
Cognos(R)

Application Development Tools
PowerHouse(R) 4GL

VERSION 8.4E

POWERHOUSE RULES

PowerHouse Rules

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

Type the text for the HTML TOC entry

PowerHouse Rules

POWERHOUSE RULES

Product Information

This document applies to PowerHouse(R) 4GL Version 8.4E and may also apply to subsequent releases. To check for newer versions of this
document, visit the Cognos Global Customer Services Web site (http://support.cognos.com).

Copyright
Copyright (C) 2007 Cognos Incorporated.

Portions of Cognos(R) software products are protected by one or more of the following U.S. Patents: 6,609,123 B1; 6,611,838 B1; 6,662,188
B1; 6,728,697 B2; 6,741,982 B2; 6,763,520 B1; 6,768,995 B2; 6,782,378 B2; 6,847,973 B2; 6,907,428 B2; 6,853,375 B2; 6,986,135 B2;
6,995,768 B2; 7,062,479 B2; 7,072,822 B2.

Cognos and the Cognos logo are trademarks of Cognos Incorporated in the United States and/or other countries. All other names are
trademarks or registered trademarks of their respective companies.

While every attempt has been made to ensure that the information in this document is accurate and complete, some typographical errors or
technical inaccuracies may exist. Cognos does not accept responsibility for any kind of loss resulting from the use of information contained in
this document.

This document shows the publication date. The information contained in this document is subject to change without notice. Any
improvements or changes to either the product or the document will be documented in subsequent editions.

U.S. Government Restricted Rights. The software and accompanying materials are provided with Restricted Rights. Use, duplication, or
disclosure by the Government is subject to the restrictions in subparagraph (C)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, or subparagraphs (C) (1) and (2) of the Commercial Computer Software - Restricted Rights at
48CFR52.227-19, as applicable. The Contractor is Cognos Corporation, 15 Wayside Road, Burlington, MA 01803.

This software/documentation contains proprietary information of Cognos Incorporated. All rights are reserved. Reverse engineering of this
software is prohibited. No part of this software/documentation may be copied, photocopied, reproduced, stored in a retrieval system,
transmitted in any form or by any means, or translated into another language without the prior written consent of Cognos Incorporated.

PowerHouse Rules 3

About this Book 13

Overview 13
Conventions in this Book 13
Getting Help 13
Cognos PowerHouse 4GL Documentation Set 14
Cognos PowerHouse Web Documentation Set 15
Cognos Axiant 4GL Documentation Set 16

Chapter 1: Running PowerHouse 17
Before Running PowerHouse 17
Getting Help 17
Setting Up the PowerHouse Environment 18

MPE/iX 18
OpenVMS 18
UNIX 18
Windows 19

Running QDESIGN 20
Running QUICK 21
Running QUIZ 22
Running QTP 24
Running PDL 27
Running PHDPDL (OpenVMS) 28
Running QSHOW 29
Running QUTIL 30
PowerHouse Commands (OpenVMS) 31
@SETPOWERHOUSE (OpenVMS) 32
POWERHOUSE (OpenVMS) 33
SETDICTIONARY (OpenVMS) 36
SHOWDICTIONARY (OpenVMS) 38
SHOWPOWERHOUSE (OpenVMS) 39
SHOWQUOTA (OpenVMS) 40
Locating Files 41

Locating the Data Dictionary 41
How the BUILD and SAVE Statements Locate Files 41
How the EXECUTE and USE Statements and auto Program Parameter Locate Files 42
Locating Start Screens or QKGO files in QUICK 43
How the GO Statement Locates Files 44
Locating Subfiles 44
Locating ODS5 File Names (OpenVMS) 46

Designated Files 48
PDC Shared Dictionary (OpenVMS) 53

Introduction 53
Requesting Dictionary Installations 53
Shared Memory Configuration 53

PHD Shared Dictionary (OpenVMS) 55
PDL Shared Dictionary (UNIX) 56

Installing Your Dictionary 56
Shared Memory Management 58

Mailbox Support in PowerHouse (OpenVMS) 59

Table of Contents

4 PowerHouse(R) 4GL Version 8.4E

Creating a Temporary or Permanent Mailbox 59
Temporary Mailbox Application 59
Permanent Mailbox Application 60
Using Mailboxes to Pass Source Statements 62
Mailboxes and System Crashes 62

sitehook (OpenVMS) 63
Large File Support (UNIX, Windows) 64
DISAM Data Storage (Windows) 65

Chapter 2: Program Parameters 67
About Program Parameters 67
Summary of Program Parameters 67
auto 75
autodetach|noautodetach 76
blockmode (MPE/iX) 77
broadcast (OpenVMS) 78
bulkfetch 79
cc 80
charmode 81
checksum710 (OpenVMS) 82
close_detach 84
columnowner 85
commitpoints 87
compress_buffers 88
confirmer 89
consolekeys|noconsolekeys (Windows) 90
createall 91
createbase (MPE/iX) 92
createfile 93
cursorowner 94
dbaudit 96
dbdetach|nodbdetach 98
dbwait|nodbwait 99
dcl|nodcl (OpenVMS) 100
debug (QDESIGN) 101
debug (QUICK) 102
deleteall 103
deletebase (MPE/iX) 104
deletefile 105
designer_noretain 106
detail|nodetail 107
dictionary|dict 108
dicttype|dt (OpenVMS) 109
direct_file_base_zero (OpenVMS) 110
disable_nulls 111
dont_store_module 112
downshift|upshift|noshift 113
entryrecall 114
errlist 115
fastread (OpenVMS) 116
fdl|nofdl (OpenVMS) 117
initnulls|noinitnulls 118
intsize6|nointsize6 (OpenVMS) 119
jcwbase (MPE/iX) 120
lineread (MPE/iX) 121
list|nolist 122
lockword (MPE/iX) 123

PowerHouse Rules 5

moduleext (MPE/iX) 124
moduleloc (MPE/iX) 125
nls (no line split) (MPE/iX, UNIX) 126
noblobs 127
nobreakset (MPE/iX) 128
nonportable 129
nontermcompat (Windows) 130
noowner 131
noprefix_ownername 132
nosetwarnstatus (OpenVMS) 133
nouicbrackets (OpenVMS) 134
nxl (no extra line) 135
obsolete 136
omnidex|noomnidex (MPE/iX) 137
osaccess|noosaccess 138
owner 139
parmfile (OpenVMS, UNIX, Windows) 140
parmprompt 141
patch 142
pollspeed (MPE/iX) 143
pre_chooseall 144
procloc 145
prompt 146
qktrace 147
quotedproccall 149
read (MPE/iX) 150
resetbindvar|noresetbindvar 151
resource 152
restore 153
retainmark|noretainmark 154
reuse_screen_buffers|noreuse_screen_buffers 155
search 156
secured 157
setjobshow|nosetjobshow (Windows) 158
statistics|nostatistics 159
subdictionary|subdict 160
subformat 161
term 162
termpoll|notermpoll (MPE/iX, OpenVMS) 165
timezone|notimezone (MPE/iX) 166
tpi|notpi (MPE/iX, HP-UX, Windows) 167
trusted|notrusted (OpenVMS) 168
update 170
version 171
vmsdate (OpenVMS) 172

Chapter 3: Resource File Statements 173
About Resource File Statements 173
Summary of Resource File Statements 173
ALLBASE MODULE EXTENSION (MPE/iX) 180
AUTODETACH 181
BROADCAST (OpenVMS) 182
BULKFETCH n 183
CC 184
CHECKSUM710 185
CLOSE DETACH 187
COLUMNOWNER 188

6 PowerHouse(R) 4GL Version 8.4E

COMMITPOINTS OBSOLETE 190
COMPRESS BUFFERS 191
CONSOLE KEYS (Windows) 192
DATABASE 193
DBAUDIT 195
DBDETACH 197
DBWAIT 198
DEBUG 199
DEFAULT CURSOR OWNER 200
DESIGNER NORETAIN 201
DICTIONARY 202
DIRECTORY (UNIX, Windows) 204
DISABLE NULLS 205
ENTRY RECALL 206
EXIT 207
HPSLAVE EXTRA LINE 208
HPSLAVE SPLIT LINES (MPE/iX, UNIX) 209
INITIALIZE NULLS 210
INTEGER SIZE 6 (OpenVMS) 211
JCWBASE (MPE/iX) 212
LIST 213
LOCATION MODULE (MPE/iX) 214
LOCATION PROCESS 215
LOCKWORD (MPE/iX) 216
NOBLOBS 217
NONPORTABLE 218
NOOWNER 219
NOSET WARN STATUS (OpenVMS) 220
OBSOLETE 221
OMNIDEX (MPE/iX) 222
OSACCESS 223
OWNER 224
PREFIX ORACLE OPEN NAME 225
PROMPT 226
QUIT 227
RESET BIND VARIABLES 228
RESTORE LINES 229
RETAIN MARK 230
REUSE SCREEN BUFFERS 231
RMS FAST READ (OpenVMS) 232
RMS FILE BASE (OpenVMS) 233
SET 234
SETJOBSHOW (Windows) 235
SHIFT 236
STATISTICS 237
STORE MODULES 238
SUBDICTIONARY 239
SUBFORMAT n 240
TERMINAL 241
TERMINAL BLOCKMODE (MPE/iX) 244
TERMINAL CHARACTERMODE 245
TERMINAL CONFIRMER 246
TERMINAL POLLING SPEED (MPE/iX) 247
TERMINAL READ (MPE/iX) 248
TERMPOLL (MPE/iX, OpenVMS) 249
TIC RESOURCE FILE (UNIX, Windows) 250
TIME ZONE (MPE/iX) 251

PowerHouse Rules 7

TPI (MPE/iX, HP-UX, Windows) 252
TRUNCATE PARM VALUES 253
TRUSTED (OpenVMS) 254
UIC BRACKETS (OpenVMS) 256
UPDATE ORDER 257
USE 258
VMSDATE 259

Chapter 4: Messages in PowerHouse 261
PowerHouse 4GL Messages 261
Service Layer Messages 265

How the Service Layer Locates Message Files 265
Format of a Default Message File 266
Service Message Compiler 268

Designer Messages 270
Text Order Numbering 271

Chapter 5: PowerHouse Language Rules 273
Syntax Symbols in PowerHouse 273

Uppercase and Lowercase 273
Square Brackets 273
Braces 274
Ellipsis 274
Or-Bars 274
Stacked Syntax 274
Indented Syntax 274

General Terms in PowerHouse 275
Entering Statements 281

Abbreviating Keywords 281
Avoiding Conflicts Between Keywords and Record or Item Names 281
What Happens When You Enter Statements 281
Entering Comments 281
Entering Conditional Compile Statements 282
Operating System Commands 283

Arrays in PowerHouse 284
Using Arrays in QDESIGN 284
Subscripting in QUIZ and QTP 285
Using Arrays in QUIZ 285
Using Arrays in QTP 286

Conditions in PowerHouse 289
Logical Function 289
Logical Expression 289
Predefined Conditions in QDESIGN 290
Predefined Conditions in QTP 293
Predefined Conditions in QUIZ 295
Simple Conditions 295
Compound Conditions 296
Modifying Simple and Compound Conditions 296
Conditional Command List 296
Conditions and NULL Values 297

Conditions in SQL 298
sql-expression operator {sql-expression|subquery} 298
sql-expression operator {ALL|SOME|ANY} subquery 298
columnspec [NOT] LIKE 'sql-pattern' [ESCAPE 'character'] 298
columnspec IS [NOT] NULL 299
sql-expression [NOT] IN (value, value[...])|subquery 299
[NOT] EXISTS subquery 299

Expressions in PowerHouse 300

8 PowerHouse(R) 4GL Version 8.4E

String Expressions 300
Numeric Expressions 300
Date Expressions 301
Conditional Expressions 301
Case Processing 302

Expressions in SQL 303
String Expressions 303
Numeric-Expressions 303
Date Expressions 303
SQL Case Processing 303
Expressions within Program Variables 304

SQL Summary Operations 304
Items and Datatypes in PowerHouse 306

Defined Items 306
Global Temporary Items (QTP) 306
Predefined Items (QDESIGN) 306
Record Items 307
Temporary Items 308
How QDESIGN Searches for Items 308
How QTP Searches for Items 308
Item Types 309
Item Datatypes 309
Item Sizes 310
Non-Relational PowerHouse Datatypes 311
Relational PowerHouse Datatypes (Part 1) 313
Relational PowerHouse Datatypes (Part 2) 315
Relational Datatypes Specifics 316
BLOB Datatype 317
CHARACTER Datatype 317
DATE Datatype 317
DATETIME Datatype 318
FLOAT Datatype 318
FREEFORM Datatype 320
INTEGER Datatype 320
INTERVAL Datatype 321
JDATE Datatype 321
NUMERIC Datatype 321
PACKED Datatype 321
PHDATE Datatype 322
VARCHAR Datatype 322
VMSDATE Datatype (OpenVMS) 322
ZDATE Datatype 323
ZONED Datatype 323
User-Defined Datatypes 324

ORACLE Synonyms in PowerHouse 325
Limitations to PowerHouse Statements 325

Attributes of Numeric Elements 326
The Input Conversion Process 326
Default Assumptions Governing Input 327
The Output Conversion Process 327
Default Assumptions for Display Attributes 328
Specifying Decimal Currencies 328
Displaying Negative Values 329
Multiplication and Percentage Calculations 329

Decimal Alignment and Scaling 330
Conditions and Scaled Values 331
VALUES Options and Scaled Values 331

PowerHouse Rules 9

Calculations and Scaled Values 331
Floating Point Calculations 332
Examples of Calculations 333
Notes on Scaling Efficiency 333

QUICK Screen Commands 334
Using Screen Commands in Command Lists 334
Action Commands: 335
Data Commands: 340
Action Bar Commands 342
Field Marking Commands 342
Line Edit Commands 342
Menu/List/Selection Box Commands 343
Popup Commands 343
System Commands 343
Text Edit Commands 343

Blob Support in PowerHouse 345
Using Blobs in PowerHouse Expressions 345
Using Blobs 345
Restrictions on Blobs 346

Null Value Support in PowerHouse 347
Enabling Null Value Item Initialization 347
Automatic Item Initialization 347
Entering and Displaying Null Values 347
Assigning Null Values 348
Testing for Null Values 348
Operating on Null Values in PowerHouse 348
Selective Record Retrieval Based on Null Values 349
Controlling Null Value Entry in QDESIGN 349

Pattern Matching in PowerHouse 351
Types of Characters Used in Pattern Matching 351
Types of Patterns 353
Formal Pattern Matching Syntax 354
Example Patterns 355

Pattern Matching in SQL 356
Using the SOUNDEX Option 357

SOUNDEX Option Rules 357

Chapter 6: Functions in PowerHouse 359
About Functions in PowerHouse 359
Summary of PowerHouse Functions 359
ABSOLUTE 367
ADDCENTURY 368
ASCII 369
ATTRIBUTE 370
AUDITSTATUS 371
Bit Extract 372
BITEXTRACT 373
CEILING 374
CENTER|CENTRE 375
CENTURY 376
CHARACTERS 378
CHARACTER_LENGTH|CHAR_LENGTH 379
CHECKSUM 380
COMMANDCODE 383
COMMANDMESSAGE 384
COMMANDSEVERITY (OpenVMS) 385
COMMANDSTATUS (OpenVMS) 386

10 PowerHouse(R) 4GL Version 8.4E

CONTENTS 387
DATE 388
DATEEXTRACT 390
DAYS 391
DECIMALTIME 392
DECRYPT 393
DELETESYSTEMVAL (MPE/iX, UNIX, and Windows) 394
DELETESYSTEMVAL (OpenVMS) 397
DOWNSHIFT 401
ENCRYPT 402
EXTRACT 404
FIRST 405
FLOOR 406
FORMATNUMBER 407
GETSYSTEMVAL (MPE/iX, UNIX, and Windows) 412
GETSYSTEMVAL (OpenVMS) 413
INDEX 414
HEXDECODE Function 415
HEXENCODE Function 416
INTERVAL 417
JCW (MPE/iX) 418
LASTDAY 419
LEFT JUSTIFY | LJ 420
LINKVALUE 421
 LOGONID 422
LOWER 423
MATCHPATTERN 424
MATCHUSER 425
MISSING 426
MOD 427
NCONVERT 428
NULL 429
OCCURRENCE 430
OCTET_LENGTH 432
OLDVALUE 433
PACK 434
PORTID 435
POSITION 436
PROCESSLOCATION 437
RANDOM 438
RECORDLOCATION 439
REMOVECENTURY 440
REVERSE 441
RIGHT JUSTIFY | RJ 442
ROUND 443
SCREENLEVEL 446
SETSYSTEMVAL (MPE/iX, UNIX, and Windows) 447
SETSYSTEMVAL (OpenVMS) 449
SHIFTLEVEL 451
SIGNONACCOUNT (MPE/iX) 452
SIGNONGROUP (MPE/iX) 453
SIGNONUSER 454
SIZE 455
SOUNDEX 456
SPREAD 458
SQLCODE 459
SQLMESSAGE 461

PowerHouse Rules 11

SUBSTITUTE 462
SUBSTRING 464
Substring Extract 465
SUM 466
SYSDATE 468
SYSDATETIME 469
SYSNAME 470
SYSPAGE 471
SYSTIME 472
TERMTYPE 473
TRUNCATE 474
UIC (OpenVMS, UNIX) 475
UPPER 476
UPSHIFT 477
VALIDPATTERN 478
VMSTIMESTAMP (OpenVMS) 479
WEBLOGONID 480
ZEROFILL 481

Glossary 483

Index 497

12 PowerHouse(R) 4GL Version 8.4E

PowerHouse Rules 13

About this Book

Overview
This book is intended for experienced PowerHouse users who require a concise summary of
PowerHouse rules and statements.

Chapter 1, "Running PowerHouse", tells you how to run every component of PowerHouse,
including QDESIGN, QUICK, QUIZ, QTP, and PDL and its utilities, QSHOW and QUTIL. It also
tells you how to locate PowerHouse Data Dictionary and Source Statement files, and describes
designated files that are reserved for use as PowerHouse default files.

Chapter 2, "Program Parameters", describes the program parameters that control attributes such
as determining which dictionary PowerHouse runs.

Chapter 3, "Resource File Statements", describes the statements you can use to specify program
parameters and other system characteristics for use with PowerHouse applications.

Chapter 4, "Messages in PowerHouse", provides information about PowerHouse 4GL messages,
service layer messages, and designer messages for PowerHouse applications.

Chapter 5, "PowerHouse Language Rules", contains detailed discussions of PowerHouse syntax
and its presentation, general terms that appear in syntax, and related topics.

Chapter 6, "Functions in PowerHouse", describes PowerHouse functions, providing syntax
descriptions, function discussions, and examples, where applicable.

The book also contains a "Glossary" of PowerHouse terms.

Conventions in this Book
This book is for use with MPE/iX, OpenVMS, UNIX, and Windows operating systems. Any
differences in procedures, commands, or examples are clearly labeled.

In this book, words shown in uppercase type are keywords (for example, SAVE). Words shown in
lowercase type are general terms that describe what you should enter (for example, filespec).
When you enter code, however, you may use uppercase, lowercase, or mixed case type.

Getting Help
For more information about using this product or for technical assistance, visit the Cognos Global
Customer Services Web site (http://support.cognos.com). This site provides product information,
services, user forums, and a knowledge base of documentation and multimedia materials. To
create a case, contact a support person, or provide feedback, click the Contact Us link at the
bottom of the page. To create a Web account, click the Web Login & Contacts link. For
information about education and training, click the Training link.

14 PowerHouse(R) 4GL Version 8.4E

About this Book

Cognos PowerHouse 4GL Documentation Set
PowerHouse 4GL documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Objective Document

Install
PowerHouse 4GL

Cognos PowerHouse 4GL & PowerHouse Web
Getting Started book. This document provides
step-by-step instructions on installing and
licensing PowerHouse 4GL.

Available in the release package or from the
following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web
Release and Install Notes. This document provides
information on supported environments, changes,
and new features for the current version.

Available in the release package or from the
following website:

http://support.cognos.com

Get an
introduction to
PowerHouse 4GL

Cognos PowerHouse 4GL Primer. This document
provides an overview of the PowerHouse language
and a hands-on demonstration of how to use
PowerHouse.

Available from the PowerHouse 4GL
documentation CD or from the following website:

http://powerhouse.cognos.com

Get detailed
reference
information for
PowerHouse 4GL

Cognos PowerHouse 4GL Reference documents.
They provide detailed information about
PowerHouse rules and each PowerHouse
component.

The documents are
• Cognos PowerHouse 4GL PowerHouse Rules
• Cognos PowerHouse 4GL PDL and Utilities

Reference
• Cognos PowerHouse 4GL PHD Reference
• Cognos PowerHouse 4GL PowerHouse and

Relational Databases
• Cognos PowerHouse 4GL QDESIGN

Reference
• Cognos PowerHouse 4GL QUIZ Reference
• Cognos PowerHouse 4GL QTP Reference

Available from the PowerHouse 4GL
documentation CD or from the following
websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

About this Book

PowerHouse Rules 15

Cognos PowerHouse Web Documentation Set
PowerHouse Web documentation includes planning and configuration advice, detailed
information about statements and procedures, installation instructions, and last minute product
information.

Objective Document

Start using
PowerHouse Web

Cognos PowerHouse Web Planning and
Configuration book. This document introduces
PowerHouse Web, provides planning information
and explains how to configure the PowerHouse
Web components.

Important: This document should be the starting
point for all PowerHouse Web users.

Also available from the PowerHouse Web
Administrator CD or from the following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Install
PowerHouse Web

Cognos PowerHouse 4GL & PowerHouse Web
Getting Started book. This document provides
step-by-step instructions on installing and
licensing PowerHouse Web.

Available in the release package or from the
following website:

http://support.cognos.com

Review changes
and new features

Cognos PowerHouse 4GL & PowerHouse Web
Release and Install Notes. This document provides
information on supported environments, changes,
and new features for the current version.

Available in the release package or from the
following website:

http://support.cognos.com

Get detailed
information for
developing
PowerHouse Web
applications

Cognos PowerHouse Web Developer’s Guide.
This document provides detailed reference
material for application developers.

Available from the Administrator CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Administer
PowerHouse Web

The PowerHouse Web Administrator Online Help.
This online resource provides detailed reference
material to help you during PowerHouse Web
configuration.

Available from within the PowerHouse Web
Administrator.

16 PowerHouse(R) 4GL Version 8.4E

About this Book

Cognos Axiant 4GL Documentation Set
Axiant 4GL documentation includes planning and configuration advice, detailed information
about statements and procedures, installation instructions, and last minute product information.

For More Information
For information on the supported environments for your specific platform, as well as last-minute
product information or corrections to the documentation, see the Release and Install Notes.

Objective Document

Install Axiant 4GL Cognos Axiant 4GL Web Getting Started book.
This document provides step-by-step instructions
on installing and licensing Axiant 4GL.

Available in the release package or from the
following website:

http://support.cognos.com

Review changes
and new features

Cognos Axiant 4GL Release and Install Notes.
This document provides information on supported
environments, changes, and new features for the
current version.

Available in the release package or from the
following website:

http://support.cognos.com

Get an
introduction to
Axiant 4GL

A Guided Tour of Axiant 4GL. This document
contains hands-on tutorials that introduce the
Axiant 4GL migration process and screen
customization.

Available from the Axiant 4GL CD or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

Get detailed
reference
information on
Axiant 4GL

Axiant 4GL Online Help. This online resource is a
detailed reference guide to Axiant 4GL.

Available from within Axiant 4GL or from the
following websites:

http://support.cognos.com

and

http://powerhouse.cognos.com

PowerHouse Rules 17

Chapter 1: Running PowerHouse

Overview
This chapter describes
• how to run the PowerHouse components: QDESIGN, QUICK, QUIZ, QTP, PDL, PHDPDL,

QSHOW, and QUTIL
• how to locate PowerHouse data dictionary and other files
• the designated files that are reserved for use as PowerHouse default files
• how to installed shared dictionaries

Before Running PowerHouse
The appropriate user-defined commands (UDCs) (MPE/iX), logicals and symbols (OpenVMS), or
environment variables (MPE/iX, UNIX, Windows) should be set before you run PowerHouse. For
further information, see the Cognos PowerHouse 4GL and PowerHouse Web Getting Started
book for your platform.

Getting Help
As you're entering statements in PowerHouse, you can see a brief list of the allowed syntax of a
statement by entering a question mark (?). For example, entering
> ACCESS ?

produces a list of the keywords that you can enter after the ACCESS statement.

18 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Setting Up the PowerHouse Environment

Setting Up the PowerHouse Environment

MPE/iX
Access to PowerHouse 4GL is achieved through the PowerHouse 4GL UDC catalog,
PH<version>UDC.PH<version>.COGNOS. When client/server applications are built and run
through Axiant 4GL, some of the same setup is done using a command file which is restored from
the tape as SETPOW.PH<version>.COGNOS.

If you have certain HP or third party software installed on your computer, you will have to modify
these two files.

For example, to enable PowerHouse 4GL 8.39C, sign on to the account in which PowerHouse
4GL is to be used and enter
SETCATALOG PH839UDC.PH839.COGNOS

OpenVMS
Once PowerHouse has been installed according to the instructions in the Getting Started book,
you usually set it up by entering the command @SETPOWERHOUSE at the operating system
prompt ($), like this:
$ @SETPOWERHOUSE

Your computer may be set up so that you don’t have to use this command, or so that you have to
use some other procedure instead. See your system manager for more information.

There are options for the @SETPOWERHOUSE command that let you specify which version of
PowerHouse you want to use and in what language you want to use it. For more information
about the @SETPOWERHOUSE command, see (p. 32).

If, when you run PowerHouse, it prompts for your terminal type, or if the screens are displayed
incorrectly on your terminal, use the DCL command SET TERMINAL, which allows OpenVMS
to determine the correct terminal type. Entering the commands
$ SET TERMINAL/UNKNOWN
$ SET TERMINAL/INQUIRE

sets up VT series terminals and most DEC terminal emulators. If you are prompted for a terminal
type again when you are working in PowerHouse, enter a question mark (?) to view a listing of
supported terminal types.

You can also use the SET TERMINAL command to establish your terminal’s keypad for numeric
data-entry or function key use. The command
$ SET TERMINAL/NUMERIC_KEYPAD

sets up the keypad as a numeric keypad. The DCL command
$ SET TERMINAL/APPLICATION_KEYPAD

sets up the keypad for function key use.

UNIX
Once PowerHouse has been installed according to the instructions in the Getting Started book,
you usually set it up by entering the command
setenv PH <powerhouse version>

Once the Powerhouse version is set you must resource your environment to pick up the correct
version.

Your system may be set up so that you don’t have to use this command, or so that you have to use
some other procedure instead. See your system manager for more information.

To set a dictionary on the UNIX platform, use the following command at the operating system
prompt:
setdict <dictionary compiled name>

To show which dictionary you have set, use the following command:

Chapter 1: Running PowerHouse
Setting Up the PowerHouse Environment

PowerHouse Rules 19

showdict

By default, PDL, QDESIGN, QSHOW, QTP, QUIZ and QUTIL create a temporary directory in
the current working directory named phnnnn.tmp where nnnn is the process id. This temporary
directory is used to store temporary files, such as the source statement save file. If one component
is started from within another, the original component’s temporary directory is used. A temporary
directory is deleted when the component that created it exits.

If the PHTEMP environment variable is set, temporary files are created in the PHTEMP location
and the temporary directories are not created.

If you require a unique name for the PHTEMP location, use $$ in the following technique:
• Bourne shell or Korn shell users:

PHTEMP=phtemploc_$$.tmp
export PHTEMP

• C shell users:
setenv PHTEMP phtemploc_$$.tmp

Windows
Once PowerHouse has been installed according to the instructions in the Getting Started book,
you can start a PowerHouse component from
• a shortcut in the Start menu
• the Run dialog in the Start menu
• a Command Prompt window
By default, the shortcuts in the Start menu have the install location as the
’start in’ or working location. Typically, you would start a Command Prompt
session, navigate to the working directory, and type the component name to
launch it.

By default, PDL, QDESIGN, QSHOW, QTP, QUIZ, and QUTIL create a temporary directory in
the current working directory named phnnnn.tmp where nnnn is the process id. This temporary
directory is used to store temporary files such as the source statement save file. If one component
is started from within another, the second component creates its own temporary directory. A
temporary directory is deleted when the component that created it exits.

If the PHTEMP environment variable is set, the temporary directories are created in the PHTEMP
location.

20 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Running QDESIGN

Running QDESIGN
To run QDESIGN from the operating system prompt, enter:
qdesign

To run QDESIGN from within another PowerHouse component, enter:

To run QDESIGN on Windows:
1. Select the QDESIGN option from the PowerHouse <version> option of the Start Menu.
2. From the Programs option of the Start Menu, select the Command Prompt option. A

Command Prompt window appears. From the Command Prompt window, enter:
qdesign

Entering QDESIGN Program Parameters
You can include program parameters when running QDESIGN from the operating system prompt
or from within another component.

All valid program parameters can be accessed as in

MPE/iX
Some of the more common program parameters have been included in the PowerHouse UDC,
which allow you to say, for example:
QDESIGN DICT=MYDICT

HELP QDESIGN at the operating system prompt shows the program parameters included in the
UDC.

Exiting QDESIGN
To return to the operating system when you finish a QDESIGN session, enter the EXIT or QUIT
statement.

MPE/iX: : qdesign

OpenVMS: $ qdesign or ! qdesign

UNIX, Windows: ! qdesign

MPE/iX: QDESIGN INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: qdesign dict=mydict

Chapter 1: Running PowerHouse
Running QUICK

PowerHouse Rules 21

Running QUICK
To run QUICK from the operating system prompt, enter:
quick

To run QUICK from within QDESIGN, enter:
go filename

To run QUICK from within another PowerHouse component, enter:

To run QUICK on Windows:
1. Select the QUICK option from the PowerHouse <version> option of the Start Menu.

A valid dictionary must be specified using the PHD environment variable. If the environment
variable is not specified, QUICK tries to locate a dictionary named PHD.PDC in the current
directory. If a valid dictionary is not found, the Console window closes. If a valid dictionary is
found, you enter the QUICK program and are prompted for a screen name.

2. From the Programs option of the Start Menu, select the Command Prompt option. A
Command Prompt window appears. From the Command Prompt window, enter:
quick

Entering QUICK Program Parameters
You can include program parameters when running QUICK from the operating system prompt or
from within another component.

All valid program parameters can be accessed as in

MPE/iX
Some of the more common program parameters have been included in the PowerHouse UDC,
which allow you to say, for example:
QUICK DICT=MYDICT

HELP QUICK at the operating system prompt shows the program parameters included in the
UDC.

Exiting QUICK
To return to the operating system when you finish a QUICK session, enter the Return to Previous
Screen command (^) in the Action field. For a complete list of QUICK screen commands, see
Chapter 2, "QUICK User Interface", in the QDESIGN Reference book.

Running QUICK Debugger
For information about running QUICK Debugger, see Chapter 9 "Debugger", and Chapter 10,
"Debugger Commands", in the QDESIGN Reference book.

MPE/iX: : quick

OpenVMS: $ quick or ! quick

UNIX, Windows: ! quick

MPE/iX: QUICK INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: quick dict=mydict

22 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Running QUIZ

Running QUIZ
To run QUIZ from the operating system prompt, enter:
quiz

To run QUIZ from within another PowerHouse component, enter:

To run QUIZ on Windows:
1. Select the QUIZ option from the PowerHouse <version> option of the Start Menu.
2. From the Programs option of the Start Menu, select the Command Prompt option. A

Command Prompt window appears. From the Command Prompt window, enter:
quiz

Entering QUIZ Program Parameters
You can include program parameters when running QUIZ from the operating system prompt or
from within another component.

All valid program parameters can be accessed as in

MPE/iX

Some of the more common program parameters have been included in the PowerHouse UDC,
which allow you to say, for example:
QUIZ DICT=MYDICT

HELP QUIZ at the operating system prompt shows the program parameters included in the UDC.

Exiting QUIZ
To return to the operating system when you finish a QUIZ session, enter the EXIT or QUIT
statement.

QUIZ Error Status Settings (MPE/iX, UNIX, Windows)
Conditional error status codes are set when you exit QUIZ. The error status setting depends on
events that occur during the QUIZ session.

MPE/iX: : quiz

OpenVMS: $ quiz or ! quiz

UNIX, Windows: ! quiz

MPE/iX: QUIZ INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: quiz dict=mydict

Setting (MPE/iX) Setting (UNIX, Windows) Meaning

- 0 Normal completion

WARN1 1 Parsing error

WARN2 2 Exception error

WARN3 3 Calculation error

WARN4 4 Edit error

Chapter 1: Running PowerHouse
Running QUIZ

PowerHouse Rules 23

To check the status, use:

MPE/iX: SHOWJCW

UNIX: echo $status (C shell) or echo $? (korn shell)

Windows: echo %ERRORLEVEL%

QUIZ Error Status Settings (OpenVMS)
Conditional error status codes are set when you exit QUIZ. The error status setting depends on
events that occur during the QUIZ session. QUIZ sets the DCL symbol $STATUS to the error code
that represents the last type of error encountered.

Testing Error Status Settings
You can test whether the QUIZ session succeeded with the DCL command:
$IF $STATUS

You can test for particular values, as in
$ QUIZ AUTO=BUDGET_RUN
$ IF $STATUS .EQ. %X1900801A
$ THEN
$ WRITE SYS$OUTPUT "Calculation error encountered."
$ ENDIF

WARN5 5 File output error

Setting (MPE/iX) Setting (UNIX, Windows) Meaning

Setting Meaning

19008008 An internal error prevented continuation of the program

19008010 An exception error has been encountered

19008018 A calculation error has been encountered

19008020 A data or parameter editing error has been encountered

19008028 A file access error has been encountered

19008030 Errors with parameters have been detected

19008038 An error was detected while outputting to a subfile

19008042 Errors have been encountered

19009000 Warnings have been encountered

00000001 Successful completion

24 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Running QTP

Running QTP
To run QTP from the operating system prompt, enter:
qtp

To run QTP from within another PowerHouse component, enter:

To run QTP on Windows:
1. Select the QTP option from the PowerHouse <version> option of the Start Menu.
2. From the Programs option of the Start Menu, select the Command Prompt option. A

Command Prompt window appears. From the Command Prompt window, enter:
qtp

Entering QTP Program Parameters
You can include program parameters when running QTP from the operating system prompt or
from within another component.

All valid program parameters can be accessed as in

MPE/iX

Some of the more common program parameters have been included in the PowerHouse UDC,
which allow you to say, for example:
QTP DICT=MYDICT

HELP QTP at the operating system prompt shows the program parameters included in the UDC.

Exiting QTP
To return to the operating system when you finish a QTP session, enter the EXIT or QUIT
statement.

QTP Error Status Settings (MPE/iX, UNIX, Windows)
Conditional error status codes are set when you exit QTP. The error status setting depends on
events that occur during the QTP session.

MPE/iX: : qtp

OpenVMS: $ qtp or ! qtp

UNIX, Windows: ! qtp

MPE/iX: QTP INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: qtp dict=mydict

Setting (MPE/iX) Setting (UNIX, Windows) Meaning

- 0 Normal completion

FATAL1 1 Parsing error

FATAL2 2 Exception error

FATAL3 3 Calculation error

FATAL4 4 Edit error

Chapter 1: Running PowerHouse
Running QTP

PowerHouse Rules 25

To check the status, use:

MPE/iX: SHOWJCW

UNIX: echo $status (C shell) or echo $? (korn shell)

Windows: echo %ERRORLEVEL%

QTP Error Status Settings (OpenVMS)
Conditional error status codes are set when you exit QTP. The error status setting depends on
events that occur during the QTP session. QTP sets the DCL symbol $STATUS to the error code
that represents the last type of error encountered.

Testing Error Status Settings

You can test whether the QTP session succeeded with the DCL command:
$IF $STATUS

You can test for particular values, as in
$ QTP AUTO=BUDGET_RUN
$ IF $STATUS .EQ. %X1900801A
$ THEN
$ WRITE SYS$OUTPUT "Calculation error encountered."
$ ENDIF

Request Statistics
By default, QTP displays statistics, any errors, and the resulting action at the end of each request.
In addition, a detailed update report is available as an option. You can override the default by
using the nostatistics program parameter, the SET NOSTATISTICS statement, or the SET
REPORT statement.

Standard request statistics contain a count of all data records read, processed, and updated in
tabular form, as in
Executing request PROJECT-UPDATE ...

FATAL5 5 File output error

FATAL6 6 Conditional termination

Setting (MPE/iX) Setting (UNIX, Windows) Meaning

Setting Meaning

1900800A An internal error prevented continuation of the program

19008012 An exception error has been encountered

1900801A A calculation error has been encountered

19008022 A data or parameter editing error has been encountered

1900802A A file access error has been encountered

19008032 Errors with parameters have been detected

1900803A An error was detected while outputting to a subfile

19008042 Errors have been encountered

19009000 Warnings have been encountered

00000001 Successful completion

26 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Running QTP

Records read:
BILLINGS 14

Transactions processed: 14
Records processed: Added Updated Unchanged Deleted

PROJECTS 0 1 13 0
Finished.

If the request has no name, QTP reports its number. (Each request within a run is numbered
consecutively.)

Record-structures are listed under the "Records read:" heading in the order that they appear in
the ACCESS statement. The counts under the "Records read:" heading include only data records
that are actually read. If a transaction fails selection while being built, only the data records read
to the point of failure are included in the counts. Data records read for lookup editing purposes
aren’t included.

The "Transactions processed:" heading lists the number of transactions that passed selection.

The "Records processed:" heading appears only if the request has an output phase. The counts
under the "Records processed:" heading report the output actions that QTP performed. If a
conditional update isn’t performed, the count isn’t incremented. The unchanged count reflects
data records for which an update action was specified but not performed because no item values
changed.

Record-structures are listed in the sequence in which the OUTPUT and SUBFILE statements are
specified in the request. If a record-structure has an alias, the alias is listed. The last line,
"Finished.", appears after all requests in a run have completed execution.

If the statistics are produced on a printer, the date, time, and system title are displayed at the top
of each page. The run and request names, if any, are also displayed.

