables you to use a
TurboIMAGE DBGET mode 4 to retrieve the record. Mode option 20
returns both the SI value and the record number.

2-76 OMNIDEX API Guide

Keyword Access Intrinsics ODXGET

OMNIDEX condition word values

Exceptional conditions
310 Beginning of ID list

311 End of ID list

313 Index file empty

314 End of range

396 OLCB damaged

397 Bad base ID, or database not opened using DBIOPEN

Calling errors
-300 Illegal mode

-301 Target array too small

-303 No preceding ODXFIND

-304 Illegal count

-305 Preceding ODXFIND not record specific

-314 Not an OMNIDEX database

OMNIDEX API Guide 2-77

ODXGETWORD Keyword Access Intrinsics

ODXGETWORD
ODXGETWORD (base, mode, status, target)

ODXGETWORD reads the next keyword in the list qualified in the last
mode 10 or 11 ODXFIND. This performs what is called a keyword-only
retrieval.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See page 2-44 for more information about the
base ID.)

mode is a single, 16-bit word integer (1 or 2) as follows:

1 Returns the next keyword in ascending sequential order.

2 Returns the next keyword in ascending sequence and the
number of entries that contain the keyword.

status is the name of an array of 2 1 16-bit words used to return information
about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes. If the call executed successfully, the contents of the array
are:

Word Contents of status array

1 Condition word is zero.

2-10 Not used.

11 OMNIDEX condition word is zero.

12-13 For mode 2, these words contain the number of entries that
contain the specified keyword.

14-15 Double-word zero.

16-21 Not used.

target is the name of a 32 byte array into which the next keyword in the range is
to be moved.

2-78 OMNIDEX API Guide

Keyword Access Intrinsics ODXGETWORD

Discussion
Note that ODXGETWORD automatically converts binary field data into
ASCII characters.

ODXFIND is first called using mode 10 or 11. The keywords parameter
must contain one partially specified keyword or a keyword range.

ODXFIND mode 10 returns the number of qualifying keywords in the
specified range and sets an internal pointer to the first word in the list.
Mode 11 does not return a count, but sets the pointer to the first word in
the list.

ODXGETWORD is then called to move one keyword into the target
array. ODXGETWORD can be called repeatedly to retrieve all the
keywords in the list. After the last qualifying keyword is reached, an End
of Range condition is returned.

OMNIDEX condition word values

Exceptional conditions
314 End of Range

Calling errors
-300 Illegal mode specified

-302 No preceding mode 10/11 ODXFIND

OMNIDEX API Guide 2-79

ODXINFO Keyword Access Intrinsics

ODXINFO
ODXINFO (base, qualifier, mode, status, info)

ODXINFO returns information about how keyword keys are installed on
the database: what fields are indexed, how keys are grouped, and so on.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See DBIOPEN on page 2-44 for more information
about the base ID.)

qualifier is the name of an eight 16-bit word (16 byte) array that contains a data set
name or a single, 16-bit word integer data set number for which
information is requested. In mode 6, the qualifier array also contains an
integer group number in word 9 (byte 17).

mode is a single, 16-bit word integer value that specifies what type of infor­
mation is desired. The modes, the type of qualifier necessary for each mode,
and the information returned to the info parameter are shown in the tables
that follow.

status is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes. Word 2 contains the number of words of infor­
mation returned to the INFO area.

If the call executed successfully, status word 1 is zero. If status word 1 is
+888, status word 11 contains the OMNIDEX condition word. Call
DBIERROR or DBIEXPLAIN to interpret the error. See the OMNIDEX
Condition Word Values section below for a list of error numbers and
their corresponding error conditions.

info is an array in which information about OMNIDEX is returned. The
format of this information depends on the mode. Refer back to the mode
descriptions to see the contents of the info parameter.

2-80 OMNIDEX API Guide

Keyword Access Intrinsics ODXINFO

mode Purpose qualifier info array contents Com m ents
va lue contents e lem ent

1 Identifies OMNIDEX 1 data set number
keyword data set 2 set number of set's
keys for a set name

/i T n n r n
OMNIDEX master

(U rrh K
CASE) or
number

3 item number of set's Elements 3 and 4 contain zero if
OMNIDEX SI the set is an unlinked detail

5

6

n

offset (in words) of
set's OMNIDEX SI

number of keyword
keys in the set

item number of a
keyword key

This array must hold one 16-bit
word for as many keyword keys
as are counted in element 5.

2 Identifies OMNIDEX 1 data set number
keyword key data set 2 set number of set's
groups for a name

/t t n n r n
OMNIDEX master

set (UPPER
CASE) or
number

3 item number of set's Elements 3 and 4 contain zero if
OMNIDEX SI the set is an unlinked detail

4

5

6

7

n

offset (in words) of
set's OMNIDEX SI

number of keyword
keys in the set

item number of each
keyword key in the
set

group number of
each keyword key in
the set
(0 means key is
ungrouped)

Elements 6 and 7 each must hold
one 16-bit word for as many
keyword keys as are counted in
element 5. The item number and
group number for each keyword
key in the set are returned in these
two 16-bit words.

3 Identifies all OMNIDEX 1 master's set number
sets linked to master set 2 number of sets in This includes the master set
the specified name master's domain specified in qualifier.
master (UPPER

CASE)
or number

3 set number of each This element contains as many
set in domain 16-bit words as there are sets

n
counted in element 2.

Table 2-6: ODXINFO mode values

OMNIDEX API Guide 2-81

ODXINFO Keyword Access Intrinsics

mode Purpose
va lue

qualifier info array contents
contents e lem ent

Com m ents

4 Identifies all OMNIDEX 1 master's set number
key groups in master set 2 number of groups in
the domain of name master's domain
the specified
master

(UPPER
CASE)
or number

3 group number of a
keyword key

Elements 3 and 4 each must
contain as many 16-bit words as

n
4

m-1

number of data set
where keyword key
occurs

there are groups counted in
element 2, up to a maximum
of 63.

5 Identifies all
OMNIDEX

(ignored) 1 total number of
master sets

master sets 2 data set number of This element contains as many
(SI domains) each master set 16-bit words as there are masters
for a database

n
counted in element 1.

6 Identifies the
keyword

OMNIDEX
data set

1 data set's number Must be an OMNIDEX master or
unlinked detail.

keys that name 2 number of keyword
belong to the (UPPER keys in the group
specified CASE)

or number,
plus a

3 item number of a Elements 3 and 4 each mustgroup
keyword key contain as many 16-bit words as

there are keyword keys countedgroup
number in in element 2

word 9 4 number of set where
(byte 17)

n

key resides

Table 2-6: ODXINFO mode values

2-82 OMNIDEX API Guide

Keyword Access Intrinsics ODXINFO

mode

va lue

7

Purpose

Identifies all
key options
installed on
the specified
data set

qualifier info array contents
contents e lem ent

OMNIDEX
data set
name
(UPPER
CASE)
or number

1
2

3

4

5

6

n

7

m-1

data set's number

data set number of
set's OMNIDEX
master

item number of set's
OMNIDEX SI

offset (in words) of
set's OMNIDEX SI

number of keyword
keys in the set

item number of
keyword key

Com m ents

Elements 6 and 7 each must
contain as many 16-bit words as
there are keyword keys counted
in element 5.

The bit mapping for element 7 is
summarized below:

Bit:Leneth Option

0 1
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 4
12:4

No Exclude
No Parse
Record Specific
No Translate
Soundex
No Deferred
Batch Indexing
Blob Indexing
(not used)
Type Cast as:
0 ASCII (U ,X ,Z)

Integer (I or])
Logical (K)
Packed (P)
Real (R)
IEEE floating
point (E)
Not used

7 Zoned (Z)

Indicates the
type of
OMNIDEX
ID used for a
master or
unlinked
detail set

OMNIDEX
master or
unlinked
detail set
name
(UPPER
CASE)
or number

a numeric code for
the type of ID
installed

0 means SI / ID
-1 means transparent ID
-2 means DR indexed

(unlinked) detail set

Table 2-6: ODXINFO mode values

OMNIDEX API Guide 2-83

ODXINFO Keyword Access Intrinsics

mode

va lue
Purpose qualifier

contents
info array contents
e lem ent

Com m ents

9 Indicates the
next "free" ID
value for the
specified
master

OMNIDEX
master set
name
(UPPER
CASE)
or number

1 next "free" ID value
for domain. May be
an ID previously
used by a deleted
record

Contains one 32-bit word

10 Indicates the
next
"u nu sed "ID
value for the
specified
master

OMNIDEX
master set
name
(UPPER
CASE)
or number

l next "unused" ID
value for the domain

Contains one 32-bit word

20 Indicates
number of
OMNIDEX
indexes in
base

none 1 index count (number
of keyword fields
and OMNIDEX
composite keys)

312 Indicates
whether the
specified
keyword key
is a
composite
key, and the
location of
composite
key
component

OMNIDEX
data set
name
(UPPER
CASE)
or number,
plus a
keyword
key's name
or item
number in
word 9
(byte 17)

1

2

3

4

5

6

key's item number

key's group number

key's length (bytes)

number of
components in
composite key or
compound item

record byte offset of
component

length of component

A number of 1025 or greater
identifies the key as a composite

For compound item, this value
represents the subitem length. For
example, for a 5X40 key, this
value would be "40."

If this number is negative it
represents the number of
elements of a compound array.
For example, for a 5X40 key, this
value would be "-5".

Elements 5 and 6 each must
contain as many 16-bit words as
there are key components
counted in element 4 .

Table 2-6: ODXINFO mode values
* If the number returned to element 4 is negative, indicating a compound item, elements 5

and 6 occur only once.

2-84 OMNIDEX API Guide

Keyword Access Intrinsics ODXINFO

OMNIDEX condition word values

Calling errors
-500 Illegal mode

-501 Not an OMNIDEX data set

-502 Data set not an OMNIDEX master

-503 Undefined OMNIDEX group

-505 Not an OMNIDEX keyword field

-514 Not an OMNIDEX database

OMNIDEX API Guide 2-85

ODXPRINT Keyword Access Intrinsics

ODXPRINT
ODXPRINT (filename, keywords, control, status, plabels)

ODXPRINT prints the contents of an ASCII, EDIT /3000, QEDIT or TDP
text file to the line printer. The formal file designator, ODXPRINT, is
opened with shared lock access.

Parameters
is an array containing the name of the file to be printed. The file name can
contain a lockword, group name and account name. It must be termi­
nated with a space or a semicolon (;) .

is ignored by ODXPRINT.

is a ten 16-bit word (20 byte) array. Words 3 and 8 through 10 are ignored.
The remaining words contain the following:

W ord Contents of control param eter

1 contains 1 to suppress page headings, otherwise contains
zero

2 the number of lines per page

3 not used

4-5 line number in the file where the printing should start. Files
are assumed to have line numbers starting at 1, in increments
of 1, whether they are numbered or not. For example, the
20th record in the file is treated as line 20, even if a different
editor line number is assigned. A line number of zero means
the first line of the file, which is the standard

6-7 line number in the file where printing should stop. This is
typically set to zero. (Zero means the last line in the file.)

8-10 not used

status is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. If the call executed successfully, status
word 1 is zero. If the call failed, status word 1 is +888 and status word 11
contains one of the error codes listed on the next page.

filename

keywords

control

2-86 OMNIDEX API Guide

Keyword Access Intrinsics ODXPRINT

plabels is the name of a ten 16-bit word (20-byte) array that must be initialized to
all zeros before the first call to ODXPRINT. After this call, the contents of
the array must be preserved (not changed) for subsequent calls to
ODXPRINT to function properly.

OMNIDEX condition word values

Calling errors
802 Unable to open the specified file

803 Unable to write to the specified file

804 Unable to read the specified file

805 Unable to access a session temporary file

OMNIDEX API Guide 2-87

ODXTRANSFER Keyword Access Intrinsics

ODXTRANSFER
ODXTRANSFER (base, mode, status, filename, options)

ODXTRANSFER copies to a file the Sis, IDs, or field values of records
qualified in an ODXFIND search.

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See DBIOPEN on page 2-44 for more information
about the base ID.)

mode is a 16-bit word integer, either 1 or 2 for Sis, or 201 for IDs, as follows:

1 normal write mode for OMNIDEX Sis. Overwrites the con­
tents of an existing file.

2 APPEND mode for OMNIDEX Sis. Appends the Sis to the
end of an existing file. If the Sis are transferred to a new file,
this parameter is ignored.

M o d e options
In addition, there are several mode options. They are specified by adding
the mode option value to the mode values 1 or 2 only.

For example, ODXTRANSFER mode 11 performs a normal write of
record numbers after an ODXFIND on a non-RC key in a detail set.

10 transfers the record number instead of the search item (for
non-Record Complex keys in linked details only.

20 transfers the combined search item and the record number
(for non-Record Complex keys in linked details only).

Mode Options 10 and 20 are used for transfers of values returned from
searches on record specific keys in detail sets, and can be added to
modes 1 and 2 only.

100 transfers the data contained in the field specified in the options
parameter to a file. You can use these files in a
Multifind operation, as discussed on page 2-66.

2-88 OMNIDEX API Guide

Keyword Access Intrinsics ODXTRANSFER

status

filename

options

200 ID file mode. Transfers IDs, from the internal ID list, to an
external file. This file can then be passed in an ODXFIND
keyword list by entering the file name preceded by a dollar
sign (^filename), as discussed on page 2-66.

Note that OMNIDEX IDs cannot be transferred to a file previ­
ously created as an SI file because they do not have the same
format and file code. Also, APPEND access is not permitted
with OMNIDEX ID files.

is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. If the call executed successfully, status
word 1 is zero and status words 12-13 contain the number of Sis trans­
ferred. If status word 1 is +888, status word 11 contains the OMNIDEX
condition word and words 12-13 are set to zero.

is the name of an array that contains the name of the file to which the Sis
or IDs are to be transferred and is terminated by a blank.

is the name an array containing sixteen 16-bit words (32-bytes) used only
with mode option 100. The first 16 bytes contain the name of the specified
OMNIDEX master or DR detail data set. If the data set name is less than
16 bytes (characters), it must be terminated by a space or semicolon. This
may be a detail set in two cases:

□ if the detail set is Detail Record indexed (DR) and therefore not
linked to a master

O if the last ODXFIND was performed on a record-specific key.
Qualified IDs must still be in RS form (not compressed to record
complexes).

The second 16 bytes of the options parameter contain the name of the
specified field (terminated by a space or semicolon) to be transferred
from each qualified record in the data set.

Discussion

Modes 1 and 2
Use ODXTRANSFER mode 1 or 2 to transfer OMNIDEX Sis qualified by
ODXFIND to a file. You can use this file to drive a report writer, or in a
Multifind operation. ODXTRANSFER is very fast, because it uses
MR/NOBUF writes for the transfer, and OMNIDEX Sis are retrieved
from the OMNIDEX indexes.

OMNIDEX API Guide 2-89

ODXTRANSFER Keyword Access Intrinsics

The file specified by filename is created automatically by ODXTRANSFER.
The file is created larger than is required by the current number of
qualifying Sis to accept more Sis to be appended later. Still, no disk space
is wasted, because unallocated file extents are used for the additional pad
space.

You should not transfer data to an existing file, because ODXTRANSFER
uses MR/NOBUF writes. Instead, let ODXTRANSFER create the file with
the correct record size, capacity and blocking factor.

You can use a file equation to equate the formal file designator for a
different file capacity. But never use a file equation to specify APPEND
access. If you do, an error is returned. Specify mode 2 for APPEND
access.

Mode 101
Use ODXTRANSFER mode 101 to transfer the contents of a specified field
from records qualified by ODXFIND to a file for later use. Pass the field
name and data set name through the options parameter. Typically, the files
created by mode option 100 are used in Multifind operations by passing
the file's name, preceded by an ampersand (& filename), through the
keywords parameter of an ODXFIND call.

ODXTRANSFER mode 101 or 102 is much slower than other
ODXTRANSFER operations, because ODXTRANSFER must retrieve each
record from the OMNIDEX master or DR detail.

V ODXTRANSFER mode 101 resets the item list to include only the field
specified through the options parameter. Therefore, you must respecify the
item list after a call to ODXTRANSFER mode 101 to reflect the items you
wish to return in a TurboIMAGE call.

Mode 201
ODXTRANSFER mode 201 is used to transfer OMNIDEX IDs qualified
by ODXFIND to a file for later use. This file of IDs can be reinstated by
entering $filename in the keyword list for ODXFIND.

For example, if you did a long or complicated keyword retrieval that you
needed to repeat later, you could save the qualified IDs to a file by calling
ODXTRANSFER in mode 201. When you later needed to do that same
retrieval, you could reference that file through the keywords parameter in a
call to ODXFIND as $filename. This would reload that list of IDs.

2-90 OMNIDEX API Guide

Keyword Access Intrinsics ODXTRANSFER

The major factors in determining what ODXTRANSFER mode value to use
are the type of domain on which the initial ODXFIND was performed,
and how you will use the transferred information. Table 2-7 shows the
different ODXTRANSFER mode values based on the type of domain
where records were qualified, and the intended use of the transfer file.

T y p e of
D o m a in

D a ta Set mode
v a lu e

Use o f T ransfer File

SI /ID or
transparent

Master or Detail
found by Record
Complex keys.

1 or 2 ^filename ODXFIND
search across domains
(Multifind)

SI /ID Linked detail 11 reuse list of qualified
record numbers via
DBIGET mode 4

SI /ID Linked detail 21 reuse list of qualified Sis to
search other sets in domain

DR Unlinked detail 101
or 102

^filename ODXFIND
(Multifind) search across
domains

Any Master or detail 201 ^filename ODXFIND
operation to reload
qualified IDs

Table 2-70DXTRANSFER mode values compared

OMNIDEX condition word values

Calling errors
-800 Bad mode

-801 File record size must = OMNIDEX SI size

-802 File capacity too small

-803 Not an ODXTRANSFER ID file

-804 Insufficient stack space

-805 Can't transfer Sis to an ID file

-851 Need blank after filename

OMNIDEX API Guide 2-91

ODXVIEW Keyword Access Intrinsics

ODXVIEW
ODXVIEW (filename, keywords, control, status, plabels)
ODXVIEW displays the contents of an ASCII, EDIT/3000, QEDIT or TDP
text file on the terminal screen.

Parameters
filename is an array containing the name of the file to be displayed on the screen.

The file name can contain a lockword, group name and account name. It
must be terminated with a space or a semicolon (;) .

keywords is an array containing a list of keywords to be highlighted when
displayed on the screen. Separate keywords with OMNIDEX Boolean
operators and terminate the list with a semicolon (;) or space. A list of
keywords for the ODXFIND keywords parameter is in the correct format.
See the section on ODXFIND in this chapter for more information.

control is a ten 16-bit word (20 byte) array that contains the following:

Word Contents of control parameter

1 highlight flag that controls the highlighting of words passed
in the keywords array
0 = no highlighting
1 = HP terminal highlighting
3 = ANSI terminal highlighting

2 number of lines displayed on the first screen page. Version 3
can display 100 lines per screen page, to use the advanced
display capabilities of newer terminals

3 number of lines, up to 100, displayed on subsequent screen
pages

4-5 number of first line to display. Files are assumed to have line
numbers starting at 1, by increments of 1, whether numbered
or not. For example, the 20th record in the file is treated as
line 20, even if a different editor line number is assigned.

Zero or 1 displays the first line of the file. A negative value
(-1 , for example) means scan the file starting at the specified
line (here, 1) until a word in the keywords array is found. Then
back up half a page, and begin displaying the document.

2-92 OMNIDEX API Guide

Keyword Access Intrinsics ODXVIEW

status

plabels

6-7 number of last line to display (zero means the last line in the
file)

8 containing a value of 1 enables the following command line:

(B)egin,(E)xit,(F)irst,(L)ast,(N)ext,(P)rev,
(R)ewind,(S)can,line#,[Return]:

9-10 not used

is the name of an array of twenty-one 16-bit words used to return infor­
mation about the success of a call. See Table 2-1, on page 2-7, for a list of
error condition codes.

is the name of a ten 16-bit word (20-byte) global array that must be
initialized to all zeros before the first call to ODXVIEW. After this call, the
contents of the array must be preserved (not changed) for subsequent
calls to ODXVIEW to function properly.

Word 8 of plabels is used to specify an inactivity time-out in seconds.
Values can range from 60 to 600 (seconds), or 0 (zero) which disables the
time-out.

Discussion
ODXVIEW displays one screen page of text, then pauses until a key is
pressed at the terminal. The number of lines in a screen page is
determined by words 2 and 3 of the control parameter. The file is opened
with shared lock access.

One-letter commands may be entered from the terminal during the
execution of a program that has called ODXVIEW. They are:

B rewind to beginning of file and reset F command

E exit ODXVIEW

F go back to first screen page

L go to last screen page

N display next screen page.

P display previous screen page.

R rewind to first screen page

S scan forward to next keyword occurrence

1-9 display next 1 to 9 lines

[return] display next screen page

OMNIDEX API Guide 2-93

ODXVIEW Keyword Access Intrinsics

Any other character causes ODXVIEW to close the file and return to the
calling program. After the last line of a file is displayed, ODXVIEW waits
for the user to enter the next command.

OMNIDEX condition word values

Calling errors
If the call executed successfully, status word 1 is zero. If the call failed,
status word 1 is +888 and status word 11 contains one of the following
numbers:

802 Unable to open specified file

803 Unable to write to specified file

804 Unable to read specified file

805 Unable to access a session temporary file

2-94 OMNIDEX API Guide

Standard Interface to Third Party
Indexing

Calling TurboIMAGE intrinsics
From a programmer's standpoint, using the Standard Interface to Third
Party Indexing with OMNIDEX involves learning a few extra mode values
for DBFIND and DBGET. These mode values invoke search and retrieval
routines that use OMNIDEX indexes to find and get records.

How the interface works
The standard interface between TurboIMAGE and the OMNIDEX
indexing product provides for automatic updating of OMNIDEX indexes,
and the retrieval of records using OMNIDEX indexes through DBFIND
and DBGET. The TurboIMAGE intrinsics (version C.04.03 or later) can
now update and access the OMNIDEX indexes directly by calling
OMNIDEX routines in XLOMNIDX.PUB.SYS. These OMNIDEX routines
access or update the indexes, and then return control to the calling
TurboIMAGE intrinsic.

In most cases, the flow of TurboIMAGE intrinsic calls is as follows:

1. The TurboIMAGE intrinsic performs its standard TurboIMAGE
function.

2. The TurboIMAGE intrinsic determines if a call to OMNIDEX
intrinsics is appropriate, and if so, calls the routine.

3. The OMNIDEX intrinsics, when called, act against the OMNIDEX
indexes, and then return control to the calling TurboIMAGE
intrinsic.