Detailed Update Report
You can request a detailed report of update activity using the SET REPORT DETAIL statement.
Every addition, update, or deletion is listed, as in
Record updated. [9]

File: EMPLOYEES
Linkitem: EMPLOYEE 00017
Linkitem:LASTNAME ARBA

Record updated. [14]
File: EMPLOYEES

Linkitem: EMPLOYEE 00002
Linkitem: LASTNAME ANDERSON

The first line shows the action taken and the current transaction count. In the example, the
EMPLOYEES record-structure was updated at control breaks, which occurred at transaction
number 9 and 14. The record-structure name is shown along with its indexes and their values.

Determining Request Status at Execution Time
A snapshot of the current status of a request is obtained by entering a user break, (Ctrl-Y,
MPE/iX; Ctrl-C, UNIX, Windows, OpenVMS), during request execution. When you enter a user
break, QTP displays one of the following messages:
In GLOBAL phase, no records have been processed.
In LOAD phase, no records have been processed.
In INPUT phase, the following is a report of status.
In SORT phase, the following is a report of status.
In OUTPUT phase, the following is a report of status.
In WRAPUP phase, no statistics are available.

If the request is in the global or load phase, either the request tables are still being loaded or actual
processing hasn’t started. If the request is in the input, sort, or output phase, a status report is
displayed that’s identical in format to the statistics produced at the end of a request. The wrap-up
phase occurs immediately after request processing has been completed and statistics have been
displayed.

Following the display, QTP asks if you want to continue execution. A negative response (or no
response within three minutes) results in an exception error, and in the termination of the run or
request. Run or request termination also occurs if there’s no response within three minutes.

Chapter 1: Running PowerHouse
Running PDL

PowerHouse Rules 27

Running PDL
To run PDL from the operating system prompt, enter:
pdl

To run PDL from within another PowerHouse component, enter:

To run PDL on Windows:
1. Select the PDL option from the PowerHouse <version> option of the Start Menu.
2. From the Programs option of the Start Menu, select the Command Prompt option. A

Command Prompt window appears. From the Command Prompt window, enter:
pdl

For more information about PDL, see Chapter 1, "Introducing the PowerHouse Dictionary", in
the PDL and Utilities Reference book.

Entering PDL Program Parameters
You can include program parameters when running PDL from the operating system prompt or
from within another component.

All valid program parameters can be accessed as in

MPE/iX

Some of the more common program parameters have been included in the PowerHouse UDC,
which allows you to say, for example:
PDL DICT=MYDICT

HELP PDL at the operating system prompt shows the program parameters included in the UDC.

Exiting PDL
To return to the operating system when you finish a PDL session, enter the EXIT or QUIT
statement.

MPE/iX: : pdl

OpenVMS: $ pdl or ! pdl

UNIX, Windows: ! pdl

MPE/iX: PDL INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: pdl dict=mydict

28 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Running PHDPDL (OpenVMS)

Running PHDPDL (OpenVMS)
To run PHDPDL from the operating system prompt, enter
phdpdl

To run PHDPDL from within another component, enter
$ phdpdl

or
! phdpdl

For more information about PHDPDL, see Chapter 1, "Introducing the PowerHouse Dictionary",
in the PDL and Utilities Reference book.

Entering PHDPDL Program Parameters
You can include program parameters when running PHDPDL from the operating system prompt
or from within another component.

All valid program parameters can be accessed as in
phdpdl dict=mydict

Exiting PHDPDL
To return to the operating system when you finish a PHDPDL session, enter the EXIT or QUIT
statement.

Chapter 1: Running PowerHouse
Running QSHOW

PowerHouse Rules 29

Running QSHOW
To run QSHOW from the operating system prompt, enter:
qshow

To run QSHOW from within QDESIGN, QUIZ or QTP, enter QSHOW from the product prompt
or:

To run QSHOW on Windows:
1. Select the QSHOW option from the PowerHouse <version> option of the Start Menu.
2. From the Programs option of the Start Menu, select the Command Prompt option. A

Command Prompt window appears. From the Command Prompt window, enter:
qshow

Entering QSHOW Program Parameters
You can include program parameters when running QSHOW from the operating system prompt
or from within another component.

All valid program parameters can be accessed as in

MPE/iX

Some of the more common program parameters have been included in the PowerHouse UDC,
which allows you to say, for example:
QSHOW DICT=MYDICT

HELP QSHOW at the operating system prompt shows the program parameters included in the
UDC.

Exiting QSHOW
To return to the invoking program when you finish a QSHOW session, enter the EXIT or QUIT
statement.

MPE/iX: : qshow

OpenVMS: $ qshow or $phshow

UNIX, Windows: ! qshow

MPE/iX: QSHOW INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: qshow dict=mydict

30 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Running QUTIL

Running QUTIL
To run QUTIL at the operating system prompt, enter
qutil

To run QUTIL from within QDESIGN, QUIZ or QTP, enter:

To run QUTIL on Windows:
1. Select the QUTIL option from the PowerHouse <version> option of the Start Menu.
2. From the Programs option of the Start Menu, select the Command Prompt option. A

Command Prompt window appears. From the Command Prompt window, enter:
qutil

Entering QUTIL Program Parameters
You can include program parameters when running QUTIL from the operating system prompt or
from within another component.

All valid program parameters can be accessed as in

MPE/iX

Some of the more common program parameters have been included in the PowerHouse UDC,
which allows you to say, for example:
QUTIL DICT=MYDICT

HELP QUTIL at the operating system prompt shows the program parameters included in the
UDC.

Exiting QUTIL
To return to the operating system when you finish a QUTIL session, enter the EXIT or QUIT
statement.

MPE/iX: : qutil

OpenVMS: $ qutil or ! qutil

UNIX, Windows: ! qutil

MPE/iX: QUTIL INFO="DICT=MYDICT"

OpenVMS, UNIX, Windows: qutil dict=mydict

Chapter 1: Running PowerHouse
PowerHouse Commands (OpenVMS)

PowerHouse Rules 31

PowerHouse Commands (OpenVMS)
The PowerHouse commands are:

@SETPOWERHOUSE

POWERHOUSE

SETDICTIONARY

SHOWDICTIONARY

SHOWPOWERHOUSE

SHOWQUOTA

The syntax of the PowerHouse commands is presented on the following pages.

You can obtain information about a command by entering a question mark after it, as in
$ SETDICTIONARY ?

The question mark works for PowerHouse command procedures such as SETDICTIONARY but
not for PowerHouse images like QUIZ or QTP.

Any PowerHouse command can be placed in your login file so that it executes automatically when
you log on.

Limit: You must first execute the @SETPOWERHOUSE command in order to use any of the other
PowerHouse commands.

32 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
@SETPOWERHOUSE (OpenVMS)

@SETPOWERHOUSE (OpenVMS)
Executes a PowerHouse command procedure that sets up the environment for using PowerHouse.

Syntax
@SETPOWERHOUSE [version] [LANGUAGE=E|F|D]

[LICENSE=DEVELOPMENT|RUNTIME|RT_REPORTING|
REPORTING_ONLY] [VERIFY|NOVERIFY]

@

Indicates to OpenVMS that the command invokes a command procedure. You only have to use
ampersand (@) once in a session.

Limit: You must use @ when you execute the SETPOWERHOUSE command for the first time in a
session.

version

Specifies the version of PowerHouse to be run. Check with your system manager to find out which
version to use. The logical name PH_DEFAULT_VERSION points to the default version.

LANGUAGE=E|F|D

Specifies which message files to use. The language may be set to one of English (E), French (F), or
German (D).

Default: English (E)

LICENSE=DEVELOPMENT|RUNTIME|RT_REPORTING|REPORTING_ONLY

Overrides the license type that is set up by the logical PH_DEFAULT_LICENSE.

VERIFY|NOVERIFY

Specifies whether process quotas are checked or not.

Default: NOVERIFY

Discussion
The @SETPOWERHOUSE command invokes a command procedure that sets up the environment
for using PowerHouse. It establishes the logical names and global symbols that PowerHouse
needs. This command is typically included in your login file.

The command procedure can be used more than once in a session to change to a different version
of PowerHouse or to restore global symbols and logical names that have been changed during the
session. After the first time this command procedure is executed, the command to invoke it can be
abbreviated to
SETPOW [VERSION]

When the command procedure is run the first time, a global symbol for SETPOWERHOUSE is
established. The @ is no longer required in subsequent commands.

By default, the @SETPOWERHOUSE command selects the EDT editor. You can change the
default editor by changing the PHEDIT symbol.

Chapter 1: Running PowerHouse
POWERHOUSE (OpenVMS)

PowerHouse Rules 33

POWERHOUSE (OpenVMS)
The POWERHOUSE command initiates the PowerHouse Menu.

Syntax
POWERHOUSE [option]...

ACTIONBAR

Runs all the PowerHouse Menu screens in Action Bar mode, rather than the default Action field
mode.

CHECKSUM710[=ON|OFF]

ON means PowerHouse uses unsigned input for checksum calculations. OFF means PowerHouse
uses signed input.

Specifying CHECKSUM710 without an option is the same as specifying CHECKSUM710=ON.

Default: ON (version 7.10); OFF (versions 8.00 and up)

If the logical CHECKSUM710 is set to the option you require, then the PHDMAINT parameter
does not need to be used. For further information on this parameter, see the corresponding
CHECKSUM710 program parameter in the PowerHouse Rules document.

[TERM=] termtype

Identifies your terminal type. If you omit this parameter, you will be prompted for your terminal
type as PowerHouse can’t recognize it automatically.

USER|AMGR|DMGR

Instructs PowerHouse to skip over the PowerHouse Menu and move you directly to the User
Menu (USER), the Application Management Menu (AMGR), or the Dictionary Management
Menu (DMGR) provided you have access to the dictionary at the necessary security level. If you
are denied access to a menu, the PHD Screen System displays an appropriate message.

The PowerHouse command initiates PowerHouse. If you have not previously used the
SETDICTIONARY command in the current session, you are prompted for the name of the
dictionary to be used. When you enter the name of your dictionary, the PowerHouse Menu or the
menu appropriate to your dictionary security class appears. You can abbreviate POWERHOUSE
to POW.

The PowerHouse Menu looks like this:

To use a component or utility, type the option number in the Action field and then press [Return].

The options on the PowerHouse menu are:

34 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
POWERHOUSE (OpenVMS)

01 Maintain PowerHouse Dictionary
Moves you to the menu appropriate to your dictionary security class. If your security class permits
it, you can override this automatic assignment by entering one of the following commands in the
action field of the PowerHouse menu.
• USER moves you to the User Menu.
• AMGR moves you to the Application Management Menu.
• DMGR moves you to the Dictionary Management Menu.

02 Report Dictionary Contents
Runs QSHOW so you can report the contents of your dictionary. Reports can be displayed on
your terminal or directed to a printer.

10 Assign QUICK Parameter File
Establishes the QKGO file to be used by QUICK during this session. A QKGO file sets many of
the parameters QUICK uses when running your applications.

11 Maintain QUICK Parameter Files
Moves to the QKGO Construction and Maintenance Screen to create, view, or change QKGO
files for QUICK. For more information about QKGO, see Chapter 6, "Customizing QUICK with
QKGO", in the QDESIGN Reference book.

20 Design QUICK Screens
Runs QDESIGN, the QUICK screen builder. Refer to the QDESIGN Reference for complete
details.

21 Run QUICK Screens
Runs the QUICK screens that you have designed. QUICK accesses the data defined in your data
dictionary.

22 Write QUIZ Reports
Reports the data stored in your files.

23 Perform QTP Processing
Runs QTP for large volume data processing, such as bulk data validation and other
batch-oriented tasks.

30 Edit a File
Invokes your system editor. You can use the editor for writing and changing statements used by
the PowerHouse components.

31 Use Mail
Invokes OpenVMS mail.

Discussion

The USER, AMGR, and DMGR Action Field Commands

The PowerHouse Menu provides three Action field commands - USER, AMGR and DMGR -
which allow dictionary users to choose which of the three menus they want to use.
• The AMGR command invokes the Application Management Menu.
• The DMGR command invokes the Dictionary Management Menu.
• The USER Action field command can be used to move to the basic User Menu when PHD

Screen System automatically initiates a different menu.

Chapter 1: Running PowerHouse
POWERHOUSE (OpenVMS)

PowerHouse Rules 35

Users whose dictionary security grants them application manager or dictionary manager status
can enter AMGR or DMGR, respectively, in the Action field of the PowerHouse Menu instead of
choosing option 01. Users who don't have the appropriate dictionary access can't use the AMGR
and DMGR commands.

36 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
SETDICTIONARY (OpenVMS)

SETDICTIONARY (OpenVMS)
Establishes a dictionary for a PowerHouse session.

Syntax
SETDICTIONARY [dictionaryname [TYPE PHD|PDC] [NOCHECK]]

dictionaryname

The name of the dictionary to be used for the session. The dictionary name does not include the
automatically assigned numbers (00 through 03) or the file extension (.PHD) of the dictionary
files.

Limit: The dictionary name can be up to 37 characters long.

TYPE PHD|PDC

Specifies the default dictionary type. When searching for a dictionary, PowerHouse limits searches
to the dictionary type specified by the TYPE option. If the TYPE option is not specified,
PowerHouse searches first for a PHD dictionary, then for a PDC dictionary.

NOCHECK

Prevents the SETDICTIONARY procedure from checking that the dictionary files exist and are
valid. You can use this option to save machine overhead.

Discussion
The SETDICTIONARY command establishes which dictionary PowerHouse is to use. You can
abbreviate SETDICTIONARY to SETDICT.

The SETDICTIONARY command sets the logical name assignments for the dictionary files. If you
enter it without a dictionary name, as in
$ SETDICT

you will be prompted for the dictionary name. If you then press [Return] without entering a name,
the logical names for the dictionary files will be de-assigned.

To change dictionaries for the PHD Screen System or QUICK, you must leave PowerHouse and
then reissue the SETDICTIONARY command, as in
$ SETDICT DICT2

In QDESIGN, QUIZ, QTP, PDL, and QSHOW, you can either change dictionaries by leaving
PowerHouse and using the SETDICTIONARY command, or you can use the SET DICTIONARY
statement while you are still in the component, as in
> SET DICT DICT2

Once you set a dictionary, all the PowerHouse components that you initiate from the same process
level will use that dictionary. You are on one process level when you run any PowerHouse
component from the DCL prompt ($), but you create a subprocess when you run a PowerHouse
component from the PowerHouse Menu. For example, if you follow these steps:
1. $ SETDICT DICTA
2. $ QUIZ
3. > SET DICT DICTB
4. > EXIT
5. $ QSHOW

QSHOW will use DICTB. Similarly, if you follow these steps:
1. $ SETDICT DICTA
2. $ POWERHOUSE
3. select option 4 to run QUIZ
4. > SET DICT DICTB

Chapter 1: Running PowerHouse
SETDICTIONARY (OpenVMS)

PowerHouse Rules 37

5. > EXIT
6. select option 9 to run QSHOW

QSHOW will use DICTB, because both QUIZ and QSHOW were run as subprocesses. However,
if you follow these steps:
1. $ SETDICT DICTA
2. $ POWERHOUSE
3. select option 4 to run QUIZ
4. > SET DICT DICTB
5. > EXIT
6. exit from the PowerHouse Menu
7. $ QSHOW

QSHOW will use DICTA, because DICTB was set at a subprocess level but QSHOW is not a
subprocess.

If you follow these steps:
1. $ SETDICT DICTA
2. $ QUIZ
3. > SET DICT DICTB
4. > EXIT
5. $ SHOWDICT

the SHOWDICT command shows the dictionary currently in use as DICTB. If QUIZ is run using
the dictionary program parameter as follows, the current dictionary is DICTB:
1. $ SETDICT DICTA
2. $ QUIZ DICT=DICTB
3. > EXIT
4. $ SHOWDICT

Limit: In PHDPDL you cannot set a dictionary to one that is already in use.

38 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
SHOWDICTIONARY (OpenVMS)

SHOWDICTIONARY (OpenVMS)
Displays the name of the dictionary currently in use.

Syntax
SHOWDICTIONARY

Discussion
The SHOWDICTIONARY command displays the name and type of the dictionary currently in use
for a PowerHouse session. You can abbreviate SHOWDICTIONARY to SHOWDICT.

Chapter 1: Running PowerHouse
SHOWPOWERHOUSE (OpenVMS)

PowerHouse Rules 39

SHOWPOWERHOUSE (OpenVMS)
Displays the name of the active version of PowerHouse.

Syntax
SHOWPOWERHOUSE

Discussion
The SHOWPOWERHOUSE command displays the name of the version of PowerHouse that you
are running. If the active version is different from the default version, the default version is also
displayed, as in
DISK: PATH$RELEASE:
ROOT DIRECTORY: (RELEASE)
ACTIVE VERSION: 830C
DEFAULT VERSION: 830C
ACTIVE LICENSE: DEVELOPMENT

You can abbreviate SHOWPOWERHOUSE to SHOWPOW.

40 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
SHOWQUOTA (OpenVMS)

SHOWQUOTA (OpenVMS)
Displays the remaining process quotas, and the minimum PowerHouse requirements for them.

Syntax
SHOWQUOTA

Discussion
The SHOWQUOTA command displays the process quotas and the minimum PowerHouse
requirements for BYTLM, ENQLM, FILLM, and PRCLM.

Chapter 1: Running PowerHouse
Locating Files

PowerHouse Rules 41

Locating Files
The term "location" in this section means:

Qualifying, or partially qualifying a file, means adding a location or partial location to the file
name. Partial locations are always relative to the current working location.

If specified, the procloc program parameter takes precedence over the LOCATION PROCESS
resource file statement.

Locating the Data Dictionary
For PowerHouse components that access a dictionary file, the component may be run with the
dictionary program parameter to specify the name of a dictionary file. The parameter can be
abbreviated to dict. For example,
qdesign dict=mydict

OpenVMS, UNIX, Windows: If the name supplied by the dictionary program parameter, logical
name (OpenVMS), the environment variable (UNIX, Windows), or SET DICT statement doesn't
end with the extension .pdc, PowerHouse appends this extension before using it. OpenVMS: This
applies only to PDC-type dictionaries. For PHD-type dictionaries, it will append the appropriate
file number (00-03) and the extension .phd.

If the dictionary program parameter is not specified on startup:

How the BUILD and SAVE Statements Locate Files
The BUILD statement causes QDESIGN to create compiled screens. The BUILD statement causes
QUIZ and QTP to create compiled files.

The BUILD statement in QDESIGN references the file named in the SCREEN statement. If the
BUILD statement in QTP does not have a file name specified, it references the file named in the
RUN statement.

The SAVE statement causes PDL, PHDPDL, QDESIGN, QSHOW, QTP, QUIZ, and QUTIL to
create a file of source statements.

MPE/iX: group, or group and account

OpenVMS: node, device, and/or directory

UNIX, Windows: path possibly including the root or device

MPE/iX,
UNIX,
Windows:

PowerHouse first looks for the designated file PHD. If not found, PowerHouse
looks for the file PHD in the current location. If not found, PowerHouse issues
an error.

OpenVMS: If no dictionary type is specified, PowerHouse first looks for a PHD-type
dictionary by looking for
• the logical name PHD00
• and if not found, the files PHD00-PHD03.PHD in the current location

If a PHD-type dictionary is not found, PowerHouse looks for a PDC-type
dictionary by looking for
• the logical name PHD
• and if not found, the file PHD.PDC in the current location

If the file is still not found, PowerHouse issues an error.

If a dictionary type is specified, PowerHouse performs the same steps as
indicated when no dictionary type is specified, but restricts the search to the
specified dictionary type, PHD or PDC.

42 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Locating Files

If you qualify or partially qualify the file name, the component only searches in the specified
location. A partially qualified location is relative to the current working location. If you reference
a file without a qualifier, then the component tries to locate the file in the current working
location.

If the component finds the file, then it replaces it (MPE/iX, UNIX, Windows) or creates a new
version of the existing file (OpenVMS). The component prompts for confirmation before
replacing or creating a new version of the existing file if SET VERIFY DELETE is specified. If SET
NOVERIFY DELETE is specified, the component replaces or creates a new version of the file
automatically. If you choose not to replace or create a new version of the existing file, then the
component leaves the existing file intact and creates a temporary copy of the new file.

For qualified or partially-qualified files, if the location exists but the file is not found, then the
component creates the named file in the specified location. If the location is not found, the
component issues an error.

For unqualified files, if the file is not found, then the component creates the named file in the
current working location.

How the EXECUTE and USE Statements and auto Program Parameter Locate
Files

The EXECUTE statement in QTP and QUIZ reads compiled run and report files. The USE
statement in PDL, PHDPDL, QDESIGN, QSHOW, QTP, QUIZ, and QUTIL reads source
statement files. The USE statement in QTP and QUIZ also reads compiled run and report files.
The auto program parameter in PDL, PHDPDL, QDESIGN, QSHOW, QTP, QUIZ, and QUTIL
reads source statement files. The auto program parameter in QTP and QUIZ also reads compiled
run and report files.

In QTP and QUIZ, if a file extension is specified (OpenVMS, UNIX, Windows), the USE
statement and the auto program parameter look for that type of file only. If no file extension is
specified, the component first looks for a source statement file. If none is found, the component
then looks for compiled run or report files. If the compiled file is not found, the component issues
an error.

Locating Specified Files

If neither the procloc program parameter nor the LOCATION PROCESS resource file statement is
used, then the component looks for the file in the location specified if qualified, or, if partially or
not qualified, relative to the current working location. If the file is not found, the component
issues an error.

If the file is fully qualified or partially qualified (MPE/iX, OpenVMS), any procloc program
parameter or LOCATION PROCESS resource file statement is ignored. The component looks for
the file in the specified location. A partially qualified location is relative to the current working
location. If the file is not found, the component issues an error.

MPE/iX: Only files with the appropriate file type are processed.

OpenVMS,
UNIX,
Windows:

The component appends the appropriate file extension to the name only if none is
given in the entered name. Only files with the appropriate extension are
processed.

MPE/iX: Only files with the appropriate file type are processed.

OpenVMS,
UNIX,
Windows:

The component appends the appropriate file extension to the name only if none is
given in the entered name. Only files with the appropriate extension are
processed.

Chapter 1: Running PowerHouse
Locating Files

PowerHouse Rules 43

If the file is unqualified and either the procloc program parameter or the LOCATION PROCESS
resource file statement is used, the component looks for the file in the procloc or the LOCATION
PROCESS location. If the file is not found, it is searched for relative to the current working
location. If the file is still not found, the component issues an error.

UNIX, Windows: If the file is partially qualified and the procloc program parameter or
LOCATION PROCESS resource file statement is used, then the component looks for the file in the
partial location relative to the procloc or LOCATION PROCESS location. If the file is not found,
the component looks for the file relative to the current working location. If the file is still not
found, the component issues an error.

Locating Files When the Component Starts

If the auto program parameter is not used, the component looks for its designated USE file. For a
list of designated files, see "Designated Files" (p. 48). The file is located as if it had been specified
in the auto program parameter, except that if the component does not locate the file, it does not
issue an error.

Locating Start Screens or QKGO files in QUICK
If no file extension is specified on the file name, QUICK looks for a QKI file first, then a QKGO
file, and lastly for a compiled screen file. The default extension for QKGO files is .qkg
(OpenVMS, UNIX, Windows). The default extension for QKI files is .qki (OpenVMS, UNIX,
Windows). The default extension for compiled screen files is .qkc (OpenVMS, UNIX, Windows).

If a QKGO file is specified and it contains a start or first screen, that screen is located in the same
manner as if the screen had been specified in the auto program parameter. If there is no start
screen, QUICK prompts for a screen name.

If neither the procloc program parameter nor the LOCATION PROCESS resource file statement is
used, then QUICK looks for the screen or QKGO file specified in the auto program parameter in
the specified location if qualified, or, if partially or not qualified, relative to the current working
location. If the file is not found, QUICK issues an error.

Locating Qualified or Partially Qualified Files

If the screen or QKGO file specified in the auto program parameter is fully qualified or partially
qualified (MPE/iX, OpenVMS), any procloc program parameter or LOCATION PROCESS
resource file statement is ignored. QUICK looks for the file in the specified location. A partially
qualified location is relative to the current working location. If the file is not found, QUICK issues
an error.

UNIX, Windows: If the screen or QKGO file is partially qualified and the procloc program
parameter or LOCATION PROCESS resource file statement is used, then QUICK looks for the
file in that location. If the file is not found, QUICK looks for the file relative to the current
working location. If the file is still not found, QUICK issues an error.

Locating Unqualified Files

If the screen or QKGO file specified in the auto program parameter is unqualified and either the
procloc program parameter or the LOCATION PROCESS resource file statement is used, QUICK
looks for the file in the procloc or the LOCATION PROCESS location. If the file is not found,
QUICK looks for the file relative to the current working location. If the file is still not found,
QUICK issues an error.

Locating the Start Screen or QKGO File When No File is Specified

If the auto program parameter is not used, QUICK looks for the designated file, QKGO. QUICK
looks for the file as if it had been specified in the auto program parameter, except that if QUICK
does not locate the file or there is no start screen, it prompts for a screen name rather than issuing
an error.

OpenVMS: If there is no designated file QKGO specified, QUICK looks for the logical
PH_DEFAULT_QKGO.

44 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Locating Files

PH_DEFAULT_QKGO May Take Precedence Over QKGO (OpenVMS)

If the auto program parameter is specified for a compiled QUICK screen file and the logical
PH_DEFAULT_QKGO points to a QKGO file, then the specified screen is run and the QKGO file
referenced by the PH_DEFAULT_QKGO logical is used, except for its First Screen setting. This
overrides any QKGO file that may be pointed to by the logical QKGO.

How the GO Statement Locates Files
The GO statement in QDESIGN invokes QUICK and passes a screen file or QKGO file using the
auto program parameter. If the procloc program parameter was specified to QDESIGN, it is also
passed to QUICK.

If the GO statement does not name a screen, then QUICK attempts to locate the screen file named
in the SCREEN statement. If QDESIGN finds the file, it creates a temporary version of the screen
to pass to QUICK.

If you name a screen or a QKGO file on the GO statement, QUICK processes the auto program
parameter in the same manner as if QUICK had been started on its own.

For example, if in QDESIGN you enter the following statement:
> GO MYSCREEN

QDESIGN invokes QUICK with the auto program parameter as follows:
> QUICK AUTO=MYSCREEN

If there is no current screen when you enter the GO statement, and you do not name a screen or
QKGO file, then QUICK prompts you for a screen name. This also happens if you specify a
QKGO file and the QKGO file does not specify a start screen.

Locating Subfiles
When creating a subfile, PowerHouse first attempts to locate a like-named subfile. When locating
subfiles, PowerHouse looks first for a temporary subfile and then for a permanent subfile.

Creating a Subfile With the Same Name as an Existing Subfile

If you create a temporary subfile with the same name and structure as an existing permanent
subfile, PowerHouse clears the permanent subfile of data and uses the permanent subfile. If the
structures are different, PowerHouse issues an error.

The following table shows what happens when you create temporary subfiles:

If you create a permanent subfile with the same name as an existing temporary subfile,
PowerHouse deletes the temporary subfile.

If you specify ...

and a temporary subfile
with the same name
exists ...

and a temporary
subfile with the
same name doesn’t
exist ...

and a non-PowerHouse
temporary file with the
same name exists ...

TEMPORARY and
NOAPPEND

PowerHouse deletes the
temporary subfile,
issues a warning, and
creates a new temporary
subfile

PowerHouse creates
a temporary subfile

PowerHouse issues an
error

TEMPORARY and
APPEND

PowerHouse appends to
the temporary subfile

PowerHouse creates
a temporary subfile

PowerHouse issues an
error

Chapter 1: Running PowerHouse
Locating Files

PowerHouse Rules 45

The following table shows how PowerHouse creates permanent subfiles:

Locating Subfiles (MPE/iX)

PowerHouse looks for permanent subfiles in the permanent domain. PowerHouse looks for
temporary subfiles in the temporary domain.

If a subfile is qualified, then PowerHouse looks for the subfile in the specified location. If a subfile
is partially qualified, then PowerHouse looks for the subfile in the specified location relative to the
current working location. If a subfile is unqualified, then PowerHouse looks for the subfile in the
current working location.

Locating Subfiles (OpenVMS)

If a permanent subfile is qualified, then PowerHouse looks for the subfile in the specified location.
If a permanent subfile is partially qualified, then PowerHouse looks for the subfile in the specified
location relative to the current working location. If a permanent subfile is unqualified, then
PowerHouse looks for the subfile in the current working location.

PowerHouse looks for temporary subfiles in the SYS$SCRATCH area regardless of path
qualification. Any path qualification is ignored for temporary subfiles.

Creating Temporary Directories (UNIX, Windows)

When a component starts, PowerHouse creates a temporary directory to hold temporary files,
such as the source statement save file and interim and temporary subfiles. The name of the
directory is phnnnn.tmp where nnnn is the process-id. UNIX: If a component is started from
within another component, the temporary directory is shared. Windows: Each component creates
its own temporary directory regardless of where it was started.

UNIX: By default, the temporary directory is created in the current working location. If the
PHTEMP environment variable is set, temporary files are created in the location specified by
PHTEMP and the temporary directories are not created.

Windows: By default, the temporary directory is created in the Windows temporary directory
established by checking the following in order: the TEMP environment variable, the TMP
environment variable, the USERPROFILE environment variable, the current working directory for
the user. If the PHTEMP environment variable is set, the temporary directory is created in the
location specified by PHTEMP.

Locating Interim and Temporary Subfiles (UNIX, Windows)

Any path qualification is ignored for temporary subfiles.

If the PHTEMPKEEP environment variable is not set, PowerHouse looks for interim and
temporary subfiles in the phnnnn.tmp directory.

If you specify ...

and a permanent subfile
with the same name
exists ...

and a permanent
subfile with the
same name doesn’t
exist ...

and a non-PowerHouse
permanent file with the
same name exists ...

KEEP and
NOAPPEND

PowerHouse prompts
you:
• to delete the existing

permanent subfile
(MPE/iX, UNIX,
Windows)

• to create a new
version (OpenVMS)

PowerHouse
creates a
permanent subfile

PowerHouse issues an
error

KEEP and
APPEND

PowerHouse appends to
the permanent subfile

PowerHouse
creates a
permanent subfile

PowerHouse issues an
error

46 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Locating Files

If both the PHTEMPKEEP and PHTEMP environment variables are set, interim and temporary
subfiles are created and looked for in the PHTEMP location rather than in the phnnn.tmp
directory. In this case, PowerHouse does not delete interim and temporary subfiles when the
components exit, and they are thus available for subsequent components to use. If you use this
feature, ensure that you delete interim and temporary subfiles once they are no longer needed.
Other temporary files are deleted as are any temporary directories. The PHTEMPKEEP
environment variable can be set to any value.

If the PHTEMP environment variable is not set, the PHTEMPKEEP environment variable is
ignored with one exception. When a component starts, it sets the PHTEMP location as part of its
processing. That component is aware that the PHTEMP setting is not due to the environment
variable; however, if that component calls another component, it sets the PHTEMP environment
variable so that the second component can use the same location. If PHTEMPKEEP is set, results
can be unpredictable. Avoid this situation by ensuring that PHTEMPKEEP is only set if PHTEMP
is also set.

Locating Permanent Subfiles (UNIX, Windows)

If a permanent subfile is qualified, then PowerHouse looks for the subfile in the specified location.
If a permanent subfile is partially qualified, then PowerHouse looks for the subfile in the specified
location relative to the current working location.

UNIX: If a permanent or portable subfile is unqualified, PowerHouse looks for the subfile in the
current working location.

Windows: If a permanent or portable subfile is unqualified, PowerHouse looks for the subfile in
the location specified by the PH_SBF_LOC environment variable. If the PH_SBF_LOC
environment variable is not set, PowerHouse looks for the subfile in the current working
directory.

Locating ODS5 File Names (OpenVMS)
PowerHouse 8.40 partially supports ODS5 file names. As well, the maximum length of a filename
or file specification remains 70 characters. Due to the change in OpenVMS system services,
PowerHouse can no longer validate a file name as being restricted to the ODS2 format. Due to the
flexibility of ODS5 file names, complete testing is not practical. Using ODS5 file names in a
manner that is not specifically mentioned below may not work as expected.

Dictionary names

PHDPDL
Embedded periods are not supported. Embedded blanks and non-ODS2 characters are supported.

PDL
Embedded blanks are not supported. Embedded periods are supported but the extension .PDC
must be included for complete support. Without the .PDC extension, SETDICT will not work
with filenames with embedded periods. Non-ODS2 characters are supported.

POW
ODS5 file names are not supported.

Data file names

Include the .DAT extension if you are using embedded periods. Embedded blanks are not
supported if you are using QUTIL to create the file.

Compiled screen names

If you use ODS5 file names SYS$SCRATCH must point to an ODS5 drive as well so that the
temporary files can be created correctly. Embedded periods are not supported.

Chapter 1: Running PowerHouse
Locating Files

PowerHouse Rules 47

Source file names and compiled run and request names

Embedded periods, blanks and non-ODS2 characters are supported based on our testing. As
previously mentioned, we cannot guarantee complete support. If embedded periods are used and
are not preceded by "^" then the last period is considered to begin the extension. If in doubt,
specify the extension. If the embedded periods are preceded by "^" then PowerHouse adds the
appropriate extension.

Subfile names

ODS5 file names are not supported.

48 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Designated Files

Designated Files
Designated files are reserved for use as PowerHouse default files. Some of these names are
reserved for use as file equations (MPE/iX), logical names (OpenVMS) or environment variables
(UNIX, Windows) by PowerHouse. For UNIX, this is the uppercase versions of the names.
(MPE/iX, OpenVMS, and Windows are not case sensitive.)

Where there is an entry in the File Equation/Env.Variable/Logical Name column in the table
below, the product looks for a file equation/environment variable/logical with that name. If the
variable is defined, the product uses its value in place of the lowercase file name.

OpenVMS, UNIX, Windows: PowerHouse uses file extensions when searching for files. For
example, when you use the SAVE statement in QTP, PowerHouse creates a file containing the
source code in the current dictionary and appends the file extension .qts to the filename. When
PowerHouse searches for the file, it first searches for a filename that has the extension .qts
appended.

File
File
Ext.1

File Equation/
Env. Variable/
Logical Name2 Component Purpose

filenameb
filenameb

.dat

.idx
QUICK The context binding files in

QKGO file sets (exist when TIC
information is specified).

filenamek
filenamek

.dat

.idx
QUICK The key sequence files in QKGO

file sets (exist when TIC
information is specified).

filenamet
filenamet

.dat

.idx
QUICK The terminal-group files in QKGO

file sets (exist when TIC
information is specified).

pdlmsg .txt PDLMSG PDL Optional message file that, if
present, contains messages to be
used by PDL.

pdlsave .pdl PDLSAVE PDL Temporary save file to which
entered PDL statements are
written.

pdluse .pdl PDLUSE PDL If this optional USE file exists, it is
processed automatically before
opening the system input file
(unless the auto program
parameter has been specified).

phd .pdc PHD All The default PDC type dictionary
file

phd00-phd03
(OpenVMS)

.phd PHD00-PHD03 All The default PHD type dictionary
files

phdpdlmsg
(OpenVMS)

.txt PHDPDLMSG PHDPDL Optional message file that, if
present, contains messages to be
used by PHDPDL.

phdpdlsave
(OpenVMS)

.pdl PHDPDLSAVE PHDPDL Temporary save file to which
entered PHDPDL statements are
written.

Chapter 1: Running PowerHouse
Designated Files

PowerHouse Rules 49

phdpdluse
(OpenVMS)

.pdl PHDPDLUSE PHDPDL If this optional USE file exists, it is
processed automatically before
opening the system input file
(unless the auto program
parameter has been specified).

PHFORM .rpo QDESIGN The default forms library when
creating Axiant Client forms.

PHRS
(MPE/iX)

ph
(OpenVMS,
Windows)

.phrc
(UNIX)

.

.rc

PHRS All The default resource file
containing program parameters
and other system characteristics.

qkdmsg .txt QKDMSG QDESIGN An optional message file that, if
present, contains messages to be
used by QDESIGN.

qkdebug .txt QKDEBUG QUICK The file containing the trace log of
a Debugger session.

qkecho .txt QKECHO QUICK The file to which user responses
are echoed. The echo file is created
only if a file equation (MPE/iX),
logical name (OpenVMS) or
environment variable (UNIX,
Windows) has been assigned to
QKECHO. This file is useful for
building QKIN files including
batch updates or automated
testing for future use.

qkgo .qkg QKGO QUICK The execution-time parameters file
governing QUICK’s operating
characteristics.

qkin .txt QKIN QUICK An optional QUICK input file.
Rerouting default input should be
done through QKIN alone.If
QKIN isn’t specified, input is
taken from:

MPE/iX: $SDTINX. If this is not
$STDINX, trailing blanks are
ignored. If trailing blanks are
required, they should be followed
by the semicolon separator
character (;).

OpenVMS: SYS$INPUT. QKIN
allows QUICK to be run from
command procedures.

File
File
Ext.1

File Equation/
Env. Variable/
Logical Name2 Component Purpose

50 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Designated Files

qklist .txt QKLIST QUICK The default QUICK output file for
the LIST and LISTALL command.
If a logical name for this file is not
defined, then the output is sent to
standard printer.

qkmsg .txt QKMSG QUICK An optional message file that, if
present, contains messages to be
used by QUICK.

qkmsgdes .txt QKMSGDES QUICK An optional designer message file.

qkout .txt QKOUT QUICK An optional QUICK output file
that contains text destined for the
terminal. If a logical name for
QKOUT isn’t specified, terminal
output is directed to the standard
output.

qksave .qks QKSAVE QDESIGN A temporary save file to which
entered QDESIGN statements are
written.

qk_termtype .txt QK_TERMTYPE QUICK The optional message file used to
set the default terminal and its
attributes.

qkuse .qks QKUSE QDESIGN An optional USE file processed
automatically by QDESIGN
before opening the system input
file (unless the auto program
parameter has been specified).

qshogen .pdl QSHOGEN QSHOW Default output file for PDL
statement generation.

qsholist .txt QSHOLIST QSHOW Default output file for QSHOW
reports that are sent to disk.

qshomsg .txt QSHOMSG QSHOW Optional message that, if present,
contains messages to be used by
QSHOW.

qshosave .qss QSHOSAVE QSHOW Temporary save file to which
entered QSHOW statements are
written.

qshouse .qss QSHOUSE QSHOW Optional use file processed
automatically by QSHOW before
opening the system input file
(unless the auto program
parameter has been specified).

qtpjob .txt QTPJOB QTP An optional file that, if present,
has its contents copied to
QTPSAVE when the SET JOB
statement is specified.