4. If the OMNIDEX intrinsics status indicates that it completed
successfully, TurboIMAGE completes the intrinsic call by
performing any logging and recovery steps. Unsuccessful calls to
update intrinsics are backed out by the MPE XL Transaction
Manager or TurboIM AGE's dynamic rollback.

5. The TurboIMAGE intrinsic returns control to the calling program.

OMNIDEX API Guide 2-95

How the interface works Standard Interface to Third Party Indexing

2-96

Using this method, the TurboIMAGE intrinsics insure that changes to the
TurboIMAGE database are synchronized with changes to OMNIDEX
indexes, including transaction logging, dynamic rollback, and other
recovery strategies. This means that no programming changes are
necessary for your existing TurboIMAGE update applications.

Also using this method, the TurboIMAGE intrinsics take advantage of the
retrieval capabilities of the OMNIDEX indexes. The intrinsics DBFIND
and DBGET continue to provide the traditional methods of access x
forward and backward serial reads, forward and backward chained
reads, calculated (or hashed), and directed reads. Additionally, DBFIND
and DBGET provide new methods of performing generic key searches,
sorted sequential retrievals, and keyword or multi-key searches.

OMNIDEX searches
When performing OMNIDEX searches, the argument parameter supports
search operators, in addition to search values. For example, in a DBFIND
mode 12 on an OMNIDEX keyword key, the argument parameter could
contain the following argument:

(DISC OR DISK) AND EAGLE;

In this example, "D ISC", "DISK" and "EAGLE" are search values, as are
normally passed through the argument parameter. "O R" and "AN D " are
Boolean search operators that establish a logical relationship between the
search values. The parentheses indicate that the OR operation should take
precedence over the AND operation. The semicolon (;) terminates the
argument list. If the field in the item parameter is a keyword key installed
on a PART-DESCRIPTION field, the mode value (12) and argument tell
DBFIND to locate all records with the words DISC or DISK, and EAGLE
in the PART-DESCRIPTION field.

Identifiers for all the records with the words DISC or DISK, and EAGLE
in the PART-DESCRIPTION field are stored in memory, pending further
qualification on other keys, or retrieval of the actual records by DBGET.
This list of record identifiers is called the internal ID list.

OMNIDEX API Guide

Standard lnte均 ＇Ceto Third Party Indexing How the的terfaceworks

When you use a partial key value in a sorted retrieval, record selection is
determined by the number of leading characters matched against indexed
key values. For example, a search on a COMPANY key using the
argument A would retrieve records with key values that begin with "A”
(like 11 AARDVARK," 11 ABC," 11 ACE，＇’and ”ACME勺.The argument AC
quali白esthe recor:ds for "ACE" and ”ACME，＇’but not "AARDVARK”or
”ABC" because their two leading characters do not match the partially
sped白edargument value ”ACプ

The more characters you sped命，themore precise the retrieval criteria,
and the more selective the retrieval.

The key value returned by a sorted retrieval is the first key value that
qualifies for the specified operation and argument. For the relational
operations> and>=, the first value returned is the first matching key
value in ascending目quence,or the lowest key value that qualifies. For
the relational operations < and <=, the first value returned is the first key
value in descending key sequence, or the highest key value that qualifies.

For example, an index for a key might contain several key values starting
with ”L," ranging from "LABEL”to”LUCKY.”A partial key >=
operation on the argument value "L" returns ”LABEL，＇’while a<=
operation returns "LUCKY."

Similarly, a> operation using the argument value "L" returns the lowest
key sta巾 tgwith "M," and a< operation using出eargument value”L”’町
民turnsthe highest key sta巾 lgwith "K." Some possible re加msof ・E
relational retrievals are listed below. ・．．
Argument Value

<L

>=L

<=L

>L

First Key Value Returned

KUDOS

LABEL

LUCKY

MAN

Note that you can express relational operations by supplying tokens
(>, >=, <=,<)in the argument parameter, or by using an appropriate mode
value (like 2nn to perform a "greater than" retrieval).

For more information about (OMNIDEX) keyword and sorted key access,
see "DBIFINDぺonpage2・23，”DBIGETぺonpage2・28,and
”ODXFINDぺonpage2・54.

OMNIDEX AP/ Guide 2・97

About TurboIMAGE intrinsics Standard Interface to Third Party Indexing

About TurboIMAGE intrinsics
DBPUT, DBDELETE, and DBUPDATE have been modified to call
OMNIDEX indexing routines (when the indexes are enabled) in addition
to their standard updating functions. While this insures that the
OMNIDEX indexes for a given database are automatically updated, the
changes are virtually transparent to programmers and your current
TurboIMAGE applications.

This section discusses the extended modes, features, and error codes of
the TurboIMAGE intrinsics that apply to OMNIDEX. For complete
information about the TurboIMAGE intrinsics, consult the TurboIMAGE/
XL Database Management System Reference Manual.

2-98 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBCONTROL

DBCONTROL
DBCONTROL (base, qualifier, mode, status)

DBCONTROL allows a process that has exclusive access to the open
database to enable or disable the "output deferred" option. In OMNIDEX
applications, it also enables or disables the ID list preservation feature
when a keyword search qualifies no records.

Parameters
base is the same as for current TurboIMAGE. (See "DBOPEN" in the

TurboIM AG E/XL Database Management System Reference Manual for more
information about the base ID.)

qualifier is the same as for current TurboIMAGE

mode is a 16-bit word that supports the following integer values:

1-2 same as for current TurboIMAGE

800 in a keyword search, maintains the internal ID list if current
search qualifies no records.

801 in a keyword search, purges the internal ID list if current
search qualifies no records.

status is the array containing TurboIMAGE information about the procedure.
This array consists of ten 16-bit words. These words are the same as for
current TurboIMAGE. In addition to the standard TurboIMAGE calling
errors and exceptional conditions, there are also OMNIDEX calling errors
and exceptional conditions.

OMNIDEX API Guide 2-99

DBCONTROL Standard Interface to Third Party Indexing

Discussion
When progressively qualifying records by searching several keyword
keys, the internal ID list is preserved by default if a keyword search that
references the internal ID list qualifies no records. This is called the back
out feature. For example, you may have qualified 100 CUSTOMER records
using the argument SOFTWARE against a COMPANY-NAME key. If
you attempted to narrow down those customers by searching the STATE
keyword key using the keyword CA, and no records qualified, the IDs of
the 100 CUSTOMER records would remain in memory. You could
attempt another retrieval using another key (like ZIP-CODE) or a
different argument (like CO). This feature is useful for online
applications, where users may try different sets of criteria to qualify a
desired set of records.

In batch applications, however, there is often no way to re-try a search if
no records qualify. In fact, a reporting application could return erroneous
results if a keyword search qualified no records, but the internal ID list
was preserved. In most report applications, it is better to purge the
internal ID list if a search qualifies no records. To purge the internal ID
list, and avoid erroneous results in batch applications, call DBCONTROL
in mode 801 before using DBFIND to further qualify records. If, after
qualifying records in batch, you want to re-enable the back out feature,
call DBCONTROL in mode 800 before the next call to DBFIND.

2-100 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

DBFIND

base

dset

mode

DBFIND (base, dset, mode, status, item, argument)

DBFIND qualifies a chain of records from the set (or table) specified in the
dset parameter. It does this by comparing the search value passed in
argument against the values indexed for the key specified in the item
parameter.

DBFIND also sets up pointers for TurboIMAGE chained access when
used against a search item in a detail set.

The argument parameter can contain a full, partial, or pattern-matched
search value that qualifies a chain through TurboIMAGE, sorted, or
keyword key access. For mode 12 searches, the argument parameter can
also contain Boolean, range, and relational operators. The argument
parameter can also contain an SI value that locates a chain head through
TurboIMAGE access.

When you qualify a chain, a count of the number of records in the chain
(those whose key values meet the criteria supplied in the argument
parameter) is returned to the status parameter.

Parameters
is the array used as the base parameter when opening the database. The
first element of the array must contain the base ID returned by DBOPEN.
(See "DBOPEN" in the TurboIM AGE/XL Database Management System
Reference M anual for more information about the base ID.)

is the array containing the data set to access. Dset is either a left-justified
name or a 16-bit number. The data set name can be up to 16 characters
long. If shorter than 16 characters, the name must be terminated by a
semicolon (;) or space (for example, CUSTOMERS; or ORDER-LINES).

is a 16-bit word that accepts the following integer values:

1 performs a TurboIMAGE DBFIND, if item is a TurboIMAGE
search item on a detail data set.

When the IM AGETPIJCW is set to 400, and the argument
parameter contains wildcard characters (#, ?, @), or any
OMNIDEX-supported operators (such as parentheses,
AND, *, or >), or is terminated by a semicolon or trailing

blanks, an OMNIDEX search is performed, a record pointer
is set, and a chain count is returned. This is discussed later, in
"Argument terminators", on page 2-108.

OMNIDEX API Guide 2-101

DBFIND Standard Interface to Third Party Indexing

2-102

Wildcard characters are not supported for binary keys. Use DBFIND
mode 11 for range searches against binary sorted keys.

10 performs a standard TurboIMAGE DBFIND on a detail
search item passed through the item parameter

11 performs a range retrieval for numeric sorted keys of types E,
I,J, K, P, R, and Z. Argument contains the start and stop values
for the range, which must be passed as the same data type
and length as the key. You can use an open-ended range by
supplying a maximum key value for the stop value, or mini­
mum key value for the start value.

12 performs a keyword search and returns a count of the num­
ber of records or record complexes that qualified

To perform a keyword search, which qualifies records based
on the contents of several keys, perform successive DBFINDs
using mode 12.

See "Keyword searches", on page 2-112, for more informa­
tion about the operations supported for a mode 12 DBFIND.

13 undoes the last mode 12 or 23 OMNIDEX keyword search,
and restores the previously qualified list of records (internal
ID list)

21 same as mode 1 in function and argument syntax, but does not
return a chain count

22 same as mode 11 in function and argument syntax, but does
not return a chain count

23 same as mode 12 in function and argument syntax. Returns the
number of record complexes when used against Record
Complex keys (see page 2-112).

Sorted relational positioning modes
You can use relational positioning modes to perform a relational
operation using the search value passed through argument. These mode
values do not return a chain count. They simply position the current
record pointer at the appropriate place in the sorted key sequence. A
condition of "17" is returned to the status array when no records satisfy
the search value in argument.

OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

The mode parameter uses nn to represent the length of a partial key
argument. A positive mode value means that nn is the argument 16-bit
word length. A negative mode value means that nn is the argument byte
length.

Inn performs an "equal to" (=) search, and sets the record
pointer before the first record that matches the first nn words
or bytes of the partial value in argument. A mode value of 100
sets the pointer to the record with the lowest key value and
qualifies all entries in the data set. A mode value of 199 uses
the value in argument as the full key value.

2nn performs a "greater than" (>) search, and sets the record
pointer before the first record greater than the first nn words
or bytes of the partial value in argument. A mode value of 200
sets the pointer to the record with the lowest key value and
qualifies all entries in the data set. A mode value of 299 uses
the value in argument as the full key value.

3nn performs a "greater than or equal to" (>=) search, and sets
the record pointer before the first record that either matches
or is greater than the first nn words or bytes of the partial
value in argument. A mode value of 300 sets the pointer to the
record with the lowest key value and qualifies all entries in
the data set. A mode value of 399 uses the value in argument as
the full key value.

4nn performs a "less than" (<) search, and sets the record pointer
after the first record less than the first nn words or bytes of
the partial value in argument. A mode value of 400 sets the
pointer to the record with the highest key value and qualifies
all entries in the data set. A mode value of 499 uses the value
in argument as the full key value.

5nn performs a "less than or equal to" (<=) search, and sets the
record pointer after the first record that either matches or is
less than the first nn words or bytes of the partial value in
argument. A mode value of 500 sets the pointer to the record
with the highest key value and qualifies all entries in the data
set. A mode value of 599 uses the value in argument as the full
key value.

OMNIDEX API Guide 2-103

DBFIND Standard Interlace to Third Party Indexing

status

item

argument

is the array containing TurboIMAGE information about the procedure.
This array consists of ten 16-bit words. These words are listed below:

Word Contents of status array

1 the condition word. If the procedure succeeds, the return sta­
tus is zero. If the procedure fails, an error condition (such as
"17") is returned to element 1.

2 value of zero

3-4 current record number set to zero

5-6 count of number of entries in chain (chain count)

7-8 record number of last entry in chain (TurboIMAGE keyed
reads only)

9-10 record number of first entry in chain (TurboIMAGE keyed
reads only)

is an array of eight 16-bit words that contains the left-justified name of
either a sorted key or a TurboIMAGE detail data set search item

contains a search value (either full or generic), with optional operators.
The search values can be sorted key values (for sorted keys), keyword
values (for keyword keys), or TurboIMAGE search items (for Turbo­
IMAGE Sis in detail data sets). A sorted search argument can be:

□ a single value that can contain wildcards or begin with a
relational operator

□ two values that establish a range

A keyword search argument can be:

□ one keyword, optionally containing wildcards or a relational
operator

□ two or more keywords separated by Boolean operators or range
operators

□ a leading Boolean operator followed by either 1 or 2 above

A semicolon (;) terminates the argument list for mode 1 ,12, 21, or 23
DBFIND calls.

2-104 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

The data type of the value in argument depends on the mode value. The
table below shows the expected data type for each mode value.

Mode Key type Chain Begin/End Argument Wildcards Description
count of Chair type allowed

1 TurboIMAGE Y Y Any N

1 keyword Y Y ASCII Y

1 sorted Y Y Any Y ASCII needs
semicolon (;)

10 TurboIMAGE Y Y Any n/a TurboIMAGE only

11 sorted Y Y Any N Full start/stop values

12 keyword Y Y ASCII Y keyword only;
needs semicolon (;)

13 keyword n/a n/a Ignored n/a Reset last mode 12
or 23 search

21 keyword N Y ASCII Y Same as mode 1 but
no chain count

21 sorted N Y ASCII Y Same as mode 1 but
no chain count

22 sorted N Y Any N Same as mode 11
but no chain count

23 keyword N Y ASCII Y Same as mode 12
but no chain count

In n sorted N N Any n/a Equal to

2 nn sorted N N Any n/a Greater than

3 nn sorted N N Any n/a Greater than or equal to

4 nn sorted N N Any n/a Less than

5 nn sorted N N Any n/a Less than or equal to

Table 2-8: DBFIND mode and argument data types

* "A ny" means that the type of argument matches the type of the key field.

** Arguments w ith wildcard characters are not allowed binary keys.

A sorted composite key is binary if any of its components are binary. A
sorted composite key is ASCII only if all of its components are ASCII.

OMNIDEX API Guide 2-105

DBFIND Standard Interface to Third Party Indexing

Discussion
This section discusses the following topics:

□ searches performed in mode 1

□ tokens supported in sorted searches

□ binary range retrievals

□ relational positioning modes

□ returning the chain count

□ keyword searches

□ calling errors and exceptional conditions

Searches performed in mode 1 (or 21)
DBFIND mode 1 was enhanced to support sorted and keyword searches
on any data set, in addition to finding chain heads in detail sets. This lets
you perform OMNIDEX searches using your existing TurboIMAGE
retrieval applications. When developing new applications, however, we
recommend that you use the specialized OMNIDEX and TurboIMAGE
access modes listed on page 2-105. This minimizes the processing
required for searches, and prevents ambiguities that result when item
refers to an item with different types of keys installed on it (such as
TurboIMAGE and OMNIDEX sorted).

Whether a mode 1 call to DBFIND against a search item in a detail data
set performs a standard TurboIMAGE search or an OMNIDEX search
depends on whether or not the IMAGETPI job control word (JCW) is set
to 400.

By default, calling DBFIND mode 1 performs a standard TurboIMAGE
search for a chain head against the SI of a detail set. To enable OMNIDEX
parsing of the argument parameter, and OMNIDEX searches, through
DBFIND mode 1, you must set the IMAGETPI job control word to 400:

SETJCW IMAGETPI=400

Having to set this JCW prevents special characters (like , and -) in the
argument parameter from automatically being parsed as OMNIDEX
operators.

2-106 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

To disable OMNIDEX parsing of the argument parameter, and OMNIDEX
searches, through DBFIND mode 1, you must set the IMAGETPI job
control word to zero:

SETJCW IMAGETPI=0

When IMAGETPI is set to 400, the kind of search that DBFIND does is
determined by these factors:

□ the type of keys (keyword, sorted, and / or TurboIMAGE SI)
installed on the field referenced in item

□ the data type of the key referenced in item

O whether the argument string is terminated

O whether the argument contains any operators or tokens supported
by OMNIDEX (like AND, *, or >=)

Each of these factors is discussed next.

Keys re fe re n c e d b y the item p a ra m e te r
The item parameter of DBFIND must refer to a keyed item. This item can
be the SI of a detail set, a keyword key, a sorted key, or any combination
of these three. If item refers only to an SI of a detail set, DBFIND uses
standard TurboIMAGE access to locate records. If the item refers only to a
sorted key, DBFIND uses sorted access to find records. If item refers only
to a keyword key, DBFIND uses keyword access to find records.

Likewise, the key you reference in item must support the search values
and operators you use in the argument parameter. For example, you cannot
use Boolean operators in argument if the item parameter doesn't reference a
keyword key. If the operations and search values in argument are not
supported by the key referenced in item, DBFIND may return unexpected
results.

Often, item may reference an item that is both a TurboIMAGE SI and an
OMNIDEX key. When this happens, an ambiguity results. Take, for
example, a detail table's SI that is also installed as both a sorted and
keyword key. DBFIND must determine whether to perform a
TurboIMAGE read, a sorted search, or a keyword search. To determine
what type of search to perform, DBFIND checks the data type of the field
referenced in item, and examines the argument.

OMNIDEX API Guide 2-107

DBFIND Standard Interface to Third Party Indexing

The d a ta ty p e o f th e k e y in item

When item refers to an item that is keyed for several types of access (such
as chained, sorted, and keyword), DBFIND mode 1 uses the data type of
the item to help determine what kind of access to use.

If item refers to a binary SI (type I, J, K, R, or E) in a detail data set,
DBFIND uses TurboIMAGE access to find records. If item refers to a
character key (type U or X) the type of search performed depends on the
argument used. If the argument contains no operators, tokens, or a
terminator, then DBFIND uses it as a TurboIMAGE key value to locate a
chain head. If the argument contains a terminator, tokens, or operators,
DBFIND must then determine what type of OMNIDEX access (sorted or
keyword) to use based on the types of operators and tokens used.

Argument term inators
When you end the argument string with a terminator, it helps DBFIND
determine what kind of search to perform.

□ When item refers to an ambiguous key (TurboIMAGE? Sorted?
Keyword?), terminating argument tells DBFIND to use OMNIDEX
access (keyword if Boolean operators are present, sorted if they
are not).

□ When item refers to a sorted key, a terminator tells DBFIND
whether argument represents a full or partial-key (generic) value.

There are two ways to terminate the argument parameter:

□ with a semicolon (;)

□ with trailing blanks up to the length of the key

For TurboIMAGE DBFIND searches, don't use a terminator. For keyword
searches, terminate the argument with a semicolon (;) . For sorted searches,
terminating argument with either a semicolon or trailing blanks indicates a
full key value. Terminate the argument value with an at sign (@) to
indicate a partial key value.

2-108 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

If the argument parameter does not contain a terminator, DBFIND
terminates the argument based on the type of key being searched, as
follows:

SI on detail set DBFIND assumes that argument contains a full key
value and performs a TurboIMAGE search.

sorted key DBFIND assumes that argument contains a full key
value and pads the argument with trailing blanks up
to the length of the key.

keyword key DBFIND uses the first two consecutive blanks as a
terminator, or truncates the argument to the
maximum length of the argument parameter (1024
bytes).

When item refers to the SI of a detail that is also an OMNIDEX key, and no
terminator is used, DBFIND uses TurboIMAGE access to locate chain
heads. If item refers to an item that is a sorted key, and a keyword key,
DBFIND uses the presence of search operators to determine whether to
perform a sorted search or a keyword search, as discussed next.

H ow th e argum ent string d eterm in es a c c e s s
When item refers to the SI of a detail that is also an OMNIDEX key, and
the argument parameter contains wildcard tokens, search operators, or a
terminator, DBFIND uses OMNIDEX access to find records. If item refers
to an item that is installed with both keyword and sorted access, DBFIND
determines which type of access to use based on the tokens present in
argument.

If DBFIND detects any parentheses in the argument parameter, keyword
access is used. If parenthesis are absent, DBFIND uses sorted access.
Therefore, range (TO,:) and relational operators (<, <=, =, >=, >) elicit sorted
searches in DBFIND mode 1 in the absence of parenthesis.

Tokens supported in sorted searches
DBFIND mode 1 searches on ASCII sorted keys support wildcard tokens.
Wildcard tokens provide methods of searching for data without knowing
all of the characters of a key. The wildcard tokens are:

? represents any single printable character

represents any single digit (0-9) of a number

§ represents any number of ASCII characters, including spaces

OMNIDEX API Guide 2-109

DBFIND Standard Interface to Third Party Indexing

Unless the argument includes a relational expression, you can place
wildcard tokens anywhere in an argument. The @ wildcard must appear
at the end of an argument when it is used with a ? or # token, or if it is
used in a relational expression.

V You cannot use wildcard tokens in searches against binary keys._______

When an argument alone is supplied, an "equal to" (=) operation is
assumed. However, you can include relational expressions in the argument
parameter for mode 1 (or 21) searches on ASCII keys. This lets you
perform sorted relational searches. The relational operators are:

> greater than

>= greater than or equal to

< less than

<= less than or equal to

For example, to find all records with a key value greater than "A BC", you
would supply an argument value of >ABC.

You can use more than one relational operator in an argument (instead of
representing a range). For example, the range "5 to 10" could be
represented as ">=05<=10." Because the same number of digits must be
supplied for both the start and stop values in an ASCII range, the leading
"0 " in ">=05" is required. When a wildcard is used in a relational
expression, it must be at the end of the expression. In other words, the
expression "<ABC@" is allowed but the expression "<ABC@DEF" is not
allowed.

Although you cannot use relational operators on binary keys, they can be
simulated by using open-ended binary ranges, as discussed next.

Binary range retrievals
Mode 11 supports ranges on binary keys, argument must be large enough
to hold two full key values. Therefore, if the key referenced in the item
parameter is a J2 key, then argument should be four words long. The start
value of the range is specified in the first half of argument, and the stop
value is specified in the second half. For example, to find records with
key values that fall between "123" and "1456," you would supply a
binary "123" in the first two words of argument, and a binary "1456" in the
last two words.

2-110 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

You can use this technique to simulate >= and <= relational operations. To
simulate a >= operation, supply the start value in the first part of argument,
and the highest possible value in the second part (like binary
2,147,483,647 for a J2 field). To simulate a <= operation, supply the lowest
possible value in the first part of argument (like binary zero), and the stop
value in the second part. For example, to find all records with key values
less than or equal to 123, enter 0 for the first part of argument, and a binary
123 for the second part.