File
File
Ext.1

File Equation/
Env. Variable/
Logical Name2 Component Purpose

Chapter 1: Running PowerHouse
Designated Files

PowerHouse Rules 51

qtplist .txt QTPLIST QTP The default report output file
when SET REPORT is specified.

qtpmsg .txt QTPMSG QTP An optional message file that, if
present, contains messages to be
used by QTP.

qtpmsgdes .txt QTPMSGDES QTP An optional message file that, if
present, contains designer
messages to be used by QTP.

qtpsave .qts QTPSAVE QTP A temporary save file to which
entered QTP statements are
written.

qtpuse .qts QTPUSE QTP An optional use file processed
automatically by QTP before
opening the system input file
(unless the auto program
parameter has been specified).

quizjob .qzs QUIZJOB QUIZ An optional file that, if present,
has its contents copied to
QUIZSAVE when the set job
statement is specified.

quizlist .txt QUIZLIST QUIZ The default report output file.

quizmsg .txt QUIZMSG QUIZ An optional message file that, if
present, contains messages to be
used by QUIZ.

quizobj .qzc QUIZOBJ QUIZ Temporary save file to which the
current QUIZ report is compiled.

quizsave .qzs QUIZSAVE QUIZ Temporary save file to which
entered QUIZ statements are
written.

quizuse .qzs QUIZUSE QUIZ An optional use file processed
automatically by QUIZ before
opening the system input file
(unless the auto program
parameter has been specified).

quizwork .sf QUIZ The default name of the file
containing the data portion of a
subfile that has a minidictionary

quizwork .sfd QUIZ The default name for the file
containing the minidictionary
portion of a subfile.

quizwork .ps QUIZ The default name of the file
containing the data portion of the
portable subfile.

File
File
Ext.1

File Equation/
Env. Variable/
Logical Name2 Component Purpose

52 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Designated Files

quizwork .psd QUIZ The default name of the file
containing the dictionary portion
of the portable subfile.

qzmsgdes .txt QZMSGDES QUIZ An optional message file that, if
present, contains designer
messages to be used by QUIZ.

srvcmsgs .msg SRVCMSGS All Service layer messages file.

STDERROR
(MPE/iX)

STDERROR All The error report file

STDIN
(MPE/iX)

STDIN All The primary input file.

STDLIST
(MPE/iX)

STDLIST All The primary output list file.

STDPRINT
(MPE/iX)

STDPRINT QUIZ
QTP
QSHOW

The print file used with SET
PRINT.

SYSPRINT
(OpenVMS)

.txt SYSPRINT QUIZ
QTP
PDL
QSHOW

In QUIZ, an optional file that, if
present, contains the source listing
when SET PRINT is specified.

In QTP, PDL, and QSHOW, the
default name of the file created
when SET PRINT is specified.

PHSHOW All except
QUICK

OpenVMS: The symbol for the
program file used by the
components to run QSHOW.

QSHOW All except
QUICK

MPE/iX: The program file used by
the components to run QSHOW.

quick QDESIGN UNIX, Windows: The
environment variable used by
QDESIGN to run QUICK

QUICK QDESIGN MPE/iX: The program file used by
QDESIGN to run QUICK.

OpenVMS: The symbol used by
QDESIGN to run QUICK.

ABDBA All MPE/iX: Allbase/SQL services
executable library.

ORDBA All OpenVMS: ORACLE services
executable library.

1 Extensions apply only to OpenVMS, UNIX, and Windows.
2 MPE/iX uses file equations, OpenVMS uses logical names, and UNIX/Windows use
environment variables.

File
File
Ext.1

File Equation/
Env. Variable/
Logical Name2 Component Purpose

Chapter 1: Running PowerHouse
PDC Shared Dictionary (OpenVMS)

PowerHouse Rules 53

PDC Shared Dictionary (OpenVMS)

Introduction
PHD dictionaries are implemented as a set of five indexed files in the PHD file format. Reading
these dictionaries is done through index access as needed. A PDC dictionary is implemented as a
single stream file in common with the other platforms. Because of the format, the whole
dictionary is read into memory when the dictionary is opened so that all of it is easily accessible. If
your dictionary is very large and you have many users on the system, this can consume a great
deal of physical memory.

On OpenVMS, screens are shared using global sections. Dictionary access is also available in this
manner. This applies to products that open the dictionary with READ access only, that is, not
PDL.

Requesting Dictionary Installations
The OpenVMS shared dictionary uses a combination of a PH_CREATE_SHARED logical and the
QKGO setting for SCREEN SECTION in the execution time parameters. For QUICK, if a QKGO
is being used (either through the AUTO=<qkgo file>, the QKGO logical or the
PH_DEFAULT_QKGO logical), then the setting for SCREEN SECTION is used as the indicator
to use a shared section of a particular type for the dictionary. If no QKGO is being used for
QUICK and for all other products, the logical PH_CREATE_SHARED is evaluated. If
PH_CREATE_SHARED is set, it indicates that a shared dictionary should be used, and what type
of sharing is to be employed.

Executing SETPOWERHOUSE defines this logical with the "G"(Group) qualifier. If you want to
change the type of sharing globally, or remove it, you must modify the file,
PH_LOCATION:setph.com. You could also override the logical by setting it locally, after
SETPOWERHOUSE has been executed.

The types of sharing are "P"(private), "G"(group), "S"(system). The default PowerHouse user
privileges, as defined in the installation guide allow you to create/map Private and Group global
sections. The SYSGBL privilege is required to create and map a System global section.

If the dictionary open/map fails, then you will get the specific OpenVMS error message that is
returned by the system services being employed to do the job. This will be followed by one of the
following messages:

QUICK will return the message
"No valid data dictionary was specified".

QUIZ, QTP and QSHOW will return the message
"*E* You have been denied access to the specified dictionary."

This error could mean one of the following situations exists:
• the dictionary file does not exist
• you do not have access to detect or read the dictionary file
• you do not have the privilege to create the global section (System primarily)
• you are using the PH_CREATE_SHARED logical and have assigned it an invalid value. Only

"P","G", and "S" are valid.
• you don’t have enough GBLPAGES or GBLSECTIONS or some other system resource to

support the dictionaries being loaded into memory (see below for guidelines)

Shared Memory Configuration
The configuration of an OpenVMS system has two requirements for the use of shared memory.
These are:
• GBLSECTIONS – one section per dictionary that is to be shared
• GBLPAGES – one page per file block + 2 for each dictionary to be shared. (for example,

dictionary size is 1500 blocks – you need 1502 GBLPAGES).

54 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
PDC Shared Dictionary (OpenVMS)

See the OpenVMS System Management Utilities Reference Manual for more information about
system tuning.

Chapter 1: Running PowerHouse
PHD Shared Dictionary (OpenVMS)

PowerHouse Rules 55

PHD Shared Dictionary (OpenVMS)
Each PowerHouse PHD dictionary on OpenVMS is contained in five RMS data files with the
extension, PHD. You can make your dictionary shareable by enabling global buffers for these
files. Sharing dictionaries is most useful during development of a PowerHouse application when
the dictionary is frequently accessed. Enabling global buffers can also be useful in a runtime
environment since some dictionary access is performed while executing compiled PowerHouse
programs. Enabling global buffers for both PowerHouse dictionaries and RMS data files, and
using screen global sections can improve application startup times and screen transition times. For
more information, see "The Execution-Time Parameter Values Screen" in Chapter 6,
"Customizing QUICK with QKGO" in the QDESIGN Reference book.

Sharing of PHD dictionaries can be enabled with the following set of DCL commands:
SET FILE/GLOBAL_BUFFER=n<PHD>00.PHD
SET FILE/GLOBAL_BUFFER=n<PHD>01.PHD
SET FILE/GLOBAL_BUFFER=n<PHD>02.PHD
SET FILE/GLOBAL_BUFFER=n<PHD>03.PHD

where <PHD> is the name of your dictionary and n is a number between 0 and 32,767.

Note: The value 0 disables global buffers.

Global buffers on OpenVMS are implemented as temporary global sections in non-paged dynamic
memory. Your system manager may have to adjust the GLBLSECTIONS and NPAGEDYN
parameters to use RMS global buffers. The exact amount of memory consumed by the dictionary
will depend on the number of buffers allocated and the size of each buffer. The buffer size is the
same as the file bucket size. For example, if a file has a bucket size of three (that is, three blocks of
512 bytes) then each buffer will be 1536 bytes. These buffers are shared by all system users that
access the particular file(s). Without global buffers, each user would have local buffers buffering
the same data and using overall memory. The objective of global buffers is to maintain shared data
in memory where the first user accessing the data pays the cost of doing a physical disk I/O and
other users accessing the same data only incur memory access. The net result is that less disk I/O
will occur.

The number of global buffers to allocate for your dictionary or any other RMS data files used in
your application will depend on many factors, including index depth of the file type of data access
to the file (that is, sequential or random), amount of memory you want to reserve for global
buffering the point at which you want OpenVMS and RMS to start re-using buffers.

We strongly urge you to read the "Guide to OpenVMS File Applications" in the OpenVMS
documentation set in order to determine the optimum settings in your environment.

56 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
PDL Shared Dictionary (UNIX)

PDL Shared Dictionary (UNIX)
To reduce the possible overhead of having several users loading their own version of a dictionary
into memory, PowerHouse allows a compiled dictionary to be installed into shared memory on
UNIX systems. This method retains the efficient access that PowerHouse's PDL dictionary
provides, while permitting the same dictionary to be shared by all of its users in memory and
avoiding the load time for the dictionary for all but the very first user of that dictionary.

Installing Your Dictionary
PowerHouse is able to install dictionaries as shared sections all the time, only for selected
dictionaries, or not at all.

Requesting Dictionary Installations

Any PowerHouse component will install a dictionary into shared memory when instructed to do
so and when it is not already installed. This feature is controlled by an environment variable,
PH_CREATE_SHARED. If PH_CREATE_SHARED is set, and if PowerHouse cannot locate a
shared-memory section for a dictionary that it opens, then PowerHouse will automatically create
a shared-memory section for that dictionary when it opens it.

There may be instances when PowerHouse determines that it should install a dictionary, but it is
unable to do so. This may happen, for example, if there are insufficient shared memory IDs or
memory remaining on your system, or if an existing shared memory section has the same key as
that generated by PowerHouse. In these instances, PowerHouse will issue a warning message
describing the problem but continue processing using a local version of the dictionary.

Selective Installation
If shared memory sections are tightly controlled at your installation, you may want to install only
certain dictionaries into shared memory sections. This can be done by using the
PH_CREATE_SHARED variable together with a PowerHouse component to install the desired
dictionaries at system startup, but leaving the PH_CREATE_SHARED variable unset in user
environments.

Here is a piece of Bourne shell script which installs two dictionaries with this method.
PH_CREATE_SHARED= /usr/cognos/ph703c/bin/qshow ENDINPUT
SET DICT /disk1/gen1/phd.pdc
SET DICT /disk2/othersys/sysdict.pdc
ENDINPUT

Automatic Installation
If your site has ample shared memory for its PowerHouse users, then it may be more suitable for
PowerHouse dictionaries to be installed on an as-required basis. This can be done by setting the
PH_CREATE_SHARED variable for all users of PowerHouse. The first user of any particular
dictionary will then cause that dictionary to be moved into a shared memory section.

This can be done by a modification to the supplied setpow.csh and setpow.sh scripts, or by an
addition to each user's .login or .profile files. The command for csh is the following:
setenv PH_CREATE_SHARED ""

For the Bourne shell, the commands are the following:
PH_CREATE_SHARED=""
export PH_CREATE_SHARED

Access to Installed Dictionaries

If PowerHouse is asked to open a dictionary that already has a corresponding shared-memory
section, then it will use the shared memory version of the dictionary even if the
PH_CREATE_SHARED environment variable is not set. This allows certain dictionaries to be
installed into shared memory but not all dictionaries. PowerHouse will not create a second
shared-memory section if one already exists for a given dictionary.

Chapter 1: Running PowerHouse
PDL Shared Dictionary (UNIX)

PowerHouse Rules 57

Access to Uninstalled Dictionaries

When PowerHouse accesses a dictionary which is not installed, and when the
PH_CREATE_SHARED environment variable is not set (or if there are insufficient shared
memory resources left to create a shared copy), PowerHouse will copy the dictionary into its own
local memory for access. For small to moderate sized dictionaries, most users find this quite
acceptable. If the dictionary is large or used by many users, then one of the shared memory
options described above should be used to avoid loading the dictionary into local memory.

Deleting Shared Memory Sections

Normally, it should not be necessary to delete a PowerHouse dictionary from shared memory once
it is created. However, there may be circumstances when it is necessary.

Note that it's perfectly safe to delete a shared memory section at any time. That is because a
shared memory section will not actually be deleted as long as any process has the section mapped
(it is turned into a private section until such time as no process is attached to it any more).

Following are three ways in which a PowerHouse shared dictionary can be de-installed.

Via PDL
PDL deletes shared memory sections as a normal course of doing a dictionary update. This avoids
a shared memory section from becoming "stale" when a dictionary is updated. The recreated
dictionary will need its own shared memory section, which can be created using the methods
above. PDL will install the dictionary itself, provided that the PH_CREATE_SHARED
environment variable is set.

Via ipcs and ipcrm
The UNIX ipcrm program can be used to remove any IPC resource, including a shared memory
section. This can only be done via the creator or owner.

The ipcs program can be used to identify shared memory sections by key and owner (the actual
pathname is not given). All PowerHouse shared memory sections are given an identifier of "C"
which appears in the high order byte of the ipcs shared memory key field as a hex character 0x43.
The owner and group of the section will be the same as that of the base dictionary (even if the
section is created by another user). The permissions will permit read access to the same users as
the original dictionary but no write or execute access. For example, if the file's permissions are
-rw-r----- then the shared section will be -r--r-----.

Via a System Reboot
When a UNIX system is shut down, all shared memory sections are removed. Therefore, a system
reboot is an effective way to clear out shared memory sections.

PowerHouse Consistency Checks

PowerHouse does two separate consistency checks when mapping to an installed PowerHouse
dictionary: that the section is in fact an installed PowerHouse file; and that it matches the
corresponding physical file.

Valid Section Check
PowerHouse checks any section it maps to in order to ensure that it is a valid PowerHouse
compiled dictionary. It does this by looking for a known string within the first few bytes of the
file. If this identifier isn't found, then PowerHouse assumes that some other system has created the
shared memory section, and will bypass mapping to it. In this case, PowerHouse will use its
default strategy of reading the dictionary into memory instead.

Out of Date Section
The second consistency check looks at a timestamp and other information within the compiled file
and within the mapped section. If any of this information doesn't match, then PowerHouse
assumes that the section is out of date. In this case, it will attempt to delete and recreate the
compiled section. This can happen, for example, if you use cp to copy a dictionary over top of an
existing dictionary.

58 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
PDL Shared Dictionary (UNIX)

PowerHouse will not be able to purge a compiled section if the user is not either the creator of the
compiled section, the effective owner of the compiled section (which is also the owner of the
dictionary file) or the root user. In this case, it will again revert to the default strategy of reading in
the dictionary.

If you replace a dictionary of a running system which was installed, it's a good idea to ensure it's
reinstalled by immediately running QSHOW, specifying the new dictionary. You should be
running as either the creator user or the effective user of the shared memory section or as root.
The effective user will be the same as the previous file owner; the creator user will be the user that
caused the shared memory section to be created.

Shared Memory Management
Shared memory sections are a resource provided by the UNIX environment, and as such need
some amount of configuration and management.

Shared Memory Basics

Shared memory is provided on most System V-based UNIX systems by means of the system calls
shmget, shmctl, shmat and shmdt. A shared memory section is identified by a 32-bit key. This key
is visible when shared memory sections are displayed with the ipcs command, and is used by
PowerHouse to attach to shared memory sections.

Shared memory sections are virtual memory sections, and are paged in to real memory on an
as-required basis (just like process memory). Therefore, memory dedicated to shared memory will
require an equivalent amount of swap space, but will only require physical memory when pages of
it are actually required in a running process.

PowerHouse generates a shared memory key to identify shared memory sections by means of the
ftok system call. This provides an identifier based on physical disk file information (device ID and
inode), as well as a one-byte project code. PowerHouse goes by the project code "C" (for
Cognos). A specific dictionary will generate the same key even if it is accessed via a symbolic or
hard link, or via a relative rather than an absolute path. However, once a dictionary is rebuilt via
PDL, it will normally generate a different key even though the pathname didn't change.

Shared Memory Configuration

The configuration of a UNIX system specifies three limits upon the use of shared memory.
Changing these values is described in the UNIX System Administration manual.

For PowerHouse, these parameters must allow sufficient space for the shared dictionaries that are
to be installed, taking into consideration other users of the shared memory such as a database
system. A given PowerHouse dictionary will require one shared memory identifier, and as many
bytes of shared memory as the disk file occupies (rounded up to a page boundary of course).

The relevant parameters are the following.

SHMMAX - shared memory maximum
This parameter defines the maximum overall size of the shared memory area.

SHMMNI - shared memory maximum number of identifiers
This parameter defines the total number of shared memory identifiers (and hence the total number
of sections) that can be created on the system.

SHMSEG - shared memory segments
This parameter defines the maximum number of segments that can be attached to any single
process. Since PowerHouse Dictionary only attaches to a single segment at one time, this
parameter should not need modification.

Chapter 1: Running PowerHouse
Mailbox Support in PowerHouse (OpenVMS)

PowerHouse Rules 59

Mailbox Support in PowerHouse (OpenVMS)
A mailbox must be a sequential file of variable or fixed length and can be either permanent or
temporary. The file type for a mailbox is MBX. Once a mailbox has been declared in the data
dictionary, it can be used by any of the PowerHouse components.

Creating a Temporary or Permanent Mailbox
Permanent and temporary mailboxes can be created in the data dictionary (for example, on the
PhD Record Screen) and can be created or deleted from the PhD File Maintenance Screen. When
one of the PowerHouse components is called to open a mailbox that does not yet exist, that
component can create a permanent or temporary mailbox. Note that a process that creates a
permanent mailbox must have OpenVMS PRMMBX privilege.

The open name of a mailbox must be a logical name. PowerHouse creates a mailbox with the
same MBAn, where n is a four-digit number. PowerHouse then equates the open name, that is, the
logical name, with this name.

When a temporary mailbox is created, PowerHouse places the logical name in the Job Logical
Name table.

When a permanent mailbox is created, the related logical name is placed in the System Logical
Name table. Therefore, processes that create permanent mailboxes must also have OpenVMS
SYSNAM privilege. To restrict mailbox access to a single group, use the following DEFINE
statement to ensure that the logical name is placed in the group table. In this case, you must have
OpenVMS GRPNAM privilege to create the mailbox:
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY -

LNM$PERMANENT_MAILBOX LNM$GROUP

Temporary Mailbox Application
Mailboxes are typically used to store parameters that are passed from one process to another. For
example, the designer can establish a QUICK screen that is used to prompt a user for data. Once
prompted, the user enters the required data and QUICK writes it to the mailbox and calls QUIZ.
QUIZ reads the mailbox when it is included in the ACCESS list, and produces a related report.

In the following example, the screen prompts for up to ten last names. These names are written to
the mailbox EMPLOYEES_MBX. QUIZ is called and reports all employees from the employees
file whose last names were entered in QUICK. The mailbox is declared in the data dictionary with
the following attributes:
Record: EMPLOYEES_MBX
of File: EMPLOYEES_MBX
Organization: SEQUENTIAL
Type: MBX
Open: EMPLOYEES_MBX
Scope: Temporary
Record Format: Variable
Supersede: No
Record Size: 20 Bytes

Record Contents

Item Type Size Occ Offset
LASTNAMECHARACTER 200

The file is declared as a temporary mailbox with a file type of MBX, variable length record
format, and a record-structure that includes only one item, LASTNAME.

The screen design created to write to the mailbox EMPLOYEES_MBX and then call QUIZ is
> SCREEN EMPLOYEE_REP ACTIVITIES ENTRY AUTOUPDATE
> FILE EMPLOYEES_MBX PRIMARY &
> OCCURS 10 &
> NOWAIT ON SEND &
> SIGNAL ON CLOSE
> FILE EMPLOYEES REFERENCE

60 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Mailbox Support in PowerHouse (OpenVMS)

> TITLE "EMPLOYEE REPORT BY LAST NAME" AT 3,40 CENTERED
> TITLE &
> "Enter Last Name of Employees to be reported:" &

AT 6,1
> SKIP TO 8
> ALIGN (,,10)
> CLUSTER OCCURS WITH EMPLOYEES_MBX FOR 1,30
> FIELD LASTNAME OF EMPLOYEES_MBX LOOKUP ON EMPLOYEES
>
> PROCEDURE POSTUPDATE
> BEGIN
> RUN COMMAND "QUIZ AUTO=EMPLOYEE_REP.QZC"
> CLEAR ALL
> END
> BULD

The mailbox EMPLOYEES_MBX is declared as the primary file with an occurrence of 10. Two
options added to the FILE statement that you should note are NOWAIT ON SEND and SIGNAL
ON CLOSE. NOWAIT ON SEND tells QUICK not to wait for another process to read the record
that it has just sent to the mailbox. SIGNAL ON CLOSE tells QUICK to send an end-of-file
marker to the mailbox when the mailbox is closed.

When the user returns to the Action field after entering all last names on the screen, the update is
performed automatically, because the AUTOUPDATE option was added to the SCREEN
statement. The POSTUPDATE procedure, which follows the UPDATE procedure, calls QUIZ.

The QUIZ report that was established looks like this:
> ACCESS EMPLOYEES_MBX LINK TO EMPLOYEES
> REPORT EMPLOYEE LAST NAME FIRSTNAME CITY
> BUILD EMLOYEE_REP

This screen can be used by multiple users simultaneously since each user has a separate temporary
mailbox.

Permanent Mailbox Application
Permanent mailboxes are typically used in an application where many processes pass data to a
single process. The application we have created assumes that there are many data entry clerks
entering invoices. A printed copy of every invoice must be generated. To accomplish this, write
each invoice number to a permanent mailbox after the file and any other related files have been
updated. A QUIZ process that runs continuously in batch can then read the mailbox, link to the
related files, and produce a printed copy of the invoice.

The attributes for the permanent mailbox, INVOICE_MBX, should be declared in the data
dictionary as follows:
Record: INVOICE_MBX
of file: INVOICE_MBX
Organization: SEQUENTIAL
Type: MBX
Open: INVOICE_MBX
Scope: Permanent
Record Format: Fixed
Supersede: No
Record Size: 2 Bytes
Record Contents:
ItemTypeSizeOccOffset
INVOICE-NOINTEGER20

INVOICE_MBX is declared as a permanent mailbox, with a file type of MBX, a fixed length
record format and a record-structure that includes only one item, INVOICE-NO.

An example of part of a typical invoice data entry screen follows:
> SCREEN ORDER
> FILE INVOICES PRIAMRY
> FILE CUSTOMERS SECONDARY
> FILE INVOICE-LINES SECONDARY OCCURS 10
> ITEM EXTENSION SUM INTO TOTAL-EXTENSION
> FILE PRODUCTS REFERENCE OCCURS WITH TEH INVOICE-DETAIL

Chapter 1: Running PowerHouse
Mailbox Support in PowerHouse (OpenVMS)

PowerHouse Rules 61

> FILE INVOICE_MBX DESIGNER WAIT ON SEND
.
.
.
> PROCEDURE UPDATE
> BEGIN
> PUT INVOICES
> PUT CUSTOMERS
> FOR INVOICE-DETAIL
> BEGIN
> PUT INVOICE DETAIL
> END
>
> LET INVOICE-NO OF INVOICE_MBX=INVOICE-NO &
> OF INVOICES
> PUT INVOICE_MBX
> LET INVOICE-NO=100 &
> ;required to force change in record status
> LET INVOICE-NO=0
> PUT INVOICE_MBX
> END
> BUILD

In this example, several statements are added to the screen to allow QUICK to access the mailbox.
First, a FILE statement is added to declare the mailbox as a DESIGNER file. The WAIT ON
SEND option causes QUICK to wait for another process to read the record after it has written
that record to the mailbox. The UPDATE procedure is then used to transfer the invoice number to
the mailbox record, and then to write the record to the mailbox. QUICK writes two records to the
mailbox: one record has a real invoice number, the other record has an invoice number of 0.

The ACCESS statement in the QUIZ report is
> ACCESS INVOICE_MBX TO INVOICES OPTIONAL &
> LINK TO CUSTOMERS OPTIONAL &
> LINK TO SHIP_TO OPTIONAL &
> LINK TO INVOICE-DETAIL OPTIONAL &
> LINK TO PRODUCTS OPTIONAL
> SET FILE INVOICE_MBX WAIT ON RECIEVE
.
.
.
> SORTED ON INVOICE-NO RESET PAGE

The mailbox is specified in the ACCESS statement and is linked to the INVOICES file. The WAIT
ON RECIEVE option is added to the SET FILE statement. This option indicates that QUIZ will
wait for records to be written to the mailbox, if the mailbox is empty. The SORTED statement
allows each record to be processed immediately. If the SORT statement is used instead, records are
read and placed in a temporary file until an end-of-file marker is read from the mailbox. Only
then are the records sorted and the report sent to the printer.

QUIZ reads and processes the real record after it reads the dummy record (invoice number 0). The
next time a record is written to the mailbox, the dummy records is processed; as a result, the
linkage in the ACCESS statement fails and no data is read. All numeric fields that are reported are
created with the BWZ option; character fields are blank. Therefore, a blank page is generated by
the dummy record. To avoid blank pages, simply add the SET NOBLANKS statement to the
QUIZ program.

Mailboxes can also be used in QUIZ to perform batch updates. To achieve the same results in
QTP as in QUIZ, add a condition to the OUTPUT or SET SUBFILE statement. For example,
> OUTPUT filename UPDATE IF RECORD INVOICES EXISTS

To perform this application, the QUIZ report must be submitted in batch every morning, for
example, using the following DCL statements:
$ @SETPOWERHOUSE
$ SETDICT DEMO
$ QUIZ AUTO=INVOICE.QZC

62 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Mailbox Support in PowerHouse (OpenVMS)

After this is submitted, the QUIZ report runs continuously until an end-of-file marker is sent to
the mailbox. Therefore, every evening, a second QUIZ screen should be called to close the
mailbox:
> SCREEN CLOSE
> FILE INVOICE_MBX SIGNAL ON CLOSE
> FIELD INOICE-NO
> BUILD

Enter F;^ on this screen to close the mailbox and terminate the QUIZ program after you exit the
screen. This process can be automated by placing F;^ in a QKIN file and running the following
command file:
$ DEFINE QKIN USERCOMMANDS.TXT
$ QUICK AUTO=CLOSE.QKC

In this way, you can use timed DCL command procedures to fully automate the daily creation and
termination of the QUIZ batch program.

Using Mailboxes to Pass Source Statements
You can use mailboxes to pass source statements from one component to another. For example,
the following QUICK screen was designed to include procedural code that writes QUIZ source
code to a mailbox:
> LET MBX_REC = "ACCESS FILENAME"
> PUT MBX_FILE
> LET MBX_REC = "REPORT ALL"
> PUT MBX_FILE
> LET MBX_REC = "GO"
> PUT MBX_FILE
> LET MBX_REC = "EXIT"
> PUT MBX_FILE
> RUN COMMAND "QUIZ AUTO=MBX_FILE"

Permanent mailboxes can also be used by a QUIZ batch job running continuously with
AUTO=PERM_MBX_FILE. In this case, you would design a QUICK screen that sends requests to
the QUIZ batch job using the following statements:
> LET PER_MBX_REC = "EXE REPORT1"
> PUT PER_MBX_FILE

Here, you do not send the EXIT statement to the mailbox until you terminate the QUIZ batch job.
The advantage of using a permanent mailbox for this application is that many users can run QUIZ
reports in batch, but only one batch job is required to run all the reports.

Mailboxes and System Crashes
Application managers should exercise caution when using mailboxes with sensitive data. A system
crash will cause all data in the mailbox to be lost.

Chapter 1: Running PowerHouse
sitehook (OpenVMS)

PowerHouse Rules 63

sitehook (OpenVMS)
The sitehook feature provides a callable interface to user-supplied entry and exit routines. These
two routines must be called PH_SITEHOOK_INIT and PH_SITEHOOK_EXIT and must be
linked as a shared image. Since a shared image is used, universal symbols are also required.

For VAX, transfer vectors that can be used to accomplish this are contained in this file:

PH_DEMO_LOCATION:SITEHOOK_VECTORS.MAR

For Alpha, the option file for linking vectors can be found in

PH_DEMO_LOCATION:SITEHOOK.OPT

The steps involved in producing and accessing this shared image are:
1. Create an object file of the users routines by compiling the user's source file(s)
2. For VAX, produce the shared image by linking the user's object file with the provided transfer

vector object file. For example,
$LINK/SHARE=<image> PH_DEMO_LOCATION:SITEHOOK_VECTORS, <users objects>

For Alpha, produce the shared image by linking the user’s object file with the provided option
file. For example,
$LINK/SHARE=<image> PH_DEMO_LOCATION:SITEHOOK/OPT, <users objects>

If none of the images are installed with privileges, then you must define a logical name for
PH_SITEHOOK. For example,
$DEFINE PH_SITEHOOK <image>

where <image> is the file specification for the shared image name.

If any of the PowerHouse images are installed with privileges, then the shared image must be
installed and either the image must reside in SYS$SHARE or a System Executive mode logical
name (use the complete physical file specification) must be defined for the image. This is an
OpenVMS requirement. If the image is PH_LOCATION:SITEHOOK, then define
PH_SITEHOOK as follows:
$SET PROCESS/PRIVILEGE=SYSNAM
$DEFINE/SYSTEM/EXECUTIVE_MODE PH_SITEHOOK
- DISK$COGNOS:[COGNOS.POWERHSE.830c.PH_COMMON]SITEHOOK.EXE

The /EXECUTIVE_MODE is required. The shared image does not need to be installed with
privileges. However, if any PowerHouse component has been installed with system privileges, then
the PH_SITEHOOK executable must be installed with OPEN, HEADER and SHARE.

Once this is set up, the user supplied entry routine is called first whenever any of the components
are invoked and the user defined exit routine is called whenever a component is exited.

To ensure that these routines are always called, install all images with privileges; use an innocuous
privilege such as TMPMBX. Once installed with privileges, users can't circumvent the routines by
creating their own version and defining a process logical name to run them.

Examples are provided in:

The command file PH_DEMO_LOCATION:SITEHOOK_LINK(_ALPHA).COM links this
example together and defines the necessary logical name.

Machine Location

VAX PH_DEMO_LOCATION:SITEHOOK_EXAMPLE.MAR.

Alpha or VAX PH_DEMO_LOCATION:SITEHOOK_EXAMPLE.C.

64 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
Large File Support (UNIX, Windows)

Large File Support (UNIX, Windows)
Direct and sequential files, non-indexed subfiles, and portable subfiles can exceed the two
gigabyte limit in total number of bytes. A file built with a limit below two gigabytes must be
recreated to be able to grow beyond two gigabytes. The file system must be able handle large files
and must be configured to allow them.

PowerHouse 4GL can still only process up to 2,147,483,647 records.

Chapter 1: Running PowerHouse
DISAM Data Storage (Windows)

PowerHouse Rules 65

DISAM Data Storage (Windows)
DISAM does not support unsigned integer types in index segments. As well, many of the
PowerHouse date datatypes are based on unsigned integers. Since PowerHouse allows you to
declare any datatype as an index segment, the solution is to map the unsigned integer and date
datatypes to a character datatype. There is an additional complication on Windows in that the
native storage format for integer data is little endian while the character datatype storage format is
effectively big endian.

For consistency of data storage and retrieval, PowerHouse will convert integer data to big endian
when it is saved to a DISAM file. It will be converted to little endian format when it is read into
the PowerHouse buffers so that internally it is consistent with data read from other files.

About Little Endian and Big Endian

Little and big endian describe the sequence in which digits are stored in integer datatypes. In little
endian format, the most significant digit is stored on the right. In big endian format, the most
significant digit is stored on the left.

For example, if a two-byte integer contains the number 16,730, on a little endian machine, the hex
value is 5A41, whereas, on a big endian machine the hex value is 415A. Note that it is the byte
sequence that is different not the bits within the bytes. Since the machine code knows which
sequence the bytes are in, the value is correct.

For non-integer data such as character or float, there is no difference to how the bytes are stored
on the two types of machine.

If the two-byte integer is mapped to a character data type, it is always assumed to be effectively
big endian for sequencing. If a two-byte integer, stored as little endian, is mapped to a character
data type and sorted, the sort sequence will be incorrect. In order to get the correct sequence, the
integer must be converted to big endian before use.

Datatype Mappings

When used as index segments, the mappings from PowerHouse datatypes to DISAM datatypes are
the same as identified in the "Datatype Mapping Tables" section of PDL and Utilities Reference.
Also note:
• PowerHouse will convert the data to big endian for storage when mapping to CHARTYPE

occurs.
• CHARTYPE won't handle negative numbers correctly.
• FREEFORM keys and segments do not work due to the nature of the FREEFORM datatype.
• PACKED and ZONED only work if the signs are all the same.

Reading and Writing Data

Using these mappings and the dictionary structure, data is converted as it is read and written. The
data is stored in the file in big endian format and resides in the PowerHouse buffers in little endian
format.

Data can be moved to and from non-DISAM and DISAM files because the conversion is done as
the DISAM files are read from and written to. Because of the way the data is stored, PowerHouse
cannot read third-party DISAM files that are in "native" or little endian format.

Retrieving Data

Because the data is stored in big endian format, ranged retrieval works because integer index
segments are converted prior to passing the data to DISAM. The conversion includes any
datatypes that are stored in PowerHouse buffers as signed or unsigned integer, even if they are
mapped to character.

For example, consider this ACCESS statement in QDESIGN.
> ACCESS VIA int-1, fulldate-1 &
> USING exp-for-int-1, exp-for-fulldate-1

66 PowerHouse(R) 4GL Version 8.4E

Chapter 1: Running PowerHouse
DISAM Data Storage (Windows)

If INT-1 is an integer, the result of the expression exp-for-int-1 is converted from little endian to
big endian before it is passed to DISAM for retrieval. If FULLDATE-1 is a century-included date,
it is stored as a 4-byte unsigned integer but is mapped to a character. Because it is stored as an
integer, the value must be converted from little endian to big endian.

Substructures are not converted on retrieval. Only what is specified or named in the retrieval
syntax is converted. This includes default retrieval as well as developer-specified retrieval. In most
cases, for proper retrieval specify the lowest level segments in your retrieval. DISAM supports
multi-segment indexes so compound indexes that make use of substructures as opposed to
multiple segments should be changed to use multiple segments. Multiple substructures and
redefinitions should not be used in indexes.

Redefinitions and Substructures

When converting data on retrieval or storage, data is converted at the lowest substructure level of
the last redefinition. If there's only one substructure, that is the one converted.

As mentioned previously, when data is passed for retrieval, conversion is based on the segments
specified in the retrieval. Any substructures of the named segment are not converted.

Caution must be taken if using redefinitions or substructures involving integers. Specific areas to
consider are:
• Some file systems do not support multi-segment indexes, such as KSAM and IMAGE on

MPE/iX. It is not uncommon to use a substructured index as a workaround. When migrating
these file systems to DISAM, substructured index segments should be redesigned to use
multi-segment indexes. This also requires that explicit retrieval be modified. Retrieval must be
done using the lowest level segments.

• Assigning data from one item to another should always be done at the lowest level to ensure
that all needed conversion is done.

• While multiple redefinitions and substructures are rare, any being used must be reviewed to
ensure that the correct data will be used. For example, conversion may not be correct if
integers are overlayed by integers because PowerHouse only converts the lowest level of the
last redefinition. Keep this in mind if different redefinitions have different levels of detail.

PowerHouse Rules 67

Chapter 2: Program Parameters

Overview
This chapter describes the program parameters you can use to control various attributes of
PowerHouse.

About Program Parameters
Program parameters control attributes such as determining which dictionary PowerHouse runs.
The program parameters for each PowerHouse component are temporary, lasting only as long as
the session of the component.

Unlike most PowerHouse keywords, program parameters cannot be abbreviated except where
noted.

The syntax for entering a PowerHouse program parameter is:
component [program parameter]...

For example,
qdesign auto=filespec list

Summary of Program Parameters
The following table is a summary of each program parameter.

Program Parameter Description

auto Establishes the file, screen, or report that is processed when the
component is initiated.

autodetach|noautodeta
ch

Automatically detaches database connections.

blockmode (MPE/iX) Runs a blockmode terminal in either Panel or Block mode.

broadcast (OpenVMS) Determines how QUICK handles broadcast, or non-PowerHouse
messages.

bulkfetch Specifies the number of rows a bulkfetch returns.

cc Sets the conditional compile flags you can use in the statements of each
PowerHouse component to tell it whether to process or skip blocks of
code.

charmode Specifies whether or not QUICK recognizes BLOCK TRANSFER
control structures in Character mode.

checksum710
(OpenVMS)

Allows PowerHouse 8.30 and later versions to use the 7.10 form
(unsigned) in the CHECKSUM calculations.

close_detach Indicates that CLOSE verbs encountered in QUICK will cause a
physical database detach.

68 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters

columnowner Determines how the item names in a cursor will be generated by
PowerHouse Services.

commitpoints Enables the default commit timing for COMMIT ON UPDATE used
for versions prior to 7.2x.

compress_buffers Causes the initialization pool in QDESIGN to be compressed before it
is stored.

confirmer Indicates that the user must confirm messages before processing can
continue.

consolekeys|noconsole
keys (Windows)

Instructs QUICK to display function keys.

createall Creates all non-relational files declared in the dictionary, excluding
only those files that are declared to be NOCREATE.

createbase (MPE/iX) Creates the named IMAGE database, even if it is specified to be
NOCREATE in the dictionary.

createfile Creates the named file, even if it is specified to be NOCREATE in the
dictionary.

cursorowner Causes QDESIGN to use the owner name in the default query and in
generated FIELD statements for the query.

dbaudit Enables database monitoring for PowerHouse components.

dbdetach|nodbdetach Releases or does not release the database connection when you return
to the screen prompt.

dbwait|nodbwait Specifies whether or not the program waits until a concurrency conflict
is resolved.

dcl|nodcl (OpenVMS) Stipulates whether or not operating system commands can be entered
or executed when PowerHouse encounters an operating system
prompt.

debug (QDESIGN) To use the QUICK Debugger, you must use the debug program
parameter in QDESIGN and compile the screens to be debugged.

debug (QUICK) Controls the level of debugging capabilities.

deleteall Deletes all non-relational files and IMAGE databases declared in the
dictionary, excluding only those files that are declared to be
NOCREATE, and those databases whose datasets are all declared to be
NOCREATE.

deletebase (MPE/iX) Deletes the named IMAGE database.

deletefile Deletes the named file, even if it is specified to be NOCREATE in the
dictionary.

designer_noretain Causes a commit to end the transaction.

detail|nodetail Specifies whether or not to copy the contents of a file into the pdlsave
file.

dictionary|dict Establishes the data dictionary that the PowerHouse component opens
when it starts.

Program Parameter Description

Chapter 2: Program Parameters

PowerHouse Rules 69

dicttype|dt (OpenVMS) Specifies what dictionary type will be used.

direct_file_base_zero
(OpenVMS)

Allows the use of zero-based record numbers for cross-platform
compatibility.

disable_nulls Controls whether null support is allowed at the item level. It overrides
the dictionary setting.

dont_store_module Prevents SQL modules from being compiled and stored in the database
and compiled screen/run/report. This program parameter is used at
parse time.

downshift|upshift|noshi
ft

Specifies that the values of identifiers be shifted to lowercase,
uppercase, or left as entered.

entryrecall Specifies that data from previous screens is or is not available for recall
in Entry mode.

errlist Redirects standard error/list to the specified file.

fastread (OpenVMS) Performs a block read to sequentially accessed read-only files.

fdl|nofdl (OpenVMS) Specifies whether to create or delete File Definition Language (FDL)
files.

initnulls|noinitnulls Specifies whether to initialize columns to NULL in rows not retrieved.

intsize6|nointsize6
(OpenVMS)

Specifies whether to create INITEGR SIZE 6 datatypes.

jcwbase (MPE/iX) Specifies the base value for JCW settings.

lineread (MPE/iX) Specifies that QUICK uses multi-character reads.

list|nolist Establishes whether or not the PowerHouse component displays the
source statement file.

lockword (MPE/iX) Enables the use of internal routines to prevent duplicate lockword
prompting during screen loading and running.

moduleext (MPE/iX) Causes the module names that are stored with compiled sections in an
ALLBASE/SQL database to be modified.

moduleloc (MPE/iX) Compiles a PowerHouse program, creating an installable module
which can be copied to a second environment in ALLBASE/SQL.

nls (MPE/iX, UNIX) Ensures that no line of text for the printer is split between two output
blocks.

noblobs Specifies whether blobs columns are processed.

nobreakset (MPE/iX) Improves the performance of KSAM and KSAMXL reads. If specified,
the system break around each read is not disabled.

nonportable Sets the severity of warning messages when nonportable syntax is
encountered.

nontermcompat
(Windows)

Suppresses messages caused by design errors in the layout portion of
the compiled screen file.

Program Parameter Description

70 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters

noowner Prevents the owner name from being attached to the table name in
generated code so that different users can use the same compiled screen
to access their own tables (having the same name).

noprefix_openname Suppresses the addition of "ORACLE@" to the open name for an
ORACLE database.

nosetwarnstatus
(OpenVMS)

Suppresses the warning status when a warning condition is detected in
PowerHouse.

nouicbrackets
(OpenVMS)

Causes the UIC function to not return brackets around the result
values. It also causes internal security checking to match the existence
of brackets based on the setting of the program parameter.

nxl Suppresses the printing on an extra blank line at the end of reports.

obsolete Sets the severity of the messages when obsolete syntax is encountered.

omnidex|noomnidex
(MPE/iX)

Determines whether or not OMNIDEX indexes are seen by the
PowerHouse component being run.

osaccess|noosaccess Specifies whether or not access to the operating system from within
PowerHouse components is allowed.

owner Specifies the owner for tables in an ALLBASE/SQL, DB2, SYBASE, or
ORACLE database when none is explicitly indicated. Also specifies the
default owner of modules created by PowerHouse in ALLBASE/SQL.

parmfile (OpenVMS,
UNIX, Windows)

Tells PowerHouse that the PARM values should come from the
specified file instead of prompting the user.

parmprompt Strips or does not strip trailing blanks from PARM values.

patch Issues a number of informational messages about patches that have
been applied to the PowerHouse component.

pollspeed (MPE/iX) Sets the amount of time (n) that QUICK takes when polling the
terminal to determine a terminal type before prompting the user.

pre_chooseall Affects QUIZ reports and QTP runs in batch mode that use the
CHOOSE statement with a PARM option and have no PARM values
specified.

procloc Causes PowerHouse to search for process files in a location other than
the current directory (OpenVMS, UNIX, Windows) or group/account
(MPE/iX).

prompt Specifies the prompt for the PowerHouse component.

qktrace Generates a log file of QUICK screen processing that gives a summary
of activities.

quotedproccall Allows quoted stored procedure calls to be passed directly to the
database.

read (MPE/iX) Determines how QUICK uses single-character reads.

resetbindvar|noresetbin
dvar

Determines if SQL bind variables are reset for each SQL statement.

resource Specifies the PowerHouse resource file.

Program Parameter Description

Chapter 2: Program Parameters

PowerHouse Rules 71

The following table lists the program parameters that are applicable to each PowerHouse
component.

restore Provides upward compatibility for screens compiled with versions of
PowerHouse prior to 6.09 (MPE/iX), 6.00 (OpenVMS), and 6.03
(UNIX). The restore program parameter changes the default behavior
of screen refreshing.

retainmark|noretainma
rk

Determines whether the field mark position in an array is retained.

reuse_screen_buffers|
noreuse_screen_buffers

Causes QUICK to reuse or not reuse previously allocated buffers.

search Causes QUIZ to search the ACCESS statement in a first-to-last or
last-to-first sequence.

secured Restricts the files and items listed by the SHOW FILES statement to
those for which you have at least read access.

setjobshow|nosetjobsh
ow

Restricts the files and items listed by the SHOW FILES statement to
those for which you have at least read access.

statistics|nostatistics Specifies whether or not to display statistics.

subdictionary|subdict Specifies whether or not subdictionary support is enabled; when the
relational subdictionaries are opened by PowerHouse; and when they
are searched for unqualified record-structures.

subformat Specifies the format of subfiles being created.

term States the terminal type used and the maximum number of lines the
terminal memory contains.

termpoll|notermpoll
(MPE/iX, OpenVMS)

Specifies whether QUICK attempts to determine the terminal type
before prompting the operator.

timezone|notimezone
(MPE/iX)

Determines the mechanism that PowerHouse uses to obtain the values
of SYSDATE and SYSTIME.

tpi|notpi (MPE/iX,
HP-UX, Windows)

Determines whether TPI or OMNIDEX indexes are seen by the
PowerHouse component being run.

trusted|notrusted
(OpenVMS)

Activates or deactivates C2-level security for the execution of RUN
commands and DCL commands within components.

update Controls the way PUT verbs are generated in the UPDATE procedure.

version Provides the build number of the PowerHouse version.

vmsdate (OpenVMS) Changes how PowerHouse creates and processes VMSDATE items.

Program Parameter PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

auto ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

autodetach|noautodetach ✔

blockmode (MPE/iX) ✔

broadcast (OpenVMS) ✔

Program Parameter Description

72 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters

bulkfetch ✔ ✔ ✔

cc ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

charmode ✔

checksum710 (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔

close_detach ✔

columnowner ✔ ✔ ✔

commitpoints ✔

compress_buffers ✔

confirmer ✔

consolekeys|noconsolekeys
(Windows)

✔

createall ✔

createbase (MPE/iX) ✔

createfile ✔

cursorowner ✔

dbaudit ✔ ✔ ✔ ✔ ✔

dbdetach|nodbdetach ✔

dbwait|nodbwait ✔ ✔ ✔ ✔ ✔

dcl|nodcl (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

debug (QDESIGN) ✔

debug (QUICK) ✔

deleteall ✔

deletebase (MPE/iX) ✔

deletefile ✔

designer_noretain ✔

detail|nodetail ✔

dictionary|dict ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

dicttype|dt (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔

direct_file_base_zero
(OpenVMS)

✔ ✔ ✔ ✔ ✔

disable_nulls ✔

Program Parameter PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

Chapter 2: Program Parameters

PowerHouse Rules 73

dont_store_module ✔ ✔ ✔

downshift|upshift|noshift ✔ ✔ ✔ ✔ ✔ ✔ ✔

entryrecall ✔

errlist ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

fastread (OpenVMS) ✔ ✔ ✔

fdl|nofdl (OpenVMS) ✔

initnulls|noinitnulls ✔

intsize6|nointsize6

(OpenVMS)

✔ ✔

jcwbase (MPE/iX) ✔

lineread (MPE/iX) ✔

list|nolist ✔ ✔ ✔ ✔ ✔ ✔ ✔

lockword (MPE/iX) ✔ ✔

moduleext (MPE/iX) ✔ ✔ ✔

moduleloc (MPE/iX) ✔ ✔ ✔ ✔

nls (MPE/iX, UNIX) ✔

noblobs ✔ ✔ ✔

nobreakset (MPE/iX) ✔ ✔ ✔ ✔ ✔ ✔ ✔

nonportable ✔ ✔ ✔ ✔ ✔ ✔ ✔

nontermcompat (Windows) ✔

noowner ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

noprefix_openname ✔ ✔ ✔ ✔ ✔ ✔ ✔

nosetwarnstatus (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

nouicbrackets (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔

nxl ✔

obsolete ✔ ✔ ✔ ✔ ✔ ✔

omnidex|noomnidex (MPE/iX) ✔ ✔ ✔ ✔ ✔ ✔

osaccess|noosaccess ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

owner ✔ ✔ ✔ ✔ ✔

parmfile (OpenVMS, UNIX,
Windows)

✔ ✔

Program Parameter PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

74 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters

parmprompt ✔ ✔

patch ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

pollspeed (MPE/iX) ✔

pre_chooseall ✔ ✔

procloc ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

prompt ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

qktrace ✔

quotedproccall ✔ ✔ ✔

read (MPE/iX) ✔

resetbindvar|noresetbindvar ✔ ✔ ✔ ✔

resource ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

restore ✔

retainmark|noretainmark ✔

reuse_screen_buffers|
noreuse_screen_buffers

✔

search ✔

secured ✔

setjobshow|nosetjobshow ✔ ✔

statistics|nostatistics ✔ ✔ ✔

subdictionary|subdict ✔ ✔ ✔ ✔ ✔

subformat ✔ ✔

term ✔ ✔

termpoll|notermpoll (MPE/iX,
OpenVMS)

✔

timezone|notimezone (MPE/iX) ✔ ✔ ✔ ✔ ✔ ✔ ✔

tpi|notpi (MPE/iX, HP-UX,
Windows)

✔ ✔ ✔ ✔

trusted|notrusted (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

update ✔

version ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

vmsdate (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Program Parameter PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

Chapter 2: Program Parameters
auto

PowerHouse Rules 75

auto

Establishes the file, screen, or report that is processed when the component is initiated.

Syntax
auto=filespec

filespec

The specification for a file as it is identified to the operating system. It takes the general form:

Discussion
In QUICK and Debugger, auto establishes the screen or QKGO parameter file to be processed as
soon as QUICK is initiated.

For the other PowerHouse components, auto establishes the source statement or compiled report
file processed when the component is initiated.

If you use auto but the PowerHouse component can't find the file or screen, an error message is
issued and the component terminates.

If auto is not specified, the PowerHouse component looks for a designated file. If the designated
file is not found the component doesn't issue an error message. Instead you will be prompted to
enter statements.

The designated files are as follows:

For more information about locating files, see (p. 41).

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MPE/iX: [*]filename[/lockword][.group[.account]]

OpenVMS: [node::][device:][[directory]] filename[.extension][;<version>]

Square brackets are required around a directory name.

UNIX: /[directory/]...filename.extension

Windows: [drive:\][directory\]...filename.extension

Component MPE/iX OpenVMS UNIX, Windows

PDL PDLUSE PDLUSE.PDL pdluse.pdl

PHDPDL PHDPDLUSE.PDL

QDESIGN QKUSE QKUSE.QKS qkuse.qks

QSHOW QSHOUSE QSHOUSE.QSS qshouse.qss

QTP QTPUSE QTPUSE.QTS qtpuse.qts

QUICK QKGO.QKG qkgo.qkg

QUIZ QUIZUSE QUIZUSE.QZS quizuse.qzs

QUTIL QUTLUSE.QUS qutluse.qus

76 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
autodetach|noautodetach

autodetach|noautodetach

Automatically detaches database connections.

Syntax
autodetach|noautodetach

Default: autodetach

Limit: Applies only to Sybase.

Discussion
The autodetach program parameter applies only to relational databases that support a single
transaction per database attach. It specifies that QUICK automatically detaches the database
connections if the transactions are committed or rolled back, and are not locally active when the
user exits the screen. This minimizes the number of attaches for those single transaction databases.
Currently, Sybase is the only supported relational database that fits this category.

PowerHouse versions prior to 8.4E did not detach automatically causing a growth in the number
of attaches over time. The noautodetach program parameter is provided to allow the pre-8.4E
behavior to be specified.

Equivalent Resource File Statement

AUTODETACH ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
blockmode (MPE/iX)

PowerHouse Rules 77

blockmode (MPE/iX)

Runs a blockmode terminal in either Panel or Block mode.

Syntax
blockmode=compatible|panel

Default: compatible

Limit: Only valid for blockmode terminals.

compatible

Causes a blockmode terminal to run in standard HP Block mode.

panel

Causes the blockmode terminal to run in Panel mode.

Equivalent Resource File Statement

TERMINAL BLOCKMODE COMPATIBLE|PANEL

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

78 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
broadcast (OpenVMS)

broadcast (OpenVMS)

Determines how QUICK handles broadcast, or non-PowerHouse messages.

Syntax
broadcast=default|deferred

Default: deferred

default

QUICK bases its treatment of non-PowerHouse messages on the specification established by the
DCL SET BROADCAST command.

deferred

Non-PowerHouse messages are trapped and displayed on the message line when QUICK performs
the next I/O to the terminal.

Equivalent Resource File Statement

BROADCAST DEFAULT|DEFERRED

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
bulkfetch

PowerHouse Rules 79

bulkfetch

Specifies the number of rows a bulkfetch returns.

Syntax
bulkfetch=n

n

The number of rows to return.

Default: 0

Limit: 32767

Discussion
The bulkfetch program parameter allows you to specify the number of rows a retrieval returns
and, therefore, the amount of memory allocated to the retrieval buffer. When retrieving rows from
relational databases, PowerHouse often fetches more than one row at a time to improve
performance. Changing the bulkfetch value may help performance depending on the retrieval
situation. The bulkfetch program parameter has no effect on non-relational retrieval.

The amount of memory allocated is approximately the size of the rows times the number of rows
to be retrieved. There is a trade off between the memory allocated and the performance
improvement. Allocating too much memory impacts performance adversely in a multi-user
environment. The default internal value (also available by setting bulkfetch=0) is conservative and
very low. Trial and error is the best way to determine the optimal improvement in specific
environments. A value of 512 is a good starting point.

The bulkfetch program parameter only helps in one-to-many or many-to-many linkages. It does
not help in one-to-one or many-to-one linkages, whether unique or not, since multiple rows must
be returned for bulkfetch to have any effect.

Equivalent Resource File Statement

BULKFETCH n

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

80 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
cc

cc

Sets the conditional compile flags you can use in the statements of each PowerHouse component
to tell it whether to process or skip blocks of code.

Syntax
cc=(name[,name]...)

name

A unique name identifying a conditional compile flag. The names are not special keywords in
themselves, but they are referenced by conditional compile constructs.

Limit: A name can be a maximum of 127 characters.

Discussion
The cc program parameter sets conditional compile flags you can use in PowerHouse statements
to tell PowerHouse whether to process or skip blocks of code. PowerHouse adds an underscore in
the listings to indicate skipped code, as in
> SCREEN PROJECT
> @IF UNIX
> DEFINE END_DATE DATETIME = SYSDATETIME
> @ELSEIF OPENVMS
>_DEFINE END_DATE VMSDATE = VMSTIMESTAMP
>_@ELSE
>_DEFINE END_DATE DATE = SYSDATE
>_@ENDIF
>

This program parameter is only effective at compile time; that is, it cannot change compiled files.

In QUICK, the cc program parameter can only be used in conjunction with the debug program
parameter.

For more information about how to use compile-time flags and a list of predefined flags, see
(p. 282).

Equivalent Resource File Statement

CC name[,name]...

Example
In the following example, the names "TEST" and "YEAREND" determine different report
specifications.
>@IF TEST
> SET REPORT LIMIT 50
>@ELSEIF YEAREND
> SET REPORT LIMIT 50000
> SET REPORT DEVICE PRINTER
>@ELSE
> SET REPORT LIMIT 10000
>@ENDIF

QUIZ can be run with a cc flag of "TEST", or "YEAREND". If no cc flag is specified, the report
limit of 10000 will be used.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
charmode

PowerHouse Rules 81

charmode

Specifies whether or not QUICK recognizes BLOCK TRANSFER control structures in Character
mode.

Syntax
charmode=field|panel

Default: panel

field

Indicates that BLOCK TRANSFER control structures in a screen are ignored.

panel

Indicates that BLOCK TRANSFER control structures in a screen are recognized.

Discussion
If the parameter is not specified and BLOCK TRANSFER control structures exist in screens, the
default interface mode is panel.

Equivalent Resource File Statement

TERMINAL CHARACTERMODE FIELD|PANEL

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

82 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
checksum710 (OpenVMS)

checksum710 (OpenVMS)

This program parameter only applies to QDESIGN, QSHOW and QUTIL when it is used with
PHD dictionaries that are checksum710 calculated.

Allows PowerHouse 8.30 and later versions to use the 7.10 form (unsigned) in the CHECKSUM
calculations.

Syntax
checksum710 [=on|off]

ON means PowerHouse uses unsigned input for checksum calculations. OFF means PowerHouse
uses signed input.

Specifying checksum710 without an option is the same as specifying checksum710 = on.

Default: ON (version 7.10); OFF (versions 8.xx).

Discussion

CHECKSUM710 Backwards Compatibility Switch

The CHECKSUM function in 7.10 produces a different result than in 8.xx. While the algorithm
used is the same, the internal input into that calculation is Unsigned in 7.10 but Signed in 8.xx.
This produces different results from the same calculation.

This is only an issue if you store the results of the CHECKSUM function in your data files, check
that value on processing the data, and share or migrate these data files between 7.10 and 8.30 and
above.

There are two ways to deal with this issue. If you are migrating your data and application, and do
not need to share with 7.10, then you may want to consider just recalculating the CHECKSUM
values in your files and move upwards. This is the recommended route in this case.

If you need to share data, we have endeavored to provide backward compatibility that allows you
to do so. However, if you use it, then you must use the 7.10 form for all applications using the
same data in PowerHouse 8.30 and above. If, in the future, you drop the 7.10 requirements, you
may recalculate the checksums at that point and drop the compatibility mode.

To allow PowerHouse 8.30 and later versions to use the 7.10 form (unsigned) in the CHECKSUM
calculations, you need to use the CHECKSUM710 logical, program parameter or resource file
statement. If possible, we recommend that you use the logical so that all PowerHouse components
automatically use this setting. Depending on your environment and needs, this can be set at a
process, group, or system level. You could, alternatively, use a resource file defined at any of these
levels, or a program parameter on each execution.

The logical syntax is $DEF CHECKSUM710 "ON"|"OFF" (here the options are not optional as a
null string is not a valid logical definition).

The precedence rules are as follows: a program parameter overrides a resource file statement
which overrides a logical name setting.

Using CHECKSUM in PHD Dictionaries
If you are using PHD dictionaries, you need to recalculate the checksums in your dictionaries. The
same procedure can be used to return the checksums to 8.xx values at a later date, if desired.

CHECKSUM.COM is found in PHD_LOCATION:. It has two parameters. The first parameter is
your dictionary name (it modifies the dictionary directly). The second parameter is either 7 or 8,
to indicate the form used when recalculating the dictionary checksums. Seven uses
CHECKSUM710=ON, and 8 uses CHECKSUM=OFF. For example:

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
checksum710 (OpenVMS)

PowerHouse Rules 83

@PHD_LOCATION:CHECKSUM <userdict> 7

This example would recalculate the checksums in a user dictionary from 8.xx to 7.10-like values
so that you can use the CHECKSUM710 program parameter, resource file statement, or logical
when using these dictionaries in PowerHouse.

Also, there is an additional parameter to PHDMAINT, PHDADMIN, and the POW and
PHDCONV commands. The parameter is CHECKSUM710(=ON|OFF). For all these command
procedures, if the logical CHECKSUM710 is set to the option you require, the parameter does not
need to be used.

When switching between PHD dictionaries with one setting or the other, you must reset the
dictionary before starting up the application or you will get a "Corrupted dictionary" error when
the product tries to open the dictionary. Any time you use the wrong option when trying to access
a dictionary, you get the "Corrupted dictionary" error.

Equivalent Resource File Statement

CHECKSUM710 [ON|OFF]

84 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
close_detach

close_detach

Indicates that CLOSE verbs encountered in QUICK will cause a physical database detach.

Syntax
close_detach

Discussion
When the close_detach program parameter is used, CLOSE verbs cause an immediate physical
database detach. When the program parameter is not used, detaches are only done upon exit of
the screen where the attach was done.

In addition, when the program parameter is used, Oracle open names are not prefixed with
"ORACLE@". Without the prefix, users can specify a logical name which could be set to different
values, and thus point to different databases.

Equivalent Resource File Statement

CLOSE DETACH

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
columnowner

PowerHouse Rules 85

columnowner

Determines how the item names in a cursor will be generated by PowerHouse Services.

Syntax
columnowner

Discussion
Correlation names are qualified metadata references to column names appearing in PowerHouse
applications as ITEM or FIELD names.

PowerHouse 8.4x’s underlying database access software attempts to conform more strictly to the
SQL92 standard, which describes column correlation names as table_name.column_name. The
owner name is no longer included before the table_name.

In previous versions of PowerHouse, correlation names sometimes included the owner name and
sometimes did not, depending on the specification of the SQL statement. Below, is a table showing
sample SQL SELECT statements and indicating the resultant column correlation names:

For applications being upgraded to 8.4x, the columnowner program parameter enables the
successful parsing of column names permitted in earlier versions. If columnowner is specified, the
owner name is obtained from other metadata sources for the column and prefixed to the
correlation name.

This allows applications coded prior to PowerHouse 8.4x to compile and execute without
changing all column names that appear in the old format.

For applications with cursors defined in the form of examples (b) and (f), the columnowner
program parameter may be used.

If an application has multiple cursors defined in mixed forms, for example, one cursor similar to
(b) and another similar to (d), it may be necessary to make manual changes to the PowerHouse
syntax since the program parameter won't distinguish between the different formats and will
always add the owner name.

For PowerHouse syntax being created with the 8.4x releases, all column references should omit
the owner name.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

SQL Statements Correlation Name

a) SELECT COLUMN FROM TABLE TABLE.COLUMN

b) SELECT COLUMN FROM OWNER.TABLE OWNER.TABLE.COLUMN

c) SELECT TABLE.COLUMN FROM TABLE TABLE.COLUMN

d) SELECT TABLE.COLUMN FROM
OWNER.TABLE

TABLE.COLUMN

e) SELECT OWNER.TABLE.COLUMN FROM
TABLE

TABLE.COLUMN

f) SELECT OWNER.TABLE.COLUMN FROM
OWNER.TABLE

OWNER.TABLE.COLUMN

86 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
columnowner

Equivalent Resource File Statement

COLUMNOWNER

Chapter 2: Program Parameters
commitpoints

PowerHouse Rules 87

commitpoints

Enables the default commit timing for COMMIT ON UPDATE used for versions prior to 7.2x.

Syntax
commitpoints=obsolete

Discussion
All screens that require the pre-7.2x commit timing must be compiled using this program
parameter.

Equivalent Resource File Statement

COMMITPOINTS OBSOLETE

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

88 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
compress_buffers

compress_buffers

Causes the initialization pool in QDESIGN to be compressed before it is stored.

Syntax
compress_buffers

Discussion
Using this program parameter means that the physical size of screens will be decreased if the data
is compressible. However, it does impose a certain overhead on the reading of screens since this
data must be uncompressed before it can be used.

Equivalent Resource File Statement

COMPRESS BUFFERS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
confirmer

PowerHouse Rules 89

confirmer

Indicates that the user must confirm messages before processing can continue.

Syntax
confirmer

Discussion
The user cancels or accepts messages by selecting Cancel or OK in the Confirmer Window.

Equivalent Resource File Statement

TERMINAL CONFIRMER

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

90 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
consolekeys|noconsolekeys (Windows)

consolekeys|noconsolekeys (Windows)

Instructs QUICK to display function keys.

Syntax
consolekeys|noconsolekeys

Default: noconsolekeys

consolekeys

Instructs QUICK to display function keys at the bottom of the Command Console window.

noconsolekeys

Instructs QUICK to not display function keys.

Discussion
The consolekeys program parameter instructs QUICK to display eight function keys across the
bottom of the Command Console window under the QUICK screen. These labels are not clickable
using a mouse and only represent the function keys and labels.

Neither the consolekeys program parameter nor the CONSOLE KEYS resource file statement has
any effect on displaying function keys in QKView. To display function keys in QKView, select the
Function Keys entry in the View menu.

Equivalent Resource File Statement

CONSOLE KEYS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
createall

PowerHouse Rules 91

createall

Creates all non-relational files declared in the dictionary, excluding only those files that are
declared to be NOCREATE.

Syntax
createall

Limit: Not available for relational files.

Discussion
QUTIL terminates after the creation completed.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

92 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
createbase (MPE/iX)

createbase (MPE/iX)

Creates the named IMAGE database, even if it is specified to be NOCREATE in the dictionary.

Syntax
createbase=file

Discussion
QUTIL terminates after the creation completed.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
createfile

PowerHouse Rules 93

createfile

Creates the named file, even if it is specified to be NOCREATE in the dictionary.

Syntax
createfile=file

file

A file declared in the data dictionary.

Limit: Not available for relational files.

Discussion
QUTIL terminates after the creation completes.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

94 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
cursorowner

cursorowner

Causes QDESIGN to use the owner name in the default query and in generated FIELD statements
for the query.

Syntax
cursorowner

Discussion
If you want to access a table which does not belong to you, you must specify the owner name. You
can do this in two ways:
• by directly coding the owner name in SQL queries and FIELD statements
• by using the owner and cursorowner program parameters to include the owner name in

generated SQL queries and FIELD statements.

When QDESIGN generates a default SQL query from a CURSOR statement, it does not use the
owner name defined in the dictionary or in the owner program parameter. The cursorowner
program parameter causes QDESIGN to use the current owner name in:
• the generated default SQL query.
• generated FIELD statements for the fields in the CURSOR statement.

When cursorowner is specified and FIELD statements are coded, you can only use the following
syntax:
FIELD CURSOR_COLUMN OF CURSOR_STRUCTURE

or
FIELD OWNERNAME.CURSOR_STRUCTURE.CURSOR_COLUMN OF CURSOR_STRUCTURE

If the ownername changes, any screens compiled with the cursorowner program parameter must
be recompiled.

Equivalent Resource File Statement

DEFAULT CURSOR OWNER

Examples
If QDESIGN is run as follows:
QDESIGN AUTO=SCREENX OWNER=USER1

and the program SCREENX contains:
CURSOR EMPLOYEE IN TEMPEST73

The default SQL query generated from the CURSOR statement is:
SELECT * FROM EMPLOYEE

If QDESIGN is run with the cursorowner program parameter:
QDESIGN AUTO=SCREENX OWNER=USER1 CURSOROWNER

the generated SQL query will be:
SELECT * FROM USER1.EMPLOYEE

When cursorowner is specified, FIELD statements generated by QDESIGN include the owner
name for each relational field, as in:
FIELD OWNERNAME.CURSOR_STRUCTURE.CURSOR_COLUMN OF CURSOR_STRUCTURE NULL VALUE
NOT ALLOWED

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
cursorowner

PowerHouse Rules 95

In the following example, user1 wants to access the table, SKILL, which is owned by user2. User1
runs QDESIGN as follows:
QDESIGN AUTO=SCREENX OWNER=USER2 CURSOROWNER

The program contains:
CURSOR SKILL IN TEMPEST73

The generated SQL query will be:
SELECT * FROM USER2.SKILL

96 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
dbaudit

dbaudit

Enables database monitoring for PowerHouse components.

Syntax
dbaudit=brief|file|full|msgs

brief

Displays a short (one line) information line as database operations occur.

file

Writes detailed information to a file called dbaudit.txt located, by default, in the current working
directory.

full

Displays detailed information as database operations occur.

msgs

Displays Binary Language Representation (BLR) messages in hexadecimal.

Discussion

dbaudit=brief

When the dbaudit=brief program parameter is specified, the following lines describe the output
produced:
ATTACH db_handle TO db_type db_name
COMPILE REQUEST request_handle
START LOGICAL TRANSACTION trans_name details

PREPARE LOGICAL TRANSACTION trans_name
COMMIT LOGICAL TRANSACTION trans_name
ROLLBACK LOGICAL TRANSACTION trans_name
START TRANSACTION trans_handle IN dbhandle_list

START REQUEST request_handle IN TRANSACTION trans_handle
RELEASE REQUEST request_handle FROM TRANSACTION trans_handle
PREPARE TRANSACTION trans_handle
COMMIT TRANSACTION trans_handle
ROLLBACK TRANSACTION trans_handle
DETACH db_handle FROM db_name

db_handle
A unique numeric value that identifies a database.

db_type
Either "ALLBASE", "ORACLE", "RDB", "DB2", "ODBC", or "SYBASE."

db_name
The database name.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
dbaudit

PowerHouse Rules 97

request_handle
A unique numeric value that identifies a request.

trans_name
The transaction name.

details
May contain a combination of the following:
• active, all active, locally active
• read only|read write
• wait|nowait
• read uncommitted|cursor stability|repeatable read|phantom protection|serializable
• reserving reserve_name_comma_list (A list of the relation names specified for this

transaction).

dbhandle_list
A comma-separated list of dbhandle.

dbaudit=full

When dbaudit=full is specified, the detailed information displays the value of DBKEY for every
attach that is done to one or more databases.

For more information about auditing relational databases, see the PowerHouse and Relational
Databases book.

Equivalent Resource File Statement

DBAUDIT BRIEF|FILE|FULL|MESSAGES|MSGS|NONE

98 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
dbdetach|nodbdetach

dbdetach|nodbdetach

Releases or does not release the database connection when you return to the screen prompt.

Syntax
dbdetach|nodbdetach

Default: nodbdetach

Discussion
When you leave a QUICK screen and go back to the screen ID prompt after processing through a
relational database connection, QUICK can either detach from the database or keep the
connection. If you keep the connection (not detaching), memory is still allocated for the
connection. This means that when you call another screen, QUICK allocates more memory for the
new database connection(s). This causes memory growth in the product.

The default is nodbdetach. While this uses more memory, there may be small performance
benefits. Note that this only affects screens called from the screen ID prompt, which typically is
not used in production environments.

Equivalent Resource File Statement

DBDETACH ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
dbwait|nodbwait

PowerHouse Rules 99

dbwait|nodbwait

Specifies whether or not the program waits until a concurrency conflict is resolved.

Syntax
dbwait|nodbwait

Default (except for QUICK): nodbwait

Default for QUICK: dbwait

Limit: Applies only to ALLBASE/SQL, ORACLE.

Discussion
The dbwait program parameter specifies that if a concurrency conflict occurs during access to a
relational database, the program normally waits until the conflict is resolved. An example of
concurrency conflict is attempting to write a record that has been locked by another user. If the
nodbwait parameter is specified and the database encounters a concurrency conflict, an error
message results.

Equivalent Resource File Statement

DBWAIT ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

100 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
dcl|nodcl (OpenVMS)

dcl|nodcl (OpenVMS)

Stipulates whether or not operating system commands can be entered or executed when
PowerHouse encounters an operating system prompt.

Syntax
dcl|nodcl

Default (except for QUICK): dcl

Default for QUICK: nodcl

Discussion
If nodcl is selected, the informational message
Access to the operating system has been disabled

is issued when you enter the system prompt. When you call a PowerHouse component directly
from another, that component is invoked with either dcl or nodcl in effect, whichever parameter is
set in the calling component.

For more information about allowing and preventing operating system access, see (p. 138).

Equivalent Resource File Statement

OSACCESS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
debug (QDESIGN)

PowerHouse Rules 101

debug (QDESIGN)

To use the QUICK Debugger, you must use the debug program parameter in QDESIGN and
compile the screens to be debugged.

Syntax
debug

Discussion
For more information, see Chapter 10, "Debugger Commands", in the QDESIGN Reference
book.

Equivalent Resource File Statement

DEBUG WARN

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

102 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
debug (QUICK)

debug (QUICK)

Controls the level of debugging capabilities.

Syntax
debug=error|nowarn|source|warn

error

Returns an error message for screens compiled for Debugger.

nowarn

Runs screens compiled for Debugger but does not allow access to Debugger.

source

Runs compiled screens and allows full access to Debugger.

warn

Displays a warning message when a screen is encountered that was compiled with Debugger
enabled.

Discussion
To debug your QUICK screens you must have compiled them using the debug program parameter
in QDESIGN.

For more information, see Chapter 10, "Debugger Commands", in the QDESIGN Reference
book.

Equivalent Resource File Statement

DEBUG ERROR|NOWARNING|SOURCE|WARNING

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
deleteall

PowerHouse Rules 103

deleteall

Deletes all non-relational files and IMAGE databases declared in the dictionary, excluding only
those files that are declared to be NOCREATE, and those databases whose datasets are all
declared to be NOCREATE.

Syntax
deleteall

Limit: Not available for relational files.

Discussion
QUTIL terminates after the deletion completes.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

104 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
deletebase (MPE/iX)

deletebase (MPE/iX)

Deletes the named IMAGE database.

Syntax
deletebase=filespec

Discussion
QUTIL terminates after the deletion completes.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
deletefile

PowerHouse Rules 105

deletefile

Deletes the named file, even if it is specified to be NOCREATE in the dictionary.

Syntax
deletefile=file

Limit: Not available for relational files.

file

A file declared in the data dictionary.

Discussion
QUTIL terminates after the deletion completes.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

106 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
designer_noretain

designer_noretain

Causes a commit to end the transaction.

Syntax
designer_noretain

Discussion
By default, DESIGNER files use the commit retain functionality, which means the transaction is
kept open after a commit. By using this program parameter, you can cause a commit to end the
transaction.

Equivalent Resource File Statement

DESIGNER NORETAIN

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
detail|nodetail

PowerHouse Rules 107

detail|nodetail

Specifies whether or not to copy the contents of a file into the pdlsave file.

Syntax
detail|nodetail

Default: detail

Discussion
When you specify the detail|nodetail program parameter and enter a REVISE statement, the detail
program parameter copies the contents of the revised file into the pdlsave file when you exit from
the system editor, the nodetail program parameter does not.

When you specify the detail|nodetail program parameter and enter a USE statement, the detail
program parameter writes the contents of the file, rather than just the USE statement itself, to the
pdlsave file. The nodetail program parameter writes just the USE statement, rather than the
contents of the file, to PDL’s source statement save file, pdlsave.

The program parameter is overridden when you specify either the detail or nodetail option on the
SET, USE, or REVISE statement during a PDL session.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

108 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
dictionary|dict

dictionary|dict

Establishes the data dictionary that the PowerHouse component opens when it starts.

Syntax
dictionary=filespec

dict=filespec

filespec

The specification for a file, as it is identified to the operating system. A file specification takes the
general form:

OpenVMS: For PHD type dictionaries, extension and version are not valid options.

Discussion
The dictionary program parameter establishes the specified dictionary for the duration of a
session of a PowerHouse component but does not override any dictionary previously set. The
program parameter can be abbreviated to dict.

You can also use the SET DICTIONARY statement or SETDICT command (OpenVMS, UNIX,
Windows) to set a specified dictionary.

Equivalent Resource File Statement

DICTIONARY filespec

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MPE/iX: [*]filename[/lockword][.group[.account]]

OpenVMS: [node::][device:][[directory]] filename[.extension][;<version>]

Square brackets are required around a directory name.

UNIX: /[directory/]...filename.extension

Windows: [drive:\][directory\]...filename.extension

OpenVMS: The default dictionary type for all components except PDL is PHD. If no PHD
dictionary is found, the components look for a dictionary with the .pdc extension.

UNIX,
Windows:

The default extension when specifying a dictionary is .pdc.

Chapter 2: Program Parameters
dicttype|dt (OpenVMS)

PowerHouse Rules 109

dicttype|dt (OpenVMS)

Specifies what dictionary type will be used.

Syntax
dicttype=pdc|phd
dt=pdc|phd

Default: phd

Discussion
Specifies the default dictionary type to be used during the session of the PowerHouse component.
When the dicttype program parameter is used, it applies to all SET DICTIONARY statements
where the TYPE option is not specified. A dictionary type specified on the SET DICTIONARY
statement will override the dicttype setting. If a type is not specified, PowerHouse searches first for
a PHD dictionary, then for a PDC dictionary.

If an extension is included on the dictionary program parameter and a conflicting dicttype is
specified, you will get an error.

Equivalent Resource File Statement

DICTIONARY filespec TYPE PHD|PDL

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔

110 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
direct_file_base_zero (OpenVMS)

direct_file_base_zero (OpenVMS)

Allows the use of zero-based record numbers for cross-platform compatibility.

Syntax
direct_file_base_zero

Discussion
In PowerHouse versions 8.00 and 8.10C, direct file access was zero-based from an external view
to make PowerHouse code more portable between platforms.

In 8.10.C1 and subsequent versions, direct file access is one-based from an external view. This
matches the physical implementation. On OpenVMS the record numbers start at 1, not 0.