Relational positioning modes
Modes Inn through 5nn support searches on either ASCII or binary keys
using a single argument of the same data type as the key (item) being
searched. These modes do not support wildcard tokens or relational
operators. Modes Inn through 5nn simply position a record pointer in
anticipation of a DBGET chained read.

The mode value must express the relational operation used to set the
pointer (like "3 " for "greater than or equal to"), and the length of argument
(as nn). If the length expressed by nn is in words, the entire mode value is
expressed as a positive integer. For example, a >= retrieval using a partial
key length of 4 words is expressed as a mode value of 304. If the length
expressed by nn is in bytes, the entire mode value is expressed as a
negative integer. For example, a >= retrieval using a partial key length of 8
bytes is expressed as a mode value of -308.

When using partial key lengths of 100 bytes or more, express the partial
key length in words. If you do not, the resulting mode value would signify
a different relational operation and argument length. For example, a >=
retrieval using a partial key length of 108 bytes (54 words) is expressed as
a mode value of 354, not -408, which expresses a < retrieval using a partial
key length of 8 bytes.

Returning the chain count
Modes 1 and 11 cause IMSAM to count all keys that satisfy the criteria
expressed in argument. Although this happens very quickly, retrievals that
qualify many key values may cause DBFIND to hesitate while it counts
the key values. If you do not need a count of the records that qualified for
a retrieval, consider using modes 21 and 22, instead of modes 1 and 11.

OMNIDEX API Guide 2-111

DBFIND Standard Interface to Third Party Indexing

Keyword searches
Modes 12 and 23 support keyword searches on OMNIDEX keys.
Keyword searches can use wildcard characters. They can also use
relational, range, and Boolean operations to establish a relation between
the search value in argument and the records being sought.

If Boolean operators are present in the argument parameter of a mode 1 call
to DBFIND, and the item references a keyword key, a keyword search is
performed automatically.

Boolean operations are used to establish a relation among several search
values using a given OMNIDEX key. When the search involves several
keys in successive calls to DBFIND, they can establish a relation between
the current list of qualified records and the records that qualified for a
previous search.

Keyword searches using DBFIND are very similar to keyword searches
using ODXFIND. The primary difference is that the order of operations
for DBFIND (NOT, AND, OR) is different than the default order
(OR, NOT, AND) of precedence for ODXFIND (modes 1, 2, and 3).
ODXFIND mode 5 uses the same order of operations as DBFIND.

Record Complex keys
When performing keyword searches on Record Complex keys, remember
that entire chains qualify, not individual detail records. The qualifying
count returned reflects the combined number of details in the chains that
qualified.

Progressively qualifying detail records using Record Complex keys can
produce misleading results. Because Record Complex keys qualify record
complexes, and therefore entire detail chains, it is possible to qualify
chains where no single record contains the keywords specified for the
keys searched. Take, for example, the TICKLER and INITIALS Record
Complex keys installed on a CUSTOMER-NOTES detail set. If you
supply an argument of WW against the TICKLER key, and ADG against the
INITIALS key, you'll qualify some CUSTOMER-NOTES chains where
one record contains ADG in its INITIALS field, and another record
contains "W W " in its TICKLER field.

2-112 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

If you must qualify individual detail records, have your data
administrator install non-Record Complex keys on that detail data set.
You can install composite keyword keys that duplicate items in a detail to
afford both types of access to that detail. For example, you could install
TICKLER and INITIALS as default keyword keys, to qualify individual
detail records. You could also create TICKLERRC and INITIALSRC
Record Complex composite keys to qualify detail chains.

Range operations
Range operations enable you to qualify a subset of records based on a
range of search argument values. For example, the range operation
BOB:CARL would qualify all records with keyword values between and
including "BO B" and "CA RL" (for example, "BO B", "BRIAN",
"CALVIN" and "CARL").

The range operators a r e : (a colon) and TO. The syntax for a range
operation is:

startvalue: stopvalue
or

startvalue TO stopvalue

Ranges on ASCII keys can be performed using generic search arguments
as well. The range operation A@:C@ would qualify all records with
keyword values between and including "AARON" and "CYRUS" (for
example, "AARON", "BO B", "CALVIN ", "CLEM " and "CYRUS").

Ranges can be open-ended, where one search argument is either
preceded or followed by the range operator. For example, the range
operation BOB THRU would return all records with keyword values
between and including "BO B" and "ZEKE". Similarly, the range
operation TO BOB would return all records with keyword values between
and including "AARON" and "BOB".

OMNIDEX API Guide 2-113

DBFIND Standard Interface to Third Party Indexing

Boolean operations
The Boolean operations and their tokens are shown in Table 2-9.

T o ken s B o o le a n o p e ra t io n

i

AND

An AND operator between search values qualifies records that
contain all of those values. The argument COMPUTER AND
SOFTWARE or COMPUTER,SOFTWARE qualifies records with both
"COM PUTER" and "SOFTW ARE" in that keyed field.

In successive calls to DBFIND, an AND operator at the beginning of
an argument list intersects records that satisfy the argument with any
previously qualified records.

An AND operation is implied when two values are separated by a
single space. For example, the argument COMPUTER SOFTWARE is
equivalent to COMPUTER AND SOFTWARE.

+

OR

An OR operator between search values qualifies a union of records
that contain either value. The argument COMPUTER OR
SOFTWARE or COMPUTER+SOFTWARE qualifies records with
either "COM PUTER" or "SOFTW ARE" in that keyed field.

In successive calls to DBFIND, an OR operator at the beginning of
an argument adds records that satisfy the argument to any
previously qualified records.

NOT

A NOT operator between search arguments qualifies records that
contain the first argument, but not the second. COMPUTER NOT
SOFTWARE or COMPUTER AND NOT SOFTWARE, or COMPUTER,-
SOFTWARE qualifies records with "COM PUTER" in that keyed
field, but excludes those with "SOFTW ARE" in that keyword field.

A NOT operator at the beginning of an argument list qualifies records
that do not satisfy the argument suDDlied. For example. NOT
SOFTWARE qualifies records without SOFTWARE in that keyed
field.

* An asterisk (*) loads the records qualified in the most recent
search into memory. Use it after calling DBGET to reload the same
list of records as previously qualified.

0 Parentheses are used to nest Boolean expressions to override the
precedence of operations (NOT, AND, OR).

Table 2-9: DBFIND Boolean tokens and operations

2-114 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBFIND

Relational operations
Relational operations let you qualify records with keyword values equal
to, greater than, greater than or equal to, less than, or less than or equal to
a search argument. The relational operations and their corresponding
tokens are shown below.

T o ken s O p e ra t io n

= (default) equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

Table 2-10: DBFIND relational tokens and operations

To perform a relational search, precede the argument with a relational
operator. In the expression <8912®, "< "is the token and "8912@" is the
argument.

OMNIDEX API Guide 2-115

DBFIND Standard Interface to Third Party Indexing

Calling errors and exceptional conditions
This section lists the calling errors and exceptional conditions for both
TurboIMAGE and IMSAM.

TurboIM AG E e x c e p tio n a l conditions
17 No entry found matching argument

O M N ID E X ca llin g errors
-3200 Illegal mode specified

-3201 Data set not an IMSAM detail

-3202 Key value exceeds defined key length

-3204 Item is not an IMSAM key

O M N ID E X e x c e p tio n a l conditions
3213 IMSAM tree is empty

-3029 START > STOP value

-3220 Missing terminator in Avg. N o";"(semicolon)

-3025 Invalid key

2-116 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBGET

DBGET

base

dset

mode

DBGET (base, dset, mode, status, list, buffer, argument)

DBGET returns records from the chain or internal ID list qualified by
DBFIND.

Parameters
is the array used as the base parameter when opening the database. The
first element of the array must contain the base ID returned by DBOPEN.
(See "DBOPEN" in the TurbolM AGE/XL Database Management System
Reference M anual for more information about the base ID.)

is the array containing the accessed data set's left-justified name or 16-bit
number. The data set name can be up to 16 characters long. If it is shorter
than 16 characters, the name must be terminated by a semicolon (;) or a
space (for example, CUSTOMERS; or ORDER-LINES).

is a 16-bit word integer. The TurboIMAGE and IMSAM modes follow:

TurboIM AG E m o des
1 standard re-read

2 standard serial read

3 standard backward serial read

4 standard directed read

5 a forward read after a DBFIND. If the DBFIND used
TurboIMAGE access, DBGET reads the detail chain. If the
DBFIND used sorted access, DBGET retrieves records in
sorted order from the indexes. If DBFIND used keyword
access, DBGET retrieves records based on the identifiers in
the internal ID list. When DBGET reaches the end of a chain
or ID list, it returns a status condition of "15." See DBFIND
for more information.

6 a backward read after a DBFIND (see mode 5, above). When
DBGET reaches the beginning of a chain or ID list, it returns a
status condition of "14".

7 standard calculated read

8 standard primary calculated read

OMNIDEX API Guide 2-117

DBGET Standard Interface to Third Party Indexing

11 resets pointer to the beginning of the record list qualified in a
sorted search.

12 moves pointer forward by n records in the qualified records
list for a sorted search, without actually retrieving any
records, n is a 32-bit integer set in the argument.

13 moves pointer backward by n records in the qualified records
list for a sorted search, without actually retrieving any
records, n is a 32-bit integer set in the argument.

15 gets the next record in sorted order regardless of the search
argument used to qualify the chain of records. DBGET mode 15
ignores the end-of-chain boundary as well.

16 gets the previous record in sorted order regardless of the
search argument used to qualify the chain of records. DBGET
mode 16 ignores the beginning of the chain boundary as well.

21 resets pointer to the beginning of the list of records qualified
by keyword search (DBFIND mode 12 or 23).

22 moves pointer forward n entries in the list of records quali­
fied by a keyword search, without actually retrieving a
record, n is a 32-bit integer passed in argument.

23 moves pointer backward n entries in the list of records quali­
fied by a keyword search, without actually retrieving a
record, n is a 32-bit integer passed in argument.

25 retrieves the next record buffer from those qualified by a key­
word search.

26 retrieves the previous record buffer from those qualified by a
keyword search.

2-118 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBGET

status

list

buffer

argument

is the array containing information about the TurboIMAGE procedure.
This array consists of ten 16-bit words. These words are listed below:

Word Contents of status array

1 the condition word. If the procedure succeeds, the return sta­
tus is zero. If the procedure fails, an error condition is
returned to element 1.

2 length of the logical entry read into the buffer array in half­
words

3-4 record number of the data entry read

5-6 zero for everything except a primary entry. A primary
entry's element contains the number of entries in the syn­
onym chain

7-8 record number of the preceding entry in the chain of the cur­
rent path (TurboIMAGE keyed reads only)

9-10 record number of the next entry in the chain of the current
path (TurboIMAGE keyed reads only)

is the name of an array containing either an ordered set of data item
names or numbers, an at sign (§) to specify all items in the data set, or
an asterisk (*) to respecify items passed in the last list.

See the TurboIMAGE/XL Database Management System Reference Manual
discussion of "DBGET" for more information about the list parameter.

is the array where the values of data items specified in the list array are
returned.

contains the full key value used to locate the record for modes 4, 7, and 8.

For modes 12,13, 22, and 23 argument contains a 32-bit binary integer
specifying the number of records to advance the pointer in the chain.

Discussion
DBGET reads through the chain of records qualified by DBFIND, and
retrieves records through standard TurboIMAGE access. See the
TurbolMAGE/XL Database Management System Reference Manual for more
information about TurboIMAGE access. The IMSAM DBGET modes are
discussed next.

OMNIDEX API Guide 2-119

DBGET Standard Interface to Third Party Indexing

Mode values for sorted retrievals
Modes 5 and 6 read forward and backward through a chain of records
qualified by DBFIND (mode 1 ,10 ,11 , 21, or 22). When a DBFIND is
performed on a sorted key, record chains are always sorted from lowest
key value to highest key value. To read or list records in ascending order
(lowest to highest), use mode 5. To read or list records in descending
order (highest to lowest), use mode 6.

Mode 11 resets the pointer to the beginning of a chain of qualified
records.

Modes 12 and 13 let you skip forward or backward, by any 32-bit number
of records, in a chain of qualified records. The number of records the
pointer moves is passed through the argument parameter.

For example, if a DBFIND qualified a chain of 20 records, and you
wanted to read the fifth record in the chain, you would perform a DBGET
mode 12, with an argument va lue of 5 to move the pointer to the fifth
record. Then, you would perform a DBGET mode 1 to read the fifth
record. DBGET mode 13 serves the same function, but moves the pointer
backward through a chain.

Immediately after a DBFIND mode Inn, 2/7/7, or 3/7/7, you could use a mode
12 DBGET to skip ahead in the list. A mode 13 DBGET returns condition
14 (beginning of chain). Immediately after a DBFIND mode 4/7/7, or 5/7/7,
you could use a mode 13 DBGET to skip backward in the list. A mode 12
DBGET returns condition 15 (end of chain). You can use either mode 12
or 13 to read forward or backward from the middle of a chain, as long as
you do not reach the end or beginning of the chain.

Modes 15 and 16 read forward or backward through a chain of qualified
records, without regard to chain boundaries. If you need to read past the
beginning or end of a chain, modes 15 and 16 let you do so without
returning a condition 14 or 15 (beginning of chain or end of chain). If the
beginning or end of the file is reached, a condition of 10 or 11 is returned
to the status array.

2-120 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBGET

Mode values for reading chains of qualified records
Mode 25 and 26 read forward and backward through a chain of records
qualified by DBFIND mode 12,13, or 23. Records are returned in the
order of their internal OMNIDEX ID. Mode 25 reads forward through the
chain, and returns an end of chain condition after the last record is
returned. Mode 26 reads backward through the chain, and returns a
beginning of chain condition after the first record is returned.

Modes 22 and 23 let you skip forward or backward in a chain of qualified
records. The number of records to skip is passed as a 32-bit integer in the
argument parameter.

Mode 21 resets the pointer to the beginning of the list of qualified records.

If you use DBFIND mode 1 to find records, use DBGET mode 5 or 6 to
read through the list of qualified records, just as you would for
TurboIMAGE or sorted keys.

The internal ID list
After a successful call to DBFIND to search a keyword key, a list of one or
more OMNIDEX IDs is accumulated. This internal ID list represents
qualified records or record complexes. The OMNIDEX IDs in the internal
ID list can take one of three forms, as discussed below.

S earch item s
After a DBFIND keyword search on a keyword key in a master set, or on
a keyword key installed with the Record Complex (RC) option, the
internal ID list consists of TurboIMAGE search items (Sis). After a
DBFIND on a Record Complex key in a detail set, the qualifying count
reflects the number of individual detail records that qualified, even
though Record Complex keys qualify entire chains.

If the DBFIND keyword search was performed on a key in an unlinked
(Detail Record indexed) detail set, the internal ID list consists of
TurboIMAGE relative record numbers.

If the DBFIND keyword search was performed on a record specific (non-
Record Complex) key in a linked detail set, the internal ID list consists of
search item/relative record number combinations that represent the
individual detail records of detail chains. You can use DBGET to retrieve
the individual detail records.

OMNIDEX API Guide 2-121

DBGET Standard Interface to Third Party Indexing

Calling errors and exceptional conditions
This section lists the calling errors and exceptional conditions for both
IMSAM and TurboIMAGE.

TurboIMAGE exceptional conditions
10 Beginning of file

11 End of file

12 Directed beginning of file

13 Directed end of file

14 Beginning of chain

15 End of chain

17 No entry found matching argument

18 Broken chain

OMNIDEX calling errors
-3300 Illegal mode specified

-3301 Data set not an IMSAM data set

-3304 Item not an IMSAM key

OMNIDEX exceptional conditions
3301 Critical flag set

3313 IMSAM tree empty

2-122 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBINFO

DBINFO
DBINFO (base, qualifier, mode, status, buffer)

DBINFO provides information about a database. This includes:

□ what keys are installed on a data set

□ the data type of a particular item

□ the type of access permitted for each item

□ information about Intrinsic Level Recovery

Parameters
base is the name of the integer array used as the base parameter when opening

the database. The first element of the array must contain the base ID
returned by DBIOPEN. (See "DBOPEN" in the TurboIM AG E/XL Database
Management System Reference Manual for more information about the base
ID.)

qualifier is the same as for current TurboIMAGE.

mode is a 16-bit word integer that determines the information that is returned.

There are eleven new modes that apply to OMNIDEX. The tables on the
following pages list each of these modes, its purpose, and the contents of
the qualifier and buffer parameters.

mode Purpose qualifier buffer a rray contents Com m ents
va lue contents e lem ent

801 Returns (ignored) 1 - 2 0 indexing product
information name (blank if none
about the type is installed)
of indexing 2 1 - 2 5 version number of
product product
installed on a
database 26 date of installation

27 not used HP calendar date

28 time of installation

29 Clock intrinsic format

Table 2-11: DBINFO mode values

OMNIDEX API Guide 2-123

DBINFO Standard Interface to Third Party Indexing

mode

va lue
Purpose qualifier

contents
buffer array contents
e lem ent

Com m ents

802 Returns
number of
internal and
external index
files created for
database

(ignored) 1

2

3

4-10

number of external
files

number of internal
files

"G _" or

"B _"

not used

may be zero (0)

may be zero (0)

license for IMSAM
license for OMNIDEX

803 Indicates if
third party
indexing is
enabled for a
database

(ignored) 1 zero (0) or 1 zero (0) if indexing is disabled.
1 if indexing is enabled.

811 Describes
access
permitted to
TurboIMAGE
item or
OMNIDEX key

word 1:
data item
(or
OMNIDEX
key) name
or number
followed
by, word 9:
data set
name or
number

1 - 8 OMNIDEX key name
or number

OMNIDEX composite key
numbers range from 1 to 9999 if
TPI is not enabled. 10000 added
to the defined item number
indicates that TPI is enabled.

812 Describes
OMNIDEX
key's data type
and structure
(for
compound
items)

word 1:
data item
(or
OMNIDEX
key) name
or number
followed
by word 9:
data set
name or
number

1 - 8

9

10

11

12

13

OMNIDEX key name

data type (blank for
composite key)

sub-item length

sub-item count

key type

This mode only works when
TPI is enabled for the database

Valid data types are I, J, K, E, R,
U, X, Z, and P.

0 if not an OMNIDEX key
1 if an OMNIDEX key only
2 if both a TurboIMAGE key

and an OMNIDEX key

Table 2-11: DBINFO mode values

2-124 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBINFO

mode

va lue
Purpose qualifier

contents
buffer a rray contents
e lem ent

Com m ents

813 Identifies all
items available
in database,
and type of
access
supported

(ignored) (same as mode 103) (same as mode 103)

814 Identifies all
items available
in referenced
data set, and
type of access
supported

data set
name or
number

(same as mode 104) (same as mode 104)

821 Identifies all
data sets that
contain the
referenced
OMNIDEX key

OMNIDEX
key item
name or
number

1

2

n

a count of sets that
contain that item

±set numbers of data
sets that contain the
referenced key

This element repeats for as
many sets as are returned in
element 1. A negative set
number indicates write access.

831 Identifies
sorted (G + B)
keys for
specified data
set

OMNIDEX
data set
name
(UPPER
CASE) or
number

1

2

n

number of sorted
keys (r?)

item number of
sorted key

Applies as well to keys that are
installed with both keyword
and sorted access.

This element consists of one 16-
bit word and repeats for as
many sorted keys are returned
in element 1.10000 added to the
defined item number indicates
that TPI is enabled.

832 Identifies
keyword keys
(M + B) for
specified data
set

OMNIDEX
data set
name
(UPPER
CASE) or
number

1

2

n

number of keyword
keys (n)

item number of
keyword key

Applies as well to keys that are
installed with both keyword
and sorted access.

10000 added to the defined item
number indicates that TPI is
enabled.

Element 2 consists of one 16-bit
word and repeats for as many
keyword keys are returned in
element 1.

Table 2-11: DBINFO mode values

OMNIDEX API Guide 2-125

DBINFO Standard Interface to Third Party Indexing

mode
v a lu e

P u rp o se qualifier
c o n te n ts

buffer a r ra y c o n te n ts
e le m e n t

C o m m e n ts

833 Provides word 1: 1 item number of key A negative value means that the
information data set (third party key key can be updated. Numbers
about name or number) greater than 10,000 represent
referenced key number, composite keys.

word 9: 2 type of key G = generic sorted
data item (terminated with a M= keyword
(or space) B= both types of access installec
OMNIDEX
key) name
or number 3 key length (bytes) Contains zero (0) if referenced

key is ungrouped

4 set number of first Contains zero (0) if referenced
item in key's group key is ungrouped

5 item number of first
item in key's group

6 SI number of key's Elements 6 and 7 contain zero if
OMNIDEX SI search on key returns relative

7 OMNIDEX SI length record numbers

(bytes)

8 No Translate? 1 = yes, 0=no

9 Parsing enabled? 1 = yes, 0=no

10 any excluded words? 0 = no, 1 = excluded globally

any blanks, nulls, or through an excluded words list.

11 zeros indexed? 1 = yes, 0=no

Native Language
12 Translation? 0= uses binary collating

Batch Indexing? 1= uses NLS collating

13 Soundex? 1 = yes, 0=no

14 Record Complex? 1 = yes, 0=no

15 1 = yes, 0=no

Table 2-11: DBINFO mode values

2-126 OMNIDEX API Guide

Standard Interface to Third Party Indexing DBINFO

mode

va lue

833

834

buffer

status

Purpose

Provides
information
about
referenced key

qualifier buffer a rray contents
contents e lem ent

C om m ents

word 1:
data set
name or
number,
word 9:
data item
(or
OMNIDEX
key) name
or number

16-21

22

23-26

27

28

29

30
31

32

33

34

reserved

OMNIDEX
extensions

number of
components in key

component item
number

byte offset of item

component length
(bytes)

component data type

component sub-item
length

component sub-item
count

elements 29-34 repeat for as
many components as were
returned in element 28.

If the component was typecast
during installation, that type is
reflected.

Describes
other keys
grouped with
the referenced
key

word 1:
data set
name or
number,
word 9:
(optional)
followed
by a data
item (or
OMNIDEX
key) name
or number

number of keys in
group

set number of key in
group

item number of key
in group

Elements 2 and 3 repeat for as
many grouped keys as appear
in element 1.

Table 2-11: DBINFO mode values

is the name of the array that contains the returned information

is the name of an array of 10 16-bit words used to return information
about the success of a call. See Table 2-1, on page 2-7, for a list of error
condition codes.

Word 2 contains the number of words of information returned to the buffer
parameter.