To maintain upgrade paths, and to provide cross-platform transparency, the direct_file_base_zero
program parameter is available to allow for the use of zero-based record numbers if required.
Externally, the PowerHouse user can use zero-based numbers. PowerHouse adds one to the
external value to make it one-based for the internal file system

Note: From 8.10.C1 through to 8.20.D4, the one-based access applied to READs, but not to
WRITEs. This was incorrect and has been changed as of 8.20D6 and 8.30 so that it applies to
both READ and WRITE.

Equivalent Resource File Statement

RMS FILE BASE ZERO|ONE

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
disable_nulls

PowerHouse Rules 111

disable_nulls

Controls whether null support is allowed at the item level. It overrides the dictionary setting.

Syntax
disable_nulls

Equivalent Resource File Statement

DISABLE NULLS

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

112 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
dont_store_module

dont_store_module

Prevents SQL modules from being compiled and stored in the database and compiled
screen/run/report. This program parameter is used at parse time.

Syntax
dont_store_module

Discussion
This program parameter can decrease memory problems associated with compiled sections since
the SQL modules will be forced to compile at run-time. However, this may have an impact on
performance.

Equivalent Resource File Statement

STORE MODULES ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

Chapter 2: Program Parameters
downshift|upshift|noshift

PowerHouse Rules 113

downshift|upshift|noshift

Specifies that the values of identifiers be shifted to lowercase, uppercase, or left as entered.

Syntax
downshift|upshift|noshift

Default: upshift

Discussion
By default, PowerHouse upshifts all components of table names. PowerHouse permits access to
case-sensitive names by means of this program parameter or the NOSHIFT, UPSHIFT, and
DOWNSHIFT options of the SET statement. If noshift or SET NOSHIFT is specified, all
PowerHouse identifiers are taken as they appear in the source text instead of being upshifted. For
system-wide access to mixed, lowercase, or uppercase identifiers, you can specify the SHIFT
option in the SYSTEM OPTION statement.

Equivalent Resource File Statement

SHIFT DOWN|NONE|UP

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

114 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
entryrecall

entryrecall

Specifies that data from previous screens is or is not available for recall in Entry mode.

Syntax
entryrecall

Discussion
Specifying entryrecall means that QUICK users can recall the previous record’s values in Entry
mode. Values are only recalled and displayed if requested using the Recall command (the Up
Arrow, Ctrl-B, or whatever key has been set).

Users can change the displayed value before it is processed by QUICK. The cursor is positioned
immediately to the right of the recalled value as if the user had typed it into the field. The
positioning is to the left if the REVERSE option of the FIELD statement is specified. Error recall,
and the recall of data in change processing, is not affected by entryrecall.

Note: You can also duplicate the previous record’s values using the Duplicate command (by
default, the underscore), but you cannot change the duplicated value before it is processed by
QUICK.

Equivalent Resource File Statement

ENTRY RECALL

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
errlist

PowerHouse Rules 115

errlist

Redirects standard error/list to the specified file.

Syntax
errlist=filename

Discussion
Errlist is used to redirect standard error and standard list to the specified file.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

116 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
fastread (OpenVMS)

fastread (OpenVMS)

Performs a block read to sequentially accessed read-only files.

Syntax
fastread

Discussion
By using this program parameter, normal record I/O is much faster. However, it has a number of
restrictions:
• The records must be fixed length.
• The access must be sequential, not indexed.
• The data and indexed portions of the file cannot be compressed. By default, PowerHouse

creates files with compression turned on, so compression must be turned off manually using
the FDL editor and the file recreated in order to access a PowerHouse file with this program
parameter. If these conditions are not met, you do not receive a warning but PowerHouse
does not set up the file for fast reads.

Equivalent Resource File Statement

RMS FAST READ ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

Chapter 2: Program Parameters
fdl|nofdl (OpenVMS)

PowerHouse Rules 117

fdl|nofdl (OpenVMS)

Specifies whether to create or delete File Definition Language (FDL) files.

Syntax
fdl|nofdl

Default: nofdl

Discussion
FDL files have the form <filename>.fdl. If fdl is specified,
• the CREATE statement creates the FDL file as well as the data file
• the DELETE statement deletes the FDL file as well as the data file

To override this program parameter, use SET FDL or SET NOFDL within the QUTIL session.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

118 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
initnulls|noinitnulls

initnulls|noinitnulls

Specifies whether to initialize columns to NULL in rows not retrieved.

Syntax
initnulls|noinitnulls

Defaults: noinitnulls

Discussion
Columns in rows not retrieved should be initialized to NULL if null values are allowed. This is
what happens in QUIZ. In QTP, columns are initialized to spaces, zeroes, and dictionary initial
values. The initnulls program parameter can be used to tell QTP to properly initialize such
columns to NULL. The default is noinitnulls to remain consistent with the operation of previous
versions of QTP.

Equivalent Resource File Statement

INITIALIZE NULLS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
intsize6|nointsize6 (OpenVMS)

PowerHouse Rules 119

intsize6|nointsize6 (OpenVMS)

Specifies whether to create INITEGR SIZE 6 datatypes.

Syntax
intsize6|nointsize6

Defaults: intsize6 for PDL; nointsize6 for PHDPDL.

Discussion
When using PDL in PowerHouse 8.xx, integers of physical SIZE 6 are created for numeric
elements with 10-14 digits with INTEGER datatype and no SIZE specified. In 7.10 and PHDPDL,
these elements will default to SIZE 8. In a mixed PowerHouse version environment, or when using
datafiles created under one version or dictionary type to be used by another, this will cause an
incompatibility between dictionaries and physical datafiles. The physical record lengths will not
match.

There are two methods to correct this problem. You can either
• specify SIZE for such items, thereby fixing the physical size to match the files, or
• use the intsize6|nointsize6 program parameters to control how the products work

For PDL, nointsize6 will cause the item sizes to not create SIZE 6 integers, thus matching
PHDPDL and 7.10 created files. For PHDPDL, intsize6 will cause integer SIZE 6 items to be
created, thus matching files created in PDL and 8.xx versions.

Equivalent Resource File Statement

INTEGER SIZE 6 ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

120 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
jcwbase (MPE/iX)

jcwbase (MPE/iX)

Specifies the base value for JCW settings.

Syntax
jcwbase=fatal|warn

Discussion
The jcwbase program parameter specifies the base value for QUIZ JCW settings. For more
information on JCW settings, see "QUIZ Error Status Settings (MPE/iX, UNIX,
Windows)" (p. 22). If the base value is fatal, an error can cause a job to stop.

Equivalent Resource File Statement

JCWBASE FATAL|WARN

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
lineread (MPE/iX)

PowerHouse Rules 121

lineread (MPE/iX)

Specifies that QUICK uses multi-character reads.

Syntax
lineread

Discussion
The linread program parameter causes QUICK to run the application without the use of single
character processing. It is the old form of the read=line program parameter.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

122 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
list|nolist

list|nolist

Establishes whether or not the PowerHouse component displays the source statement file.

Syntax
list|nolist

Limit: These parameters apply to source statement files only.

Default: list

Discussion
The list program parameter states that the contents of source statement files are to be listed as they
are read; nolist suppresses the listing of the source file statements as they are read.

The list|nolist program parameter establishes the default list option for the USE and REVISE
statements without LIST or NOLIST options. Within the PowerHouse component, an entry of
SET DEFAULT or SET LIST overrides nolist. The LIST option of the USE statement temporarily
overrides nolist. Likewise, an entry of SET NOLIST resets the LIST control from that point on.
The NOLIST option of the USE statement temporarily overrides list.

Equivalent Resource File Statement

LIST USE ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
lockword (MPE/iX)

PowerHouse Rules 123

lockword (MPE/iX)

Enables the use of internal routines to prevent duplicate lockword prompting during screen
loading and running.

Syntax
lockword

Discussion
By default, if a compiled screen has a a file level password, LOCKWORD, the user is prompted
for this lockword every time the screen is run. If the screen has to be loaded and then run, the user
is prompted for the lockword twice.

The lockword program parameter enables internal routines to prevent duplicate prompting.
However, use of the program parameter may cause a performance decrease so it should be tested
to determine the effect.

Equivalent Resource File Statement

LOCKWORD PROMPT ONCE

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

124 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
moduleext (MPE/iX)

moduleext (MPE/iX)

Causes the module names that are stored with compiled sections in an ALLBASE/SQL database to
be modified.

Syntax
moduleext=extension

Discussion
The module name is based on the name of the file in which the compiled QUICK screen, QUIZ
report, or QTP run is stored.

If the fully qualified name of the compiled file is
file.group.account

then the default module name is
file_group

If the moduleext program parameter is specified, the module name is:
file_extension

Equivalent Resource File Statement

ALLBASE MODULE EXTENSION string

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

Chapter 2: Program Parameters
moduleloc (MPE/iX)

PowerHouse Rules 125

moduleloc (MPE/iX)

Compiles a PowerHouse program, creating an installable module which can be copied to a second
environment in ALLBASE/SQL.

Syntax
moduleloc=filelocation

filelocation

The specification for a group.

Limit: The location specified by moduleloc cannot be the same as the location of the file named in
the BUILD or RUN statements.

Equivalent Resource File Statement

LOCATION [MODULE filelocation]

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔

126 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
nls (no line split) (MPE/iX, UNIX)

nls (no line split) (MPE/iX, UNIX)

Ensures that no line of text for the printer is split between two output blocks.

Syntax
nls

Discussion
On some terminals in the HPSLAVE output block method, when a line of output to the printer is
split between two output blocks, the portion of the line in the first block is overwritten by the
portion of the line in the second block. nls prevents this from happening.

Equivalent Resource File Statement

HPSLAVE SPLIT LINES ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
noblobs

PowerHouse Rules 127

noblobs

Specifies whether blobs columns are processed.

Syntax
noblobs

Discussion
By default, QUIZ, QTP, and QDESIGN refer to blob columns. However, blobs are restricted in
use; blobs cannot be stored in subfiles, sorted on, or written into an intermediate file in QTP. All
of these actions produce an error. By specifying the noblobs program parameter, blob columns are
not processed (ignored) and these errors are avoided.

Equivalent Resource File Statement

NOBLOBS

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

128 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
nobreakset (MPE/iX)

nobreakset (MPE/iX)

Improves the performance of KSAM and KSAMXL reads. If specified, the system break around
each read is not disabled.

Syntax
nobreakset

Discussion
This program parameter should only be used if the products are being run from a NOBREAK
UDC or command file.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
nonportable

PowerHouse Rules 129

nonportable

Sets the severity of warning messages when nonportable syntax is encountered.

Syntax
nonportable=error|nowarn|warn

Default: nowarn

Limit: Applies to source statement files only.

error

Rejects nonportable syntax and issues an error message.

nowarn

Suppresses the warning messages.

warn

Issues a warning, though processing continues.

Discussion
Not all PowerHouse syntax applies to all computer systems.

Equivalent Resource File Statement

NONPORTABLE ERROR|NOWARNING|WARNING

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

130 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
nontermcompat (Windows)

nontermcompat (Windows)

Suppresses messages caused by design errors in the layout portion of the compiled screen file.

Syntax
nontermcompat

Discussion
QDESIGN has many default settings that affect how pages are generated. QDESIGN generates
both PowerHouse Web pages and character terminal screens used by the QUICK component of
PowerHouse 4GL. You may see a default terminal layout when you enter the BUILD statement.
To disable the terminal layout display enter
> SET NOLIST LAYOUT

QDESIGN may issue warnings and errors if layout objects are specified outside of the terminal
screen area. Even though PowerHouse Web ignores specific rows and columns, you can avoid
these errors by specifying rows and columns within the character terminal’s 24 by 80 area. On
Windows, you can instruct QDESIGN to ignore these errors by using the nontermcompat
program parameter.

Using the nontermcompat program parameter in Axiant

QUICK on Windows requires the layout information in the compiled screen file, but Axiant does
not.

The nontermcompat program parameter and the Terminal Compatible property in Axiant provide
a mechanism to maintain the same level of functionality of Axiant and still maintain application
compatibility with QUICK on Windows.

The nontermcompat program parameter is an internal parameter in Axiant. A Terminal
Compatible property has been added to the Axiant Build Profile. When Terminal Compatible is
set to TRUE, the program parameter is not used and QDESIGN will compile the screen with full
terminal layout error checking. This is the default.

If an Axiant application is a thin client connecting to a Windows server, then the default value of
TRUE may result in terminal layout compilation errors. If this occurs then you must manually
select FALSE to suppress the errors. This may be necessary when upgrading such an Axiant
application to version 3.4.

If the Terminal Compatible is set to FALSE, then the program parameter is used and some
terminal layout error messages will be suppressed. When an error message has been suppressed,
the compiled screen file will be marked with a layout error. Should QUICK try to execute such a
screen, it will issue a screen design error and the screen will not run. If the screen is compiled with
the setting set to FALSE and no terminal layout errors are suppressed, then QUICK will be able to
execute the screen.

The relationship between the Axiant Build Profile setting and the program parameter is as follows:

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Terminal Compatible Setting Action

True The program parameter is not used.

False The program parameter is used.

Chapter 2: Program Parameters
noowner

PowerHouse Rules 131

noowner

Prevents the owner name from being attached to the table name in generated code so that different
users can use the same compiled screen to access their own tables (having the same name).

Syntax
noowner

Equivalent Resource File Statement

NOOWNER

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

132 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
noprefix_ownername

noprefix_ownername

Suppresses the addition of "ORACLE@" to the open name for an ORACLE database.

Syntax
noprefix_ownername

Discussion
Valid open names must begin with "ORACLE@". If the open name supplied does not begin with
this string, PowerHouse normally inserts it. This program parameter suppresses the insertion thus
allowing logical names (OpenVMS) and environment variables (UNIX, Windows) to used as the
open name. If noprefix_ownername is used, the user must supply the "ORACLE@" in the string
assigned.

Equivalent Resource File Statement

PREFIX ORACLE OPEN NAME ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
nosetwarnstatus (OpenVMS)

PowerHouse Rules 133

nosetwarnstatus (OpenVMS)

Suppresses the warning status when a warning condition is detected in PowerHouse.

Syntax
nosetwarnstatus

Discussion
In versions prior to 8.40, a warning condition in PowerHouse returned a $WARNING level
indication to the operating system. When Module Management System (MMS) sees a result code
that is not $SUCCESS, processing stops.

If this is not the desired behavior, specify the nosetwarnstatus program parameter to turn off the
warning status. If the nosetwarnstatus program parameter is used, a status code of $SUCCESS is
returned to operating system for PowerHouse warning conditions, instead of $WARNING.

The default behavior is that $WARNING status is used.

Equivalent Resource File Statement

NOSET WARN STATUS

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

134 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
nouicbrackets (OpenVMS)

nouicbrackets (OpenVMS)

Causes the UIC function to not return brackets around the result values. It also causes internal
security checking to match the existence of brackets based on the setting of the program
parameter.

Syntax
nouicbrackets

Discussion
This program parameter is provided for compatibility with the UNIX and Windows uic function,
and previous versions of PowerHouse 8.xx.

Equivalent Resource File Statement

UIC BRACKETS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
nxl (no extra line)

PowerHouse Rules 135

nxl (no extra line)

Suppresses the printing on an extra blank line at the end of reports.

Syntax
nxl

Equivalent Resource File Statement

HPSLAVE EXTRA LINE ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

136 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
obsolete

obsolete

Sets the severity of the messages when obsolete syntax is encountered.

Syntax
obsolete=error|ignore|nowarn|warn

Default: warn

Limit: Applies to source statement files only.

error

Rejects obsolete syntax when encountered and issues an error message.

ignore

Ignores all obsolete keywords as part of the syntax (they are treated as entity names).

nowarn

Suppresses the warning messages.

warn

Issues a warning message, though processing continues.

Discussion
As PowerHouse matures, some syntax may be marked for obsolescence and may not be supported
in future releases.

Equivalent Resource File Statement

OBSOLETE ERROR|IGNORE|NOWARNING|WARNING

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
omnidex|noomnidex (MPE/iX)

PowerHouse Rules 137

omnidex|noomnidex (MPE/iX)

Determines whether or not OMNIDEX indexes are seen by the PowerHouse component being
run.

Syntax
omnidex|noomnidex

Default: omnidex

noomnidex

OMNIDEX indexes are not seen by the product being run.

omnidex

OMNIDEX indexes are seen by the product being run. This is provided to allow people to
override a resource file setting of QUIZ or OFF.

Equivalent Resource File Statement

OMNIDEX ON|OFF|QUIZ

Discussion
The program parameter or resource file statement is only required at parse time.

In PowerHouse versions from 7.29 to 8.29, OMNIDEX indexes could be declared in the
dictionary, but were only used by QUIZ (and reported by QSHOW). QTP, QDESIGN and QUICK
had no knowledge of these indexes. DISC, the developers of OMNIDEX, provided tools to access
OMNIDEX indexes from these versions of QUICK.

In version 8.39, OMNIDEX index support was added to QTP, QDESIGN, and QUICK. This
changed some default operations. Because these indexes are now visible, they are used in the
default linking rules. This can result in different default linkages. Linkages that were specifically
coded remain unchanged. The addition of this support to QUICK prevents the DISC tools from
functioning.

With the appropriate program parameter or resource file statement, you can determine how you
want OMNIDEX indexes to be used.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔

Version Default use of OMNIDEX indexes

7.29 to 8.29 QUIZ

8.39 and above QUIZ, QTP, QDESIGN, QUICK

138 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
osaccess|noosaccess

osaccess|noosaccess

Specifies whether or not access to the operating system from within PowerHouse components is
allowed.

Syntax
osaccess|noosaccess

Default (except for QUICK): osaccess

The osaccess program parameter allows access to the operating system from within PowerHouse
components; noosaccess prevents access.

Where the parameter is set to noosaccess, any command preceded by a system prompt character is
ignored.

Discussion
By default, when QUICK encounters the system prompt character, it ignores it and issues the
message
"Operating system has been disabled".

When you call QUICK directly from QDESIGN, QUICK is invoked with either osaccess or
noosaccess in effect, depending on which parameter is set in QDESIGN.

MPE/iX
The system prompt character is a colon (:). Entering a colon, followed by a system command
causes execution of that command by the operating system.

OpenVMS
The system prompt character is a dollar sign ($). Entering a dollar sign followed by a system
command causes execution of that command by the operating system.

Note: See also dcl|nodcl on (p. 100).

UNIX
The system prompt character is an exclamation mark (!). Entering !<shell_abbreviation> (for
example, !csh) opens a new shell, while entering the exclamation mark followed by a system
command causes execution of that command by the operating system.

Where the parameter is set to noosaccess, any command preceded by an exclamation mark is
ignored. Although noosaccess denies users access to the operating system from within
PowerHouse, it does not prevent users from using Ctrl-Z to make PowerHouse run in the
background. Further, it is impossible to deny any access to the operating system when the REVISE
statement is executed, as any UNIX editor can be defined by the environment variable, PHEDIT.

Windows
The system prompt character is an exclamation mark (!). Entering an exclamation mark followed
by a system command causes execution of that command by the operating system.

Equivalent Resource File Statement

OSACCESS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
owner

PowerHouse Rules 139

owner

Specifies the owner for tables in an ALLBASE/SQL, DB2, SYBASE, or ORACLE database when
none is explicitly indicated. Also specifies the default owner of modules created by PowerHouse in
ALLBASE/SQL.

Syntax
owner=ownername

ownername

May be the database owner or a string. It may also be a system variable or file equation
(MPE/iX), logical (OpenVMS), or environment variable (UNIX, Windows) which must be
enclosed in quotation marks.

Defaults: MPE/iX: USERNAME@ACCOUNTNAME. OpenVMS, UNIX, Windows: the current
username.

Limit: You must have Database Administrator (DBA) authority to create modules owned by
another ownername.

Discussion
Some relational databases support owners for entities such as modules or tables. If a program
needs to access an entity owned by another user, you specify the owner as part of the entity name.

The program parameter only applies at parse time and cannot be used at execution time to
provide access to specific data.

Equivalent Resource File Statement

OWNER owner

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

140 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
parmfile (OpenVMS, UNIX, Windows)

parmfile (OpenVMS, UNIX, Windows)

Tells PowerHouse that the PARM values should come from the specified file instead of prompting
the user.

Syntax
parmfile=filespec

filespec

The specification for a file as it is identified to the operating system. A file specification takes the
general form:

Discussion
By default, trailing blanks are stripped from values in the specified file. If this is not the desired
operation, use the parmprompt program parameter or the TRUNCATE PARM VALUES resource
file statement to change the behavior.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

OpenVMS: [node::][device:][[directory]] filename[.extension][;<version>]

Square brackets are required around a directory name.

UNIX: /[directory/]...filename.extension

Windows: [drive:\][directory\]...filename.extension

Chapter 2: Program Parameters
parmprompt

PowerHouse Rules 141

parmprompt

Strips or does not strip trailing blanks from PARM values.

Syntax
parmprompt=truncate|notruncate

Default: notruncate for values entered interactively; truncate for values read from a file, whether
in a batch job or a file specified in the parmfile program parameter.

truncate

Specifies that trailing blanks are stripped from any PARM values.

notruncate

Specifies that trailing blanks are significant and are not stripped from PARM values.

Equivalent Resource File Statement

TRUNCATE PARM VALUES ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

142 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
patch

patch

Issues a number of informational messages about patches that have been applied to the
PowerHouse component.

Syntax
patch

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
pollspeed (MPE/iX)

PowerHouse Rules 143

pollspeed (MPE/iX)

Sets the amount of time (n) that QUICK takes when polling the terminal to determine a terminal
type before prompting the user.

Syntax
pollspeed=n

Limit: The range of POLLSPEED is 1 to 20 seconds.

Default: 1 second

Discussion
For more information about determining terminal types, see (p. 162).

Equivalent Resource File Statement

TERMINAL POLLING SPEED n

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

144 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
pre_chooseall

pre_chooseall

Affects QUIZ reports and QTP runs in batch mode that use the CHOOSE statement with a PARM
option and have no PARM values specified.

Syntax
pre_chooseall

In batch mode, this parameter affects QUIZ reports and QTP runs that use the CHOOSE
statement with a PARM option and have no PARM values specified.

If pre_chooseall is specified, no records are chosen by the QUIZ reports and QTP runs. Note that
this used to be the default in older versions of PowerHouse.

Default: All values of the items being prompted for are chosen.

Discussion
This program parameter has no effect if QUIZ and QTP are being run interactively.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

Chapter 2: Program Parameters
procloc

PowerHouse Rules 145

procloc

Causes PowerHouse to search for process files in a location other than the current directory
(OpenVMS, UNIX, Windows) or group/account (MPE/iX).

Syntax
procloc=filelocation

filelocation

Discussion
The procloc program parameter is applied to filenames that are unqualified (MPE/iX, OpenVMS)
or not fully qualified (UNIX, Windows) that are specified
• in the auto program parameter
• through the appropriate designated files
• in the EXECUTE, SUBSCREEN (and RUN SCREEN verb), and USE statements

The procloc program parameter is not applied when locating the dictionary or data files.

The BUILD and SAVE statements save files in the current working directory rather than in the
directory specified by procloc.

Equivalent Resource File Statement

LOCATION [PROCESS filelocation]

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

OpenVMS, UNIX,
Windows:

filespec without the filename or extension

If a logical name is used, you must include the colon (:) at the end if you
specify a full file location. (OpenVMS)

MPE/iX: group.account

146 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
prompt

prompt

Specifies the prompt for the PowerHouse component.

Syntax
prompt=string

Default: >

Discussion
PowerHouse adds a trailing space after the prompt string.

Equivalent Resource File Statement

PROMPT string

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
qktrace

PowerHouse Rules 147

qktrace

Generates a log file of QUICK screen processing that gives a summary of activities.

Syntax
qktrace [=filespec]

filespec

Names the log file.

Default: qktrace.qkt. On platforms that don’t support the file extension, the name defaults to
QKTRACE.

Discussion
The qktrace program parameter generates a log file that gives a summary of screen processing
activities such as:
• screen execution and termination
• QUICK verb processing
• screen procedure execution
• actions specified in the Action field or from a menu

You can specify the name of the trace file using the program parameter. An alternative is to start
QUICK with the qktrace program parameter and specify the filename with a file equation, logical,
or environment variable.

When you start QUICK with a qktrace file equation, logical or environment variable, you must
specify the qktrace program parameter to generate the log file.

UNIX, OpenVMS: You can specify whether to have full or partial tracing. To specify partial
tracing, set the logical QKTRACE_FULL to a value of 0.

If QUICK is unable to start tracing, an error message is displayed and QUICK stops processing.

Examples
Example:
quick auto=screen1 qktrace
DEFINE QKTRACE <filename>

The default name of the log file is qktrace.qkt. On platforms that don't support file extensions, the
name defaults to QKTRACE. If you want, you can specify a filename for the log file when you
start QUICK.

Example:
QUICK qktrace=myqktrace.log

Another alternative is to start QUICK with the qktrace program parameter but specify the
filename with the logical.

Example:
DEFINE QKTRACE myqktrace.log
quick auto=screen1 qktrace

When you start QUICK with the QKTRACE logical, you must specify the qktrace program
parameter to generate the log file.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

148 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
qktrace

You can specify whether to have full or partial tracing. To specify partial tracing set the logical
QKTRACE_FULL to a value of 0.

Example:
DEFINE QKTRACE_FULL 0

If QUICK is unable to start the tracing, then an error message is displayed and QUICK stops
processing.

Chapter 2: Program Parameters
quotedproccall

PowerHouse Rules 149

quotedproccall

Allows quoted stored procedure calls to be passed directly to the database.

Syntax
quotedproccall

Discussion
As part of the strict SQL 92 compatibility, quoted stored procedure calls, where the quoted
procedure call syntax is passed directly to the database, cause parse errors. For example:
> DECLARE mycursor CURSOR FOR CALL "myproc(’param’)"

is not accepted. In order to allow the double quotes and pass what is between the double quotes
directly to the database, specify the quotedproccall program parameter at compile time.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

150 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
read (MPE/iX)

read (MPE/iX)

Determines how QUICK uses single-character reads.

Syntax
read=char|line

char

Causes QUICK to run the application with the use of the single character processing.

line

Causes QUICK to run the application without the use of single character processing.

Equivalent Resource File Statement

TERMINAL READ CHARACTER|LINE

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
resetbindvar|noresetbindvar

PowerHouse Rules 151

resetbindvar|noresetbindvar

Determines if SQL bind variables are reset for each SQL statement.

Syntax
resetbindvar|noresetbindvar

Default: resetbindvar

resetbindvar

Causes the SQL bind variables to be reset for each SQL statement.

noresetbindvar

Causes the SQL bind variables to be different for each SQL statement.

Discussion
A bind variable is a placeholder in SQL generated at compile time where a value will be
substituted at execution time. For example, if a request value for a Find is needed in generated
SQL, a bind variable acts as the placeholder in the WHERE clause. Each bind variable has a
unique identifier made up of a number and the field name. In versions previous to 8.4xD1, the
number was incremented from statement to statement even though the field was the same. This
meant that generated SQL was different even though the SQL statements themselves were the
same. Because the generated SQL was different, it could not be reused by the database.

The resetbindvar program parameter specifies that the bind variables are to be reset for each SQL
statement. This allows the generated SQL to be identical for identical SQL syntax. The bind
variables will be a letter and a number. The letter is S for Select operations, U for update
operations, I for insert operations, and D for delete operations. The number is incremented from
1.

Equivalent Resource File Statement

RESET BIND VARIABLES ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔

152 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
resource

resource

Specifies the PowerHouse resource file.

Syntax
resource=filespec

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
restore

PowerHouse Rules 153

restore

Provides upward compatibility for screens compiled with versions of PowerHouse prior to 6.09
(MPE/iX), 6.00 (OpenVMS), and 6.03 (UNIX). The restore program parameter changes the
default behavior of screen refreshing.

Syntax
restore=lines

Default: QUICK removes a screen from the display area when you return to a previous screen.

Discussion
The restore=lines program parameter changes the default behavior of screen refreshing.

By default, QUICK removes a screen from the display area when you return to a previous screen.
This is the expected behavior for pop-up windows. Only the screens currently active in the screen
hierarchy are visible. For certain applications, such as heavy data entry applications, you may
want to leave information from a lower-level screen in the display area when you return to a
previous screen. If the screen background isn’t removed, QUICK can avoid rewriting the screen
background each time the lower-level screen is invoked. This applies when the screens don’t
overlap in the display area. With extended terminal memory, QUICK can use two display areas
and simply switch between them by adjusting the terminal window.

When you use the restore program parameter, QUICK uses a line oriented refresh algorithm.
When you return to a screen, only the application lines required by that screen are refreshed in
terminal memory. Application lines used by lower-level screens required by the higher-level screen
aren’t altered. The background remains available when the screen is again invoked.

Equivalent Resource File Statement

RESTORE LINES ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

154 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
retainmark|noretainmark

retainmark|noretainmark

Determines whether the field mark position in an array is retained.

Syntax
retainmark|noretainmark

Default: noretainmark

retainmark

The fieldmark position is retained.

noretainmark

The fieldmark position is not retained.

Discussion
If fieldmarking is used in an array and a new screen load is retrieved, by default the first
occurrence is marked even if the mark was originally on another occurrence. RETAINMARK
instructs QUICK to retain the original mark occurrence.

Equivalent Resource File Statement

RETAINMARK ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
reuse_screen_buffers|noreuse_screen_buffers

PowerHouse Rules 155

reuse_screen_buffers|noreuse_screen_buffers

Causes QUICK to reuse or not reuse previously allocated buffers.

Syntax
reuse_screen_buffers|noreuse_screen_buffers

Default: noreuse_screen_buffers

reuse_screen_buffers

Causes QUICK to reuse previously allocated buffers.

noreuse_screen_buffers

Causes QUICK to not reuse previously allocated buffers.

Discussion
The reuse_screen_buffers program parameter causes QUICK to reuse previously allocated buffers
when the user moves repeatedly back and forth from a screen to a subscreen. Since buffers don't
have to be re-allocated, performance may improve.

Applications using RDB/VMS (i.e. native access) and non-relational files should see a performance
improvement by reusing screen buffers. For databases accessed through SQL, reusing screen
buffers may cause more memory usage since memory is not cleaned up immediately when a screen
exits.

Axiant thin-client applications should not reuse screen buffers.

This feature conflicts with the AX_SCREEN_TUNING environment variable. They should not be
used together.

Equivalent Resource File Statement

REUSE SCREEN BUFFERS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

156 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
search

search

Causes QUIZ to search the ACCESS statement in a first-to-last or last-to-first sequence.

Syntax
search=first|last

Default: first

Discussion
When QUIZ looks for an unqualified item name, which may be contained in more than one of the
data structures of the ACCESS statement, the search program parameter tells QUIZ which search
sequence to follow. first is a first-to-last search sequence, and last is a last-to-first search sequence.

A first-to-last search sequence means that the data structures are searched from left to right as
they are declared in the ACCESS statement. The converse applies to last-to-first search sequence.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
secured

PowerHouse Rules 157

secured

Restricts the files and items listed by the SHOW FILES statement to those for which you have at
least read access.

Syntax
secured

Discussion
Restricts the files listed by SHOW FILES SUMMARY statement to those for which you have at
least read access. Restricts the files and items listed by the SHOW FILES DETAIL statement to
those for which you have at least read access.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

158 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
setjobshow|nosetjobshow (Windows)

setjobshow|nosetjobshow (Windows)

Restricts the files and items listed by the SHOW FILES statement to those for which you have at
least read access.

Syntax
setjobshow|nosetjobshow

Default: nosetjobshow

Discussion
With the SET JOB statement, the job is submitted as a separately spawned process just before the
product exits. By default, the spawned process window is hidden. To show the window, use the
setjobshow program parameter.

Equivalent Resource File Statement

SETJOBSHOW ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

Chapter 2: Program Parameters
statistics|nostatistics

PowerHouse Rules 159

statistics|nostatistics

Specifies whether or not to display statistics.

Syntax
statistics|nostatistics

Default: statistics (QUIZ, QTP); nostatistics (QUTIL)

Discussion
In QUIZ and QTP, the statistics program parameter displays or lists statistics at the end of a
report or run; nostatistics does not. Stipulating SET STATISTICS, SET NOSTATISTICS, or SET
DEFAULT(QUIZ and QTP) resets the statistics control.

In QUTIL, the statistics program parameter produces a report of details of the file being created,
such as record size, indexes, and physical location.

Limit: The statistics|nostatistics program parameter for QUTIL is only valid for OpenVMS,
UNIX, and Windows.

Equivalent Resource File Statement

STATISTICS ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

160 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
subdictionary|subdict

subdictionary|subdict

Specifies whether or not subdictionary support is to be enabled; when the relational
subdictionaries are to be opened by PowerHouse; and when they are to be searched for
unqualified record-structures.

Syntax
subdictionary=(option[,option]...)

The subdictionary program parameter options are delay, nodelay, enable, disable, search, and
nosearch.

delay|nodelay

The delay program parameter indicates that subdictionaries are not to be opened by PowerHouse
until referenced by an IN database qualifier, or by the subdictionary search process that looks for
unqualified record-structures that do no exist in the data dictionary. The nodelay program
parameter indicates that all subdictionaries are to be opened when you enter PowerHouse.

Default: delay

enable|disable

Disables or enables relational subdictionary support. If the disable program parameter is set, all
other subdictionary program parameter options are ignored.

Default: enable

search|nosearch

The search program parameter specifies that if an unqualified record-structure cannot be found in
the data dictionary, then PowerHouse is to search for it in the relational subdictionaries. nosearch
specifies that PowerHouse is not to search for an unqualified record-structure.

subdict=search is only used for QDESIGN FILE statements, QUIZ and QTP ACCESS statements,
and QTP OUTPUT statements. For SQL syntax, the database must be specified using the IN
database option, or the SET DATABASE statement.

Default: nosearch

Discussion
An unqualified record-structure is a record-structure name without the IN database qualifier. The
subdictionary program parameter can be abbreviated to subdict.

Equivalent Resource File Statement

SUBDICTIONARY
DELAY|DISABLE|ENABLE|NODELAY|NOSEARCH|SEARCH
[DELAY|DISABLE|ENABLE|NODELAY|NOSEARCH|SEARCH]...

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
subformat

PowerHouse Rules 161

subformat

Specifies the format of subfiles being created.

Syntax
subformat = value

The values are:

Default: 8 (all platforms)

Discussion
This program parameter allows you to specify the subfile format to be used at run-time when the
format differs from the default.

If a NULL or invalid value is specified for the subformat parameter, an error is issued.

If the FORMAT option of the SET SUBFILE statement is used, these FORMAT specifications
override a subformat program parameter setting. When neither a FORMAT statement option nor
the subformat program parameter is specified, the default subfile format of 8 is used.

MPE/iX
In PowerHouse 6.09, the maximum size of an item name increased from 20 to 31 characters.
PowerHouse makes use of file labels when creating subfiles, limiting the amount of information
that can be stored to a subfile. Due to the increase in item information being stored to the subfile,
the maximum number of items supported decreased from approximately 440 to approximately
310.

Note: This changed in later versions as well. Now, the number of items that can be written to
subfiles depends on the size of the item names.

Equivalent Resource File Statement

SUBFORMAT n

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

MPE/iX, UNIX: 0, 1, 3, 5, 6, 7, 8

OpenVMS: 7, 8

Windows: 8

162 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
term

term

States the terminal type used and the maximum number of lines the terminal memory contains.

Syntax
term=terminal-type[-terminal-parameter]...

terminal-type

Specifies the terminal type supported by the PowerHouse component.

terminal-parameter

The terminal parameter is one of:

Discussion
In QDESIGN, term is passed to QUICK when the GO statement is entered.

Terminal Type When Running QUICK

To communicate properly with the user during a QUICK session, QUICK must know the type of
terminal being used. A full list of supported terminal types, and necessary strapping and
switch-setting information is provided with the installation package.

QUICK determines the terminal type in one of the following ways:
1. Specification (MPE/iX, UNIX)

If terminal type is specified in the dictionary (on the PORTS option of the SYSTEM
OPTIONS statement), QUICK uses that specification.

2. Detection
Based on terminal characteristics, QUICK can identify most terminals automatically.
By default, QUICK polls a terminal for one second to try to identify it. If QUICK is
unsuccessful, it then prompts the user to supply a terminal type. MPE/iX: However, this may
not be enough time for terminals on busy systems to respond. The pollspeed=n parameter can
be used to lengthen the time QUICK waits for a response when polling a terminal. This
parameter is useful only if the terminal in question can be identified by polling.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

Parameter Description Platform

n number of lines of terminal memory all

A,B, or C alternate character set containing line drawing characters HP-terminals
only

ANY doesn’t trap nonprinting control codes replacing them with a
question mark

all

KEY;
NOKEY

turns on the PowerHouse function keys on the numeric keypad OpenVMS

MTS used when running multipoint terminal software MPE/iX

TAE used for terminals with type-ahead capabilities MPE/iX

X25 required when using X.25 communications software MPE/iX

Chapter 2: Program Parameters
term

PowerHouse Rules 163

3. User response
If the terminal type cannot be identified in steps 1 and 2, QUICK prompts for a predefined
terminal type and the QUICK user responds, as in
Terminal type=HP2392

If the user responds with a question mark (?), a full list of acceptable terminal types is
displayed.

4. Override
To override steps 1, 2, and 3 and allow the user to specify the terminal type directly via the
prompt, specify the notermpoll program parameter with the command that initiates QUICK,
as in
:QUICK INFO="NOTERMPOLL"

5. term program parameter

The term program parameter can be used in QDESIGN to provide the terminal type to be used by
QUICK if the GO statement is entered. The format and allowable entries are the same as those
used in QUICK. All previous steps are bypassed if a terminal type is specified with the command
that initiates QUICK, as in
:QUICK INFO="TERM=HP2392"

The suffix ANY instructs QUICK not to trap nonprinting control codes and replace them with a
question mark for display. ANY can be used to direct the terminal to an alternative character set.
Steps must be taken to ensure that the control-code sequences do not interfere with QUICK’s
terminal display.

MPE/iX
Some terminals have more than 24 lines of memory. To tell QUICK that more than 24 lines of
memory are available, specify the number of lines of memory after the terminal type. The terminal
type and lines of memory must be separated by a hyphen, as in
:QUICK INFO="TERM=HP2624-96"

This terminal type specification tells QUICK that the terminal is an HP2624 and has 96 lines of
memory. (The number of memory lines can also be specified in the dictionary.) If the number of
lines of memory is not specified, QUICK assumes 48 lines unless the terminal profile within
QUICK contains a lower number.

Line drawing is an option on some terminals; however, QUICK does not assume that line drawing
is installed. To tell QUICK that line drawing is installed, specify the alternate character set (A, B,
or C) where the line-drawing characters reside. Again, the terminal type and the line-drawing
character set are separated by a hyphen, as in
:QUICK INFO="TERM=HP2624-96-B"

Although some terminals have more than 24 lines of memory and support highlighting, QUICK
may not be able to support these features. To be supported, memory must be continuous, not
paged. Many terminals have memory that can be addressed in discrete pages of 24 lines, but
require that the page be identified when the user addresses a specific line. QUICK supports lines
greater than 24 only if the line number itself can be addressed.

On some terminals, the highlighting control sequences require space on the terminal display.
QUICK does not support highlighting of this type because the display would change from one
terminal type to another.

Other suffixes can be added to the terminal specification:
• MTS (when running multipoint terminal software)
• X25 or TRANS (when using communications software)
• TAE (for terminals with type-ahead capabilities)
• ANY

When sending data in Block mode over X.25 or TRANSPAC, stacking screens will cause an error.
This also applies to sending data in Block mode over MTS.

164 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
term

OpenVMS
PowerHouse supports function keys for the DEC VT family of terminals. On all of these types of
terminals, PowerHouse can use the 18 keys on the numeric keypad. On VT 200/VT300-series
terminals, PowerHouse can also use the last six of the keys located across the top of the keyboard
(the others are all reserved), and the keys labeled FIND, INSERT HERE, REMOVE, SELECT,
PREV SCREEN, and NEXT SCREEN.

To take advantage of your terminal’s function key capability, use the term program parameter
when you invoke PowerHouse. The syntax is
POWERHOUSE [TERM=]termtype

The termtype is one of VT100, VT200, VT300 or VT400 with an optional suffix of -KEY or
-NOKEY. For example, you might enter
$ POWERHOUSE TERM=VT400-KEY

PowerHouse treats certain keys differently depending on which suffix you use:
• If you use -NOKEY, or do not use a suffix at all, PowerHouse does not recognize most of the

numeric keypad keys as function keys, but instead treats them as numeric keys. The
exceptions are [GOLD], [PF2], [PF3], and [PF4], which PowerHouse always treats as function
keys when you use the TERM option. You may want to use TERM=VT400-NOKEY if you
have a VT200-series terminal and you want to use the numeric keypad as a numeric keypad
but still be able to use the other function keys.

• If you use -KEY, PowerHouse treats all the numeric keypad keys as function keys.

You can also use the term program parameter to specify the maximum number of lines the
terminal memory can contain (up to a maximum of 240). The number of lines of terminal
memory specified should be evenly divisible by 24. The number of lines that QUICK actually uses
depends on the stacking and windowing options that you use, which may or may not make use of
available application lines. Regardless of the number of terminal memory lines specified, QUICK
never uses more than the application lines specified in QKGO.

Windows
The only terminal type available is WINDOWS-24.

Equivalent Resource File Statement

TERMINAL terminal-type

Chapter 2: Program Parameters
termpoll|notermpoll (MPE/iX, OpenVMS)

PowerHouse Rules 165

termpoll|notermpoll (MPE/iX, OpenVMS)

Specifies whether QUICK attempts to determine the terminal type before prompting the operator.

Syntax
termpoll|notermpoll

Default: termpoll

Discussion
For more information about determining terminal types, see (p. 162).

Equivalent Resource File Statement

TERMPOLL ON|OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

166 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
timezone|notimezone (MPE/iX)

timezone|notimezone (MPE/iX)

Determines the mechanism that PowerHouse uses to obtain the values of SYSDATE and
SYSTIME.

Syntax
timezone|notimetimezone

Default: notimezone

timezone

Specifies that PowerHouse takes the value of the TZ system variable into account when it returns
SYSDATE and SYSTIME values. With the use of timezone, the value of SYSTIME is only accurate
to the nearest second.

notimezone

Specifies that PowerHouse does not take the value of the TZ system variable into account when it
returns SYSDATE and SYSTIME values. With notimezone, the value of SYSTIME is accurate to
the nearest tenth of a second.

Discussion
By default, PowerHouse returns values that are based on the MPE System Time. This time is the
same for all users of the system and normally reflects the correct time where the computer is
located. These results are not affected by the value of the TZ system variable.

If the timezone program parameter or the TIME ZONE ON resource file statement is specified,
then PowerHouse returns values that take the value of the TZ system variable into account.
Multiple users can see different values for SYSDATE and SYSTIME by setting TZ to different
values within their sessions. The TZ variable would typically be set to reflect the location where
the end user is working if this is in a different time zone than where the computer is located.

For information about the TZ variable and the values that can be assigned to it, see your Hewlett
Packard documentation.

Equivalent Resource File Statement

TIME ZONE ON | OFF

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 2: Program Parameters
tpi|notpi (MPE/iX, HP-UX, Windows)

PowerHouse Rules 167

tpi|notpi (MPE/iX, HP-UX, Windows)

Determines whether or not TPI or OMNIDEX indexes are seen by the PowerHouse component
being run.

Syntax
tpi|notpi

Default: tpi

notpi

TPI (Third Party Indexing) or OMNIDEX indexes are not seen by the product being run.

tpi

TPI or OMNIDEX indexes are seen by the product being run. This is provided to allow you to
override a resource file setting of QUIZ or OFF for the resource file statement TPI
ON|OFF|QUIZ.

Discussion
The new program parameters, tpi and notpi, provide the same functionality as the existing
parameters omnidex and noomnidex.

The extra keywords have been added to reflect the fact that support for TPI functionality is
independent of Omnidex.

Both the existing and new keywords are available on MPE/iX, HP-UX and Windows.

Equivalent Resource File Statement

TPI ON|OFF|QUIZ

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔

168 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
trusted|notrusted (OpenVMS)

trusted|notrusted (OpenVMS)

Activates or deactivates C2-level security for the execution of RUN commands and DCL
commands within components.

Syntax
trusted|notrusted

Default: trusted

trusted

Indicates that OpenVMS should trust that this is a "well-behaved" application and allow DCL
access.

notrusted

Indicates that OpenVMS should not trust this application and not allow DCL access.

Discussion
The security level on captive accounts was increased under OpenVMS 6.1 to prevent CAPTIVE
users from spawning. This security also prevents users from executing a RUN COMMAND
statement from a PowerHouse application running on a system that has C2-level security. To
work around this, the System Manager changed a SYSGEN parameter to disable the new security
feature.

The DCL options SPAWN|TRUSTED|NOTRUSTED allow CAPTIVE accounts to spawn. By
making use of the TRUSTED flag in PowerHouse, CAPTIVE accounts can spawn, regardless of
the SYSGEN setting.

By default, all DCL commands done from PowerHouse are done with TRUSTED (the pre-6.1
default setting). For all components, the use of the nodcl program parameter will disable DCL. In
QUICK, you are still able to program RUN COMMAND statements to execute DCL commands.

The notrusted program parameter disables RUN COMMANDs from QUICK for CAPTIVE users.

You can use the notrusted program parameter in each of the components to disable all forms of
DCL access for captive users.

TRUSTED CAPTIVE users can spawn.

NOTRUSTED CAPTIVE users cannot spawn.

NON-CAPTIVE users are unaffected by the use of TRUSTED|NOTRUSTED. They are always
TRUSTED by OpenVMS.

The dcl or osaccess and trusted program parameters may be combined with the following results
in CAPTIVE accounts.

PowerHouse spawns whenever it needs to access DCL, such as when interactive DCL is requested
by the user, when a QUICK RUN COMMAND is executed, or a GO is requested from
QDESIGN.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Parameter InterActive DCL RUN COMMAND

DCL TRUSTED allowed allowed

N N N N

N Y N Y

Chapter 2: Program Parameters
trusted|notrusted (OpenVMS)

PowerHouse Rules 169

Equivalent Resource File Statement

TRUSTED ON|OFF

Y N N N

Y Y Y Y

Parameter InterActive DCL RUN COMMAND

DCL TRUSTED allowed allowed

170 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
update

update

Controls the way PUT verbs are generated in the UPDATE procedure.

Syntax
update= bottomup|topdown|fkc_put_order

Default: bottomup

bottomup

By default, the ordering of PUT verbs follows the rules described in the UPDATE procedure
section of Chapter 7, "QDESIGN Procedures", in the QDESIGN Reference book.

OpenVMS: Causes PowerHouse to generate PUT verbs in the same order they are generated in
version 8.x.

topdown (OpenVMS)

Causes PowerHouse to generate PUT verbs in the same order as they are generated in
version 7.10.

fkc_put_order

Causes PowerHouse to generate the order of PUT verbs based on foreign key constraints that may
be in effect according to the database definition.

Discussion
For more information about these order methods, see the UPDATE procedure in Chapter 7,
"QDESIGN Procedures", of the QDESIGN Reference book.

Equivalent Resource File Statements

UPDATE ORDER BOTTOM UP

UPDATE ORDER TOP DOWN

UPDATE ORDER FOREIGN KEY CONSTRAINT

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 2: Program Parameters
version

PowerHouse Rules 171

version

Provides the build number of the PowerHouse version.

Syntax
version

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

172 PowerHouse(R) 4GL Version 8.4E

Chapter 2: Program Parameters
vmsdate (OpenVMS)

vmsdate (OpenVMS)

Changes how PowerHouse creates and processes VMSDATE items.

Syntax
vmsdate = current|obsolete

current

The default behavior of PowerHouse 7.10 and previous versions is CURRENT.

Applications upgraded from PowerHouse 7.10 to 8.30 and higher should use CURRENT
behavior to make their VMSDATE data transparent between versions.

Default: For PowerHouse 8.30 and higher, the default is CURRENT.

obsolete

The default behavior of PowerHouse versions 8.00, 8.10 and 8.20 (prior to 8.20D2) is
OBSOLETE. No CURRENT behavior is available.

In PowerHouse versions 8.20D2 and above, both CURRENT or OBSOLETE behavior is available
by using the appropriate option of the vmsdate program parameter or resource file statement.

To use OBSOLETE behavior in PowerHouse versions 8.20D2 or above, use the vmsdate=obsolete
program parameter on all RUN commands or use the VMSDATE OBSOLETE resource statement
in a Resource File.

Discussion
VMSDATE items have different internal formats, depending on what version of PowerHouse
created them. PowerHouse version 7.10 depends on the incoming or outgoing system date being
in the form of a fractional day. PowerHouse versions 8.xx versions use clock time
(HHMMSSTTT).

VMSDATE items were not being converted properly in some versions. As a result, these versions
cannot correctly read and report VMSDATE items created in other versions of PowerHouse; nor
can they correctly read or report VMSDATE items created outside of PowerHouse. Similarly,
PowerHouse versions 7.10 and 8.30 and higher, as well as external applications, cannot read
PowerHouse 8.00, 8.10, or 8.20 VMSDATE items correctly. A new program parameter,
vmsdate=obsolete|current, was added to PowerHouse 8.20D2 and later to resolve this problem.

PowerHouse 8.00, 8.10, and 8.20 process VMSDATEs using the vmsdate=obsolete behavior.
PowerHouse 8.30 and higher defaults to vmsdate=current behavior. PowerHouse 7.10 defaults to
external OpenVMS behavior, which is the same as vmsdate=current.

VMSDATE Conversions

For information about VMSDATE conversions and compatibility information, see Appendix B, in
the PowerHouse 4GL Version 8.30 for OpenVMS Upgrade Guide.

Equivalent Resource File Statement

VMSDATE = CURRENT|OBSOLETE

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

PowerHouse Rules 173

Chapter 3: Resource File Statements

Overview
This chapter describes the resource file statements you can use to specify program parameters and
other system characteristics that you want your users to use with PowerHouse applications.

About Resource File Statements
You can create PowerHouse resource files that serve as a single location in which to specify
program parameters and other system characteristics you want your users to use with
PowerHouse applications.

Resource files contain a list of one or more statements, which are documented on the following
pages. These statements can be included in any order, but the last statement must be EXIT or
QUIT.

The following is an example of a PowerHouse resource file:
DBAUDIT MSGS
OSACCESS OFF
PROMPT '-'
QUIT

Summary of Resource File Statements
The following table is a summary of each resource file statement.

MPE/iX: The resource file is specified by having a PHRS file in the current group and
account, or by a file equation pointing to the appropriate file. For example,
FILE PHRS=SYSRES.PUB.SYS

OpenVMS: The resource file is specified with the PHRS logical or in the ph.rc file in your
current location.

UNIX: The resource file is specified with the PHRS environment variable or in the
.phrc file in the HOME directory.

Windows: The resource file is specified with the PHRS environment variable or in the phrc
file in the HOME directory.

Statement Description

ALLBASE MODULE
EXTENSION
(MPE/iX)

Causes the module names that are stored with compiled sections in an
ALLBASE/SQL database to be modified.

AUTODETACH Automatically detaches database connections.

BROADCAST
(OpenVMS)

Determines how QUICK handles broadcast, or non-PowerHouse
messages.

174 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements

BULKFETCH Specifies the number of rows a bulkfetch returns.

CC Sets the conditional compile flags you can use in the statements of each
PowerHouse component to tell it whether to process or skip blocks of
code.

CHECKSUM710
(OpenVMS)

Allows PowerHouse 8.30 and later versions to use the 7.10 form
(unsigned) in the CHECKSUM calculations.

CLOSE DETACH Indicates that CLOSE verbs encountered in QUICK will cause a
physical database detach.

COLUMNOWNER Determines how the item names in a cursor are generated by
PowerHouse Services.

COMMITPOINTS
OBSOLETE

Enables the default commit timing for COMMIT ON UPDATE used
for versions prior to 7.2x.

COMPRESS BUFFERS Causes the initialization pool in QDESIGN to be compressed before it
is stored.

CONSOLE KEYS
(Windows)

Instructs QUICK to display function keys.

DATABASE Establishes the default relational database.

DBAUDIT Enables database monitoring for PowerHouse components.

DBDETACH QUICK detaches from database connections when returning to the
screen prompt.

DBWAIT Specifies whether the program waits until a concurrency conflict is
resolved.

DEBUG Controls the level of QUICK’s debugging capabilities.

DEFAULT CURSOR
OWNER

Causes QDESIGN to use the owner name in the default query and in
generated FIELD statements for the query.

DESIGNER
NORETAIN

Causes a commit to end the transaction.

DICTIONARY Establishes the data dictionary as well as the dictionary type
(OpenVMS) that the PowerHouse component opens when it starts.

DIRECTORY (UNIX,
Windows)

Moves you to the specified location when a PowerHouse component
processes the resource file.

DISABLE NULLS Controls whether null support is allowed at the item level. It overrides
the dictionary setting.

ENTRY RECALL Specifies that data from previous screens is available for recall in Entry
mode.

EXIT Ends the PowerHouse resource file.

HPSLAVE EXTRA
LINE

Suppresses the printing on an extra blank line at the end of reports.

Statement Description

Chapter 3: Resource File Statements

PowerHouse Rules 175

HPSLAVE SPLIT
LINES (MPE/iX,
UNIX)

Ensures that no line of text for the printer is split between two output
blocks.

INITIALIZE NULLS Specifies whether to initialize columns to NULL in rows not retrieved.

INTEGER SIZE 6
(OpenVMS)

Controls how the products work regarding physical record lengths.

JCWBASE (MPE/iX) Specifies the base value for JCW settings.

LIST Establishes whether or not the PowerHouse component displays the
source statement file.

LOCATION
MODULE (MPE/iX)

Specifies the location and compiles a PowerHouse program into an
intallable module for ALLBASE/SQL.

LOCATION PROCESS Causes PowerHouse to search for process files in a location other than
the current location.

LOCKWORD
(MPE/iX)

Enables the use of internal routines to prevent duplicate lockword
prompting during screen loading and running.

NOBLOBS Specifies whether blobs columns are processed.

NONPORTABLE Sets the message severity for nonportable syntax.

NOOWNER Prevents the owner name from being attached to the table name in
generated code so that different users can use the same compiled screen
to access their own tables (having the same name).

NOSET WARN
STATUS

Suppresses the warning status when a warning condition is detected in
PowerHouse.

OBSOLETE Sets the severity of the messages when obsolete syntax is encountered.

OMNIDEX (MPE/iX) Determines whether or not OMNIDEX indexes are seen by the
PowerHouse component being run.

OSACCESS Determines whether operating system command entry and execution is
allowed.

OWNER Specifies the owner for tables in an ALLBASE/SQL, DB2, SYBASE or
ORACLE database when none is explicitly indicated. Also specifies the
default owner of modules created by PowerHouse in ALLBASE/SQL.

PREFIX ORACLE
OPEN NAME

Suppresses the addition of "ORACLE@" to the open name for an
ORACLE database.

PROMPT Specifies the prompt string for the PowerHouse component.

QUIT Ends the PowerHouse resource file.

RESET BIND
VARIABLES

Determines if SQL bind variables are reset for each SQL statement.

RESTORE LINES Changes the default behavior of screen refreshing.

RETAIN MARK Determines whether the field mark position in an array is retained.

Statement Description

176 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements

REUSE SCREEN
BUFFERS

Causes QUICK to reuse or not reuse previously allocated buffers.

RMS FAST READ
(OpenVMS)

Performs a block read to sequentially accessed read-only files.

RMS FILE BASE
(OpenVMS)

Allows the use of zero-based record numbers for cross-platform
compatibility.

SET Determines whether the PowerHouse resource file is listed before
PowerHouse components are initiated.

SETJOBSHOW
(Windows)

Determines whether the window for a spawned SET JOB process is
shown or hidden.

SHIFT Determines how PowerHouse identifiers, such as item names, are
shifted.

STATISTICS Determines whether statistics are displayed at the end of QUIZ reports
and QTP runs. Determines if QUTIL displays additional information
about the file being created.

STORE MODULES Prevents SQL modules from being compiled and stored in the database.
This statement is used at parse time.

SUBDICTIONARY Specifies whether subdictionary support is enabled; when the relational
subdictionaries are opened by PowerHouse; and when they are
searched for unqualified record-structures.

SUBFORMAT Specifies the format of subfiles being created.

TERMINAL Establishes the terminal type.

TERMINAL
BLOCKMODE
(MPE/iX)

Determines whether QUICK recognizes BLOCK TRANSFER control
structures in Block mode.

TERMINAL
CHARACTERMODE

Specifies whether QUICK recognizes BLOCK TRANSFER control
structures in Character mode.

TERMINAL
CONFIRMER

Changes confirmation messages to pop-up windows with
OK/CANCEL buttons.

TERMINAL
POLLING SPEED
(MPE/iX)

Sets the amount of time (n) that QUICK takes when polling the
terminal to determine a terminal type before prompting the user.

TERMINAL READ
(MPE/iX)

Determines how QUICK uses single-character reads.

TERMPOLL
(MPE/iX, OpenVMS)

Determines whether to poll the terminal to establish the terminal type.

TIC RESOURCE FILE
(UNIX, Windows)

References the QUICK Terminal Interface Configuration resource file.

TIME ZONE
(MPE/iX)

Determines the mechanism that PowerHouse uses to obtain the values
of SYSDATE and SYSTIME

TPI (MPE/iX, HP-UX,
Windows)

Determines whether TPI or OMNIDEX indexes are seen by the
PowerHouse component being run.

Statement Description

Chapter 3: Resource File Statements

PowerHouse Rules 177

The following table lists the resource file statements that are applicable to each PowerHouse
component.

TRUNCATE PARM
VALUES

Strips or does not strip trailing blanks from PARM values.

TRUSTED (OpenVMS) Activates or deactivates C2-level security for the execution of RUN
commands and DCL commands within components.

UIC BRACKETS
(OpenVMS)

Causes the UIC function to not return brackets around the result
values.

UPDATE ORDER Controls the way PUT verbs are generated in the UPDATE procedure.

USE Calls another PowerHouse resource file and processes its statements.

VMSDATE
(OpenVMS)

Determines how VMSDATE datatypes are processed. There are two
methods: the method used for 7.10 and after 8.20D2 and the method
used prior to 8.20D2 in 8.xx PowerHouse.

Statement PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

ALLBASE MODULE
EXTENSION (MPE/iX)

✔ ✔ ✔

AUTODETACH ✔

BROADCAST (OpenVMS) ✔

BULKFETCH ✔ ✔ ✔

CC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

CHECKSUM710 (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔

CLOSE DETACH ✔

COLUMNOWNER ✔ ✔ ✔

COMMITPOINTS
OBSOLETE

✔

COMPRESS BUFFERS ✔

CONSOLE KEYS (Windows) ✔

DATABASE ✔ ✔ ✔ ✔ ✔

DBAUDIT ✔ ✔ ✔ ✔ ✔

DBDETACH ✔

DBWAIT ✔ ✔ ✔ ✔ ✔

DEBUG ✔

DEFAULT CURSOR OWNER ✔

DESIGNER NORETAIN ✔

Statement Description

178 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements

DICTIONARY ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DIRECTORY (UNIX,
Windows)

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DISABLE NULLS ✔

ENTRY RECALL ✔

HPSLAVE EXTRA LINE ✔

HPSLAVE SPLIT LINES
(MPE/iX, UNIX)

✔

INITIALIZE NULLS ✔

INTEGER SIZE 6 (OpenVMS) ✔ ✔

JCWBASE (MPE/iX) ✔

LIST ✔ ✔ ✔ ✔ ✔ ✔ ✔

LOCATION MODULE
(MPE/iX)

✔ ✔ ✔ ✔

LOCATION PROCESS ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

LOCKWORD (MPE/iX) ✔ ✔

NOBLOBS ✔ ✔ ✔

NONPORTABLE ✔ ✔ ✔ ✔ ✔ ✔ ✔

NOOWNER ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

NOSET WARN STATUS ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

OBSOLETE ✔ ✔ ✔ ✔ ✔ ✔ ✔

OMNIDEX (MPE/iX) ✔ ✔ ✔ ✔ ✔ ✔

OSACCESS ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

OWNER ✔ ✔ ✔ ✔ ✔

PREFIX ORACLE OPEN
NAME

✔ ✔ ✔ ✔ ✔ ✔ ✔

PROMPT ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

RESET BIND VARIABLES ✔ ✔ ✔ ✔

RESTORE LINES ✔

RETAIN MARK ✔

REUSE SCREEN BUFFERS ✔

RMS FAST READ (OpenVMS) ✔ ✔ ✔

Statement PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

Chapter 3: Resource File Statements

PowerHouse Rules 179

RMS FILE BASE (OpenVMS) ✔ ✔ ✔ ✔ ✔

SETJOBSHOW (Windows) ✔ ✔

SHIFT ✔ ✔ ✔ ✔ ✔ ✔ ✔

STATISTICS ✔ ✔ ✔

STORE MODULES ✔ ✔ ✔

SUBDICTIONARY ✔ ✔ ✔ ✔ ✔

SUBFORMAT ✔ ✔

TERMINAL ✔ ✔

TERMINAL BLOCKMODE
(MPE/iX)

✔

TERMINAL
CHARACTERMODE

✔

TERMINAL CONFIRMER ✔

TERMINAL POLLING SPEED
(MPE/iX)

✔

TERMINAL READ (MPE/iX) ✔

TERMPOLL (MPE/iX,
OpenVMS)

✔

TIC RESOURCE FILE (UNIX,
Windows)

✔

TIME ZONE (MPE/iX) ✔ ✔ ✔ ✔ ✔ ✔ ✔

TPI (MPE/iX, HP-UX,
Windows)

✔ ✔ ✔ ✔

TRUNCATE PARM VALUES ✔ ✔

TRUSTED (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

UIC BRACKETS (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔

UPDATE ORDER ✔

VMSDATE (OpenVMS) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Statement PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

180 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
ALLBASE MODULE EXTENSION (MPE/iX)

ALLBASE MODULE EXTENSION (MPE/iX)

Causes the module names that are stored with compiled sections in an ALLBASE/SQL database to
be modified.

Syntax
ALLBASE MODULE EXTENSION string

Discussion
The module name is based on the name of the file in which the compiled QUICK screen, QUIZ
report, or QTP run is stored.

If the fully qualified name of the compiled file is
file.group.account

then the default module name is
file_group

Equivalent Program Parameter

moduleext=extension

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

Chapter 3: Resource File Statements
AUTODETACH

PowerHouse Rules 181

AUTODETACH

Automatically detaches database connections.

Syntax
AUTODETACH ON|OFF

Default: ON

Limit: Applies only to Sybase.

ON

Automatically detaches database connections.

OFF

Retains database connections.

Discussion
The AUTODETACH Resource file statement applies only to relational databases that support a
single transaction per database attach. The ON option specifies that QUICK automatically
detaches the database connections if the transactions are committed or rolled back, and are not
locally active when the user exits the screen. This minimizes the number of attaches for those
single transaction databases. Currently, Sybase is the only database that fits this category.

PowerHouse versions prior to 8.4E did not detach automatically causing a growth in the number
of attaches over time. The OFF option is provided to allow the pre-8.4E behavior to be specified.

Equivalent Program Parameter

autodetach|noautodetach

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

182 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
BROADCAST (OpenVMS)

BROADCAST (OpenVMS)

Determines how QUICK handles broadcast, or non-PowerHouse messages.

Syntax
BROADCAST DEFAULT | DEFERRED

Default: DEFERRED

DEFAULT

QUICK bases its treatment of non-PowerHouse messages on the specification established by the
DCL SET BROADCAST command.

DEFERRED

Non-PowerHouse messages are trapped and displayed on the message line when QUICK performs
the next I/O to the terminal.

Equivalent Program Parameter

broadcast=default|deferred

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
BULKFETCH n

PowerHouse Rules 183

BULKFETCH n

Specifies the number of rows a bulkfetch returns.

Syntax
BULKFETCH n

n

The number of rows to return.

Default: 0

Limit: 32767

Limit: Applies only to relational databases.

Discussion
The BULKFETCH resource file statement allows you to specify the number of rows a retrieval
returns and, therefore, the amount of memory allocated to the retrieval buffer. When retrieving
rows from relational databases, PowerHouse often fetches more than one row at a time to
improve performance. Changing the bulkfetch value may help performance depending on the
retrieval situation. The BULKFETCH resource file statement has no effect on non-relational
retrieval.

The amount of memory allocated is approximately the size of the rows times the number of rows
to be retrieved. There is a trade off between the memory allocated and the performance
improvement. Allocating too much memory impacts performance adversely in a multi-user
environment. The default internal value (also available by setting bulkfetch=0) is conservative and
very low. Trial and error is the best way to determine the optimal improvement in specific
environments. A value of 512 is a good starting point.

The BULKFETCH Resource file statement only helps in one-to-many or many-to-many linkages.
It will not help in one-to-one or many-to-one linkages, whether unique or not, since multiple rows
must be returned for bulkfetch to have any effect.

Equivalent Program Parameter

bulkfetch=n

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

184 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
CC

CC

Sets the conditional compile flags you can use in the statements of each PowerHouse component
to tell it whether to process or skip blocks of code.

Syntax
CC name[, name]...

name

A unique name identifying a conditional compile flag. The names are not special keywords in
themselves, but they are referenced by conditional compile constructs.

Limit: Maximum of 127 characters.

Discussion
Sets conditional compile flags you can use in PowerHouse statements to tell PowerHouse whether
to process or skip blocks of code. PowerHouse adds an underscore in the listings to indicate
skipped code, as in
> SCREEN PROJECT
> @IF UNIX
> DEFINE END_DATE DATETIME = SYSDATETIME
> @ELSEIF OPENVMS
>_DEFINE END_DATE VMSDATE = VMSTIMESTAMP
>_@ELSE
>_DEFINE END_DATE DATE = SYSDATE
>_@ENDIF
>

This resource file statement is only effective at compile time; that is, it cannot change compiled
files.

In QUICK, cc can only be used in conjunction with debug.

For more information about how to use compile-time flags and a list of predefined flags,
see (p. 282).

Equivalent Program Parameter

cc=(name[,name]...)

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
CHECKSUM710

PowerHouse Rules 185

CHECKSUM710

Allows PowerHouse 8.30 and later versions to use the 7.10 form (unsigned) in the CHECKSUM
calculations.

Syntax
CHECKSUM710 [ON|OFF]

Specifying CHECKSUM710 without an option is the same as specifying it with an ON option.

Default: version 7.10: on. versions 8.xx, OFF.

Discussion

CHECKSUM710 Backwards Compatibility Switch

The CHECKSUM function in 7.10 produces a different result than in 8.xx. While the algorithm
used is the same, the internal input into that calculation is Unsigned in 7.10 but Signed in 8.xx.
This produces different results from the same calculation.

This is only an issue if you store the results of the CHECKSUM function in your data files, check
that value on processing the data, and share and migrate these data files between 7.10 and 8.30
and above.

There are two ways to deal with this issue. If you are migrating your data and application, and do
not need to share with 7.10, then you may want to consider just recalculating the CHECKSUM
values in your files and move upwards. This is the recommended route in this case.

If you need to share data, we have endeavored to provide backward compatibility that allows you
to do so. However, if you use it then you must use the 7.10 form for all applications using the
same data in PowerHouse 8.30 and above. If, in the future, you drop the 7.10 requirements, you
may recalculate the checksums at that point and drop the compatibility mode.

To allow PowerHouse 8.30 and later versions to use the 7.10 form (unsigned) in the CHECKSUM
calculations, you need to use the CHECKSUM710 logical, program parameter or resource file
statement. If possible, we recommend that you use the logical so that all PowerHouse components
automatically use this setting. Depending on your environment and needs, this can be set at a
process, group, or system level. You could, alternatively, use a resource file defined at any of these
levels, or a program parameter on each execution.

The logical syntax is $DEF CHECKSUM710 "ON"|"OFF" (here the options are not optional as a
null string is not a valid logical definition).

The precedence rules are as follows: a program parameter overrides a resource file statement
which overrides a logical name setting.

Using CHECKSUM in PHD Dictionaries
If you are using PHD dictionaries, you need to recalculate the checksums in your dictionaries. The
same procedure can be used to return the checksums to 8.xx values at a later date, if desired.

CHECKSUM.COM is found in PHD_LOCATION:. It has two parameters. The first parameter is
your dictionary name (it modifies the dictionary directly). The second parameter is either 7 or 8,
to indicate the form used when recalculating the dictionary checksums. Seven uses
CHECKSUM710=ON, and 8 uses CHECKSUM710=OFF. For example:
@PHD_LOCATION:CHECKSUM <userdict> 7

This example would recalculate the checksums in a user dictionary from 8.xx to 7.10-like values
so that you could then use the CHECKSUM710 program parameter, resource file statement, or
logical when using these dictionaries in PowerHouse.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

186 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
CHECKSUM710

Also, there is an additional parameter to PHDMAINT, PHDADMIN, and the POW and
PHDCONV commands. The parameter is CHECKSUM710(=ON|OFF). For all these command
procedures, if the logical CHECKSUM710 is set to the option you require, the parameter does not
need to be used.

When switching between PHD dictionaries with one setting or the other, you must reset the
dictionary before starting up the application or you will get a "Corrupted dictionary" error when
the product tries to open the dictionary. Any time you use the wrong option when trying to access
a dictionary, you get the "Corrupted dictionary" error.

Equivalent Program Parameter

checksum710[=on|off]

Chapter 3: Resource File Statements
CLOSE DETACH

PowerHouse Rules 187

CLOSE DETACH

Indicates that CLOSE verbs encountered in QUICK will cause a physical database detach.

Syntax
CLOSE DETACH

Discussion
When the CLOSE DETACH resource file statement is used, CLOSE verbs cause an immediate
physical database detach. When the statement is not used, detaches are only done upon exit of the
screen where the attach was done.

In addition, when the resource file statement is used, Oracle open names are not prefixed with
"ORACLE@". Without the prefix, users can specify a logical name which could be set to different
values, and thus point to different databases.

Equivalent Program Parameter

close_detach

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

188 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
COLUMNOWNER

COLUMNOWNER

Determines how the item names in a cursor will be generated by PowerHouse Services.

Syntax
COLUMNOWNER

Discussion
Correlation names are qualified metadata references to column names appearing in PowerHouse
applications as ITEM or FIELD names.

PowerHouse 8.4x’s underlying database access software attempts to conform more strictly to the
SQL92 standard, which describes column correlation names as table_name.column_name. The
owner name is no longer included before the table_name.

In previous versions of PowerHouse, correlation names sometimes included the owner name and
sometimes did not, depending on the specification of the SQL statement. Below, is a table showing
sample SQL SELECT statements and indicating the resultant column correlation names:

For applications being upgraded to 8.4x, the COLUMNOWNER resource file statement enables
the successful parsing of column names permitted in earlier versions. If COLUMNOWNER is
specified, the owner name is obtained from other metadata sources for the column and prefixed
on to the correlation name.

This allows applications coded prior to PowerHouse 8.4x to compile and execute without
changing all column names that appear in the old format.

For applications with cursors defined in the form of examples (b) and (f) the COLUMNOWNER
resource file statement may be used.

If an application has multiple cursors defined in mixed forms, for example, one cursor similar to
(b) and another similar to (d), it may be necessary to make manual changes to the PowerHouse
syntax since the resource file statement won't distinguish between the different formats and will
always add the owner name.

For PowerHouse syntax being created with the 8.4x releases, all column references should omit
the owner name.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

SQL Statements Correlation Name

a) SELECT COLUMN FROM TABLE TABLE.COLUMN

b) SELECT COLUMN FROM OWNER.TABLE OWNER.TABLE.COLUMN

c) SELECT TABLE.COLUMN FROM TABLE TABLE.COLUMN

d) SELECT TABLE.COLUMN FROM
OWNER.TABLE

TABLE.COLUMN

e) SELECT OWNER.TABLE.COLUMN FROM
TABLE

TABLE.COLUMN

f) SELECT OWNER.TABLE.COLUMN FROM
OWNER.TABLE

OWNER.TABLE.COLUMN

Chapter 3: Resource File Statements
COLUMNOWNER

PowerHouse Rules 189

Equivalent Program Parameter

columnowner

190 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
COMMITPOINTS OBSOLETE

COMMITPOINTS OBSOLETE

Enables the default commit timing for COMMIT ON UPDATE used for versions prior to 7.2x.

Syntax
COMMITPOINTS OBSOLETE

Discussion
All screens that require the pre-7.2x commit timing must be compiled using this statement or
program parameter.

For more information, see the PowerHouse and Relational Databases book.

Equivalent Program Parameter

commitpoints=obsolete

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
COMPRESS BUFFERS

PowerHouse Rules 191

COMPRESS BUFFERS

Causes the initialization pool in QDESIGN to be compressed before it is stored.

Syntax
compress_buffers

Discussion
Using this statement means that the physical size of screens will be decreased if the data is
compressible. However, it does impose a certain overhead on the reading of screens since this data
must be uncompressed before it can be used.

Equivalent Program Parameter

compress_buffers

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

192 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
CONSOLE KEYS (Windows)

CONSOLE KEYS (Windows)

Instructs QUICK to display function keys.

Syntax
CONSOLE KEYS ON|OFF

Default: OFF

ON

Instructs QUICK to display function keys at the bottom of the Command Console window.

OFF

Instructs QUICK to not display function keys.

Discussion
The CONSOLE KEYS Resource file statement instructs QUICK to display eight function keys
across the bottom of the Command Console window under the QUICK screen. These labels are
not clickable using a mouse and only represent the function keys and labels.

Neither the consolekeys program parameter nor the CONSOLE KEYS Resource file statement has
any effect on displaying function keys in QKView. To display function keys in QKView, select the
Function Keys entry in the View menu.

Equivalent Program Parameter

consolekeys|noconsolekeys

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
DATABASE

PowerHouse Rules 193

DATABASE

Establishes the default relational database.

Syntax
DATABASE database [OPEN filespec|open-name-string]

[PASSWORD string] [USERID string]

database

The name of the database as it is identified to the PowerHouse dictionary through the PDL
DATABASE statement.

OPEN filespec|open-name-string

Specifies the physical database that is accessed and associated with the name that identifies it to
the PowerHouse dictionary.

filespec
Specifies a valid file specification. It can be a physical name of the database as it is known to the
operating system. For ALLBASE/SQL, the filespec must point to the root DBEnvironment.

UNIX, Windows: The filespec may be an environment variable, which must be preceded by a
dollar sign ($).

Limits: For ALLBASE/SQL and Oracle Rdb databases only.

Default: The default filespec is the name after the DATABASE keyword.

open-name-string (OpenVMS, UNIX, Windows)
A string which is passed directly to the database server in order to gain access to the database.

An open-name-string contains delimited parameters such as userid, password, physical database
name, network connection parameters, and possibly other parameters. If you include a userid and
password in the open-name-string, it must resemble the following format:

 Please refer to your database documentation for more details on acceptable parameters, format,
and syntax for your particular database's valid open specifications.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

SYBASE <database physical name>@userid/password

ORACLE ORACLE@userid[@<network connection parameters>]/password

DB2 not allowed

ODBC not allowed

OpenVMS: If the close_detach or noprefix_openname program parameter is used, the
open-name-string can be a logical name containing the full open-name
information.

194 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
DATABASE

For ORACLE databases, the string, "ORACLE@", is inserted at the beginning of the supplied
open-name-string if it does not exist.

Default: If no OPEN options are specified, the database server looks for default environment
variables or logicals that are specific to running that database's environment.

Limit: For DB2, ODBC, ORACLE, and SYBASE databases only.

PASSWORD string

If the password is not included in the open-name-string of the OPEN option, the PASSWORD
option specifies the password to be used to connect to the database server. Passwords are set up by
the database administrator.

PowerHouse combines the open-name-string, USERID, and PASSWORD options into a valid
database open specification. The separator before a password is a slash (/), which PowerHouse
inserts if the password does not start with it.

UNIX, Windows: The string may be an environment variable.

Limit: For DB2, ODBC, ORACLE, and SYBASE databases only. This option is required if a
password is not included in the OPEN open-name-string option or in an associated PDL
DATABASE statement.

USERID string

If the userid is not included in the open-name-string of the OPEN option, the USERID option
specifies the userid to be used to connect to the database server. Userids are set up by the database
administrator.

PowerHouse combines the open-name-string, USERID, and PASSWORD options into a valid
database open specification. The separator before a userid is an at-sign (@), which PowerHouse
inserts if the userid does not start with it.

UNIX, Windows: The string may be an environment variable.