OMNIDEX API Guide 2-127

DBINFO Standard Interface to Third Party Indexing

Calling errors and exceptional conditions

OMNIDEX calling errors
-3501 Dset not an IMSAM data set

-3502 Item not an IMSAM key

-3505 Not an OMNIDEX keyword field

2-128 OMNIDEX API Guide

Chapter 3: Programming

This chapter describes how to call the OMNIDEX and TPI interfaces from
within application programs.

O "W riting Programs", on page 3-2, discusses some general aspects
of programming, including opening the database, updating
records and retrieving data by calling the OMNIDEX intrinsics. It
also provides examples of 3GL applications through COBOL and
FORTRAN.

□ "Linking and Testing Programs", on page 3-33, discusses
preparing programs, linking and testing programs, and program
capabilities.

□ "Interfacing with 3GLs", on page 3-40, presents COBOL source
code examples of programs that perform various OMNIDEX
retrievals. It is divided into two sections: one that presents
OMNIDEX Intrinsic Interface examples, and one that presents
Standard Interface to Third Party Indexing examples.

□ "Interfacing with 4GLs", on page 3-60, discusses the 4GLs that
interface with OMNIDEX.

Other publications, which discuss how to write OMNIDEX applications
in a variety of programming languages, are available from DISC. These
can be obtained for free by contacting your DISC sales representative or
the DISC Response Center.

Before writing programs to access or update OMNIDEX-enhanced
databases, programmers should be familiar with OMNIDEX's access
capabilities. The "Intrinsics" chapter describes the syntax of the
OMNIDEX and TurboIMAGE intrinsics, as called through your
application programs.

OMNIDEX API Guide 3-1

Writing Programs

Introduction
OMNIDEX offers programmers a choice of developing applications using
either of two sets of intrinsics:

O the OMNIDEX Intrinsic Interface

O the Standard Interface to Third Party Indexing, also known as
"the TPI Interface"

This section discusses some basic functions of each of the two intrinsic
interfaces mentioned above. It tells how to:

□ open a database

□ update records and the corresponding indexes

O retrieve records using OMNIDEX capabilities

O retrieve records using the Standard Interface to Third Party
Indexing

The OMNIDEX Intrinsic Interface
The intrinsics for the OMNIDEX Intrinsic Interface reside in
XLOMNIDX.PUB.SYS. Programs that use the OMNIDEX Intrinsic
Interface exclusively should reference this library. See Appendix C of the
O M N ID E X ImagePlus SDK Administrator's Guide for complete information
about referencing XLs.

Opening databases
When developing OMNIDEX Intrinsic Interface applications, use the
DBIOPEN intrinsic to open databases. This can be done by calling
DBIOPEN directly in XLOMNIDX.PUB.SYS, or by calling either
DBOPEN or DBIOPEN and referencing the Call Conversion library
(XL.PUB.DISC) when linking a program, or in a RUN statement.

3-2 OMNIDEX API Guide

Writing Programs The OMNIDEX Intrinsic Interface

DBIOPEN performs two functions that are crucial for subsequent access
to the database:

1. DBIOPEN calls DBOPEN to open the database.

2. DBIOPEN allocates space for the OMNIDEX local control blocks
(OLCB and ILCB).

Updating data
When you update OMNIDEX-enhanced tables, you must also update any
OMNIDEX indexes created for keys in those tables. Three OMNIDEX
general intrinsics are used to update tables, and to automatically update
any related indexes. They are:

DBIPUT to add records

DBIUPDATE to change data in existing records

DBIDELETE to remove records

These OMNIDEX intrinsics correspond directly to the TurboIMAGE
update intrinsics. The syntax for calling these intrinsics, which is
discussed in the "Intrinsics" chapter, is identical to the syntax for calling
TurboIMAGE update intrinsics. When programs are run through Call
Conversion, any call to a TurboIMAGE update intrinsic is automatically
converted into a call to its equivalent OMNIDEX general intrinsic.

The OMNIDEX update intrinsics have three mode options. Each of them
provides a different method of updating keyword and sorted keys. These
modes are:

□ normal mode

□ TurboIMAGE-only mode

□ index-only mode

Normal mode
Normal mode is the most commonly used update mode. It is available for
the DBIPUT, DBIUPDATE and DBIDELETE intrinsics.

By calling any of these intrinsics with mode 1, the specified data record
and the OMNIDEX indexes are updated immediately. This is the
recommended mode for online applications.

OMNIDEX API Guide 3-3

TurbolMAGE-only mode
TurboIMAGE-only mode is used when you want to update tables
without updating their associated indexes. This mode is available for
DBIPUT and DBIDELETE by adding 100 to the mode parameter value
when calling these intrinsics.

This mode is typically used when performing large batch updates to
reduce update overhead. After the data is added or updated in
TurboIMAGE-only mode, the indexes must be reloaded using OmniUtil.

TurboIMAGE-only mode is not recommended for online applications
unless keyword retrieval and sorted-sequential access on tables are not
required immediately after updating. To selectively defer the updating of
indexes for certain keys during normal mode updates, install the Batch
Indexing (BI) option in them. See the OMNIDEX ImagePlus SDK
Administrator's Guide for more information.

Index-only mode
Index-only mode is used when you want to update the OMNIDEX
indexes without updating the actual record. This mode is available for
DBIPUT and DBIDELETE only, and is specified by adding 200 to the mode
parameter value when calling these intrinsics.

Error handling
Errors are handled differently for OMNIDEX applications than for
TurboIMAGE applications. The most noticeable difference is
OMNIDEX's use of a 21 word status array. This enables OMNIDEX
intrinsics to handle OMNIDEX errors using word 11. TurboIMAGE
errors still can be handled in the first 10 words of status.

There are two types of error handling:

□ Active error handling, the default, where errors incurred while
updating OMNIDEX indexes are reflected in words 1 and 11 of
the status parameter

O Passive error handling, where errors incurred while updating
OMNIDEX indexes are reflected in words 11 and 12 of the status
parameter, and remain transparent to a TurboIMAGE designed
application

3-4 OMNIDEX API Guide

Writing Programs The OMNIDEX Intrinsic Interface

"Active error handling" is discussed first, and "passive error handling" is
discussed last.

Active Error Handling
The words of the status parameter that are used to return OMNIDEX and
TurboIMAGE error conditions are words 1-10, and 11. Word 1 is used as
the TurboIMAGE condition word and the OMNIDEX error indicator.
Words 1-10 are used to return information about TurboIMAGE errors.
Word 11 is used as the OMNIDEX condition word. Programs commonly
terminate when extraordinary errors occur, as indicated by the value in
status Word 1. Most programs, especially those running through Call
Conversion, treat OMNIDEX conditions 888 and 999 as extraordinary
conditions.

The table below summarizes the use of the status parameter.

status w ord l
va lue

status w ord 11
va lue

Ind ica tion

0 0 Successful execution; no errors and
no warnings

+888 negative OMNIDEX (keyword key) calling
error

+888 positive OMNIDEX (keyword key) excep­
tional condition

+999 negative IMSAM (sorted key) calling error

+999 positive IMSAM (sorted key) exceptional
condition

other
nonzero

0 Primary TurboIMAGE call error

Table 3-1: Status word values fo r norm al (active) error handling

The various status words and their values under active error handling are
discussed next.

OMNIDEX API Guide 3-5

Status word 1
Status word values correspond to the presence or absence of errors as
follows:

If status word 1 (the TurboIMAGE condition word) is zero (0), the intrinsic
call is successful and status word 11 (the OMNIDEX condition word) does
not contain a valid error value.

If Status word 1 is not zero (0), an error has occurred. Therefore, the
TurboIMAGE condition word (word 1) should be checked for the success
or failure of an OMNIDEX intrinsic.

There are three categories of errors: IMSAM (sorted key) errors,
OMNIDEX (keyword key) errors and TurboIMAGE call errors.

□ If an IMSAM error has occurred, status word 1 is set to +999.

O If an OMNIDEX error has occurred, status word 1 is set to +888. In
either case, status word 11 is set to the value corresponding to the
particular error.

O Otherwise, if status word 1 is nonzero, a TurboIMAGE error has
occurred.

TurboIMAGE errors
Status word 1 contains the TurboIMAGE condition word. It is 0 (zero) if an
OMNIDEX intrinsic executes successfully.

Status words 1-10 contain the status information returned in the primary or
secondary TurboIMAGE call made by an OMNIDEX intrinsic.

OMNIDEX general intrinsics call TurboIMAGE intrinsics to update a
TurboIMAGE entry or record. In a normal mode, for example DBIPUT
calls DBPUT to add the entry passed in the buffer parameter. If this
DBPUT is successful, various secondary calls to file system intrinsics are
then made to update any associated indexes. If this DBPUT fails, a
primary TurboIMAGE error is said to have occurred.

For example, referencing a nonexistent table (data set) in the dset
parameter or passing a bad item list in the list parameter would yield a
primary TurboIMAGE call error.

If one of the secondary intrinsic calls fails, a secondary error is said to
have occurred. Some examples of secondary errors are when an index is
full, the OMNIDEX root file is damaged, the database was structurally

3-6 OMNIDEX API Guide

Writing Programs The OMNIDEX Intrinsic Interface

altered without reinstalling OMNIDEX, or a problem exists in the
IMSAM or OMNIDEX software.

In a secondary call failure, status words 1-10 contain the TurboIMAGE
condition word resulting from the unsuccessful call, and status word 11
contains an OMNIDEX internal error code. The contents of status words 2-
10 depend on the OMNIDEX intrinsic in question.

TPI Errors
Under Hewlett-Packard's Standard Interface to Third Party Indexing, it is
possble to encounter OMNIDEX errors when using TurboIMAGE
intrinsics to perform searches and updates to OMNIDEX databases. TPI
errors are returned to the status array just like any other TurboIMAGE
error.

TPI/OMNIDEX errors are distinguished from TurboIMAGE errors in
that they use four-digit error that begin with the number "3". The
remaining three digits correspond to an OMNIDEX error code. For
example, if you were calling DBPUT to add a record to a data set and
incurred error 3141, it is the same as a DBIPUT error 141 IMSAM tree
is full.

Status word 11: OMNIDEX and IMSAM Errors
If status word 1 is 888 or 999, and status word 11 (the OMNIDEX condition
word) is also nonzero then an OMNIDEX or IMSAM error has occurred.
The values for word 11 are discussed next.

Negative values for word 11 indicate calling errors. Calling errors are
essentially syntactical, and result in the inability to execute a call
successfully. For example, trying to read an entry in sorted-key sequence
from an item that is not a sorted key would yield a calling error.

Positive values for word 11 indicate exceptional conditions. Exceptional
conditions are incurred after a call has been executed. They prevent the
return of the data requested in the call. Trying to read in sorted key
sequence past the end of file would yield an exceptional condition error.

Each OMNIDEX intrinsic uses a specific range of condition word values
to return exceptional conditions and calling errors in status word 11.
Exceptional conditions use positive values and calling errors use negative
values.

OMNIDEX API Guide 3-7

The values used by each intrinsic are:

Status Word 11 Intrinsic Error

100s DBIPUT

200s DBIFIND or ODXFIND

300s DBIGET, ODXGET or ODXGETWORD

400s DBIDELETE

500s DBIINFO or ODXINFO

600s DBIUPDATE

700s Miscellaneous

800s ODXTRANSFER or ODXVIEW

900s DBIOPEN

A list of condition word values is included after the "Discussion" section
of each intrinsic in chapter 2. Error condition word values and their
messages are also listed in a file called ODXERROR in PUB.DISC. Call
DBIERROR and DBIEXPLAIN to interpret OMNIDEX condition words.

Getting information about errors
To get help on any error condition, use OmniUtil's Show Information
function. To run OmniUtil, enter the following run statement at a system
prompt:

RUN OMNIUTIL.PUB.DISC

From the main menu, select 3 . Show Information. Then select 3 .
Messages, and then, 1. OMNIDEX/IMSAM API. Enter an error number
or any word from an error message and OmniUtil displays a list of errors.
You can get information about any error from the list by using your
cursor keys to highlight it and pressing [return].

V lf you are using OmniUtil to look up a 3000 series (TPI) error message, try
entering the error number without the initial "3". For example, if you get
error 3141 and there is no information listed for that number, enter 141 to
get information about its OMNIDEX counterpart. The information listed for
OMNIDEX errors is equally valid for their corresponding TPI errors.

If you receive a value that is not listed, it is an internal error and you
should call the DISC Response Center at (303) 444-6610.

3-8 OMNIDEX API Guide

Writing Programs The OMNIDEX Intrinsic Interface

Passive Error Handling
Sometimes, third-party applications are used to update an OMNIDEX-
enhanced database. These third-party applications are not equipped to
interpret or handle OMNIDEX errors, especially indexing errors. So, when
they are run through Call Conversion to automatically update the
OMNIDEX indexes, and they incur an indexing error, they may terminate.

V Passive error handling is not supported forTPI-enabled databases.

Passive error handling prevents OMNIDEX indexing errors from termi­
nating a TurboIMAGE oriented application. This is accomplished by using
status word 12 as the OMNIDEX error indicator. Because primary and
secondary TurboIMAGE call errors are not returned to word 1, the calling
application continues to run, even if an indexing error has occurred.

So, while OMNIDEX indexes may be corrupted, the application continues
to update TurboIMAGE records. At the first indication of an error, an
error message is sent to the console. Indexing errors are then logged to a
passive error log file, as discussed next.

The use of the status parameter for passive error handling differs from
active error handling in that word 12, not word 1, is used as the
OMNIDEX error indicator. Table 3-2, on the opposite page, summarizes
the use of the status parameter under passive error handling.

Word 12
va lue

Word 11
va lue

Ind ica tion

0 0 Successful execution; no errors and
no warnings

+888 negative OMNIDEX calling error

+888 positive OMNIDEX exceptional condition

+999 negative IMSAM calling error

+999 positive IMSAM exceptional condition

other nonzero 0 Primary TurboIMAGE call error;
data written to log file

other nonzero positive Secondary TurboIMAGE call error;
data written to log file

Table 3-2: Status word values for passive error handling

OMNIDEX API Guide 3-9

The OMNIDEX Intrinsic Interface Writing Programs

Enabling or Disabling Passive Error Handling
To enable passive error handling you must set a flag in either the
OMNIDEX Intrinsics XL (XLOMNIDX.PUB.DISC) or in the OMNIDEX
call conversion XL (XL.PUB.DISC) depending on which XL your
programs reference.

If you set the flag in XLOMNIDX, and copy XLOMNIDX to
XLOMNIDX.PUB.SYS, you enable system-wide passive error handling
for all programs that write to OMNIDEX indexed databases that are not
TPI-enabled. By setting the flag in XL.PUB.DISC, only programs that
reference the XL (or a copy of the XL) participate in passive error
handling.

To enable (or disable) the passive error handling flag, perform the
following steps:

1. Log on to the DISC account.

2. Run SETUP.PUB.

3. Choose menu option 6, Configure product library.
4. Choose menu option 1 , Configure Passive Error

Handling.
5. Enter the name of the library you want to configure.

6. Highlight the appropriate button to enable or disable PEH using
the arrow keys, and press [return].

7. Copy the XL to the appropriate location so that it is referenced by
your programs.

Regardless of which XL is designated to contain the PEH flag, programs
must reference XL.PUB.DISC for passive error handling to work.

The Error Log File
An error log file is a permanent file created for each database where
passive error handling is installed. Its name consists of the database's
name plus the suffix "LG ". The file is created in the database's group. For
example, the log file for a database named "SALES" that resides in the
DEMODB group of the DISC account would be created as
SALESLG.DEMODB.DISC.

3-10 OMNIDEX API Guide

Writing Programs The OMNIDEX Intrinsic Interface

The error log file is a 256 byte, 50,000 record, ASCII file. The record layout
for the error log file is shown below.

Bytes Length Contents

1-8 8 bytes session number

9-36 28 bytes session name

37-66 30 bytes program/process name

67-86 20 bytes date stamp

87-96 10 bytes time stamp

97-112 16 bytes intrinsic name

113-140 28 bytes database name

141-158 18 bytes data set name

159-162 4 bytes condition number (normally written to status
word 1)

163-168 4 bytes OMNIDEX/IMSAM error or exceptional condi­
tion number (normally written to status word 11)

169-240 72 bytes OMNIDEX/TurboIMAGE error message

Table 3-3: The passive error log file

The error log file is automatically created the first time an error occurs.
However, if a program is updating a database in an account other than
the user's logon account, OMNIDEX cannot create the log file. This is
because of an MPE restriction that prevents programs from building files
across accounts. If programs log errors to a file in an account other than
the program user's logon account, you must create the log file manually
using the following BUILD statement:

BUILD logfile;REC=-256,1,F,ASCII;DISC=50000;CODE=7688

OMNIDEX API Guide 3-11

The OMNIDEX Intrinsic Interface Writing Programs

Logging Error Transactions
When passive error handling is enabled, and an internal OMNIDEX error
occurs during a call to DBIOPEN, DBILOCK, DBIUPDATE, DBIPUT,
DBIDELETE, or DBICLOSE, the first indexing error is echoed to the
console and logged in the error log file, which is discussed later. The
message looks something like this:

OMNIDEX communication from program-. Error accessing
database dbname, data set setname. error message.

Subsequent errors are logged to the error log file only, and are not echoed
to the console until the database is closed. The first error after the next
DBIOPEN is again echoed to the console.

If an OMNIDEX index was corrupted as a result of an internal error, the
passive error log file is created, flagging the database as having corrupt
indexes.

Finding Indexing Errors
There are a variety of ways to tell if an index was corrupted under
passive error handling. They are:

□ Open a database. DBIOPEN always checks the error log file for a
"corrupt" flag. If such a flag has been set, DBIOPEN returns a
warning to the console:

OMNIDEX communication from program: Previous
indexing errors found for database dbname in
file file.group.account.

O Check the error log file. The error log file provides a wealth of
information about the date, time, affected data, and the nature of
the errors that corrupted an index. The log file is discussed later.

O Call DBIINFO in mode 427. Mode 427 can be used to
programmatically check to see if the indexes have been corrupted
for any data set. See the DBIINFO listing of the Intrinsics chapter
for more information about DBIINFO.

3-12 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

Correcting Indexing Errors
When a corrupt index is indicated by any of the three means described
earlier, you must fix the index before performing any retrievals against its
keys. To do this, use the OmniUtil Reindexing Options menu to reindex
the entire database. This fixes any indexing discrepancies and purges the
passive error log file.

OMNIDEX keyword retrieval
To do keyword retrievals on an OMNIDEX-keyed table (data set), use the
OMNIDEX keyword retrieval intrinsics, ODXFIND and ODXGET.

1. Call ODXFIND to locate the keywords in the indexes and create a
list of qualifying OMNIDEX IDs for the records that contain
them.

2. Call ODXGET to retrieve the record identifiers for the qualifying
records.

3. Call DBGET or DBIGET to retrieve each actual record using the
OMNIDEX SI value or relative record number.

The following examples are common scenarios for databases enhanced
with OMNIDEX. The required intrinsic calls are described for each. Note
that the last example describes how to view documents in the document
management system after using keyword retrieval to qualify them.

On a master set
Keyword retrieval on a master set depends on whether there is only one
group or key, or several groups or keys.

OMNIDEX API Guide 3-13

OMNIDEX keyword retrieval Writing Programs

O n e g ro u p or key
To retrieve records based on a keyword search against one group or key,
perform the following intrinsic calls:

1. Call ODXFIND (mode 1 ,2 ,3 , or 5) to find the records qualified by
the keywords specified in the keyword list. The records are
represented by their IDs, which are stored in memory as an
internal ID list.

2. Call ODXGET (mode 1) to return the OMNIDEX SI values
(TurboIMAGE search items) for the records that qualified to the
calling application. The number specified in the si-count parameter
tells ODXGET how many Sis to return. Repeat this call to return
the next number (si-count) of OMNIDEX Sis. These Sis are passed
to DBIGET or DBGET in the next step.

3. Call DBGET or DBIGET (mode 7) to return records to the calling
application. The Sis returned from step 3 are passed through the
argument parameter. Repeat this call for each OMNIDEX SI that is
returned by ODXGET.

Severa l groups or keys
The program calls that are necessary for retrieval by multiple groups or
fields are:

1. Call ODXFIND (mode 1, 2, 3, or 5)

Returns the OMNIDEX IDs of records qualified by the keywords
specified for the first group or key. These IDs are stored in
memory as the internal ID list. ODXFIND also returns the number
of records that qualify for each search to the status array.

2. Call ODXFIND (mode 1 ,2 , 3, or 5). Repeat for as many keys as
you want to search.

To continue a search across several fields, you must reload the
internal ID list of the previous search. To do this, begin the
keyword list with a leading AND or OR operator. A leading AND
intersects the list of IDs qualified by the current ODXFIND
(keyword search) with the IDs in the internal ID list. A leading
OR unites the list of IDs qualified by the current ODXFIND
(keyword search) with the IDs in the internal ID list. A leading
AND NOT eliminates the list of IDs qualified by the current
ODXFIND (keyword search) from the IDs in the internal ID list.

3-14 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

Note that all operations specified in the keyword list are
performed before the leading Boolean operation. This qualifies
records, which are then intersected with, united with, or
eliminated from, the internal ID list, based on the leading
Boolean operator.

After each search, ODXFIND returns a count of how many
records qualified for the current search, and how many records
are represented in the internal ID list.

A leading NOT operator begins a new search and overwrites the
internal ID list.

3. Call ODXGET (mode 1) after you are finished searching for
records.

This returns the record identifiers (OMNIDEX SI values) of
records that qualified. The number specified in the si-count
parameter determines how many Sis are returned by each
ODXGET. Repeat this call to return the next number (si-count) of
OMNIDEX Sis. These Sis are passed to DBIGET or DBGET in the
next step.

4. Call DBGET or DBIGET (mode 7) to return records to the calling
application. The Sis returned from step 3 are passed through the
argument parameter. Repeat this call for each OMNIDEX SI that is
returned by ODXGET.

On a detail set
As with master sets, keyword retrieval on detail sets depends on whether
you search one group or key, or several groups or keys. It also depends
on whether the detail set contains record complex (RC) fields. Usually,
keys in detail sets index keywords with each detail record's relative
record number. Record complex keys, however, index keywords with the
OMNIDEX master sets' Sis, as record complexes.

OMNIDEX API Guide 3-15

OMNIDEX keyword retrieval Writing Programs

D efau lt (re c o rd spec ific) keyw o rd keys
Keyword retrieval on a detail set with normal keyword keys retrieves
individual detail records and requires the following program calls:

f . Call ODXFIND (mode 1, 2, 3, or 5)

Returns the IDs of detail records qualified by the specified
keywords. The qualifying count returned to the status array
contains the number of detail records qualified. You can call
ODXFIND mode 30 to convert the IDs in the ID list (and the
qualifying count) to reflect record complexes.