Limit: For DB2, ODBC, ORACLE, and SYBASE databases only. This option is required if a userid
is not included in the OPEN open-name-string option or in an associated PDL DATABASE
statement.

Discussion
PowerHouse combines the OPEN, USERID, and PASSWORD options into a valid open name for
its data management component. The separator between OPEN and USERID is an at-sign (@),
and the separator between USERID and PASSWORD is a slash (/).

If you specify passwords on DATABASE statements when other users are allowed to read or write
to the resource file, then PowerHouse issues the following warning message:
The Resource File ^ contains passwords, but is not properly protected.

UNIX,
Windows:

The open-name-string may be an environment variable, which must be
preceded by a dollar sign ($). If the string contains a required dollar sign, which
is not used to specify an environment variable, use the backslash (\) to interpret
it literally. For example:
ORACLE@OPS\$<userid>

Chapter 3: Resource File Statements
DBAUDIT

PowerHouse Rules 195

DBAUDIT

Enables database monitoring for PowerHouse components.

Syntax
DBAUDIT BRIEF|FILE|FULL|MESSAGES|MSGS|NONE

BRIEF

Displays a short (one line) information line as database operations occur.

FILE

Writes detailed information to a file called dbaudit.txt located, by default, in the current working
directory.

FULL

Displays detailed information as database operations occur.

MESSAGES|MSGS

Displays Binary Language Representation (BLR) messages in hexadecimal.

NONE

Does not produce any output.

Discussion
When the DBAUDIT BRIEF resource file statement is specified, the following lines describe the
output produced:
ATTACH db_handle TO db_type db_name
COMPILE REQUEST request_handle
START LOGICAL TRANSACTION trans_name details

PREPARE LOGICAL TRANSACTION trans_name
COMMIT LOGICAL TRANSACTION trans_name
ROLLBACK LOGICAL TRANSACTION trans_name
START TRANSACTION trans_handle IN dbhandle_list

START REQUEST request_handle IN TRANSACTION trans_handle
RELEASE REQUEST request_handle FROM TRANSACTION trans_handle

PREPARE TRANSACTION trans_handle
COMMIT TRANSACTION trans_handle
ROLLBACK TRANSACTION trans_handle
DETACH db_handle FROM db_name

db_handle
A unique numeric value that identifies a database.

db_type
Either "ALLBASE", "DB2", "ODBC", "ORACLE", "RDB" or "SYBASE".

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

196 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
DBAUDIT

db_name
The database name.

request_handle
A unique numeric value that identifies a request.

trans_name
The transaction name.

details
May contain a combination of the following:
• active, all active, locally active
• read only|read write
• wait|nowait
• read committed|cursor stability|reproducible read|phantom protection|serializable
• reserving reserve_name_comma_list (A list of the relation names specified for this

transaction).

dbhandle_list
A comma-separated list of dbhandle.

Equivalent Program Parameter

dbaudit=brief|file|full|msgs

Chapter 3: Resource File Statements
DBDETACH

PowerHouse Rules 197

DBDETACH

Releases or does not release the database connection when you return to the screen prompt.

Syntax
DBDETACH ON|OFF

Default: DBDETACH OFF

ON

Releases the database connection when you return to the screen prompt.

OFF

Keeps the database attached when you return to the screen prompt.

Discussion
When you leave a QUICK screen and go back to the screen ID prompt after processing through a
relational database connection, QUICK can either detach from the database or keep the
connection. If you keep the connection (not detaching), memory is still allocated for the
connection. This means that when you call another screen, QUICK allocates more memory for the
new database connection(s). This causes memory growth in the product.

The default is DBDETACH OFF. While this uses more memory, there may be small performance
benefits. Note that this only affects screens called from the screen ID prompt which is not typically
used in production environments.

Equivalent Program Parameter

dbdetach|nodbdetach

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

198 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
DBWAIT

DBWAIT

Specifies whether the program waits until a concurrency conflict is resolved.

Syntax
DBWAIT ON|OFF

Limit: Applies only to ALLBASE/SQL, ORACLE.

Default (except for QUICK): DBWAIT OFF

Default for QUICK: DBWAIT ON

ON

The program waits until a concurrency conflict is resolved.

OFF

The program does not wait until a concurrency conflict is resolved.

Discussion
The DBWAIT ON statement specifies that if a concurrency conflict occurs during access to a
relational database, the program normally waits until the conflict is resolved. An example of
concurrency conflict is attempting to write a record that has been locked by another user. If the
DBWAIT OFF statement is specified and the database encounters a concurrency conflict, an error
message results.

Equivalent Program Parameter

dbwait|nodbwait

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
DEBUG

PowerHouse Rules 199

DEBUG

Controls the level of QUICK's debugging capabilities.

Syntax

ERROR

Returns an error message for screens compiled for Debugger.

NOWARNING

Runs screens compiled for Debugger but does not allow access to Debugger.

SOURCE

Runs compiled screens and allows full access to Debugger.

WARNING

Displays a warning message when a screen is encountered that was compiled with Debugger
enabled.

Discussion
To debug your QUICK screens you must have compiled them using the debug program parameter
in QDESIGN.

Equivalent Program Parameter

debug=source|warn|nowarn|error

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

200 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
DEFAULT CURSOR OWNER

DEFAULT CURSOR OWNER

Determines whether or not QDESIGN uses the owner name in the default query and in the
generated FIELD statements for the query.

Syntax
DEFAULT CURSOR OWNER ON|OFF

ON

Causes QDESIGN to use the owner name.

OFF

The owner name is not used in the default query and in the generated FIELD statements for the
query.

Default: OFF

Discussion
If you want to access a table which does not belong to you, you must specify the owner name. You
can do this in two ways:
• by directly coding the owner name in SQL queries and FIELD statements
• by using the OWNER and DEFAULT CURSOR OWNER resource file statements to include

the owner name in generated SQL queries and FIELD statements.

When QDESIGN generates a default SQL query from a CURSOR statement, it does not use the
owner name defined in the dictionary or in the OWNER statement. The DEFAULT CURSOR
OWNER causes QDESIGN to use the current owner name in:
• the generated default SQL query.
• generated FIELD statements for the fields in the CURSOR statement.

When DEFAULT CURSOR OWNER is specified and FIELD statements are coded, you can only
use the following syntax:
FIELD CURSOR_COLUMN OF CURSOR_STRUCTURE

or
FIELD OWNERNAME.CURSOR_STRUCTURE.CURSOR_COLUMN OF CURSOR_STRUCTURE

If the ownername changes, any screens compiled with the DEFAULT CURSOR OWNER
statement must be recompiled.

Equivalent Program Parameter

cursorowner

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
DESIGNER NORETAIN

PowerHouse Rules 201

DESIGNER NORETAIN

Causes a commit to end the transaction.

Syntax
DESIGNER NORETAIN

Discussion
By default, DESIGNER files use the commit retain functionality, which means the transaction is
kept open after a commit. By using this statement, you can cause a commit to end the transaction.

Equivalent Program Parameter

designer_noretain

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

202 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
DICTIONARY

DICTIONARY

Establishes the data dictionary that the PowerHouse component opens when it starts.

Syntax
DICTIONARY filespec TYPE PHD|PDL

filespec

The specification for a file, as it is identified to the operating system. A file specification takes the
general form

OpenVMS: For PHD type dictionaries, extension and version are not valid options.

TYPE (OpenVMS)

Specifies the default dictionary type that the PowerHouse component uses during the session.

PDL
Specifies a PDC dictionary. PDL dictionaries have a .pdc extension.

PHD
Specifies a PHD dictionary. PHD dictionaries have a .phd extension.

Discussion
The DICTIONARY statement temporarily establishes the dictionary as specified for the duration
of a session of a PowerHouse component but does not override any dictionary previously set up.

OpenVMS
When TYPE is specified, it applies to all SET DICTIONARY statements where the TYPE option is
not specified. The dictionary type specified on the SET DICTIONARY statement overrides the
TYPE option of the resource file DICTIONARY statement. If a type is not specified in the
DICTIONARY statement, PowerHouse searches first for a PHD dictionary, then for a PDC
dictionary.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

MPE/iX: [*]filename[/lockword][.group[.account]]

OpenVMS: [node::][device:][directory] filename[.extension][;<version>]

Square brackets are required around a directory name.

UNIX: /[directory/]...filename.extension

Windows: [drive:\][directory\]...filename.extension

OpenVMS: The default dictionary type for all components except PDL is PHD. If no PHD
dictionary is found, the components look for a dictionary with the .pdc
extension.

UNIX,
Windows:

The default extension when specifying a dictionary is .pdc.

Chapter 3: Resource File Statements
DICTIONARY

PowerHouse Rules 203

If an extension is specified in the resource file DICTIONARY statement and a conflicting
dictionary TYPE is specified, you will get an error.

Equivalent Program Parameter

dictionary=filespec or dict=filespec

dicttype=pdl|phd or dt=pdl|phd

204 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
DIRECTORY (UNIX, Windows)

DIRECTORY (UNIX, Windows)

Moves you to the specified location when a PowerHouse component processes the resource file.

Syntax
DIRECTORY location

location

Specifies the location of the resource file. Location has the general form:

/[directory/]

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
DISABLE NULLS

PowerHouse Rules 205

DISABLE NULLS

Controls whether null support is allowed at the item level. It overrides the dictionary setting.

Syntax
DISABLE NULLS

Equivalent Program Parameter

disable_nulls

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

206 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
ENTRY RECALL

ENTRY RECALL

Specifies that data from previous screens is available for recall in Entry mode.

Syntax
ENTRY RECALL ON|OFF

Default: OFF

Discussion
Specifying ENTRY RECALL means that QUICK users can recall the previous record’s values in
Entry mode. Values are only recalled and displayed if requested using the Recall command (the Up
Arrow, Ctrl-B, or whatever key has been set).

Users can change the displayed value before it is processed by QUICK. The cursor is positioned
immediately to the right of the recalled value as if the user had typed it into the field. The
positioning is to the left if the REVERSE option of the FIELD statement is specified. Error recall,
and the recall of data in change processing, is not affected by ENTRY RECALL.

Note: You can also duplicate the previous record’s values using the Duplicate command (by
default, the underscore), but you cannot change the duplicated value before it is processed by
QUICK.

Equivalent Program Parameter

entryrecall

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
EXIT

PowerHouse Rules 207

EXIT
Ends the PowerHouse resource file.

Syntax
EXIT

Discussion
The EXIT statement ends the PowerHouse resource file. Any statements after the EXIT statement
are ignored.

The EXIT and QUIT statements are interchangeable.

208 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
HPSLAVE EXTRA LINE

HPSLAVE EXTRA LINE

Suppresses the printing on an extra blank line at the end of reports.

Syntax
HPSLAVE EXTRA LINE ON|OFF

Default: ON

ON

Suppresses the printing on an extra blank line at the end of reports.

OFF

Does not suppress the printing on an extra blank line at the end of reports.

Equivalent Program Parameter

nxl

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
HPSLAVE SPLIT LINES (MPE/iX, UNIX)

PowerHouse Rules 209

HPSLAVE SPLIT LINES (MPE/iX, UNIX)

Ensures that no line of text for the printer is split between two output blocks.

Syntax
HPSLAVE SPLIT LINES ON|OFF

Default: ON

ON

Ensures that no line of text for the printer is split between two output blocks.

OFF

Does not ensure that no line of text for the printer is split between two output blocks.

Discussion
On some terminals in the HPSLAVE output block method, when a line of output to the printer is
split between two output blocks, the portion of the line in the first block is overwritten by the
portion of the line in the second block. The OFF setting prevents this from happening.

Equivalent Program Parameter

nls

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

210 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
INITIALIZE NULLS

INITIALIZE NULLS

Specifies whether to initialize columns to NULL in rows not retrieved.

Syntax
INITIALIZE NULLS ON|OFF

Defaults: OFF

Discussion
Columns in rows not retrieved should be initialized to NULL if null values are allowed. This is
what happens in QUIZ. In QTP, columns are initialized to spaces, zeroes, and dictionary initial
values. The INITIALIZE NULLS ON resource file statement can be used to tell QTP to properly
initialize such columns to NULL. The default is INITIALIZE NULLS OFF to remain consistent
with the operation of previous versions of QTP.

Equivalent Program Parameter

initnulls|noinitnulls

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
INTEGER SIZE 6 (OpenVMS)

PowerHouse Rules 211

INTEGER SIZE 6 (OpenVMS)

Controls how the products work regarding physical record lengths.

Syntax
INTEGER SIZE 6 ON|OFF

Default: ON (PDL); OFF (PHDPDL).

Discussion
When using PDL in PowerHouse 8.xx, integers of physical SIZE 6 are created for numeric
elements with 10-14 digits with INTEGER datatype and no SIZE specified. In 7.10 and PHDPDL,
these elements will default to SIZE 8. In a mixed PowerHouse version environment, or when using
datafiles created under one version or dictionary type to be used by another, this will cause an
incompatibility between dictionaries and physical datafiles. The physical record lengths will not
match.

There are two methods to correct this problem. You can either
• specify SIZE for such items, thereby fixing the physical size to match the files, or
• use the INTEGER SIZE 6 resource file statement to control how the products work

For PDL, INTEGER SIZE 6 OFF will cause the item sizes to not create SIZE 6 integers, thus
matching PHDPDL and 7.10 created files. For PHDPDL, INTEGER SIZE 6 ON will cause integer
SIZE 6 items to be created, thus matching files created in PDL and 8.xx versions.

Equivalent Program Parameter

intsize6|nointsize6

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

212 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
JCWBASE (MPE/iX)

JCWBASE (MPE/iX)

Specifies the base value for JCW settings.

Syntax
JCWBASE FATAL|WARN

Discussion
The JCWBASE resource file statement specifies the base value for QUIZ JCW settings. For more
information on JCW settings, see "QUIZ Error Status Settings (MPE/iX, UNIX,
Windows)" (p. 22). If the base value is fatal, an error can cause a job to stop.

Equivalent Program Parameter

jcwbase=fatal|warn

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
LIST

PowerHouse Rules 213

LIST

Establishes whether or not the PowerHouse component displays the source statement file.

Limit: These parameters apply to source statement files only.

Syntax
LIST GENERATE|LAYOUT|PROCEDURES|SQL|TRANSACTION|

USE [GENERATE|LAYOUT|PROCEDURES|SQL|
TRANSACTION|USE]... ON|OFF

GENERATE

Controls the listing of the results of the GENERATE statement.

LAYOUT

Controls the listing of the sample screen layout.

PROCEDURES

Controls the listing of the generated procedural code.

SQL

Controls the listing of SQL statements. It shows the SQL requests sent from PowerHouse to the
database, including the effects of any substitutions.

TRANSACTION

Displays the transaction model used by the screen. SET LIST TRANSACTION also displays all
transactions defined in a screen and gives all file/transaction associations.

USE

Controls the listing of source statements contained in USE files.

ON

Lists the specified options.

OFF

Does not list the specified options.

Discussion
The LIST resource file statement states that the contents of source statement files are to be listed as
they are read.

The LIST resource file statement establishes the default list option for the USE and REVISE
statements without LIST or NOLIST options.

Equivalent Program Parameter

list|nolist

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

214 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
LOCATION MODULE (MPE/iX)

LOCATION MODULE (MPE/iX)

Specifies the location and compiles a PowerHouse program into an installable module for
ALLBASE/SQL.

Syntax
LOCATION MODULE filelocation

filelocation

The specification for a group.

Equivalent Program Parameters

moduleloc=filelocation

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
LOCATION PROCESS

PowerHouse Rules 215

LOCATION PROCESS

Causes PowerHouse to search for process files in a location other than the current directory
(OpenVMS, UNIX, Windows) or group/account (MPE/iX).

Syntax
LOCATION PROCESS filelocation

filelocation

Discussion
The LOCATION PROCESS resource file statement is applied to filenames that are unqualified
(MPE/iX, OpenVMS) or not fully qualified (UNIX, Windows) that are specified
• in the auto program parameter
• through the appropriate designated files
• in the EXECUTE, SUBSCREEN (and RUN SCREEN verb), and USE statements

The LOCATION PROCESS resource file statement is not applied when locating the dictionary or
data files.

The BUILD and SAVE statements save files in the current working directory rather than in the
directory specified by LOCATION PROCESS statement.

Equivalent Program Parameters

procloc=filelocation

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

OpenVMS, UNIX,
Windows:

filespec without the filename or extension

If a logical name is used, you must include the colon (:) at the end if you
specify a full file location. (OpenVMS)

MPE/iX: group.account

216 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
LOCKWORD (MPE/iX)

LOCKWORD (MPE/iX)

Enables the use of internal routines to prevent duplicate lockword prompting during screen
loading and running.

Syntax
LOCKWORD PROMPT ONCE

Discussion
By default, if a compiled screen has a a file level password, LOCKWORD, the user is prompted
for this lockword every time the screen is run. If the screen has to be loaded and then run, the user
is prompted for the lockword twice.

The LOCKWORD resource file statement enables internal routines to prevent duplicate
prompting. However, use of the statement may cause a performance decrease so it should be tested
to determine the effect.

Equivalent Program Parameter

lockword

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

Chapter 3: Resource File Statements
NOBLOBS

PowerHouse Rules 217

NOBLOBS

Specifies whether blobs columns are processed.

Syntax
NOBLOBS

Discussion
By default, QUIZ, QTP, and QDESIGN refer to blob columns. However, blobs are restricted in
use; blobs cannot be stored in subfiles, sorted on, or written into an intermediate file in QTP. All
of these actions produce an error. By specifying the NOBLOBS statement, blob columns are not
processed (ignored) and these errors are avoided.

Equivalent Program Parameter

noblobs

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

218 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
NONPORTABLE

NONPORTABLE

Sets the message severity for nonportable syntax.

Limit: Applies to source statement files only.

Syntax
NONPORTABLE ERROR|NOWARNING|WARNING

Default: NOWARNING

ERROR

Rejects nonportable syntax and issues an error message.

NOWARNING

Suppresses the warning messages.

WARNING

Issues a warning, though processing continues.

Discussion
Not all PowerHouse syntax applies to all computer systems. The NONPORTABLE statement
specifies what happens when such syntax is encountered.

Equivalent Program Parameter

nonportable=error|nowarn|warn

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
NOOWNER

PowerHouse Rules 219

NOOWNER

Prevents the owner name from being attached to the table name in generated code so that different
users can use the same compiled screen to access their own tables (having the same name).

Syntax
NOOWNER

Equivalent Program Parameter

noowner

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

220 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
NOSET WARN STATUS (OpenVMS)

NOSET WARN STATUS (OpenVMS)

Suppresses the warning status when a warning condition is detected in PowerHouse.

Syntax
NOSET WARN STATUS

Discussion
In versions prior to 8.40, a warning condition in PowerHouse would return a $WARNING level
indication to the operating system. When Module Management System (MMS) sees a result code
that is not $SUCCESS, processing stops.

If this is not the desired behavior, specify the nosetwarnstatus program parameter to turn off the
warning status. If the nosetwarnstatus program parameter is used, a status code of $SUCCESS is
returned to operating system for PowerHouse warning conditions, instead of $WARNING.

The default behavior is that $WARNING status is used.

Equivalent Program Parameter

nosetwarnstatus

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
OBSOLETE

PowerHouse Rules 221

OBSOLETE

Sets the severity of the messages when obsolete syntax is encountered.

Limit: Applies to source statement files only.

Syntax
OBSOLETE ERROR|IGNORE|NOWARNING|WARNING

Default: WARNING

ERROR

Rejects obsolete syntax when encountered and issues an error message.

IGNORE

Ignores all obsolete keywords as part of the syntax (they are treated as entity names).

NOWARNING

Suppresses the warning messages.

WARNING

Issues a warning, though processing continues.

Discussion
As PowerHouse matures, some syntax may be marked for obsolescence and may not be supported
in future releases. The OBSOLETE statement specifies what happens when such syntax is
encountered.

Equivalent Program Parameter

obsolete=error|ignore|nowarn|warn

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

222 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
OMNIDEX (MPE/iX)

OMNIDEX (MPE/iX)

Determines whether OMNIDEX indexes are seen by the PowerHouse component being run.

Syntax
OMNIDEX ON|OFF|QUIZ

ON

OMNIDEX indexes are visible to all products.

OFF

OMNIDEX indexes are not seen by any products.

QUIZ

OMNIDEX indexes are only seen by QUIZ. This gives the same results as PowerHouse versions
from 7.29 to 8.29.

Default: ON

Discussion
The program parameter or resource file statement is only required at parse time.

In PowerHouse versions from 7.29 to 8.29, OMNIDEX indexes could be declared in the
dictionary, but were only used by QUIZ (and reported by QSHOW). QTP, QDESIGN and QUICK
had no knowledge of these indexes. DISC, the developers of OMNIDEX, provided tools to access
OMNIDEX indexes from these versions of QUICK.

In version 8.39, OMNIDEX index support was added to QTP, QDESIGN, and QUICK. This
changed some default operations. Because these indexes are now visible, they are used in the
default linking rules. This can result in different default linkages. Linkages that were specifically
coded remain unchanged. The addition of this support to QUICK prevents the DISC tools from
functioning.

With the appropriate program parameter or resource file statement, you can determine how you
want OMNIDEX indexes to be used.

Equivalent Program Parameter

omnidex|noomnidex

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔

Version Default use of OMNIDEX indexes

7.29 to 8.29 QUIZ

8.39 and above QUIZ, QTP, QDESIGN, QUICK

Chapter 3: Resource File Statements
OSACCESS

PowerHouse Rules 223

OSACCESS

Determines whether operating system command entry and execution is allowed.

Syntax
OSACCESS ON|OFF

Default: OSACCESS ON (except for QUICK)

ON

Allows access to the operating system from within PowerHouse components.

OFF

Denies access to the operating system from within PowerHouse components.

Discussion
Allows or denies access to the operating system from within PowerHouse components.

By default, when QUICK encounters the system prompt character, it ignores it and issues the
message
"Operating system access has been disabled."

When you call QUICK directly from QDESIGN, QUICK is invoked with either OSACCESS=ON
or OSACCESS=OFF in effect, depending on which statement is set in QDESIGN.

MPE/iX
The system prompt character is a colon (:). A colon followed by a system command causes
execution of that command by the operating system.

When the OSACCESS OFF statement is used, any command preceded by a colon is ignored.

OpenVMS
The system prompt character is a dollar sign ($). Entering a dollar sign followed by a system
command causes execution of that command by the operating system.

UNIX
The system prompt character is an exclamation mark (!). Entering !<shell_abbreviation> (for
example, !csh) opens a new shell, while entering the exclamation mark followed by a system
command causes execution of that command by the operating system.

When the OSACCESS OFF statement is used, any command preceded by an exclamation mark is
ignored. Although OSACCESS OFF denies users access to the operating system from within
PowerHouse, it does not prevent users from suspending the PowerHouse process (usually by
pressing [Ctrl-Z]), unless this has been disabled with stty(1) commands.

Windows
The system prompt character is an exclamation mark (!). Entering an exclamation mark followed
by a system command causes execution of that command by the operating system.

Equivalent Program Parameter

osaccess|noosaccess

OpenVMS: dcl|nodcl

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

224 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
OWNER

OWNER

Specifies the owner for tables in an ALLBASE/SQL, DB2, SYBASE or ORACLE database when
none is explicitly indicated. Also specifies the default owner of modules created by PowerHouse in
ALLBASE/SQL.

Syntax
OWNER owner

owner

Owner may be the database owner or a string.

Owner may be an system variable or file equation (MPE/iX), logical (OpenVMS) or environment
variable (UNIX, Windows) which must be enclosed in quotation marks.

Discussion
Some relational databases support owners for entities such as modules or tables. If a program
needs to access an entity owned by another user, you specify the owner as part of the entity name.

The resource file statement only applies at parse time and cannot be used at execution time to
provide access to specific data.

Equivalent Program Parameter

owner=ownername

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
PREFIX ORACLE OPEN NAME

PowerHouse Rules 225

PREFIX ORACLE OPEN NAME

Suppresses the addition of "ORACLE@" to the open name for an ORACLE database.

Syntax
PREFIX ORACLE OPEN NAME ON|OFF

Default: ON

ON

Suppresses the addition of "ORACLE@" to the open name.

OFF

Does not suppress the addition of "ORACLE@" to the open name.

Discussion
Valid open names must begin with "ORACLE@". If the open name supplied does not begin with
this string, PowerHouse normally inserts it. This statement suppresses the insertion thus allowing
logical names (OpenVMS) and environment variables (UNIX, Windows) to used as the open
name. If PREFIX ORACLE OPEN NAME OFF is used, the user must supply the "ORACLE@" in
the string assigned.

Equivalent Program Parameter

noprefix_openname

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

226 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
PROMPT

PROMPT

Specifies the prompt string for the PowerHouse component.

Syntax
PROMPT string

Default: >

Discussion
PowerHouse adds a trailing space after the prompt string.

Equivalent Program Parameter

prompt=string

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
QUIT

PowerHouse Rules 227

QUIT
Ends the PowerHouse resource file.

Syntax
QUIT

Discussion
The QUIT statement ends the PowerHouse resource file. Any statements after the QUIT statement
are ignored.

The QUIT and EXIT statements are interchangeable.

228 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
RESET BIND VARIABLES

RESET BIND VARIABLES

Determines if SQL bind variables are reset for each SQL statement.

Syntax
RESET BIND VARIABLES ON|OFF

Default: RESET BIND VARIABLES ON

Discussion
A bind variable is a placeholder in SQL generated at compile time where a value is substituted at
execution time. For example, if a request value for a Find is needed in generated SQL, a bind
variable acts as the placeholder in the WHERE clause. Each bind variable has a unique identifier
made up of a number and the field name. In versions previous to 8.4xD1, the number was
incremented from statement to statement even though the field was the same. This meant that
generated SQL was different even though the SQL statements themselves were the same. Because
the generated SQL was different, it could not be reused by the database.

The RESET BIND VARIABLES ON resource file statement specifies that the bind variables are to
be reset for each SQL statement. This allows the generated SQL to be identical for identical SQL
syntax. The bind variables will be a letter and a number. The letter is S for Select operations, U for
update operations, I for insert operations, and D for delete operations. The number is incremented
from 1.

Equivalent Program Parameter

resetbindvar|noresetbindvar

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
RESTORE LINES

PowerHouse Rules 229

RESTORE LINES

Provides upward compatibility for screens compiled with versions of PowerHouse prior to 6.09
(MPE/iX), 6.00 (OpenVMS), and 6.03 (UNIX). The RESTORE LINES resource file statement
changes the default behavior of screen refreshing.

Syntax
RESTORE LINES ON|OFF

Default: OFF (QUICK removes a screen from the display area when you return to a previous
screen.)

Discussion
The RESTORE LINES resource file statement changes the default behavior of screen refreshing.

By default, QUICK removes a screen from the display area when you return to a previous screen.
This is the expected behavior for pop-up windows. Only the screens currently active in the screen
hierarchy are visible. For certain applications, such as heavy data entry applications, you may
want to leave information from a lower-level screen in the display area when you return to a
previous screen. If the screen background isn’t removed, QUICK can avoid rewriting the screen
background each time the lower-level screen is invoked. This applies when the screens don’t
overlap in the display area. With extended terminal memory, QUICK can use two display areas
and simply switch between them by adjusting the terminal window.

When you use the RESTORE LINES resource file statement, QUICK uses a line oriented refresh
algorithm. When you return to a screen, only the application lines required by that screen are
refreshed in terminal memory. Application lines used by lower-level screens required by the
higher-level screen aren’t altered. The background remains available when the screen is again
invoked.

Equivalent Program Parameter

restore=lines

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

230 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
RETAIN MARK

RETAIN MARK

Determines whether the field mark position in an array is retained.

Syntax
RETAIN MARK ON | OFF

Default: OFF

Discussion
If fieldmarking is used in an array and a new screen load is retrieved, by default the first
occurrence is marked even if the mark was originally on another occurrence. RETAINMARK
instructs QUICK to retain the original mark occurrence.

Equivalent Program Parameter

retainmark|noretainmark

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
REUSE SCREEN BUFFERS

PowerHouse Rules 231

REUSE SCREEN BUFFERS

Causes QUICK to reuse or not reuse previously allocated buffers.

Syntax
REUSE SCREEN BUFFERS ON|OFF

Default: OFF

ON

Causes QUICK to reuse previously allocated buffers.

OFF

Causes QUICK to not reuse previously allocated buffers.

Discussion
The REUSE SCREEN BUFFERS resource file statement causes QUICK to reuse previously
allocated buffers when the user moves repeatedly back and forth from a screen to a subscreen.
Since buffers don't have to be re-allocated, performance may improve.

Applications using RDB/VMS (i.e. native access) and non-relational files should see a performance
improvement by reusing screen buffers. For databases accessed through SQL, reusing screen
buffers may cause more memory usage since memory is not cleaned up immediately when a screen
exits.

Axiant thin-client applications should not reuse screen buffers.

This feature conflicts with the AX_SCREEN_TUNING environment variable. They should not be
used together.

Equivalent Program Parameter

reuse_screen_buffers|noreuse_screen_buffers

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

232 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
RMS FAST READ (OpenVMS)

RMS FAST READ (OpenVMS)

Performs a block read to sequentially accessed read-only files.

Syntax
RMS FAST READ ON|OFF

Default: OFF

Discussion
By using this resource file statement, normal record I/O is much faster. However, it has a number
of restrictions:
• The records must be fixed length.
• The access must be sequential, not indexed.
• The data and indexed portions of the file cannot be compressed.
• Files must have compression turned off. By default, PowerHouse creates files with

compression turned on, so this must be manually changed using the FDL editor and the file
recreated in order to access a PowerHouse file with this statement. If these conditions are not
met, you do not receive a warning but PowerHouse does not set up the file for fast reads.

Equivalent Program Parameter

fastread

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

Chapter 3: Resource File Statements
RMS FILE BASE (OpenVMS)

PowerHouse Rules 233

RMS FILE BASE (OpenVMS)

Allows the use of zero-based record numbers for cross-platform compatibility.

Syntax
RMS FILE BASE ZERO|ONE

Default: ONE

Discussion
In PowerHouse versions 8.00 and 8.10C, direct file access was zero-based from an external view
in an attempt to make PowerHouse code more portable between platforms. However, this
decision was changed in 8.10.C1 to make the external view of the record number used to access
the file match the physical implementation on each platform. This meant that on OpenVMS the
record numbers start at 1, not 0. In an effort to maintain upgrade paths, and for those who really
want cross-platform transparency in this area, a resource file statement was added to allow for the
use of zero-based record numbers. From 8.10.C1 through to 8.20.D4, the one-based access
applied to READs, but not to WRITEs. This was incorrect and has been changed as of 8.20D6
and 8.30 so that it applies to both READ and WRITE.

Equivalent Program Parameter

direct_file_base_zero

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

234 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
SET

SET
Determines whether the PowerHouse resource file is listed before PowerHouse components are
initiated.

Syntax
SET LIST|NOLIST

LIST

Lists the PowerHouse resource file.

NOLIST

Does not list the PowerHouse resource file.

Discussion
SET LIST lists the PowerHouse resource file before PowerHouse components are initiated. This is
handy for debugging resource files because an error produces the appropriate expected list.

Chapter 3: Resource File Statements
SETJOBSHOW (Windows)

PowerHouse Rules 235

SETJOBSHOW (Windows)

Restricts the files and items listed by the SHOW FILES statement to those for which you have at
least read access.

Syntax
SETJOBSHOW ON|OFF

Default: OFF

ON

Shows the SET JOB spawned process window.

OFF

Hides the SET JOB spawned process window.

Discussion
With the SET JOB statement, the job is submitted as a separate spawned process just before the
product exits. By default, the spawned process window is hidden. To show the window, use the
SETJOBSHOW ON resource file statement.

Equivalent Program Parameter

setjobshow|nosetjobshow

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

236 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
SHIFT

SHIFT

Determines how PowerHouse identifiers (such as item names) are shifted.

Syntax
SHIFT DOWN|NONE|UP

Default: UP

DOWN

Shifts the names of entered identifiers to lowercase.

NONE

Leaves the case of identifiers as entered.

UP

Shifts the names of entered identifiers to uppercase.

Discussion
This option facilitates the use of dictionaries and databases with case-sensitive entity names.

By default, PowerHouse upshifts all components of table names. PowerHouse permits access to
case-sensitive names by means of this statement or the NOSHIFT, UPSHIFT, and DOWNSHIFT
options of the SET statement. If SHIFT NONE or SET NOSHIFT is specified, all PowerHouse
identifiers are taken as they appear in the source text instead of being upshifted. For system-wide
access to mixed, lowercase, or uppercase identifiers, you can specify the SHIFT option in the
SYSTEM OPTION statement.

Equivalent Program Parameter

downshift|upshift|noshift

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
STATISTICS

PowerHouse Rules 237

STATISTICS

Specifies whether or not to display statistics.

Syntax
STATISTICS ON|OFF

Default: ON (QUIZ, QTP); OFF (QUTIL).

ON

Specifies that statistics or detailed file information are displayed.

OFF

Specifies that statistics or detailed file information are not displayed.

Discussion
In QUIZ and QTP, the STATISTICS ON resource file statement displays statistics at the end of a
report or run; STATISTICS OFF does not. Stipulating SET STATISTICS, SET NOSTATISTICS, or
SET DEFAULT (QUIZ and QTP) resets the statistics control.

In QUTIL, the STATISTICS ON resource file statement produces a report of details of the file
being created, such as record size, indexes, and physical location.

Limit: The STATISTICS resource file statement for QUTIL is only valid for OpenVMS, UNIX,
and Windows.

Equivalent Program Parameter

statistics|nostatistics

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

238 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
STORE MODULES

STORE MODULES

Prevents SQL modules from being compiled and stored in the database. This resource file
statement is used at parse time.

Syntax
STORE MODULES ON|OFF

Default: ON

Discussion
This resource file can decrease memory problems associated with compiled sections since the SQL
modules are compiled at run-time. However, this may have an impact on performance.

Equivalent Program Parameter

dont_store_module

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔

Chapter 3: Resource File Statements
SUBDICTIONARY

PowerHouse Rules 239

SUBDICTIONARY

Specifies whether subdictionary support is enabled; when the relational subdictionaries are
opened by PowerHouse; and when they are searched for unqualified record-structures.

Syntax
SUBDICTIONARY

DELAY|DISABLE|ENABLE|NODELAY|NOSEARCH|SEARCH
[DELAY|DISABLE|ENABLE|NODELAY|NOSEARCH|SEARCH]...

DELAY

Indicates that subdictionaries are not to be opened by PowerHouse until referenced by an IN
database qualifier, or by the subdictionary search process that looks for unqualified
record-structures that do no exist in the data dictionary.

DISABLE

Disables relational subdictionary support. All other SUBDICTIONARY statement options are
ignored.

ENABLE

Enables relational subdictionary support.

NODELAY

Indicates that all subdictionaries are to be opened when you enter PowerHouse.

NOSEARCH

Specifies that PowerHouse is not to search for unqualified record-structures in the subdictionaries
when they cannot be found in the data dictionary.

SEARCH

Specifies that PowerHouse is to search for unqualified record-structures in the subdictionaries
when they cannot be found in the data dictionary.

Discussion
An unqualified record-structure is a record-structure name without the IN database qualifier.

Equivalent Program Parameter

subdictionary=(option[,option]...)

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔

240 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
SUBFORMAT n

SUBFORMAT n

Specifies the format of subfiles being created.

Syntax
SUBFORMAT n

The values are:

Default: 8 (all platforms)

Discussion
This statement allows you to specify the subfile format to be used at run-time when the format
differs from the default.

If a NULL or invalid value is specified for the SUBFORMAT statement, an error is issued.

If the FORMAT option of the SET SUBFILE statement is used, these FORMAT specifications
override the SUBFORMAT statement. When neither a FORMAT statement option nor the
SUBFORMAT statement is specified, the default subfile format of 8 is used.

MPE/iX
In PowerHouse 6.09, the maximum size of an item name increased from 20 to 31 characters.
PowerHouse makes use of file labels when creating subfiles, limiting the amount of information
that can be stored to a subfile. Due to the increase in item information being stored to the subfile,
the maximum number of items supported decreased from approximately 440 to approximately
310.

Note: This changed in later versions as well. Now, the number of items that can be written to
subfiles depends on the size of the item names.

Equivalent Program Parameter

subformat=n

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

MPE/iX, UNIX: 0, 1, 3, 5, 6, 7, 8

OpenVMS: 7, 8

Windows: 8

Chapter 3: Resource File Statements
TERMINAL

PowerHouse Rules 241

TERMINAL

Establishes the terminal type.

Syntax
TERMINAL terminal-type

terminal-type

Specifies the terminal type supported by the PowerHouse component.

Discussion
In QDESIGN, the terminal type is passed to QUICK when the GO statement is entered.

Terminal Type When Running QUICK

To communicate properly with the user during a QUICK session, QUICK must know the type of
terminal being used. A full list of supported terminal types, and necessary strapping and
switch-setting information is provided with the installation package.

QUICK determines the terminal type in one of the following ways:
1. Specification (MPE/iX, UNIX)

If terminal type is specified in the dictionary (on the PORTS option of the SYSTEM
OPTIONS statement), QUICK uses that specification.

2. Detection
Based on terminal characteristics, QUICK can identify most terminals automatically.
By default, QUICK polls a terminal for one second to try to identify it. If QUICK is
unsuccessful, it then prompts the user to supply a terminal type. MPE/iX: However, this may
not be enough time for terminals on busy systems to respond. The TERMINAL POLLING
SPEED statement can be used to lengthen the time QUICK waits for a response when polling
a terminal. This parameter is useful only if the terminal in question can be identified by
polling.

3. User response
If the terminal type cannot be identified in steps 1 and 2, QUICK prompts for a predefined
terminal type and the QUICK user responds, as in
Terminal type=HP2392

If the user responds with a question mark (?), a full list of acceptable terminal types is
displayed.

4. Override
To override steps 1, 2, and 3 and allow the user to specify the terminal type directly via the
prompt, specify the statement TERMPOLL OFF.

5. TERMINAL resource file statement

The TERMINAL resource file statement can be used in QDESIGN to provide the terminal type to
be used by QUICK if the GO statement is entered. The format and allowable entries are the same
as those used in QUICK. All previous steps are bypassed if a terminal type is specified.