2. Call ODXGET (mode 11)

Returns the relative record number for the first detail record
represented in the ID list. Repeat this call for each detail record.
The relative record numbers are then passed to DBGET or
DBIGET in step 3.

3. Call DBGET or DBIGET (mode 4)

Retrieves the first detail record. Repeat this call for each detail
record.

To return search items to the calling application, either use ODXGET
mode 1 or 21 (which could return duplicate Sis) or compress the ID list by
calling ODXFIND mode 30 (which will not return duplicate Sis).

Unlinked (DR) d e ta il set
Keyword retrieval on an unlinked detail set returns individual detail
records and requires the following program calls:

1. Call ODXFIND (mode 1, 2, 3, or 5)

Returns the IDs of detail records qualified by the specified
keywords. The qualifying count returned to status reflects
individual detail records. This count cannot be converted to
record complexes.

2. Call ODXGET (m od el)

Returns the record number for the first detail record. Repeat this
call for each detail record.

3. Call DBGET or DBIGET (mode 4)

Retrieves the first detail record. Repeat this call for each detail
record.

3-16 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

R ecord c o m p le x keys
Record complex keys on detail tables (data sets) index keywords and the
record complexes that contain them. Therefore, record complex keys
qualify the OMNIDEX master records (and their record complexes) of the
details on which they are installed. The program calls necessary for
keyword retrieval on record complex keys are:

1. Call ODXFIND (mode 1,2, 3, or 5)

Returns the IDs of OMNIDEX record complexes (represented by
their masters' Sis) qualified by the specified keywords. The
qualifying count reflects the number of OMNIDEX masters (and
their record complexes) that qualified.

2. Call ODXGET (m o d el)

Returns the OMNIDEX SI values (the TurboIMAGE search items)
for the record complexes that qualified.

Because OMNIDEX returns the search item values, you must also
read the chain defined by each search item to view individual
detail record. The number in the si-count parameter determines
how many Sis are returned by each ODXGET. Repeat this call to
return the next number of OMNIDEX Sis as specified in si-count.

3. Call DBFIND or DBIFIND (mode 1)

Uses the OMNIDEX SI value to set up a pointer at the chain head
defined by the first SI. To perform a chained read of the detail
records in that chain, go on to step 4. Repeat this call for each
OMNIDEX SI value.

4. Call DBGET or DBIGET (mode 5)

Retrieves each detail record in the chain. Repeat this call to read
all entries in a chain. To read the next chain, repeat step 3.

OMNIDEX API Guide 3-17

OMNIDEX keyword retrieval Writing Programs

Severa l reco rd c o m p le x keys
The program calls for keyword retrieval on a detail using multiple
groups or fields are:

1. Call ODXFIND (mode 1, 2, 3, or 5)

Returns the number of OMNIDEX IDs (record complexes)
qualified by the keywords specified for the first group or field.

2. Call ODXFIND (mode 1, 2, 3, or 5)

To reload the internal ID list from the previous ODXFIND, begin
the keyword list with a leading AND or OR operator, as described
on page 3-14, followed by the keyword arguments you want to
specify for the current key.

Repeat this call for each additional group or key. This ODXFIND
merges the internal ID list qualified by the previous ODXFIND
with the IDs of records qualified in this call. Two qualifying
counts are returned to the status array. One (words 7-8) reflects
the number of records qualified by the keywords in this call, the
other (words 3-4) reflects the number of records in the new
internal ID list.

3. Call ODXGET (m o d el)

Returns the OMNIDEX SI values (the TurboIMAGE search items)
for the record complexes that qualified.

Because OMNIDEX returns the search item values, you must also
read the chain defined by each search item to view individual
detail record. The number in the si-count parameter determines
how many Sis are returned by each ODXGET. Repeat this call to
return the next number of OMNIDEX Sis as specified in si-count.

4. Call DBFIND or DBIFIND (m o d el)

Uses the OMNIDEX SI value to set up a pointer at the chain head
defined by the first SI. To perform a chained read of the detail
records in that chain, go on to step 5. Repeat this call for each
OMNIDEX SI value.

5. Call DBGET or DBIGET (mode 5)

Retrieves each detail record in the chain. Repeat this call to read
all entries in a chain. To read the next chain, repeat step 4.

3-18 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

Other OMNIDEX retrievals
OMNIDEX also can retrieve only a qualifying count or retrieve only
keywords.

Q ualify ing co u n t
To retrieve only a qualifying count (not the records), the program call is:

Call ODXFIND (mode 1, 2, 3, or 5)

Returns the number of OMNIDEX IDs qualified by the keywords
specified.

Q u alify a n d re trieve on ly keyw ords
To retrieve only keywords, the program calls are:

1. Call ODXFIND (mode 10 or 11)

Returns the number of keywords that qualify, keywords must
contain a single range or generic keyword argument.

2. Call ODXGETWORD (mode 1 or 2)

Returns the first keyword that qualified. Repeat this call to
retrieve each qualifying keyword.

Multifind retrievals
Multifind lets you search across domains, and even databases, using data
returned from one set of keyword searches (in the source set) as
arguments against a key in the target set. This target set can reside in
another domain or database.

Once the Multifind search is complete, an internal ID list is established in
the target domain or database. Then, you can progressively qualify
records by searching other keyword keys in the target domain.

M ultifind from m em o ry
To do Multifind retrievals from memory, an OMNIDEX key in the target
domain must contain values common to the OMNIDEX search item of
the source domain. For example, if the OMNIDEX SI of the source
domain is PRODUCT-NO, you can retrieve records in another domain
against a PRODUCT-NO keyword key.

OMNIDEX API Guide 3-19

OMNIDEX keyword retrieval Writing Programs

To Multifind from memory:

1. Perform a keyword search as described above. To use Multifind
from memory, you must qualify record complexes (Sis) as
described for master tables (on page 3-13) and record complex
keys (on page 3-17). You can also search the keyword keys of
detail tables, but you must compress the ID list to reflect Sis, as
described on page 3-16.

2. Call ODXFIND (mode 1, 2, 3, or 5) and reference a keyword key
in the target domain.

The field parameter references the keyword key in the target
domain that corresponds to the OMNIDEX search item in the
source domain. For example, PRODUCT-NO is the SI of the
PRODUCTS master. It is also present as a keyword key in the
ORDER-LINES detail, which is linked to the CUSTOMERS
master (and domain). Therefore, you can use the PRODUCT-NO
key of the ORDER-LINES detail as the target for a Multifind, after
searching for PRODUCTS records.

The keywords parameter should contain an ampersand (&)
followed by a semicolon (;) . This causes OMNIDEX to use the
search items qualified in the first domain (PRODUCTS) as
keyword arguments against the target key (PRODUCT-NO of
ORDER-LINES).

This call to ODXFIND establishes an internal ID list in the target
domain (if the Multifind qualifies records).

3. You can progressively qualify records in the target domain by
performing additional calls to ODXFIND on other keyword keys.
Be sure to use a leading AND or OR, as described on page 3-14.

M ultifind from a file
You can do Multifind retrievals using data from fields in the source set
that are not OMNIDEX search items. To do this, you must first create a
file containing data from a field in the source domain. This file can then
be used as input for an OMNIDEX retrieval in the target domain.

1. Call ODXFIND (mode 1, 2, 3, or 5) on a key in the set of the
source domain.

Returns the number of OMNIDEX IDs qualified by the keywords
specified. Repeat this call for all desired keyword groups or
fields, using a leading AND or OR in the keyword list to reload
the internal ID (record) list from the previous ODXFIND.

3-20 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

2. Call ODXTRANSFER (mode 1 or 2, or mode 101 or 102).

To transfer values from a field that is also the OMNIDEX search
item, call ODXTRANSFER mode 1 (for a new file) or 2 (to append
to a file). Since OMNIDEX search items are stored internally, this
process is extremely fast.

To transfer values from a field other than the OMNIDEX search
item, call ODXTRANSFER mode 101 (for a new file) or 102 (to
append to a file). The control parameter of ODXTRANSFER
should contain the table and item name of the field being
transferred. This option is useful when the source of the data is
an unlinked detail and the target is a master. Although
OMNIDEX does not index the Sis of an unlinked detail, you can
use ODXTRANSFER mode 101 to write them to a file for use
against a keyword key installed on the SI of the corresponding
master.

When using ODXTRANSFER mode 101 or 102, the data
transferred to the Multifind file can include anything that could
establish a link between the source domain and the target
domain. This could be dates, for example, or state abbreviations.

Because OMNIDEX must retrieve each qualified master record to
transfer the contests of the field referenced in control, mode 101
calls to ODXTRANSFER are much slower than mode 1 or 2 calls
to ODXTRANSFER.

3. Call ODXFIND (mode 1 ,2 , 3, or 5) against a keyword key in the
target domain that establishes a correspondence with the source
domain.

The field parameter should reference a key that contains values
corresponding to the data transferred to the file. The keywords
parameter should contain an ampersand (&), followed by the
file name specified in the call to ODXTRANSFER, terminated by
a semicolon (;) .

OMNIDEX uses the values contained in the file as keyword
arguments against the target key.

4. You can progressively qualify records in the target domain by
performing additional calls to ODXFIND on other keyword keys.
Be sure to use a leading AND or OR, as described on page 3-14.

E
OMNIDEX API Guide 3-21

OMNIDEX keyword retrieval Writing Programs

Sorted access
The following examples describe possible scenarios for partial-key and
sorted-sequential retrievals against sorted keys, and the intrinsic calls for
each. Note that although partial-key and sorted-sequential retrievals are
described separately, they are usually combined.

In most sorted key retrievals, DBIGET is the only intrinsic used.

The only exception to this is using a sorted key that is also the search item
in a master set. If you want to read the detail chain for a master record,
you must first call DBIFIND to set up chain pointers to the detail(s).

For sorted key retrievals using DBIGET, it does not matter whether the
sorted key is for a master set or a detail set.

The following examples show standard sorted key retrievals and sorted
key retrievals that set up the chain head.

Note that mode 100 is =, 200 is >, 300 is >=, 400 is <, and 500 is <=.

Also note that for each partial-key retrieval using DBIGET or DBIFIND,
the length of the partial-key value used in the search must be added to
the mode. This is described after the examples.

Partial-key retrieval
To do a partial-key retrieval on a master set or detail set that contains a
sorted key or composite key, the program calls are:

1. Call DBIGET (mode 100, 200, 300, 400 or 500 plus the number of
words or bytes of the partial key value. A negative mode
indicates bytes, a positive mode indicates words.)

Returns a record to the specified buffer area of the calling
program. This record is the first record in sequence that qualifies
based on the partial-key value and the mode used.

3-22 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

Sorted sequential retrievals
To do sorted-sequential retrievals on a master or detail set that contains a
sorted key or composite key, the program calls are:

1. Call DBIGET (mode 100, 200, 300, 400 or 500)

Retrieves the first record in sequence and sets up a pointer to
subsequent records.

2. Call DBIGET (mode 90 or 91)

Retrieves the next record in sequence. Repeat this call to retrieve
all the subsequent records in sequence by key.

Values are stored in a sorted key index as follows:

□ For a sorted key that is also a TurboIMAGE search item in a
master table (data set), the key stored in the index is the
TurboIMAGE search item value.

□ For a sorted key that is not a TurboIMAGE search item in a
master table, the key stored in the index includes the sorted key
value plus the TurboIMAGE search item value.

For example, a master table might have an X2 field called STATE
specified as a sorted key and an X4 TurboIMAGE search item
called ACCT. If the values in these fields for a particular record
are ACCT = 1234 and STATE = CO, the full internal key value in
the index would be C 01234.

□ For a sorted key in a detail table, the key stored in the index
includes the sorted key value plus the relative record number.

For example, if STATE was a sorted key and ACCT was the
TurboIMAGE search item in a detail table, the key in the index
would be CO plus the record number. If the record number was
978, the full key would be CO (978) where (978) is a double-word
integer value.

For more information about record numbers, see the DBGET
intrinsic, mode 4, in the TurboIMAGE manual.

You must determine programmatically when to terminate the index
sequential reads. DBIGET does not return an exceptional condition on a
sequential read unless the beginning (i.e., the first key) or end (i.e., the
last key) of a file is reached.

OMNIDEX API Guide 3-23

OMNIDEX keyword retrieval Writing Programs

Setting up ch a in h ea d s
To do a partial-key retrieval on a detail using a search item that is a sorted
key in the associated master, the program calls are:

1. Call DBIFIND (mode 100,200, 300, 400 or 500 plus the number of
words or bytes of the partial value)

Points to the first SI in sequence and calls DBFIND on that SI.

2. Call DBGET or DBIGET (mode 5)

Retrieves the first detail record using a standard TurboIMAGE
chained read. Repeat this call for all the records you want to
retrieve from the chain.

The program calls to perform sorted-sequential retrievals on a detail set
using a search item that is a sorted key in the associated master are as
follows:

1. Call DBIFIND (mode 100, 200, 300, 400 or 500)

Points to the first detail in a chain for the first qualifying key
value.

2. Call DBIGET or DBGET (mode 5)

Retrieves the first detail record using a standard TurboIMAGE
chained read. Repeat this call for all the records in the chain that
you want to retrieve.

3. Call DBIFIND (mode 90 or 91)

Retrieves the next SI in sequence and calls DBFIND on that SI.

4. Call DBIGET or DBGET (mode 5)

Retrieves the first detail record using a standard TurboIMAGE
chained read. Repeat this call for all the records in the chain that
you want to retrieve.

Using p artia l keys
When you do sorted partial-key retrievals, you must specify how many
words or bytes are to be used for comparison during the sorted key
search. To do this, add the length of the partial value specified by the user
to the base mode value of 100, 200, 300, 400 or 500. A positive value
specifies the length in words, while a negative value specifies the length
in bytes. For example, 104 means the partial key is 4 words long, while a
mode of -104 means the partial key is 4 bytes long.

3-24 OMNIDEX API Guide

Writing Programs OMNIDEX keyword retrieval

For example, the following values might be indexed for a sorted key
called DATE:

871215
880101
880202
890107
890108
890109

If you use the value 88 as an argument against the DATE sorted key, the
following table illustrates which mode values would return which date
values.

Mode v a lue Relational Key va lue
O peration retrieved

100 (denotes full key) = not found

101 (denotes generic) = 880101

200 (denotes full key) > 880101

201(denotes generic) > 890107

300 (denotes full key) >= 880101

301 (denotes generic) >= 880101

400 (denotes full key) < 871215

401 (denotes generic) < 871215

500 (denotes full key) <= 871215

501 (denotes generic) <= 880101

Table 3-4: Exam ples o f D BG E T relational modes

If you do a sorted key retrieval without specifying the word or byte
length to compare for a partial value, an exact comparison is made on the
full length of the key.

OMNIDEX API Guide 3-25

OMNIDEX keyword retrieval Writing Programs

Index-only mode retrievals
Use index-only mode when you want to retrieve a sorted key without the
corresponding record. To perform an index-only mode retrieval using
DBIFIND or DBIGET, add 1000 to the mode value you would normally
use. For example, to get the first key value greater than or equal to the
partial key value "ABCD ", the mode value would be 1302 (or -1304).

For example, you might have a TRANSACTIONS table in a general-
ledger database with a sorted key called TRANS-KEY, which is a
composite key comprised of the transaction DATE and AMOUNT. To
find the transaction amounts for a particular date or month, you would
not need to retrieve the data records themselves. All you would need are
the key values.

For this retrieval, you could use 8701 as a partial value for the argument
in an index-only mode DBIGET on the TRANS-KEY composite key.

This would return all the transactions for January 1987 in sorted-
sequential order.

The calls would be:

1. Call DBIGET (mode 1102)

Retrieves the first key in sequence and sets up a pointer to
subsequent keys.

2. Call DBIGET (mode 1090)

Retrieves the next key in sequence. This can be repeated for
retrievals of the subsequent keys in sequence.

The TRANS-KEY values retrieved for this composite key might
be:

870101 100.01
870102 1874.56
870104 533.94
870110 12.50
870115 19820.34

When you only need key values, index-only mode retrievals improve
performance tremendously. This is because sorted key indexes contain
many keys in each physical record. For the above example, 3 I/Os would
be required to retrieve the first 25 keys and 1 I/O would be required for
every 25 keys thereafter.

3-26 OMNIDEX API Guide

Writing Programs Standard Interface to Third Party Indexing

Conversely, if you use normal mode instead of index-only mode for the
above retrieval, it would require 3 I/Os for the first key and 1 I/O for
each key thereafter. This amounts to 103 I /Os for 100 transactions using
normal mode, versus only 6 1/Os for index-only mode. As you can see,
index-only mode is much more efficient.

Standard Interface to Third Party Indexing
This section discusses how to perform certain functions, including
OMNIDEX searches and retrievals, using the Standard Interface to Third
Party Indexing, also known as "the TPI Interface". Programs that use the
extended TurboIMAGE modes for Third Party Indexing (TPI) should
resolve all TurboIMAGE calls through XL.PUB.DISC, or should access
databases enabled for Third Party Indexing. Note that you must be using
TurboIMAGE version C.04.03 or later to use the Standard Interface to
Third Party Indexing on TPI-enabled databases.

Opening databases
When you open a database using DBOPEN, TurboIMAGE checks to see if
the database is enabled for Third Party Indexing. If OMNIDEX indexes
are enabled, DBOPEN calls the related OMNIDEX routine which will
prepare other intrinsics to use the indexes.

Once a database is enabled for TPI, OMNIDEX indexing is automatically
activated from TurboIMAGE intrinsics. To disable OMNIDEX parsing of
DBFIND arguments for a specific application, add 100 to the DBOPEN
mode.

If a database is not enabled for TPI, run any OMNIDEX application that
access it through the Call Conversion library. The routines in this library
route TurboIMAGE intrinsic calls to the OMNIDEX Intrinsic library,
XLOM NIDX.PUB.SYS.

OMNIDEX API Guide 3-27

Standard Interface to Third Party Indexing Writing Programs

Updating data
Once the OMNIDEX product is installed and a database has been enabled
for OMNIDEX indexing, OMNIDEX indexes are appropriately updated
whenever a TurboIMAGE intrinsic is called. No other changes are needed
by the system manager, the programmer or the user.

You can enable (or disable) OMNIDEX indexes for TPI (and automatic
real-time indexing) using OmniUtil. This can be applied to individual
databases, as discussed in "Enabling/disabling databases for Third Party
Indexing (TPI)" in the "Topics" chapter of the O M N ID E X ImagePlus SDK
Administrator's Guide.

Enabling real-time updates to indexes
You can enable the real-time updating of a database whose indexes are
disabled for TPI. To do this, reference the Call Conversion XL
(XL.PU B.D ISC) in your update program's RUN statement, or link the
program to X L.PU B.D ISC using Hewlett-Packard's Link Editor.
Programs that reference XL.PUB.DISC update indexes in real time,
regardless of whether or not a database's indexes have been enabled for
TPI. This also applies to databases that cannot be enabled for TPI because
their version of TurboIMAGE does not support Third Party Indexing.

Error handling
The TurboIMAGE status array is still ten 16-bit words long. Errors are still
handled by the DBERROR and DBEXPLAIN intrinsics.

The only difference you should be aware of is that there are new error
codes and messages that relate to the new features enabled by
OMNIDEX. These four digit error codes begin with the number "3 ," to
distinguish them from standard TurboIMAGE error codes. The
remaining three digits are identical to the digits that represent the same
error in the OMNIDEX Intrinsic Interface. For example, if you were
calling DBPUT to add a record to a data set and incurred error 3141, it is
the same as a DBIPUT error 141 IMSAM tree is full.
Third Party Indexing error codes are signed to indicate either a calling
error, or an exceptional condition. As with standard TurboIMAGE codes,
a negative value indicates a calling error, a positive value indicates an
exceptional condition. These OMNIDEX calling error numbers are listed
for each TurboIMAGE intrinsic in the "Intrinsics" chapter.

3-28 OMNIDEX API Guide

Writing Programs Standard Interface to Third Party Indexing

The TPI related condition values in TurboIMAGE are summarized below
by the TurboIMAGE intrinsics that failed:

Status word 1 Intrinsic error

3100 DBPUT
3200 DBFIND
3300 DBGET
3400 DBDELETE
3600 DBUPDATE
3900 DBOPEN

Please note that passive error handling is not supported for TPI-enabled
databases. For more help with errors, see "Error handling", on page 3-4.

OMNIDEX keyword retrieval
The TPI Interface does OMNIDEX keyword retrieval much like the
OMNIDEX Intrinsic Interface. The DBFIND intrinsic is used in the same
way as the ODXFIND intrinsic, and the DBGET intrinsic is similar to the
ODXGET intrinsic. The major differences are:

□ DBFIND keyword retrievals use a different order of precedence
for Boolean operations than ODXFIND modes 1, 2 or 3. The
DBFIND precedence is NOT, AND, OR.

□ DBGET returns qualifying records, while ODXGET returns only
search items. If DBGET is used on a detail table after a DBFIND
on a record complex key, it locates the detail chain heads defined
by the qualifying search items. After an ODXGET call, the
application program determines whether to use the search item
to retrieve the master record or the detail records in the chain.

O When performing keyword retrievals in DBFIND, terminate the
argument parameter with a semicolon (;) .

□ The pound sign (#) is parsed as a wildcard. If the argument
includes a pound-sign, enclose it in double quotes (") .

O Spaces are parsed as AND operators. If the argument includes a
space, enclose it in double quotes (") .

□ When searching integer keyword fields, the argument value
should be in character format.

OMNIDEX API Guide 3-29

Standard Interface to Third Party Indexing Writing Programs

To do a keyword retrieval against a keyword key using the TPI Interface,
call DBFIND and DBGET using the new retrieval modes discussed on
page 2-101 and on page 2-117 respectively.

The sequence of intrinsic calls is:

1. Call DBFIND to locate keywords and qualify the records that
contain them (based on the operations specified in the argument
parameter). DBFIND stores a list of OMNIDEX IDs that represent
the qualified records.

2. Call DBGET to retrieve the records identified by the internal ID
list.

One group or field
Whether retrieving on a master or detail table (data set), the intrinsic calls
and programming logic are essentially the same. The intrinsic calls to
search a single OMNIDEX key are:

1. Call DBFIND (mode 12 or 23)

This qualifies records based on the keywords and operations
specified in DBFIND's argument parameter. Mode 12 also returns a
qualifying count, while mode 23 does not. Since there is no
performance penalty in returning the qualifying count, mode 12
is recommended.

You could also use DBFIND mode 1, but for dedicated
OMNIDEX applications, mode 12 or 23 is recommended.

2. Call DBGET (mode 25 or 26)

Retrieves a record from the internal list of all qualified records.
Mode 25 reads forward through the list, while mode 26 reads
backward.

If the program reads to the beginning or the end of the qualified list of
records, a "beginning of chain" or "end of chain" condition is returned.
Consequently, programming for record retrieval on a single OMNIDEX
key is done the same as a TurboIMAGE chained read.

3-30 OMNIDEX API Guide

Writing Programs Standard Interface to Third Party Indexing

Multiple groups or fields
To program for keyword retrievals on more than one key, make additional
calls to DBFIND for each key or group to be searched.

1. Call DBFIND (mode 12 or 23)

Qualifies records based on the keywords specified in DBFIND's
argument parameter. Mode 12 returns a qualifying count, while
mode 23 does not. Since there is no performance penalty for
returning the qualifying count, mode 12 is recommended.

2. Call DBFIND (mode 12 or 23)

Further refines the current (internal ID) list of qualified records
based on the keywords and operations specified in DBFIND's
argument parameter. The argument parameter should begin with an
AND or OR operator. This indicate that the IDs found in this search
should be either intersected (AND) or united (OR) with the IDs of
the previous search, as contained in the internal ID list.

3. Call DBGET (mode 25 or 26)

Retrieves a record from the internal ID list of qualified records.
Mode 25 reads forward through the list, while mode 26 reads
backward.

Sorted access
Retrieving records using sorted keys (IMSAM) is different under the TPI
Interface than the OMNIDEX Intrinsic Interface. The main differences are:

□ The argument passed in the DBFIND intrinsic defines the
boundaries of the entire retrieval. In the OMNIDEX Intrinsic
Interface, a call to DBIGET using an argument value merely
establishes the starting point for a retrieval. It is left to the
application program to decide where to terminate the retrieval.

□ The DBFIND intrinsic can return a count of the number of records
which meet the search criteria.

O Generic or partial key retrievals are specified by using the at sign
(@) character, as opposed to the OMNIDEX Intrinsic Interface
which uses the DBIGET mode value to specify a partial key
retrieval.

□ Sorted key retrievals using DBFIND support pattern matched
retrievals using these "wildcard" characters: #, ?, @.

OMNIDEX API Guide 3-31

Standard Interface to Third Party Indexing Writing Programs

To retrieve records on IMSAM sorted sequential keys, the programming
constructs are similar to the single OMNIDEX key retrieval:

1. Call DBFIND modes l 1, 11, 21, or 22 to locate either the first key
or all keys that qualify for the retrieval criteria. Modes 11 and 22
are used for binary keys (for example, TurboIMAGE type I, J, K,
P, R, and E). Modes 1 and 11 return a qualifying count while
modes 21 and 22 do not. There is a performance penalty for
returning the qualifying count, so if the count is not needed,
modes 21 or 22 are recommended.

2. Call DBGET modes 5, 6 ,15, or 16 to retrieve the records that
correspond to the qualifying keys. Modes 5 and 15 read forward
in the sorted sequential order, while modes 6 and 16 read
backward. Modes 5 and 6 return an "end of chain" or "beginning
of chain" condition when the last or first qualified key in the
chain is reached. Modes 15 and 16 read in sorted sequential
order, regardless of the chain boundaries or pattern matching
characters used. Modes 15 and 16 return an "end of file" or
"beginning of file" condition when either of these boundaries is
reached.

1. To use DBFIND mode 1 to perform a sorted search on a search item in a detail data set,
you must first set the IMAGETP1 job control word to 400.

3-32 OMNIDEX API Guide

Linking and Testing Programs

Introduction
There are some considerations when developing applications that use
OMNIDEX or TurboIMAGE (TPI) intrinsics, or for adapting any program
to access an OMNIDEX-enhanced database.

□ You should consider whether to use the OMNIDEX Intrinsic
Interface or the Standard Interface to Third Party Indexing. See
the "Intrinsics" chapter for detailed information about either
interface.

O Second, you should decide which libraries your programs should
reference. This is discussed next with regard to the type of
intrinsic interface you've selected, OMNIDEX or TurboIMAGE,
and whether your programs run in compatibility mode.

O Finally, you may need to assign Multi-RIN (MR) capability to the
program, and to the group and account where the program
resides.

Linking and testing native mode programs
After you have written or modified your program to perform OMNIDEX
retrievals, you should test it to ensure that your routines perform
properly. To do this, you must reference the appropriate libraries to make
the OMNIDEX routines available to your program.

The libraries you need to reference depend on the intrinsics you call, and
whether the database is enabled for TPI. The XL setup for each of the
scenarios discussed below is detailed in Appendix C of the O M N ID E X
ImagePlus SDK Administrator's Guide. However, the simplest way to test
your programs no matter what the situation is to reference the
OMNIDEX Call Conversion library X L.PU B.D ISC .

OMNIDEX API Guide 3-33

Linking and testing native mode programs Linking and Testing Programs

You can call the "D BI" and "OD X" intrinsics in the OMNIDEX Intrinsic
Interface, or you can call TurboIMAGE intrinsics using the extended
modes of the Standard Interface to Third Party Indexing. If you are on
TurboIMAGE C.04.03 or later, or MPE/iX version 4.0 or later, you can use
the Standard Interface to Third Party Indexing.

Which library your applications should resolve through depends on
whether they access databases that are enabled for Third Party Indexing,
or databases that are not enabled for TPI. Databases on earlier versions of
TurboIMAGE are considered to be disabled for TPI. The various
procedure libraries for OMNIDEX and TurboIMAGE are discussed
below.

The OMNIDEX Call Conversion Library
The OMNIDEX Call Conversion library (X L.PU B.D ISC) traps calls to
TurboIMAGE or OMNIDEX intrinsics, and directs them to the
appropriate library, depending on whether or not the database is enabled
for TPI. The following scenarios discuss how the Call Conversion library
traps and resolves calls:

OMNIDEX Intrinsic Interface, disabled database
Calls to "D BI" and "OD X" intrinsics in the OMNIDEX Intrinsic Interface
are directed to XLO M N ID X.PU B.SYS, the main OMNIDEX Intrinsics
library.

NMPROGRAM > XL.PUB.DISC -----------> XLOMNIDX.PUB.SYS

Y
XL.PUB.SYS

OMNIDEX Intrinsic Interface, enabled database
All activities are directed to XLO M N IDX.PUB.SYS. XLOMNIDX directs
other TurboIMAGE activities, such as opening and locking the database
or updating the database, to the TurboIMAGE intrinsics in XL.PU B.SYS.
X L .P U B .SY S handles indexing through the Standard Interface to TPI,
which calls routines in XLOM NIDX.PUB.SYS.

NMPROGRAM > XL.PUB.DISC----------- > XLOMNIDX.PUB.SYS
A
Y

XL.PUB.SYS

3-34 OMNIDEX API Guide

Linking and Testing Programs Linking and testing native mode programs

Standard Interface to TPI, enabled database
When a database is enabled for TPI, you can call TurboIMAGE intrinsics
with the extended TPI modes, and no special library references are
required. OMNIDEX indexing and retrieval are automatically invoked by
TurboIMAGE through the Standard Interface to TPI. If you reference the
OMNIDEX Call Conversion library, however, the TurboIMAGE calls are
passed from XLOMNIDX to the TurboIMAGE intrinsics in X L .PU B.SY S.

NMPROGRAM > XL.PUB.DISC ---------- > XLOMNIDX.PUB.SYS
A
Y

XL.PUB.SYS

Note that if a program accesses a database that is enabled for TPI, it is not
necessary to run it through Call Conversion. Such programs can resolve
through the system XL.

NMPROGRAM -------------------------------- > XL.PUB.SYSI
XLOMNIDX.PUB.SYS

Standard Interface to TPI, disabled database
You can use TurboIMAGE's extended TPI modes against databases that
are not enabled for Third Party Indexing. Such calls to TurboIMAGE
retrieval intrinsics are trapped by the Call Conversion library and
converted to call the appropriate OMNIDEX intrinsics, like ODXFIND,
ODXGET, DBIFIND or DBIGET. Similarly, other TurboIMAGE general
intrinsic calls are converted to their OMNIDEX general intrinsic
counterpart. For example, calls to DBPUT are converted to call DBIPUT.
This same technique was used to implement the TurboIMAGE Retrieval
Interface, introduced in version 2.09/2.10 of OMNIDEX.

NMPROGRAM > XL.PUB.DISC > XLOMNIDX.PUB.SYS

I
XL.PUB.SYS

OMNIDEX API Guide 3-35

Testing compatibility mode applications Linking and Testing Programs

Referencing the Call Conversion library
The easiest way to reference the OMNIDEX Call Conversion library is
with the MPE/iX XL path. This can be done when the program is linked,
or when the program is run. Establishing the XL path at link time might
look like this:

LINK $OLDPASS,myproscXL="XL.proup.accouA7f,XL.PUB.DISC"

Establishing the XL path at run time might look like this:

RUN myprog;XL= XLgroup.account,XLPUB.D\SC"

Note that you should reference your own application XLs before the
OMNIDEX Call Conversion XL.

Testing compatibility mode applications
As with native mode, any compatibility mode application that resolves
TurboIMAGE or OMNIDEX procedure calls through the OMNIDEX Call
Conversion library will always function properly. It does not matter
whether the program uses the OMNIDEX Intrinsic Interface or the
Standard Interface to Third Party Indexing. Neither does it matter
whether or not the database accessed by the application is enabled for
TPI.

For compatibility mode OMNIDEX and TurboIMAGE calls to pass
through the OMNIDEX Call Conversion Library, compatibility mode
programs must reference the OMNIDEX Intrinsic Switch Stub library
(SL.PUB.DISC). The Intrinsic Switch Stub library traps compatibility
mode OMNIDEX and TurboIMAGE calls, and directs them as native
mode calls to the Call Conversion library. To facilitate this process, place
the routines in the OMNIDEX Call Conversion library and the routines in
the Intrinsic Switch Stub library in the same group as the calling
application. Run the program with LIB=G to reference the Intrinsic
Switch Stub library. If the application resides in a PUB group, you can
run it with either ;LIB=P or ;LIB=G. The flow of calls is:

CMPROGRAM.GROUP — > S L .G R O U P - > X L .GROUP > XL.PUB.SYS
A
y

XLOMNIDX.PUB.SYS

3-36 OMNIDEX API Guide

Linking and Testing Programs Testing compatibility mode applications

Adding Switch Stub routines to existing SLs
If an SL already exists in the group where you want to place the Intrinsic
Switch Stub routines, use SEGMENTER to copy the Switch Stub segments
from USL.PUB.DISC into the existing SL. To add the Switch Stub USL
segments to an existing SL, perform the following steps:

1. Log on to the group that contains the SL.

2. Use Hewlett-Packard's SEGMENTER to add the OMNIDEX
Intrinsic Switch Stub segments to the existing SL. For example:

:SEGMENTER

-S L S L
-U S L USL.PUB.DISC
-ADDSL DISC’2
-ADDSL DISC’CM’SWITCH
-ADDSL DISC’4
-ADDSL DISC’7
-ADDSL DISC_C
-ADDSL CCSCSEGO

-ADDSL CCSCSEG1
-ADDSLCCSCSEG2
-ADDSL UTIL’1
-ADDSL IMAGE’CC
-E X IT

Adding Call Conversion routines to existing XLs
If there is already an XL in the group where you are installing the Switch
Stub and Call Conversion procedures, you can merge them with the
existing XL. To add the Call Conversion XL routines to an existing XL,
perform the following steps:

1. Log on to the group that contains the XL.

2. Run Hewlett-Packard's Link Editor by typing the LINKEDIT
command:

•.LINKEDIT

3. Copy the Call Conversion XL into the existing XL using the
COPYXL command:

LinkEd> CO PYXL FRO M =XL.PUB.D ISC;TO =XL

OMNIDEX API Guide 3-37

Program capabilities Linking and Testing Programs

4. Exit LINKEDIT

LinkEd> EXIT

Then, simply run the program with LIB=G

RUN myprog,UB=G

Note that if a TurboIMAGE program accesses a database that is enabled
for TPI, it is not necessary to reference any OMNIDEX libraries when
linking or running the program. Compatibility mode program calls
resolve through the system SL, like this:

CMPROGRAM -------------- > SL.PUB.SYS

$
XL.PUB.SYS

V
XLOMNIDX.PUB.SYS

Program capabilities
When databases are enabled for TPI, no special program capabilities are
required. However, when updating databases that are not enabled for
TPI, Multi-RIN (MR) capability is required if the program also performs
TurboIMAGE locking. Multi-RIN capability permits OMNIDEX to lock
index files at the same time that locks are held against TurboIMAGE data
sets. MR capability is typically added at the time the program is linked.

V Processes that use MR should lock at the same resource level, and in the
same order. See Appendix D of the TurbolMAGE/XL Database
Management System Reference Manual tor more information about MR
and avoiding deadlocks.

If you do not want to re-link programs with MR capability, or you are
unable to because you do not have the source files, you can add MR
capability to native mode or compatibility mode programs using
FUTIL.UTIL.DISC. An example of using FUTIL to add MR capability to
all programs in a group follows.

FUTIL is in the UTIL group of the DISC account. To run it, enter:

RUN FUTIL.UTIL.DISC

3-38 OMNIDEX API Guide

Linking and Testing Programs Program capabilities

The prompts and sample responses for adding MR capability are shown
below. Note that the FUTIL MODIFY command supports MPE wildcard
characters (@, ?, #). This lets you add account capabilities to multiple
program files, for example:

Operation (Copy/Modify/Purge/Rename/Exit) ? M
Enter file name (@,?,# wildcards ok)? @.PUB
Maxdata (for MPE V programs)? 31232
Capabilities ? IA, BA, PH, MR

Note that when modifying a single file, current values are displayed in
brackets at each prompt. When adding program capabilities, you must
re-specify the existing program capabilities to keep them. Pressing [return]
at the Capab i 1 i t i e s ? prompt leaves the program capabilities
unchanged.

To exit FUTIL, enter E at the Operation prompt:

Operation (Copy/Modify/Purge/Rename/Exit) ? E

After you have added MR capability to one or more programs, be sure
that the account and group where the programs reside also have MR
capability.

OMNIDEX API Guide 3-39

Interfacing with 3GLs

The advanced retrieval capabilities of OMNIDEX and IMSAM can be
called easily through third generation languages (3GLs) like BASIC,
COBOL, FORTRAN, PASCAL, C, SPL and RPG.

The previous section of this chapter outlined the sequence of the intrinsic
calls you would use within an application program. The Intrinsics
chapter discusses the syntax for these intrinsic calls.

This section describes the parameters you use when you call the
OMNIDEX intrinsics. It also provides examples of COBOL programs so
you can see how these calls are used.

If you would like to see examples of OMNIDEX applications written in
PASCAL, FORTRAN, BASIC or RPG, refer to the O M N ID E X Language
Sampler. Source files of programs which call OMNIDEX intrinsics
through BASIC, COBOL, FORTRAN and PASCAL are also available in
the DEMO group of your DISC account.

COBOL program examples
(OMNIDEX Intrinsic Interface)

This section provides examples of COBOL code for each OMNIDEX
retrieval intrinsic.

Note that the following examples are only partial listings of COBOL
programs. Use the sample programs in the DEMO group of the DISC
account for more complete examples of interfacing COBOL with
OMNIDEX.

Also note that the SPL notation for comments (« comment »), which
is occasionally used in these examples, is not allowed in COBOL.

3-40 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (OMNIDEX Intrinsic Interface)

DBIFIND
Use DBIFIND only when a sorted key is also a TurboIMAGE search item
in a master, and you require subsequent retrieval of detail records.

program-id. programname.

01 RECORD-BUFFER.

01 DSET.
03 DATA-SET PIC X (16)
03 IMSAM-key PIC X (16)

01 ITEM PIC X (16)

PROCEDURE DIVISION.

100-FIND-RECORD.

MOVE "IMSAMDETAILSET;” TO DATA-SET.
MOVE "IMSAMKEY;" TO ITEM.

<< Note that the key must be a TurboIMAGE search
item >>

MOVE -305 TO MODE.
<< Assume a 5-byte partial key >>

MOVE “PARTIALKEY" TO ARGUMENT.
CALL "DBIFIND" USING BASE, DSET, MODE,

STATUS, ITEM, ARGUMENT.
IF IMAGE-STATUS NOT EQUAL 0 THEN

IF IMS-ODX-STAT =210
OR IMS-ODX-STAT =211
OR IMS-ODX-STAT =217 THEN
DISPLAY "Key value not found"

ELSE
PERFORM ERROR-ROUTINE
GO TO END-OF-PROGRAM.

OMNIDEX API Guide 3-41

COBOL program examples (OMNIDEX Intrinsic Interface) Interfacing with 3GLs

200-GET-RECORD.

MOVE 5 TO MODE.
CALL "DBIGET” USING BASE, DSET, MODE,

STATUS, LIST, BUFFER, ARGUMENT.
IF IMAGE-STATUS = 15 THEN

GO TO 300-FIND-NEXT.
IF IMAGE-STATUS NOT EQUAL 0 THEN

PERFORM ERROR-ROUTINE
GO TO 100-FIND-RECORD.

DISPLAY RECORD-BUFFER.
GO TO 200-GET-RECORD.

300-FIND-NEXT.

MOVE 90 TO MODE.
"DBIFIND" USING BASE, DSET, MODE,

STATUS, ITEM, ARGUMENT.
IF IMAGE-STATUS NOT EQUAL 0 THEN

IF IMS-ODX-STAT = 211 THEN
DISPLAY “End of file"
GO TO END-OF-PROGRAM

ELSE
PERFORM ERROR-ROUTINE

GO TO END-OF-PROGRAM.
GO TO 200-GET-RECORD.

ERROR-ROUTINE.
CALL "DBIEXPLAIN" USING STATUS, PARM.
<< Note additional parameter! >>

3-42 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (OMNIDEX Intrinsic Interface)

DBIGET
Use DBIGET for all types of sorted keys in both master and detail tables.
Refer to the file COBIMSS.DEMO.DISC for a sample program that shows
normal mode and index-only mode calls to DBIGET.

p r o g r a m -i d . programname.

01 RECORD-BUFFER.

01 DSET.
03 DATA-SET PIC X(16).
03 IMSAM-KEY PIC X (16).

01 ITEM PIC X (16).

PROCEDURE DIVISION.

100-GET-RECORD.

MOVE "IMSAMDATASET;" TO DATA-SET.
MOVE "IMSAMKEY;" TO IMSAM-KEY.
MOVE -305 TO MODE. «Assuming 5 byte partialkey»
MOVE "PARTIALKEY“ TO ARGUMENT.
CALL "DBIGET" USING BASE, DSET, MODE,

STATUS, LIST, BUFFER, ARGUMENT.
IF IMAGE-STATUS NOT EQUAL 0 THEN

IF IMS-ODX-STAT = 3 1 0
OR IMS-ODX-STAT = 3 1 1
OR IMS-ODX-STAT = 3 1 7 THEN

DISPLAY "Key value not found"
GO TO 100-GET-RECORD

ELSE
PERFORM ERROR-ROUTINE
GO TO END-OF-PROGRAM.

ERROR-ROUTINE.
CALL "DBIEXPLAIN" USING STATUS, PARM.

OMNIDEX API Guide 3-43

COBOL program examples (OMNIDEX Intrinsic Interface) Interfacing with 3GLs

ODXFIND
Refer to the file COBODXS.DEMO.DISC for another program example
that shows OMNIDEX keyword retrievals using ODXFIND (and
ODXGET).

p r o g r a m -i d . programname.

100-BEGIN.

MOVE 1 TO MODE.
MOVE *DSETNAME11 TO DSET.
MOVE "FIELDNAME" TO ITEM.
MOVE "KEYWORD1,KEYWORD2,..." TO KEYWORDS.

« Terminate list with space or semicolon »
CALL "ODXFIND" USING BASE, DSET, MODE,

STATUS, ITEM, KEYWORDS.
IF IMAGE-STATUS NOT EQUAL 0 THEN

IF IMS-ODX-STAT = 217 THEN
DISPLAY "Keyword not found"
GO TO 100-BEGIN

ELSE
PERFORM ERROR-ROUTINE

ELSE
DISPLAY REC-COUNT.

200-GET-RECORDS.

«Described on next p a g e »

ERROR-ROUTINE.
CALL "DBIEXPLAIN" USING STATUS, PARM.

3-44 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (OMNIDEX Intrinsic Interface)

ODXGET
ODXGET requires an internal ID list that contains record IDs qualified in
a keyword search (an ODXFIND with a mode of 1, 2, 3, or 5). Refer to the
file COBODXS.DEMO.DISC for an example of OMNIDEX keyword
retrievals using ODXFIND (and ODXGET).

program-id. programname.

01 SI-LIST.
03 SI-LIST-ID PIC S 9 (9) COMP.

200-GET-RECORDS.
MOVE 1 TO SI-COUNT.
MOVE 1 TO MODE.
CALL "ODXGET" USING BASE, MODE, STATUS,

SI-LIST, SI-COUNT.
IF IMAGE-STATUS NOT EQUAL 0 THEN
IF IMS-ODX-STAT = 311 THEN

DISPLAY “End of qualifying records"
GO TO 100-BEGIN

ELSE
PERFORM ERROR-ROUTINE

GO TO 100-BEGIN
ELSE

PERFORM 300-GET-RECORDS.
300-GET-RECORDS.

MOVE SI-LIST-ID TO ARGUMENT.
MOVE 7 TO MODE.
MOVE "DATASETNAME" TO DSET.
CALL "DBGET” USING BASE, DSET, MODE,

STATUS, LIST, BUFFER, ARGUMENT.
« Note that DBGET is used for the IMAGE mode 7 Get »

IF IMAGE-STATUS NOT EQUAL 0 THEN

ELSE
PERFORM 400-DISPLAY-REC.

ERROR-ROUTINE.
CALL "DBIEXPLAIN" USING STATUS, PARM.

OMNIDEX API Guide 3-45

COBOL program examples (OMNIDEX Intrinsic Interface) Interfacing with 3GLs

ODXGETWORD
ODXGETWORD requires a preceding call to ODXFIND with a mode
of 10 or 11.

program-id. programname.

200-GET-KEYWORDS.

MOVE 2 TO MODE.
CALL "ODXGETWORD" USING BASE, MODE, STATUS,

TARGET.
IF IMAGE-STATUS NOT EQUAL 0 THEN

PERFORM ERROR-ROUTINE
GO TO 200-GET-KEYWORDS.

DISPLAY TARGET, STATUS-WORDS-12-13.
GO TO 200-GET-KEYWORDS.

ERROR-ROUTINE.
CALL "DBIEXPLAIN" USING STATUS, PARM.

3-46 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (OMNIDEX Intrinsic Interface)

ODXTRANSFER
Refer to the file COBODXS.DEMO.DISC for an example.

program -id. programname.

01 FILENAME PIC X (06) VALUE "ODXIDS

TRANSFER-ENTRIES.
CALL "ODXTRANSFER" USING DBN-PATH1, MODE1,
DB-STATUS,

FILENAME, ODXTR-OPT.
IF IMAGE-STATUS NOT = 0 THEN

PERFORM ERROR-DISPLAY
MOVE YES TO DONE.
GO TO TRANSFER-ENTRY-EXIT.

PERFORM CREATE-REPORT THRU CREATE-REPORT-EXIT.
TRANSFER-ENTRY-EXIT.
EXIT.

The report that uses the search item values from the ODXTRANSFER is
as follows:

CREATE-REPORT.
OPEN INPUT ODXID.
OPEN OUTPUT REPORT-TR.
MOVE SPACES TO FILLER1.
MOVE SPACES TO FILLER2.
MOVE SPACES TO FILLER3.
READ ODXID RECORD INTO OMNSIEX-SI AT END
MOVE YES TO DONE.
PERFORM PRINT-RECORD THRU PRINT-RECORD-EXIT

UNTIL DONE = YES.
CLOSE ODXID.
CLOSE REPORT-TR.

CREATE-REPORT-EXIT.
EXIT.

The contents of a field can be transferred to a file using mode option 200,
as illustrated in the example on the following page. Note that dsetname (in
RETRIEVE-SAMELIST) must be the same set that was originally used in
the first ODXFIND (in GET-LIST). The fieldname can be any valid keyword
key in the set.

OMNIDEX API Guide 3-47

COBOL program examples (OMNIDEX Intrinsic Interface) Interfacing with 3GLs

program- ID. programname.

01 ODX-FILENAME.
03 FILLER PIC X VALUE "$".
03 FILENAME PIC X(06)VALUE "ODXIDS

GET-LIST.
MOVE “ DSETNAME11 TO DSET.
MOVE "FIELDNAME” TO ITEM.
MOVE "KEYWORD1,KEYWORD2,...* TO KEYWORDS.
CALL "ODXFIND" USING DBN-PATH1, DSET, MODE1,

DB-STATUS, ITEM, KEYWORDS.
IF IMAGE-STATUS NOT = 0 THEN

IF IMS-ODX-STAT = 2 1 7 THEN
DISPLAY "Keyword not found"
GO TO GET-LIST

ELSE
PERFORM ERROR-ROUTINE

ELSE
DISPLAY REC-COUNT.

TRANSFER-ENTRIES.« Freeze the list of qualified records
CALL "ODXTRANSFER" USING DBN-PATH1, MODE201,

DB-STATUS, FILENAME, ODXTR-OPT.
IF IMAGE-STATUS NOT = 0 THEN

PERFORM ERROR-DISPLAY
MOVE YES TO DONE.

RETRIEVE-SAMELIST.
MOVE "DSETNAME" TO DSET.
MOVE "FIELDNAME" TO ITEM.
CALL "ODXFIND" USING DBN-PATH1, DSET, MODE1,

DB-STATUS, ITEM, ODX-FILENAME.
IF IMAGE-STATUS NOT = 0 THEN

PERFORM ERROR-ROUTINE
ELSE

DISPLAY REC-COUNT.

»

3-48 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (TPI Interface)

COBOL program examples (TPI Interface)
This section provides examples of COBOL code for a keyword search and
a sorted search using the Standard Interface to Third Party Indexing.

Note that the following examples are only partial listings of COBOL
programs. Use the sample programs in the DEMO group of the DISC
account for more complete examples of interfacing COBOL with
OMNIDEX.

A sorted retrieval
This program performs a sorted retrieval against the key installed on the
DATE-ENTERED field of the CUSTOMER-NOTES data set. The search
would qualify a chain of records based on the argument entered at the
Key Value? prompt. The working storage section has been abridged to
eliminate the usual TurboIMAGE parameter definitions. Refer to the file
COBIMS3S.DEMO.DISC for a complete listing of the source code.

$CONTROL USLINIT, OPTFEATURES = CALLALIGNED16, CALLINTRINSIC

ENVIRONMENT DIVISION.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 CUST-NOTES-REC.
03 CUSTOMER-NO PIC S9 (09) COMP VALUE
03 DATE-ENTERED PIC X(6) VALUE SPACES.
03 TICKLER PIC X(2) VALUE SPACES.
03 INITIALS PIC X(4) VALUE SPACES.
03 ACTION PIC X(60) VALUE SPACES

01 KEY-VALUE.
03 KEY-VALUE-IN PIC X (7) VALUE SPACES.
03 TERMINATOR PIC X VALUE " ; " .

OMNIDEX API Guide 3-49

COBOL program examples (TPI Interface) Interfacing with 3GLs

01 MISCELLANEOUS-FIELDS.
03 ANSWER
03 ITEM-LIST
03 CUST-NO-DISP
03 SEPARATOR

PIC X (02) VALUE SPACES.
PIC X (02) VALUE "@ .
PIC Z (08)9 .
PIC X (72) .

PROCEDURE DIVISION.

MAIN SECTION.
MOVE ALL TO SEPARATOR.

MOVE 1 TO DBM-MODE.

CALL "DBOPEN" USING DBN-PATH,
DBP-WRITE,
DBM-MODE,
DB-STATUS.

IF IMAGE-STATUS NOT = 0 THEN
PERFORM EXPLAIN-DISPLAY
PERFORM ERROR-DISPLAY
DISPLAY " "
STOP RUN.
PERFORM REQUEST-KEY THRU REQUEST-EXIT
UNTIL KEY-VALUE-IN = "EXIT" OR "exit" OR "E" OR "e*.

PERFORM CLOSE-DB.

3-50 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (TPI Interface)

The paragraph REQUEST-KEY-VALUE continues to execute until the
user types EXIT or exit in response to Key Value?.

REQUEST-KEY.

MOVE SPACES TO KEY-VALUE-IN.
DISPLAY " ".
DISPLAY “Please enter a date value or 'E' to exit.".
DISPLAY “You may enter wildcard characters (@,#,?).".
DISPLAY " " .

ACCEPT KEY-VALUE-IN.

IF KEY-VALUE-IN = "E" OR "e " OR "EXIT" OR "exit"
GO TO REQUEST-EXIT.

MOVE 1 TO DBM-MODE.

CALL "DBFIND" USING DBN-PATH,
DBSETS,
DBM-MODE,
DB-STATUS,
IMSAM-KEY,
KEY-VALUE.

IF IMAGE-STATUS NOT = 0 THEN
PERFORM ERROR-DISPLAY
GO TO REQUEST-EXIT.

MOVE "N" TO ANSWER.
PERFORM GET-REC THROUGH GET-REC-EXIT
UNTIL ANSWER = "EXIT" OR "exit" OR "E" OR "e".

REQUEST-EXIT.
EXIT.

This part of the code calls DBGET to read through the chain of records
that the user qualified using DBFIND. The user can enter N to view the
next record in the chain, P to view the previous record in the chain, or E to
exit back to the search prompt.

OMNIDEX API Guide 3-51

COBOL program examples (TPI Interface) Interfacing with 3GLs

GET-REC.

*
* Mode 5 is a forward chained read. Mode 6 is a
* backward chained read.
*
IF ANSWER = ”N" OR "n"

MOVE 5 TO DBM-MODE
ELSE

IF ANSWER = "P” OR "p"
MOVE 6 TO DBM-MODE

ELSE
DISPLAY * "
DISPLAY "INVALID REPLY!“
DISPLAY * *.

CALL “DBGET" USING DBN-PATH,
DBSETS,
DBM-MODE,
DB-STATUS,
ITEM-LIST,
CUST-NOTES-REC,
DUMMY.

IF IMAGE-STATUS NOT = 0 THEN
PERFORM ERROR-DISPLAY

ELSE
PERFORM DISPLAY-REC.

MOVE SPACES TO ANSWER.

DISPLAY “ ".
DISPLAY "Please enter an action:".
DISPLAY " ".
DISPLAY " 'N' to see the next record".
DISPLAY " 'P' to see the previous record".
DISPLAY " 'E' to exit".
DISPLAY " ".

ACCEPT ANSWER.

GET-REC-EXIT.
EXIT.

3-52 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (TPI Interface)

DISPLAY-REC.

MOVE CUSTOMER-NO TO CUST-NO-DISP.

DISPLAY " ".
DISPLAY SEPARATOR.
DISPLAY "CUSTOMER NO : ", CUST-NO-DISP.
DISPLAY "DATE ENTERED: ", DATE-ENTERED.
DISPLAY "TICKLER : ", TICKLER.
DISPLAY "INITIALS : ", INITIALS.
DISPLAY "ACTION : ", ACTION.
DISPLAY SEPARATOR.

EXPLAIN-DISPLAY.

DISPLAY “ “.
CALL "DBEXPLAIN" USING DB-STATUS.
DISPLAY * ".
DISPLAY "PRESS RETURN TO CONTINUE.".
ACCEPT ANSWER.

ERROR-DISPLAY.

DISPLAY " ".
CALL "DBERROR" USING DB-STATUS, ERROR-MSG, MESSAGE-LEN.
DISPLAY " ".
DISPLAY ERROR-MSG.
DISPLAY " ".
DISPLAY "PRESS RETURN TO CONTINUE.".
ACCEPT ANSWER.

CLOSE-DB.

MOVE 1 TO DBM-MODE.
CALL "DBCLOSE" USING DBN-PATH,

DBSETS,
DBM-MODE,
DB-STATUS.

IF IMAGE-STATUS NOT = 0 THEN PERFORM ERROR-DISPLAY.
STOP RUN.

OMNIDEX API Guide 3-53

COBOL program examples (TPI Interface) Interfacing with 3GLs

A keyword search and retrieval
This program performs a keyword retrieval against the key installed on
the DATE-ENTERED field of the CUSTOMER-NOTES data set. The
search would qualify records based on the arguments entered at Key
Value? prompts. The working storage section has been abridged to
eliminate the usual TurboIMAGE parameter definitions. Refer to the file
COBODX3S.DEMO.DISC for a complete listing of the source code.

03 LAST-PUR-DATEPIC X (6) VALUE SPACES.
03 CUSTOMER-BAL PIC S9(9) COMP VALUE 0.
03 COMMENTS PIC X(60) VALUE SPACES.

01 CUST-KEY
01 STATE-KEY
01 CITY-KEY

01 DBSETS.
03 DBS-SET

PIC X {16) VALUE
PIC X (16) VALUE
PIC X (16) VALUE

PIC X (16) VALUE

" C U S T O M E R - N A M E ; " .

" S T A T E ; " .

" C I T Y ; " .

”CUSTOMERS;".

01 KEY-VALUE.
03 KEYWORDS-IN
03 TERMINATOR

01 WORK-FIELD

PIC X (72) VALUE SPACES.
PIC X VALUE ";".

PIC X (80) VALUE SPACES.

01 MISCELLANEOUS-FIELDS.
03 ANSWER PIC X(02) VALUE SPACES.
03 ITEM-LIST PIC X(02) VALUE
03 CUST-NO-DISP PIC Z (08)9.
03 QUAL-COUNT PIC Z(08)9.
03 SEPARATOR PIC X (72).

PROCEDURE DIVISION.

MAIN SECTION.

MOVE ALL TO SEPARATOR.

MOVE 1 TO DBM-MODE.

3-54 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (TPI Interface)

CALL "DBOPEN" USING DBN-PATH,
DBP-WRITE,
DBM-MODE,
DB-STATUS.

PERFORM REQUEST-ARGUMENTS THRU REQUEST-EXIT
UNTIL KEYWORDS-IN = "EXIT" OR "exit" OR "E" OR "e".

PERFORM CLOSE-DB.
The paragraph REQUEST-ARGUMENTS continues to execute until the
user types EXIT or exit in response to a prompt for keywords.

REQUEST-ARGUMENTS.

MOVE SPACES TO KEYWORDS-IN.
DISPLAY " ".
DISPLAY "Please enter Customer, Contact or Title keywords”
DISPLAY "or 'E' to exit.".
DISPLAY " ".
DISPLAY "You may enter wildcard characters (@,#,?) and".
DISPLAY "Boolean operators."
DISPLAY “ ".
ACCEPT KEYWORDS-IN.

IF KEYWORDS-IN = SPACES
GO TO REQUEST-CITY.

IF KEYWORDS-IN = "E" OR "e" OR “EXIT" OR “exit"
GO TO REQUEST-EXIT.

The mode value passed in the next section is the DBFIND keyword
retrieval mode (mode 12). The mode could be 1 if the CITY was installed
only as a keyword key and not as a sorted key. Still, the specialized
DBFIND modes ensure that no ambiguity will result regarding the type
of keyed access to use.

OMNIDEX API Guide 3-55

COBOL program examples (TPI Interface) Interfacing with 3GLs

MOVE 12 TO DBM-MODE.

CALL "DBFIND" USING DBN-PATH,
DBSETS,
DBM-MODE,
DB-STATUS,
CUST-KEY,
KEY-VALUE.

* If no records contain the keywords (status 17) or records
* contain the keywords but the Boolean result is a null set
* then give the message that no records qualify.
*

IF IMAGE-STATUS = 17 OR (IMAGE-STATUS = 0 AND CHAINLEN = 0)
DISPLAY " "
DISPLAY “No records qualified for keywords entered"
DISPLAY " "
GO TO REQUEST-ARGUMENTS.

IF IMAGE-STATUS NOT = 0 THEN
PERFORM ERROR-DISPLAY
GO TO REQUEST-EXIT.

MOVE CHAINLEN TO QUAL-COUNT.
DISPLAY " ".
DISPLAY QUAL-COUNT "Companies qualified"
DISPLAY “ ".

REQUEST-CITY.
MOVE SPACES TO KEYWORDS-IN.
DISPLAY " ".
DISPLAY “Please enter City, State or Zip Code keywords"
DISPLAY "or 'E' to exit.".
DISPLAY " ".
DISPLAY "You may enter wildcard characters (@,#,?) and".
DISPLAY "Boolean operators."
DISPLAY " ".

ACCEPT KEYWORDS-IN.
IF KEYWORDS-IN = "E " OR "e " OR "EXIT" OR "exit"

GO TO REQUEST-EXIT.

3-56 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (TPI Interface)

This section lets the user further qualify records. Note that a leading AND
operator is programmatically supplied to apply any records found in the
following search to the internal ID list generated by the previous search.
If a user enters no keywords, then this search is skipped and the process
of getting the records from the ID list (via DBGET) begins.

IF KEYWORDS-IN NOT = SPACES
STRING "AND ", KEYWORDS-IN DELIMITED BY SIZE

INTO WORK-FIELD
MOVE WORK-FIELD TO KEYWORDS-IN

ELSE
GO TO SKIP-CITY.

MOVE 12 TO DBM-MODE.

CALL "DBFIND” USING DBN-PATH,
DBSETS,
DBM-MODE,
DB-STATUS,
STATE-KEY,
KEY-VALUE.

IF IMAGE-STATUS = 17 OR (IMAGE-STATUS = 0 AND CHAINLEN = 0)
DISPLAY " "
DISPLAY “No records qualified for keywords entered"
DISPLAY " "
GO TO REQUEST-CITY.

IF IMAGE-STATUS NOT = 0 THEN
PERFORM ERROR-DISPLAY
GO TO REQUEST-EXIT.

MOVE CHAINLEN TO QUAL-COUNT.
DISPLAY ” *.
DISPLAY QUAL-COUNT " Companies qualified"
DISPLAY " ".

SKIP-CITY.

MOVE "N" TO ANSWER.
PERFORM GET-REC THROUGH GET-REC-EXIT
UNTIL ANSWER = "EXIT” OR "exit" OR "E" OR "e".

REQUEST-EXIT.
EXIT.

OMNIDEX API Guide 3-57

COBOL program examples (TPI Interface) Interfacing with 3GLs

The next section of code uses specialized DBGET modes (modes 25 and
26) to read forward and backward through the ID list to get the records
associated with the IDs. Entering N retrieves the next record for display,
entering P retrieves the previous record.

GET-REC.

* Mode 25 is a forward chained read. Mode 26 is a backward
* chained read.
IF ANSWER = "N" OR "n"

MOVE 25 TO DBM-MODE
ELSE

IF ANSWER = "P" OR "p“
MOVE 26 TO DBM-MODE

ELSE
DISPLAY " "
DISPLAY "INVALID REPLY! "
DISPLAY * ”.

CALL "DBGET" USING DBN-PATH,
DBSETS,
DBM-MODE,
DB-STATUS,
ITEM-LIST,
DB-CUSTOMERS,
DUMMY.

IF IMAGE-STATUS NOT = 0 THEN
PERFORM ERROR-DISPLAY

ELSE
PERFORM DISPLAY-REC.

MOVE SPACES TO ANSWER.

DISPLAY “ ".
DISPLAY "Please enter an action: ".
DISPLAY " ".
DISPLAY " 'N' to see the next record".
DISPLAY " 'P' to see the previous record".
DISPLAY " 'E' to exit".
DISPLAY " ”.

ACCEPT ANSWER.
GET-REC-EXIT.
EXIT.

3-58 OMNIDEX API Guide

Interfacing with 3GLs COBOL program examples (TPI Interface)

DISPLAY-REC.

MOVE CUSTOMER-NO TO CUST-NO-DISP.

DISPLAY n n
DISPLAY SEPARATOR.
DISPLAY "CUSTOMER NO : ", CUST-NO-DISP.
DISPLAY * CUSTOMER NAME: ", CUSTOMER-NAME
DISPLAY "CONTACT :: ", CONTACT.
DISPLAY “TITLE : '', TITLE.
DISPLAY "CITY : ", CITY.
DISPLAY "STATE : '', STATE.
DISPLAY "ZIP CODE : ", ZIP.
DISPLAY SEPARATOR.

EXPLAIN-DISPLAY.

DISPLAY " “.
CALL "DBEXPLAIN" USING DB-STATUS.
DISPLAY " ".
DISPLAY "PRESS RETURN TO CONTINUE.".
ACCEPT ANSWER.

ERROR-DISPLAY.

DISPLAY " ".
MOVE SPACES TO ERROR-MSG.
CALL "DBERROR" USING DB-STATUS, ERROR-MSG, MESSAGE-LEN.
DISPLAY " ".
DISPLAY ERROR-MSG.
DISPLAY " ".
DISPLAY “PRESS RETURN TO CONTINUE.”.
ACCEPT ANSWER.

CLOSE-DB.

MOVE 1 TO DBM-MODE.
CALL "DBCLOSE" USING DBN-PATH,

DBSETS,
DBM-MODE,
DB-STATUS.

IF IMAGE-STATUS NOT = 0 THEN PERFORM ERROR-DISPLAY.
STOP RUN.

OMNIDEX API Guide 3-59

Interfacing with 4GLs

The advanced retrieval capabilities of OMNIDEX can be implemented
easily with fourth generation languages (4GLs) such as:

□ Speedex from Speedware Corp.

□ DATA Express from IMACS Corporation

□ Insight from Unison Software Inc.

□ Synergist from Gateway Systems Corporation

□ Visimage from Ares Corporation

□ QUICK from Cognos Corporation's PowerHouse system

□ TRANSACT / 3000 from Hewlett-Packard's Rapid system

□ PROTOS from PROTOS Software Corporation

Speedware Corp.'s Speedex has integrated the OMNIDEX intrinsics, so
Speedware products automatically interface with OMNIDEX and require
no additional programming.

Unison Software's Insight and Gateway's Synergist have embedded the
OMNIDEX intrinsics, so they automatically interface with OMNIDEX
and require no additional programming. Synergist also can call the
OMNIDEX intrinsics from a personal computer.

Other 4GLs can also be used with OMNIDEX. Documentation on QUICK,
TRANSACT / 3000 or PROTOS can be obtained from DISC. Call your
DISC sales representative or the DISC Response Center for additional
documentation.

3-60 OMNIDEX API Guide

Glossary

Back out feature

Base ID

Boolean operators

Call Conversion library

Calling errors

Compatibility mode

Compound item

Composite keys

DBMGR

Data set

the ability to undo an ODXFIND keyword search and to
restore the previous internal ID list

a value returned by TurboIMAGE to the base parameter
when the database's name is passed with two trailing blanks

AND (,) , OR (+), and NOT () operators used to combine
keywords during an OMNIDEX retrieval

procedures that automatically intercept calls to TurboIMAGE
intrinsics and convert them into calls to OMNIDEX intrinsics

syntax errors that cause programs to fail. For example, trying
to read an entry in Sorted- key sequence by an item that is not
an IMSAM key would yield a calling error.

a term describing programs and library routines created on
Classic HP computers that are run on the MPE XL or MPE/
iX operating system

a TurboIMAGE item comprised of more than one element
(like a 5X50 type field)

a logical Multiple or Sorted key comprising several fields or
parts of fields

the DISC database management utility

a collection of data entries where each entry contains a group
of data items. Also called a table.

OMNIDEX API Guide Glossary-1

Data type discrepancy

Data type discrepancy

Domain

DR domain

Exceptional conditions

Executable library

Excluded words file

Excluded words

Excluded words list

General intrinsics

Generic search or
Generic retrieval

Grouping

HPPA

IMSAM

IMSAM key

condition in which data stored in a particular field does not
match the TurboIMAGE data type defined for that field

a single data set installed with Multiple keys, or an
association of several data sets installed with Multiple keys,
and linked during installation. Also called an OMNIDEX
domain. See SI domain and DR domain.

an OMNIDEX domain (see Domain) that consists of one detail
data set that has not been linked to a master data set

errors that occur after an intrinsic is called; these errors
prevent the call from executing successfully. Trying to read in
a Sorted key sequence beyond the last key value would yield
an exceptional condition error.

HPPA native mode library of callable routines. In native
mode versions of OMNIDEX, the OMNIDEX intrinsics, and
the call conversion procedure segments, are located in
executable libraries (XLs).

see Excluded words list

words specified through OmniUtil for exclusion from the
OMNIDEX indexes

an ASCII file that contains all of the excluded words

OMNIDEX intrinsics that are used to perform locks, updates,
and other general functions

an OMNIDEX search by a partially specified key followed by
an at sign (@)

an OMNIDEX key option that treats several Multiple keys as
one logical entity

Hewlett Packard Precision Architecture. A RISC architecture
used in series 9 nn computers.

the IMAGE Sequential Access Method, which provides
sorted-sequential and partial-key access on TurboIMAGE
databases

see Sorted key

Glossary-2 OMNIDEX API Guide

Index-only mode

Index-only mode

Internal ID list

Item list

Key

Key options

Keyed retrieval

Keyword

Keyword retrieval

Logical link

Mode

Multifind

Multiple key

Multiple key access

Multi-RIN (MR)
capability

term applied to high-performance retrievals and updates that
affect the key value only. Discrete mode IMSAM retrievals
return only the key values stored in the index sets without
returning a record.

the most current list of record identifiers qualified by an
ODXFIND

the items passed through the lis t parameter

a field that is used to select records from a data set

enhancements to OMNIDEX keys that are specified during
installation to enable certain retrieval features (like
Grouping) or update features (like Batch Indexing)

retrieval by an OMNIDEX or TurboIMAGE key field

a word or number that is indexed for a Multiple key and
stored in the OMNIDEX indexes

refers to an OMNIDEX retrieval of record identifiers by any
keyword value or combination of keyword values against a
Multiple key

used in relation to Multifind, when data in two different
fields in two different data sets serve to create a
correspondence between those records

an intrinsic parameter that specifies what type of action is to
be performed

a retrieval feature that supports keyword searches across
domains using field values from previously qualified records
as keyword arguments against a table in a different domain

a field specified for OMNIDEX keyword retrieval

the ability of OMNIDEX to qualify records based on
arguments entered against several keys

a capability used to lock several data resources
simultaneously. This capability is used by programs that
update or lock OMNIDEX databases, data sets, or items.

OMNIDEX API Guide Glossary-3

Native mode

Native mode

Native Language
Support

Next free ID

Next unused ID

Noise words

OMNIDEX condition
word

OMNIDEX detail

OMNIDEX domain

OMNIDEX error
indicator

OMNIDEX ID

OMNIDEX Intrinsic
Interface

OMNIDEX master

OMNIDEX rootfile

a term attributed to programs and library routines that can be
directly executed on a Series 9nn HPPA computer

the collating of 8-bit extended character sets (Arabic8,
Greek8, Kana8, Roman8, Turkish8) to ASCII as handled by
OMNIDEX and the HP 3000

an internally maintained value that indicates the next
assignable integer SI value. May be an ID previously used by
a deleted record.

the ID value that is one higher than the highest used value

words that occur frequently or are useless for retrieval (like
"the" or "therefore")

word 11 of the status array, which contains an error code if a
call to an OMNIDEX intrinsic failed

a detail set linked to an OMNIDEX master by an OMNIDEX
SI (search item)

see Domain

the word of the status array that indicates whether an error
has occurred. This word differs between default (active) error
handling and Passive Error Handling.

a binary integer (12, J2, or K2) value that is used to identify
records during keyword searches (for Multiple keys)

OMNIDEX intrinsics that provide retrieval access to Multiple
and Sorted key indexes and maintenance to OMNIDEX
indexes

a master data set that contains one or more fields specified for
OMNIDEX keyword retrieval, or a master that is linked by
the OMNIDEX SI to a detail that contains one or more
Multiple keys

the index file that contains information about the database
structure, including which fields have been specified for
OMNIDEX retrieval

Glossary-4 OMNIDEX API Guide

OMNIDEX SI

OMNIDEX SI

One-to-mcniy
relationship

One-to-one
relationship

Operator

Parameter

Parsing

Partial-key retrieval

Qualifying count

Record complex

Record number

Record specific

Relational operator

Relative record number

Retrieval intrinsics

the TurboIMAGE search item field in an OMNIDEX master.
It may also be the OMNIDEX ID for the set.

refers to data entities where one entity corresponds to many
other entities, as in the case of a search item value to many
detail records

refers to data entities where one entity corresponds only to
one other entity, as in the case of a search item value to a
master record

any special character or token used in OMNIDEX retrievals.
For example, the Multifind operator (&).

a variable value that can be specified when issuing a
command or calling an intrinsic

separating a character string into individual keywords

refers to a Sorted key retrieval where a partially specified
search argument is used to retrieve one or more records

the number of search items or TurboIMAGE record numbers
that qualify in an OMNIDEX keyword retrieval

an affiliation of records in an SI domain that all contain the
same OMNIDEX SI value. Also refers to keys that qualify
record complexes (Multiple keys in master data sets, and
Multiple keys installed with the Record Complex option).

an internally maintained value associated with the position
in a detail file of individual detail records

refers to Multiple keys or keyword retrievals that qualify
individual detail records, as opposed to record complex.
Non-Record Complex keys in details are record specific.

the greater than (>), greater than or equal to (>=), less than
(<), less than or equal to (<=) and equals (=) operators used to
specify a relational retrieval

see Record number

intrinsics that are used to search for or retrieve records

OMNIDEX API Guide Glossary-5

Root file

Root file

SI

SI domain

SL

Samelist operator

Search item (SI)

Segmented library (SL)

Serial read

Special character

Sorted key

Sorted access

Source

Split retrieval

a file that contains information about the database structure.
In OMNIDEX, the OMNIDEX root file contains information
about where keys are installed.

commonly-used abbreviation for Search Item

an affiliation of one master set and one or more detail sets,
linked at installation, whose keyword values are all indexed
in the same indexes

commonly-used abbreviation for segmented library

the asterisk (*), which tells OMNIDEX that you wish to
further qualify the list of IDs

an TurboIMAGE field within a data set that is used for
calculated access in master sets and chained access in detail
sets

a collection of procedure segments. In version 3.0 of
OMNIDEX, the OMNIDEX Intrinsic Switch Stub segments,
are located in a segmented library (SL.PUB.DISC).

a sequential read of records in a data set that is performed one
block of records at a time. For a master set, a serial read ends
at the end of file. For a detail set, it ends at the high-water
mark.

a character that is parsed by OMNIDEX before being
indexed. Likewise, a character that is interpreted by
OMNIDEX to have a special meaning.

a field or composite key specified for sorted access. Sorted
key retrievals return records sorted by key values.

the ability to retrieve records in sorted order through the use
of a Sorted key

in Multifind usage refers to the item, set or database that is
supplying the data values used as search arguments

refers to a keyword search on a record specific key that
immediately precedes or immediately follows a search on a
record complex key

Glossary-6 OMNIDEX API Guide

Subfield

Subfield

Switch stub

TPI-enabled

Table

Target

Textual data

TurboIMAGE
condition word

USL

Upshifting

Wildcard

XL

in TurboIMAGE, the individual elements that comprise an
array. For example, each X50 element is a subfield in a 5X50
array.

a routine that allows Compatibility Mode programs to call
OMNIDEX version 3.0 Native Mode intrinsics

refers to a database whose OMNIDEX indexes are accessible
to the Standard Interface to Third Party Indexing

see Data set

when used in reference to Multifind, refers to the domain,
data set or field in which a list of keyword values is to be
further qualified.
When used in reference to DISC utilities, it refers to a data
entity on which a specified operation is to be performed.

data containing words, phrases, and sentences (as opposed to
numeric, or other fixed data)

word 1 of the status array, which contains an error code if a
call to an TurboIMAGE intrinsic failed

User-Segmented Library. It contains
Relocatable Binary Modules that can be added to an SL.

shifting of alphabetic characters to upper case in the
OMNIDEX index sets

any character that is used to imply a partial search argument.
The at sign (@) is used as a wildcard in generic retrievals.

see Executable library

OMNIDEX API Guide Glossary-7

Index

Symbols
Pound sign

as wildcard 2-61,2-109
%DATE function 2-59
& Ampersand

in Multifind 2-66
() Parentheses

in Boolean expressions 2-58, 2-64
* Asterisk

reloading the ID list 2-69
< Left angle bracket

to undo keyword search 2-68
? Question mark

as wildcard 2-61,2-109
@ At sign

as argument terminator 2-108
as wildcard 2-109

[Ctrl]-Y
ODXFIND 2-55

Numerics
3GLs 1-12,3-40
4GLs 3-60

A
Account capabilities 3-39
Active Error Handling 3-5
Applications

3GLs 3-40
4GLs 3-60
adding capabilities 3-38
choosing an interface 2-10
compatibility mode 1-17,3-36
developing 1-11

migrating to other platforms 2-2
OMNIDEX searches in IMAGE 2-106
testing 3-33

argument parameter
datatype 2-105
DBFIND binary range 2-110
in sorted access 2-13
terminating for DBFIND 2-108
values vs. operators 2-96

Arguments
in Boolean operations 2-62

ASCII fields
range restrictions 2-65

ASKDATE format 2-60
data type 2-60

B
Back-out feature

OMNIDEX Intrinsic Interface 2-68
TPI interface 2-102

Base ID 2-44
base parameter

OMNIDEX Intrinsic Interface 2-44
Batch applications

the internal ID list 2-100
Binary data

sorted range retrievals 2-110
Boolean operations

coded into programs 3-57
DBFIND mode 1 2-107, 2-109
DBFIND TPI modes 2-114
ODXFIND 2-62
order of precedence 2-58, 2-64, 2-112
parenthetical nesting 2-58
reloading the ID list 2-69

OMNIDEX API Guide Index-1

c

C
Call Conversion library 1-17, 3-2, 3-28,

3-34
see also XL.PUB.DISC
adding to existing XL 3-37
effect on updates 3-28
for testing applications 3-33

Calling errors
status values 3-7

Chain boundaries
for sorted access 2-120

Chain count
sorted retrieval 2-111

Chained reads
skipping sorted records 2-120

COBOL examples 3-40, 3-49
Compatibility mode 1-17
Composite keyword keys

identifying components 2-84
Composite sorted keys

datatype 2-105,2-110
Condition word

IMAGE 3-6
OMNIDEX 3-7

Conventions
used in this guide ix

Critical item update 2-51

D
Data type

DBFIND item parameter 2-108
of composite keys 2-105, 2-110
of DBFIND argument 2-105

Database
see also Exclusive access
enabling for TPI 3-27
mode 3 item list 2-50
opening 3-2
opening in IMAGE 3-27
opening in OMNIDEX 2-44, 3-2
TPI-disabled 3-34,3-35

TPI-enabled 2-9, 3-34, 3-35
DataView 1-15
Dates

see also ASKDATE format
see also JDATE format
see also PHD ATE format
converting arguments 2-59
partial arguments 2-60
reordering fields 2-60

DBCONTROL 2-99
DBFIND 2-101

IMAGE modes 2-101
item parameter and OMNIDEX 2-107
keyword searches 2-112, 3-54
parameters 2-101
sorted access 3-49

DBGET
after DBFIND mode 1 2-121
IMAGE reads 2-117
OMNIDEX reads 2-118
parameters 2-117
reading ID lists 2-121, 3-54
reading sorted chains 3-49
reading sorted key chains 2-120

DBICLOSE
parameters 2-16

DBIDELETE
indexing errors 2-19
parameters 2-18

DBIERROR
parameters 2-20

DBIEXPLAIN
parameters 2-22

DBIFIND
COBOL program examples 3-41
errors 2-27
IMAGE modes 2-23
index-only mode 2-26
mode options 2-24
parameters 2-23
relational modes 2-24
sequential modes 2-24

Index-2 OMNIDEX API Guide

E

DBIGET
COBOL program examples 3-43
errors 2-32
IMAGE modes 2-28
index-only mode 2-31
mode options 2-29
normal mode 2-31
parameters 2-28
relational modes 2-29
sequential modes 2-29

DBIINFO
errors 2-41
parameters 2-34

DBILOCK
parameters 2-42

DBINFO
calling errors 2-128
parameters 2-123

DBIOPEN
exceptional conditions 2-45
opening databases 3-2
parameters 2-44

DBIPUT
calling errors 2-48
exceptional conditions 2-48
indexing errors 2-47
mode options 2-46
parameters 2-46

DBIUNLOCK
parameters 2-49

DBIUPDATE
parameters 2-50

Detail Record indexed domains
effect on DBIPUT item list 2-46
effect on ODXTRANSFER 2-89,2-91
finding with ODXINFO 2-83
OMNIDEX ID 2-121

Detail set
linked 2-62,3-16
returning Sis 2-62
unlinked 2-73, 3-16

Discrete mode
updates 3-4

dset parameter
DBIGET vs. DBGET 2-5

E
Errors

3000 series 3-8
see also Calling errors
see also Exceptional conditions
calling vs. exceptional conditions 2-21
condition words 3-5
DBFIND 2-116
DBGET 2-122
DBIDELETE 2-19
DBIFIND 2-27
DBIGET 2-33
DBIINFO 2-41
DBINFO 2-128
default for OMNIDEX Intrinsic

Interface 2-6
handling 2-6, 2-22
help with 3-8
IMAGE 3-28
IMAGE condition word 3-6
IMAGE in OMNIDEX 3-6
IMSAM and IMAGE 2-122
indexing 2-47
ODXFIND 2-69
ODXGET 2-77
ODXGETWORD 2-79
ODXINFO 2-85
ODXPRINT 2-87
ODXTRANSFER 2-91
ODXVIEW 2-94
OMNIDEX 3-4
OMNIDEX condition word 3-7
status values for 3-5
summary of OMNIDEX 3-8
summary of TPI 3-28
TPI error codes 3-8

OMNIDEX API Guide Index-3

F

Exceptional conditions
DBFIND 2-116
status values 3-7

F
Fields

reordering dates 2-60
transferring data from 2-88

Files
appending to 2-88
creating for Multifind 2-89, 2-90
printing 2-86
saving internal IDs 2-90
using in Multifind 2-67, 3-20
viewing 2-92

FUTIL
changing prrograms' capabilities 3-38

G
General intrinsics 2-4, 3-35
Generic arguments

dates 2-60
in sorted retrievals 2-13
length specification 2-25, 2-30
longer than 100 bytes 2-25
ranges 2-65

Grouping
identifying keys in group 2-82

ID list preservation
disabling 2-55, 2-100
in TPI Interface 2-99

IMAGE
DBGET reads 2-117
mode values 2-5
Standard Interface to TPI 2-95
version information 3-34

IMAGE condition word 3-6
IMAGE-only mode 2-5,2-12

DBIDELETE 2-18
DBIPUT 2-46
updates 3-4

IMSAM
see Sorted access
see Sorted keys
sorted sequential retrievals 3-23

Indexes
automatic updating 2-9
when no records qualify 2-68

Index-only mode 2-5, 2-12
DBIFIND 2-23,2-26
DBIPUT 2-46

Internal ID list 2-73, 2-96, 2-121
see also Back-out feature
batch applications 2-100
circular 2-74
compressing 2-62
defined 2-68
end of chain condition 2-121
end of list condition 2-73
linear 2-75
preservation 2-99
reloading 2-69
saving 2-89
when no records qualify 2-99

Intrinsic Switch Stubs 1-17, 3-36
Intrinsics

function 2-2
general functions 2-4
IMAGE 2-7,2-95
IMAGE vs. OMNIDEX 1-12, 2-3
index maintenance 2-4
keyword access 2-3, 2-52
OMNIDEX 1-16
parameters in OMNIDEX 2-4
retrieval 2-10
sorted access 2-3, 2-13
update 2-9

Index-4 OMNIDEX API Guide

J

see also individual listing
Intrinsics library

defined 1-16
installing 3-2
OMNIDEX 1-16, 1-17

Item list 2-46
effect of ODXTRANSFER mode 101 on

2-90

J
JDATE format 2-60

data type 2-60

K

Key options
identifying 2-83

Keys
access ambiguities 2-109
keyword 1-2
referenced in DBFIND item 2-107
sorted 1-5

Keyword access
intrinsics 1-16
retrieving records (DBGET) 2-118
retrieving records (ODXGET) 2-74,

2-121
Keyword access intrinsics 2-3
Keyword keys 1-2

getting information about 2-80
Keyword search 2-52

Boolean operations 2-62
defined 1-4
enhanced argument parsing 2-58
interactive vs. batch 2-68, 2-100
interrupting 2-55
intrinsics 2-52
intrinsics called 3-13
keywords only 2-78
literal operators 2-58
m asterset 2-73,2-121
OMNIDEX intrinsics 2-3

on a detail 3-15
on a master 3-13
operations supported 2-53
qualifying count for details 2-56
Record Complex (RC) option 2-73,

2-121
Record Complex keys 3-17
record retrieval (DBGET) 2-118
record retrieval (ODXGET) 2-74, 2-121
record specific 3-16
relational operations 2-65
saving an ID list 2-89
through DBFIND 2-112
TPI Interface 3-29
undoing 2-68, 2-102
unlinked detail 3-16

Keyword-only search 2-62, 2-78, 3-19
retrieving keywords 2-78

Keywords
indexing 2-52

keywords parameter 2-62
length and terminator 2-57

Libraries
combining XLs 3-37

Link Editor from HP 3-37
Locking

Multi-RIN (MR) capability 3-38
OMNIDEX Intrinsic Interface 2-42

Master data sets
Transparent ID 2-50

Mode options 2-11
defined 2-5

MODE parameter
see also Modes

mode parameter 2-13
generic arguments 2-25
TPI Interface values 2-8

OMNIDEX API Guide Index-5

N

Modes
see also Mode options
defined 2-5
IMAGE-only 2-5
index-only 2-5
normal 2-5
Relational 2-111

MPE iX 2-2 ,3-34
Multifind 2-66,3-19

creating a file 2-90
intrinsics called 3-19

Multiple access
see also Keyword search

Multi-RIN (MR) capability 2-43, 3-38, 3-39

Normal mode 2-5,2-11
updates 3-3

ODXFIND
calling errors 2-70
COBOL program examples 3-44
exceptional conditions 2-69
function 2-52
mode 30 2-62
mode options 2-55
modes 2-54
modes 10 and 11 2-62
modes 3 and 5 2-58
parameters 2-54
relational operations 2-65

ODXGET
calling errors 2-77
COBOL program examples 3-45
exceptional conditions 2-77
internal ID list variations 2-73, 2-121
mode options 2-72
parameters 2-71

ODXGETWORD
calling errors 2-79

COBOL program examples 3-46
exceptional conditions 2-79
parameters 2-78

ODXINFO
calling errors 2-85
parameters 2-80

ODXPRINT
calling errors 2-87
parameters 2-86

ODXTRANSFER
calling errors 2-91
COBOL program examples 3-47
mode options 2-88
parameters 2-88

ODXVIEW
exceptional conditions 2-94
parameters 2-92

OMNIDEX
3GLs 3-40
4GLs 3-60
application development 1-9
benefits and features 1-7
components of 1-14
DBGET reads 2-118
defined 1-2
error handling 2-6
flexibility 1-8
intrinsic parameters 2-4
intrinsics 1-12
procedure libraries 1-11
reliability 1-10
speed of access 1-7
technical support x

OMNIDEX condition word 2-6, 3-5, 3-7
OMNIDEX domains

see OMNIDEX masters
OMNIDEX IDs 2-96

assigning through DBIPUT 2-47
determining type 2-83
next available ID 2-84

OMNIDEX Intrinsic Interface 1-9, 3-2
features 2-10

Index-6 OMNIDEX API Guide

p

overview 2-2
OMNIDEX masters

identifying for database 2-82
OmniUtil 1-14
Opening databases

OMNIDEX Intrinsic Interface 2-44, 3-2
TPI Interface 3-27

Partial key retrieval
see Generic arguments

Passive error handling 3-9
TPI-enabled databases 3-9

Pattern matching 2-61,2-109
relational operations 2-61

PHDATE format 2-60
data type 2-60

Precedence of operations
ODXFIND 2-58

Product support x
Programs

COBOL examples 3-40, 3-49
development effort 1-13
testing 3-33

PROTOS 1-12

Q
Qualifying count

see also Chain count
converting to Record Complex 3-16
DBFIND on RC keys 2-113
default keys in details 3-16
intrinsics called 3-19
keyword-only search 2-78
ODXFIND 2-56
sorted retrievals 2-111
status words 2-56

QUICK 1-12

Range operations
ASCII restrictions 2-65
DBFIND binary sorted 2-110
in DBFIND 2-113
ODXFIND 2-64
sorted ASCII 2-110

RAPID 1-12
Record Complex (RC) option 3-17

effect on multi-key searches 2-113
Record complexes 2-55

ODXGET 2-73,2-121
qualifying count 2-56
Record Complex (RC) option 2-112

Record specific keys 2-73, 2-88, 2-90,
2-121, 3-16

Records
adding 2-46

Relational modes
DBFIND 2-111
DBIFIND 2-24
DBIGET 2-29

Relational operations
DBFIND binary sorted 2-111
DBFIND mode 1 2-110
DBIFIND 2-24
DBIGET 2-29
generic arguments 2-14
in DBFIND 2-115
ODXFIND 2-65
pattern matching 2-61,2-110
sorted keys 2-13,2-97
sorted keys DBFIND 2-102

Relational positioning modes 2-102
Retrievals

see also Discrete Mode
after keyword searches 2-121
DBFIND argument terminators 2-108
DBFIND mode 1 2-109

OMNIDEX API Guide Index-7

s

IMAGE interface 2-96
keyword 3-13
of chain heads 2-24
sorted 2-120
sorted key 3-22

s

Search items
in DBFIND item 2-107

Search values
see Arguments

Segmenter from HP 3-37
Semicolon

as terminator 2-57, 2-92, 2-108
SL.PUB.DISC 3-36
Sorted access

chain count 2-111
DBFIND 2-104
finding chain heads 3-24
index-only mode 2-32, 3-26
OMNIDEX Intrinsic Interface 2-13
OMNIDEX intrinsics 2-3
partial key arguments 2-97
partial-key retrieval 3-22
relational operators 2-97
resetting record pointer 2-120
retrieving records (DBGET) 2-118
to detail chains 2-23
tokens in DBFIND 2-109
TPI Interface 3-31

Sorted access intrinsics 2-3
Sorted keys 1-5

verifying presence and type 2-34
Sorting records 1-5
status array 2-6

IMAGE vs. OMNIDEX 2-5
in OMNIDEX 3-6
ODXFIND values 2-56
word values 2-6

Technical support x
Third Party Indexing Products

see TPI Interface
TPI Interface 2-95,3-27

COBOL program examples 3-49
defined 1-10
error handling 2-9, 3-28
features 2-8
overview 2-7
passive error handling 3-9
role of MPE iX 2-2
version information 3-34

Transparent domains
DBIPUT item list 2-46
effect on ODXTRANSFER 2-91
finding with ODXINFO 2-83

Updates
adding records 2-46
IMAGE-only mode 2-12
index-only mode 2-12
normal mode 2-11
of indexes 2-9
of indexes (automatic) 2-50
OMNIDEX intrinsics 3-3
real-time indexing for TPI 3-28
TPI applications 3-28

Utilities 1-14

V

V / 3000 2-55

w

Wild cards
see Pattern matching

Index-8 OMNIDEX API Guide

X

X
XL.PUB.DISC 3-2, 3-27, 3-28, 3-34
XL.PUB.SYS 1-11

OMNIDEX API Guide Index-9

	OMNIDEX ImagePlus SDK API Guide for HP MPE/iX
	Table of Contents
	Using this Guide
	Acknowledgments
	Chapter 1: Introduction
	Welcome to OMNIDEX version 3
	Why Use OMNIDEX?
	Developing OMNIDEX Programs
	Components of OMNIDEX

	Chapter 2: Intrinsics
	General Intrinsic Information
	Sorted Access and General Intrinsics
	Keyword Access Intrinsics
	Standard Interface to Third Party Indexing

	Chapter 3: Programming
	Writing Programs
	Linking and Testing Programs
	Interfacing with 3GLs
	Interfacing with 4GLs

	Glossary
	Index