The suffix ANY instructs QUICK not to trap nonprinting control codes and replace them with a
question mark for display. ANY can be used to direct the terminal to an alternative character set.
Steps must be taken to ensure that the control-code sequences do not interfere with QUICK’s
terminal display.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

242 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TERMINAL

MPE/iX
Some terminals have more than 24 lines of memory. To tell QUICK that more than 24 lines of
memory are available, specify the number of lines of memory after the terminal type. The terminal
type and lines of memory must be separated by a hyphen, as in
TERMINAL HP2624-96

This terminal type specification tells QUICK that the terminal is an HP2624 and has 96 lines of
memory. (The number of memory lines can also be specified in the dictionary.) If the number of
lines of memory is not specified, QUICK assumes 48 lines unless the terminal profile within
QUICK contains a lower number.

Line drawing is an option on some terminals; however, QUICK does not assume that line drawing
is installed. To tell QUICK that line drawing is installed, specify the alternate character set (A, B,
or C) where the line-drawing characters reside. Again, the terminal type and the line-drawing
character set are separated by a hyphen, as in
TERMINAL HP2624-96-B

Although some terminals have more than 24 lines of memory and support highlighting, QUICK
may not be able to support these features. To be supported, memory must be continuous, not
paged. Many terminals have memory that can be addressed in discrete pages of 24 lines, but
require that the page be identified when the user addresses a specific line. QUICK supports lines
greater than 24 only if the line number itself can be addressed.

On some terminals, the highlighting control sequences require space on the terminal display.
QUICK does not support highlighting of this type because the display would change from one
terminal type to another.

Other suffixes can be added to the terminal specification:
• MTS (when running multipoint terminal software)
• X25 or TRANS (when using communications software)
• TAE (for terminals with type-ahead capabilities)
• ANY

When sending data in Block mode over X.25 or TRANSPAC, stacking screens will cause an error.
This also applies to sending data in Block mode over MTS.

OpenVMS
PowerHouse supports function keys for the DEC VT family of terminals. On all of these types of
terminals, PowerHouse can use the 18 keys on the numeric keypad. On VT 200/VT300-series
terminals, PowerHouse can also use the last six of the keys located across the top of the keyboard
(the others are all reserved), and the keys labeled FIND, INSERT HERE, REMOVE, SELECT,
PREV SCREEN, and NEXT SCREEN.

To take advantage of your terminal’s function key capability, use the TERMINAL statement in the
resource file when you invoke PowerHouse. The syntax is
TERMINAL termtype

The TERMINAL statement is one of VT100, VT200, VT300 or VT400 with an optional suffix of
-KEY or -NOKEY. For example, you might enter
TERMINAL VT400-KEY

PowerHouse treats certain keys differently depending on which suffix you use:
• If you use -NOKEY, or do not use a suffix at all, PowerHouse does not recognize most of the

numeric keypad keys as function keys, but instead treats them as numeric keys. The
exceptions are [GOLD], [PF2], [PF3], and [PF4], which PowerHouse always treats as function
keys when you use the TERM option. You may want to use TERMINAL VT400-NOKEY if
you have a VT200-series terminal and you want to use the numeric keypad as a numeric
keypad but still be able to use the other function keys.

• If you use -KEY, PowerHouse treats all the numeric keypad keys as function keys.

Chapter 3: Resource File Statements
TERMINAL

PowerHouse Rules 243

You can also use the TERMINAL statement to specify the maximum number of lines the terminal
memory can contain (up to a maximum of 240). The number of lines of terminal memory
specified should be evenly divisible by 24. The number of lines that QUICK actually uses depends
on the stacking and windowing options that you use, which may or may not make use of available
application lines. Regardless of the number of terminal memory lines specified, QUICK never uses
more than the application lines specified in QKGO.

Windows
The only terminal type available is WINDOWS-24.

Equivalent Program Parameter

term=terminal-type[-terminal-parameter]...

244 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TERMINAL BLOCKMODE (MPE/iX)

TERMINAL BLOCKMODE (MPE/iX)

Determines whether or not QUICK recognizes BLOCK TRANSFER control structures in Block
mode.

Syntax
TERMINAL BLOCKMODE COMPATIBLE|PANEL

Default: COMPATIBLE

COMPATIBLE

Runs in standard HP Block mode.

PANEL

Runs blockmode terminals in Panel mode.

Equivalent Program Parameter

blockmode=compatible|panel

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
TERMINAL CHARACTERMODE

PowerHouse Rules 245

TERMINAL CHARACTERMODE

Specifies whether or not QUICK recognizes BLOCK TRANSFER control structures in Character
mode.

Syntax
TERMINAL CHARACTERMODE FIELD|PANEL

FIELD

Indicates that BLOCK TRANSFER control structures in a screen are ignored.

PANEL

Indicates that BLOCK TRANSFER control structures in a screen are recognized.

Discussion
If neither the TERMINAL CHARACTERMODE FIELD statement nor the charmode program
parameter are specified, and BLOCK TRANSFER control structures are included in screen design,
the default interface is Panel mode.

Equivalent Program Parameter

charmode=field|panel

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

246 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TERMINAL CONFIRMER

TERMINAL CONFIRMER

Changes confirmation messages to pop-up windows with OK/CANCEL buttons.

Syntax
TERMINAL CONFIRMER

Equivalent Program Parameter

confirmer

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
TERMINAL POLLING SPEED (MPE/iX)

PowerHouse Rules 247

TERMINAL POLLING SPEED (MPE/iX)

Sets the amount of time (n) that QUICK takes when polling the terminal to determine a terminal
type before prompting the user.

Syntax
TERMINAL POLLING SPEED n

Limit: The range of POLLSPEED is 1 to 20 seconds.

Default: 1 second

Equivalent Program Parameter

pollspeed=n

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

248 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TERMINAL READ (MPE/iX)

TERMINAL READ (MPE/iX)

Determines how QUICK uses single-character reads.

Syntax
TERMINAL READ CHARACTER|LINE

CHARACTER

Causes QUICK to run the application with the use of the single character processing.

LINE

Causes QUICK to run the application without the use of single character processing.

Equivalent Program Parameter

read=char|line

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
TERMPOLL (MPE/iX, OpenVMS)

PowerHouse Rules 249

TERMPOLL (MPE/iX, OpenVMS)

Determines whether to poll the terminal to establish the terminal type.

Syntax
TERMPOLL ON|OFF

Default: ON

ON

Specifies that the terminal is polled.

OFF

Specifies that the terminal is not polled.

Equivalent Program Parameter

termpoll|notermpoll

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

250 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TIC RESOURCE FILE (UNIX, Windows)

TIC RESOURCE FILE (UNIX, Windows)

References the QUICK Terminal Interface Configuration (TIC) resource file.

Syntax
TIC RESOURCE FILE filespec

filespec

The specification for a file, as it is identified to the operating system. It is the name of file or
environment variable, and is case-sensitive.

A file specification takes the general form
UNIX: /[directory/]...filename.extension
WINDOWS: [drive:\][directory\]...filename.extension

Discussion
The TIC RESOURCE FILE statement references the flat TIC resource file. By default, the location
of this file is:

$PH_QKGO_LOCATION/resource

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

Chapter 3: Resource File Statements
TIME ZONE (MPE/iX)

PowerHouse Rules 251

TIME ZONE (MPE/iX)

Determines the mechanism that PowerHouse uses to obtain the values of SYSDATE and
SYSTIME.

Syntax
TIME ZONE ON | OFF

Default: OFF

ON

Specifies that PowerHouse takes the value of the TZ system variable into account when it returns
SYSDATE and SYSTIME values. With the use of TIME ZONE ON, the value of SYSTIME is only
accurate to the nearest second.

OFF

Specifies that PowerHouse does not take the value of the TZ system variable into account when it
returns SYSDATE and SYSTIME values. With TIME ZONE OFF, the value of SYSTIME is
accurate to the nearest tenth of a second.

Discussion
By default, PowerHouse returns values that are based on the MPE System Time. This time is the
same for all users of the system and normally reflects the correct time where the computer is
located. These results are not affected by the value of the TZ system variable.

If the timezone program parameter or the TIME ZONE ON resource file statement is specified,
then PowerHouse returns values that take the value of the TZ system variable into account.
Multiple users can see different values for SYSDATE and SYSTIME by setting TZ to different
values within their sessions. The TZ variable would typically be set to reflect the location where
the end user is working if this is in a different time zone than where the computer is located.

For information about the TZ variable and the values that can be assigned to it, see your Hewlett
Packard documentation.

Equivalent Program Parameter

timezone|notimetimezone

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

252 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TPI (MPE/iX, HP-UX, Windows)

TPI (MPE/iX, HP-UX, Windows)

Determines whether or not TPI or OMNIDEX indexes are seen by the PowerHouse component
being run.

Syntax
TPI ON|OFF|QUIZ

Default: ON

Discussion

The new resource file statement, TPI ON|OFF|QUIZ, provides the same functionality as the
existing resource file statement OMNIDEX ON|OFF|QUIZ.

The extra keywords have been added to reflect the fact that support for TPI functionality is
independent of Omnidex.

Both the existing and new keywords are available on MPE/iX, HP-UX and Windows.

Equivalent Program Parameter

tpi|notpi

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
TRUNCATE PARM VALUES

PowerHouse Rules 253

TRUNCATE PARM VALUES

Strips or does not strip trailing blanks from PARM values.

Syntax
TRUNCATE PARM VALUES ON|OFF

Default: OFF for values entered interactively; ON for values read from a file, whether in a batch
job or a file specified in the parmfile program parameter.

ON

Specifies that trailing blanks are stripped from any parm values.

OFF

Specifies that trailing blanks are significant and are not stripped from parm values.

Equivalent Program Parameter

parmprompt=truncate|notruncate

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔

254 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
TRUSTED (OpenVMS)

TRUSTED (OpenVMS)

Activates or deactivates C2-level security for the execution of RUN commands and DCL
commands within components.

Syntax
TRUSTED ON|OFF

Default: ON

ON

Indicates that OpenVMS should trust that this is a "well-behaved" application and allow DCL
access.

OFF

Indicates that OpenVMS should not trust this application and not allow DCL access.

Discussion
The security level on captive accounts was increased under OpenVMS 6.1 to prevent CAPTIVE
users from spawning. This security also prevents users from executing a RUN COMMAND
statement from a PowerHouse application running on a system that has C2-level security. To
work around this, the System Manager changed a SYSGEN parameter to disable the new security
feature.

The DCL options SPAWN|TRUSTED|NOTRUSTED allow CAPTIVE accounts to spawn. By
making use of the TRUSTED flag in PowerHouse, CAPTIVE accounts can spawn, regardless of
the SYSGEN setting.

By default, all DCL commands done from PowerHouse are done with TRUSTED (the pre-6.1
default setting). For all components, the use of the nodcl program parameter will disable DCL. In
QUICK, you are still able to program RUN COMMAND statements to execute DCL commands.

The TRUSTED OFF resource file statement disables RUN COMMANDs from QUICK for
CAPTIVE users. You can use the TRUSTED OFF resource file statement in each of the
components to disable all forms of DCL access for captive users.

TRUSTED CAPTIVE users can spawn. NOTRUSTED CAPTIVE users cannot spawn.

NON-CAPTIVE users are unaffected by the use of this resource file statement. They are always
TRUSTED by OpenVMS.

The dcl or osaccess program parameter and TRUSTED ON resource file statement may be
combined with the following results in CAPTIVE accounts.

PowerHouse spawns whenever it needs to access DCL, such as when interactive DCL is requested
by the user, when a QUICK RUN COMMAND is executed, or a GO is requested from
QDESIGN.

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

OSACCESS or
DCL TRUSTED ON

Interactive DCL
Allowed

RUN COMMAND
Allowed

N N N N

N Y N Y

Y N N N

Chapter 3: Resource File Statements
TRUSTED (OpenVMS)

PowerHouse Rules 255

Equivalent Program Parameter

trusted|notrusted

Y Y Y Y

OSACCESS or
DCL TRUSTED ON

Interactive DCL
Allowed

RUN COMMAND
Allowed

256 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
UIC BRACKETS (OpenVMS)

UIC BRACKETS (OpenVMS)

Causes the UIC function to not return brackets around the result values. It also causes internal
security checking to match the existence of brackets based on the setting of the statement.

Syntax
UIC BRACKETS ON|OFF

Default: ON

ON

The UIC function returns brackets around the result values.

OFF

The UIC function does not return brackets around the result values.

Discussion
This resource file statement is provided for compatibility with the UNIX uic function and previous
versions of PowerHouse 8.xx.

Equivalent Program Parameter

nouicbrackets

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔

Chapter 3: Resource File Statements
UPDATE ORDER

PowerHouse Rules 257

UPDATE ORDER

Controls the way PUT verbs are generated in the UPDATE procedure.

Syntax
UPDATE ORDER BOTTOM UP

or

UPDATE ORDER TOP DOWN (OpenVMS)

or
UPDATE ORDER FOREIGN KEY CONSTRAINT

Default: UPDATE ORDER BOTTOM UP

BOTTOM UP

By default, the ordering of PUT verbs follows the rules described in the UPDATE procedure
section of Chapter 7, "QDESIGN Procedures", in the QDESIGN Reference book.

OpenVMS: Causes PowerHouse to generate PUT verbs in the same order they are generated in
version 8.x.

TOP DOWN (OpenVMS)

Causes PowerHouse to generate PUT verbs in the same order as they are generated in
version 7.10.

FOREIGN KEY CONSTRAINT

Causes PowerHouse to generate the order of PUT verbs based on foreign key constraints that may
be in effect according to the database definition.

Discussion
For more information about these order methods, see the UPDATE procedure in Chapter 7,
"QDESIGN Procedures", of the QDESIGN Reference book.

Equivalent Program Parameter

update=bottomup|topdown|fkc_put_order

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔

258 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
USE

USE
Calls another PowerHouse resource file and processes its statements.

Syntax
USE filespec [LIST|NOLIST]

filespec

The specification for a file, as it is identified to the operating system. A file specification takes the
general form:

LIST

Lists the called PowerHouse resource file.

NOLIST

Does not list the called PowerHouse resource file.

Discussion
The USE statement allows you to process the statements of another PowerHouse resource file in
addition to those in the current PowerHouse resource file.

MPE/iX: [*]filename[/lockword][.group[.account]]

OpenVMS: [device:][directory] filename[.extension][;<version>]

Square brackets are required around a directory name.

UNIX: /[directory/]...filename.extension

Windows: [drive:\][directory\]...filename.extension

Chapter 3: Resource File Statements
VMSDATE

PowerHouse Rules 259

VMSDATE

Changes how PowerHouse creates and processes VMSDATE items.

Syntax
VMSDATE = CURRENT|OBSOLETE

CURRENT

The default behavior of PowerHouse 7.10 and previous versions is CURRENT.

Applications upgraded from PowerHouse 7.10 to 8.30 and higher should use CURRENT
behavior to make their VMSDATE data transparent between versions.

Default: For PowerHouse 8.30 and higher, the default is CURRENT.

OBSOLETE

The default behavior of PowerHouse versions 8.00, 8.10, and 8.20 (prior to 8.20D2) is
OBSOLETE. No CURRENT behavior is available.

In PowerHouse versions 8.20D2 and above, both CURRENT or OBSOLETE behavior is available
by using the appropriate option of the vmsdate program parameter or resource file statement.

To use OBSOLETE behavior in PowerHouse versions 8.20D2 or above, use the vmsdate=obsolete
program parameter on all RUN commands or use the VMSDATE OBSOLETE resource statement
in a Resource File.

Discussion
VMSDATE items have different internal formats, depending on what version of PowerHouse
created them. PowerHouse versions 7.10 depends on the incoming or outgoing system date being
in the form of a fractional day. PowerHouse versions 8.xx use clock time (HHMMSSTTT).

VMSDATE items were not being converted properly in some versions. As a result, these versions
cannot correctly read and report VMSDATE items created in other versions of PowerHouse; nor
can they correctly read or report VMSDATE items created outside of PowerHouse. Similarly,
PowerHouse versions 7.10 and 8.30 and higher, as well as external applications, cannot read
PowerHouse 8.00, 8.10, or 8.20 VMSDATE items correctly. VMSDATE=OBSOLETE|CURRENT,
was added to PowerHouse 8.20D2 and later to resolve this problem.

PowerHouse 8.00, 8.10, and 8.20 process VMSDATEs using the VMSDATE=OBSOLETE
behavior. PowerHouse 8.30 and higher defaults to VMSDATE=CURRENT behavior. PowerHouse
7.10 defaults to external OpenVMS behavior, which is the same as VMSDATE=CURRENT.

For detailed information about processing VMSDATEs and conversion issues, see the
PowerHouse 4GL Version 8.30 for OpenVMS Upgrade Guide.

Equivalent Program Parameter

vmsdate=current|obsolete

PDL PHDPDL QDESIGN QSHOW QTP QUICK QUIZ QUTIL

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

260 PowerHouse(R) 4GL Version 8.4E

Chapter 3: Resource File Statements
VMSDATE

PowerHouse Rules 261

Chapter 4: Messages in PowerHouse

Overview
PowerHouse provides the following types of messages:
• PowerHouse 4GL messages
• Service Layer messages
• Designer Messages for your application (QUICK, QUIZ, QTP)

For both the PowerHouse 4GL and the service layer you can create your own alternative message
file to replace some or all of the standard messages, or use the ready-made files. These ready-made
files in English, French, and German for PowerHouse 4GL and the service layer are included with
PowerHouse.

PowerHouse 4GL Messages
Each PowerHouse 4GL component has internal messages built into it. As well, each component
has a designated message file which you can use to override these internal messages. These
alternative message files allow you to specify messages in a language other than English, as well as
tailor messages to meet your needs.

If you specify a designated file for a given component, PowerHouse uses the messages contained in
the file. If a message does not exist in the file, PowerHouse will use the internal message.

The following table lists the designated files for each PowerHouse 4GL component:

Message Explanation Files

Message explanation files contain detailed explanations in English of the standard messages issued
by the PowerHouse component.

Designated Message File1
OpenVMS Logical or
UNIX/Windows Environment Variable Component

pdlmsg PDLMSG PDL

phdpdlmsg (OpenVMS) PHDPDLMSG PHDPDL

qkdmsg QKDMSG QDESIGN

qkmsg QKMSG QUICK

qshomsg QSHOMSG QSHOW

qtpmsg QTPMSG QTP

quizmsg QUIZMSG QUIZ

qutlmsg QUTLMSG QUTIL

1The file extension for OpenVMS, UNIX and Windows message files is .txt.

262 PowerHouse(R) 4GL Version 8.4E

Chapter 4: Messages in PowerHouse

The following table lists the message explanation files for each PowerHouse 4GL component:

Using Alternative Message Files (MPE/iX, OpenVMS, UNIX)

In order for PowerHouse to find your alternative message files, you must either define the
corresponding file equation (MPE/iX), logical (OpenVMS), or environment variable (UNIX) or
rename the alternative message file to the name PowerHouse expects.

For example, to use the German alternative message file for QUIZ and QTP, enter:

When using alternative message files, all the file equations (MPE/iX), logicals (OpenVMS), or
environment variables (UNIX) for the components you use must be set.

Using Alternative Message Files (Windows)

PowerHouse 4GL for Windows provides two sets of default message files in separate folder
locations within the installation location. One set of message files is used when the display is in a
GUI window while the other set is used when the display is in a Command Prompt window.
Messages that use the extended character set do not display correctly unless they are based on the
appropriate code page for either a GUI window or a Command Prompt window.

The folder for the message files for GUI windows is axmsg. The folder for the message files for the
Command Prompt windows is phmsg.

For example, messages for QUIZ reports and QTP Runs should use the phsmg folder location
because they are run in a Command prompt window. If you use QKView or Axiant thin-client
applications, you should use the QUICK message files in the axmsg folder.

The files that supply the default internal messages are phmsgf.dll, phmsgd.dll, phmsge.dll. These
files cannot be edited. Phmsgf.dll supplies messages in French. Phmsgd.dll supplies messages in
German. Phmsge.dll supplies messages in English. By default, messages are supplied in English.
Specifying an alternative message file overrides the default messages, unless the message line is
blank.

Message Explanation File1 Component

pdlinfo PDL

phdpdlinfo (OpenVMS) PHDPDL

qkdinfo QDESIGN

qkinfo QUICK

qshoinfo QSHOW

qtpinfo QTP

quizinfo QUIZ

qutlinfo QUTIL

1The file extension for OpenVMS, UNIX and Windows message files is .txt.

MPE/iX: FILE QUIZMSG=QUIZMSGD.PH729C.COGNOS
FILE QTPMSG=QTPMSGD.PH729C.COGNOS

OpenVMS: DEFINE QKDMSG PH_DOC_LOCATION:QKDMSGD.TXT
DEFINE PHMSG PH_DOC_LOCATION:PHMSGD.TXT

or
SETPOWERHOUSE LANG=D

UNIX: setenv PH_HELP_LOCATION $PH_USR/msg/deutsch
setenv QUIZMSG $PH_HELP_LOCATION/quizmsg.txt
setenv QTPMSG $PH_HELP_LOCATION/qtpmsg.txt

Chapter 4: Messages in PowerHouse

PowerHouse Rules 263

The files from the different folders appear differently if they are edited in a GUI editor such as
Notepad. The files from the axmsg folder appear correctly but the files from the phmsg folder
appear incorrectly. To edit the files from the phmsg folder, use the edit command from a
Command Prompt window.

To use the default French or German alternative message file without making any changes, use the
following procedure:
1. In Windows Explorer, in the PowerHouse 4GL installation location, locate and open the

appropriate message folder, axmsg or phmsg.
2. Create a copy of the alternative message file you want to supply your messages, for example,

phmsgd.dll.
3. Rename the copy to phmsgm.dll. Phmsgm.dll is the designated file that PowerHouse 4GL uses

to supply messages.
4. Move the renamed file to the root installation folder location. This will overwrite the existing

phmsgm.dll that, by default, contains the default English messages.

To use the text-based alternative message files, you must define the corresponding environment
variable or rename the alternative message file to the name PowerHouse expects.

For example, to use the German alternative message file for QUIZ and QTP, enter:

When using alternative message files, all environment variables for the components you use must
be set.

Format of a PowerHouse 4GL Message File

A PowerHouse 4GL message file is an order-dependent text file. PowerHouse 4GL uses the record
number to retrieve a message. A message may contain one or more message substitution
characters, by default, a caret (^), which PowerHouse uses to insert additional text.

When modifying a message or translating a message to another language, you may want to alter
the order of substitution. To do this, see (p. 271).

The following is an example of a PowerHouse 4GL message file:
•
•
•
No valid files were specified in the GENERATE statement.
Some of the files specified in the GENERATE statement were invalid.
The file ^ has no associated records.
Use SET GENERATE DEVICE DISC NAME <name> to create a new output file.
A language must be specified to execute the SET GENERATE DEVICE statement.
Cannot perform GENERATE without an output device specified.
•
•
•

Message Template Files

PowerHouse 4GL standard messages are in English. Message template files are provided in
English, French, and German. Message template files provide all the messages in a text file. The
message template files can be used as is for an alternative message file, as a basis for translation
into other languages, or as a basis for other customization.

On MPE/iX, the message template files are installed in the PowerHouse install location.

On OpenVMS, the message template files are installed in a MESSAGE directory under the main
install location. The message location is available in the logical PH_MESSAGE_LOCATION.

Windows: set PH_HELP_LOCATION="C:\Program Files\Cognos\PowerHouse 4GL
8.41E\phmsg"
set QUIZMSG=%PH_HELP_LOCATION%\quizmsg.txt
set QTPMSG=%PH_HELP_LOCATION%\qtpmsg.txt

264 PowerHouse(R) 4GL Version 8.4E

Chapter 4: Messages in PowerHouse

On UNIX, the message template files are installed in individual language directories named
english, francais, and deutsch in a directory named msg in the main install directory. Because the
message template files for different languages are not in the same directory, they are named the
same for each language. The PH_HELP_LOCATION environment variable is set to one of the
message locations based on the language.

On Windows, the message template files are installed into the PowerHouse install location in two
different directories, axmsg and phmsg. The two sets of message template files use different code
pages to account for display differences in the extended character set, depending on where the
display occurs. The message template files in phmsg should be used when a PowerHouse
component is run from the command prompt. The message template files in axmsg should be used
when using QKView or Axiant in thin-client mode. Note that when a screen running in QKView
runs QUIZ or QTP, the report or run executes in a command prompt and therefore QUIZ and
QTP should use the message template files from the phmsg directory.

Creating or Modifying an Alternative Message File

To create an alternative message file, follow these steps:
1. Make a copy of a ready-made alternative message file, such as the message template file, or

create your own file of the same type. For example, to copy a file, enter:

2. Using the editor, make the modifications to each message that you want to change. To change
only some of the default PowerHouse 4GL messages, leave the messages you don't want to
change blank. PowerHouse substitutes the default messages for those messages you haven't
defined.

3. Save the changes you have made.
4. MPE/iX: Set a file equation to reference this alternative message file. For example

FILE PDLMSGE=PDLMSG

OpenVMS: Convert the message file to fixed length format using the following command:
$convert/fdl=ph_message_location:msg.fdl/PAD=%D32 mymsgfile.txt
PH_MESSAGE_LOCATION:mymsgfile.txt

Modify the logical to reference this alternative message file. For example
DEFINE QKDMSG PH_MESSAGE_LOCATION:MYMSGFILE.TXT

UNIX: Modify the environment variable to reference this alternative message file. For
example
setenv QUIZMSG "/user/home/mymsgfile.txt"

Windows: Modify the environment variable to reference this alternative message file. For
example
set QUIZMSG="C:\Program Files\Cognos\PowerHouse 4GL
8.41E\phmsg\mymsgfile.txt"

File system and other messages are sometimes trapped and reproduced by PowerHouse. These
messages cannot be changed using the alternative message files.

Rules for Modifying Default Messages

When you modify an alternative message file, ensure that
• the modified message is of the same file type as the original alternative file
• the relative record numbers of the messages within the file are maintained

MPE/iX: COPY PDLMSGE.PH839C.COGNOS,MYPDLMSG

OpenVMS: COPY PH_MESSAGE_LOCATION:PDLMSG.TXT MYMSGFILE.TXT

UNIX: cp pdlmsg.txt mymsgfile.txt

Windows: copy pdlmsg.txt mymsgfile.txt

Chapter 4: Messages in PowerHouse

PowerHouse Rules 265

• the modified message contains the same number of substitution characters as the original
message, if you modify a message that contains substitution characters. The message
substitution character, by default, a caret (^), is an indicator that variable text (for example, a
file name) is to be inserted into the message at that point. The message substitution character
can be redefined in the data dictionary.

• the total length of each message, including inserted text, is less than 78 characters (or 132 if
your terminal is set to accommodate that many characters). Messages with inserted text that
exceed the allowable number of characters wrap to the next line.

• Mode and Action field labels do not exceed the size shown in QKMSG (MPE/iX) or
qkmsg.txt (OpenVMS, UNIX, Windows)

Service Layer Messages
The service layer provides a set of basic functions such as relational data access, networking,
repository, and communications that are available to all PowerHouse and PowerHouse Web
components.

There are two types of messages used by the service layer:
• default (or compiled) messages
• alternative messages

The service layer messages are available in English, French, and German.

The messages in the service layer are distinct from other compiled messages in PowerHouse and
PowerHouse Web. They must be decompiled in order to get a source file that can be modified, and
are then recompiled using the procedure described on (p. 268).

How the Service Layer Locates Message Files

MPE/iX
The message files that contain the English, French, and German versions of the service layer
messages are named SRVCMSGE, SRVCMSGF, and SRVCMSGD respectively and are located in
the install location. The designated file for service layer messages is SRVCMSGS.

By default, there is a file equation for SRVCMSGS pointing to SRVCMSGE.

In order for the service layer to use an alternative message file, a file equation for SRVCMSGS
must be used to point to the language file of choice.

OpenVMS
The message files that contain the English, French, and German versions of the service layer
messages are named SRVCMSGE.MSG, SRVCMSGF.MSG, and SRVCMSGD.MSG respectively.
The files are located in PH_MESSAGE_LOCATION for PowerHouse and
PHWEB_MESSAGE_LOCATION for PowerHouse Web.

The default messages are in PH_MESSAGE_LOCATION:SRVCMSGE.MSG or
PHWEB_MESSAGE_LOCATION:SRVCMSGE.MSG and are referenced by the logical name,
SRVCMSGS.

In order for the service layer to use an alternative message file, the SRVCMSGS logical must be set
to reference it.

UNIX
The message files that contain the English, French, and German versions of the service layer
messages are named srvcmsgs.msg and are located in the english, francais, and deutsch
subdirectories in the msg directory in the install location.

The default messages are in PH_USR/msg/english and are referenced by the SRVCMSGS
environment variable.

In order for the service layer to use an alternative message file, the SRVCMSGS environment
variable must be set to reference it.

266 PowerHouse(R) 4GL Version 8.4E

Chapter 4: Messages in PowerHouse

Windows
The message files that contain the English, French, and German versions of the service layer
messages are named srvcmsg_en.msg, srvcmsg_fr.msg, and srvcmsg_de.msg respectively. The files
are located in the install location.

By default, the SRVCMSGS entry in the powerhouse.ini and phweb.ini files point to
srvcmsg_en.msg.

In order for the service layer to use an alternative message file, the SRVCMSGS entry in the
powerhouse.ini or phweb.ini file, or the SRVCMSGS environment variable must be set to
reference it. The ini file entry takes precedence over the environment variable.

Format of a Default Message File
A message file contains blocks of messages for each component. Each block consists of the
following required elements in the specified order:
• a COMPONENT statement
• a NAME statement
• a PREFIX statement which is for internal use only

The following optional statements for each block are:
• SEVERITY statements which are for internal use only
• CATEGORY statements which are for internal use only
• PARAMETER statements
• message lines
• comment lines

COMPONENT Statement

There can be only one per component block and it contains just the name in the format:
COMPONENT <name>

NAME Statement

There can be only one per component block and it contains the short name for the component, for
example, EXPE for the component EXPENG. The format is
NAME <name>

SEVERITY Statement

The SEVERITY statement is used to define a severity category for use with subsequent
CATEGORY statements. It also has the side effect of setting the current message category to the
newly defined severity. The SEVERITY statement consists of the SEVERITY keyword followed by
• the symbolic name to be assigned to the severity (that is, error, fatal, warning)
• a numeric severity level (in the range 0 to 15)
• a severity code to use when generating message prefixes (that is, E, F, or W)
• a prefix/noprefix specification which determines if a generated message prefix is to be

appended to the text of messages in the indicated severity category. The general syntax is:
SEVERITY <identifier> <number> <severity text> { PREFIX | NOPREFIX}

For example:
severity e3 3 E prefix

The following severities are defined:

Category Abbreviation Meaning

E3 E error, recovery possible

F6 F non-recoverable error

Chapter 4: Messages in PowerHouse

PowerHouse Rules 267

CATEGORY Statement

The CATEGORY statement is used to indicate the severity category to associate with subsequent
message definitions. This association continues until another CATEGORY or SEVERITY
statement is reached. Any number of CATEGORY statements are allowed per component/file. The
CATEGORY statement consists of the CATEGORY keyword followed by a single token
indicating the name of a severity level. Severity levels can be referenced before their definition via
the severity command. For example:
category e3

PARAMETER Statement

For each component, the default substitution character is a caret (^). To specify a different
substitution character, use the PARAMETER keyword, followed by a string, as in
PARAMETER "%"

The PARAMETER keyword may be used as often as desired. Each time it is invoked, the
substitution character is changed.

The substitution character defined in a PARAMETER statement may be used within a message as
long as it is preceded by a backslash (\), as in
EXP1 "This message contains a substitution character (\^)."

Use two consecutive backslashes (\\) to include a backslash in a message, as in
EXP2 "This message will display a \\ single backslash."

A number may follow a parameter marker if it is preceded by a backslash (\), as in
EXP3 "This message contains a number after a marker ^\2."

A number after the substitution character indicates the order in which parameters are substituted
in a message. Parameter numbers start at one.

If no parameter number is supplied, then it is assumed that the parameter number is one. Such a
message may contain only a single parameter.

Messages

A message definition is assumed to be in progress when a token is encountered at the beginning of
a statement that is not one of: COMPONENT, NAME, PREFIX, CATEGORY, PARAMETER,
SEVERITY, or the opening comment delimitor /*. The syntax of a message definition is quite
simple: an identifier followed by a quoted string. The identifier is interpreted as the message name
while the quoted string is taken to be the text of the message being defined. Double quotes can be
embedded into the message string by using a double quote pair. Each message within a component
must have a unique name. A line continuation can be achieved by including "\n" in the string,
which will force the text following it to be displayed on a new line. If you want to continue the
message text over more than one line, place a backslash (\) at the end of each line except the last
one. For example:
file_error_message "Invalid file: ^1. \nLoad operation aborted"
system_error "The OS reported the following error: ""^1"" while"\ "processing."

H8 H help text

I1 I information only

N5 N communication error

P4 P parameter to other messages

S9 S successful operation

W2 W warning

Category Abbreviation Meaning

268 PowerHouse(R) 4GL Version 8.4E

Chapter 4: Messages in PowerHouse

Comments

Comments may occur anywhere within a message file except within any statement. They must be
at the start or end of the statement. Comments are delimited by an opening "/*" and a closing
"*/", as in
/*
* This is a comment
*/

The following is an example of a service layer message file:
COMPONENT EXPENG
NAME EXPE
PREFIX EXPENG
SEVERITY E3 3 E PREFIX
BADTMPDIR "Invalid temporary directory."
NORECSIZE "Record size has not been defined."
BUFFTOOSMALL "Buffer too small."
BADOUTPUT "Invalid output file."
FILEREAD "File read failed."
FILECREATE "Unable to create file."
UNDEFOPER "Undefined operator."
FILESIZE "Unable to obtain the file size."
FILEOPEN "Unable to open file."
TOOMANYARGS "Too many arguments."
FLAGCOMBO "Cannot combine stable sort and delete duplicates"\ "flags."
INVKEYDESC "Invalid key description."
INTCALL_UDF "The internal_call() function was not specified."

Service Message Compiler

Syntax

Mode

The Message Compiler mode is one of the following:

Options

The Message Compiler options can be one or more of the following:

MPE/iX: RUN COGMC.<version>.COGNOS;INFO="mode [options]"

OpenVMS,
UNIX,
Windows:

cogmc mode [options]

Mode Use

-compile Compiles from source.

-decompile Decompiles a message file.

-about Extracts version information from a message file.

Option Use

-output filename Sets output filename for all modes.

-language "text" Sets language descriptor text for -compile mode (for example,
"English-Canadian").

-input filename Sets input filename for -compile, -about and -decompile modes.

Chapter 4: Messages in PowerHouse

PowerHouse Rules 269

Creating an Alternative Service Layer Message File

To create an alternative service layer message file,
1. Set up the required environment:

MPE/iX: Use the COGNLSTAB and SRVCMSGS environment variables. Note that the file
locations are POSIX locations. The <version> is the PowerHouse or PowerHouse Web
version, for example PH849C. Specify the service layer message template file you wish to
modify, such as SRVCMSGE.
SETVAR COGNLSTAB "/COGNOS/<version>/COGLANG"
SETVAR SRVCMSGS "/COGNOS/<version>/SRVCMSGE"

OpenVMS: Use the logical SRVCMSGS to point to the service layer message file you wish to
modify, such as SRVCMSGE.MSG.
DEFINE SRVCMSGS PH_MESSAGE_LOCATION:SRVCMSGE.MSG

UNIX: Use the environment variable SRVCMSGS to point to the service layer message file
you wish to modify, such as srvcmsgs.msg in the English language subdirectory.
setenv SRVCMSGS $PH_USR/msg/english/srvcmsgs.msg

Windows: Change the locations specified in the SRVCMSGS entry in the powerhouse.ini or
phweb.ini file to point to the service layer message file you wish to modify, such as
srvcmsg_en.msg.

2. MPE/iX: Decompile the message file using the command
RUN COGMC.<version>.COGNOS;INFO=’-decompile -input <compiled file> -output
<source file> -character_set ASCII’

OpenVMS, UNIX, and Windows: Decompile the message file using the command:
cogmc -decompile -input <compiled file> -output <source file>
-character_set ASCII

3. Using an editor, make the modifications to each message that you want to change, and save
the changes.

4. MPE/iX: Compile your messages using the following command:
RUN COGMC.<version>.COGNOS;INFO=’-compile -input <source file> -output <new
compiled file> -character_set ASCII’

OpenVMS, UNIX, and Windows: Compile your messages using the following command:
cogmc -compile -input <source file> -output <new compiled file>
-character_set ASCII

5. To use the newly compiled message file
MPE/iX: Set file equations to restore the environment and reference the alternative message
file. Note that the file locations are MPE/iX locations. For example,
SETVAR COGNLSTAB="COGLANG.<version>.COGNOS"
DELETEVAR SRVCMSGS
FILE SRVCMSGS=MYMSG.MSG

OpenVMS: Define the system logical SRVCMSGS to reference this alternative file.
DEFINE SRVCMSGS PATHALTMSG:[ANOTHER.PATH]MYMSG.MSG

UNIX: Modify the environment variable SRVCMSGS to reference this alternative file.
setenv SRVCMSGS "/user/home/mymsgfile.msg"

-character_set "character
set name"

Specifies the character set used in text files for all modes.

-verbose Forces the generation of verbose output messages for all modes.

-nocase Forces case-insensitive parsing of the source file for -compile mode.

-command filename Specifies a text file from which to read command line parameters
for all modes.

Any other options are for internal use only.

Option Use

270 PowerHouse(R) 4GL Version 8.4E

Chapter 4: Messages in PowerHouse

Windows: Modify the SRVCMSGS entry in the powerhouse.ini or phweb.ini file. Or, use the
SRVCMSGS environment variable. The ini file entry takes precedence over the environment
variable.

Runtime Message Format

As an example from the sample message file provided above, the message that is entered as
INTCALL_UDF "The internal_call() function was not specified."

displays at runtime as:
EXPENG-E-INTCALL_UDF, The internal_call() function was not specified.

This message, displayed at runtime, is built from four pieces of information
• the component to which the message belongs
• the severity associated with the message
• the message identifier
• the message itself

<component>-<severity>-<message id>, <message>

Rules for Modifying Default Service Layer Messages

When you modify an alternative service layer message file, ensure that:
• the modified message contains the same number of substitution characters as the original

message, if you modify a message that contains substitution characters
• only the message text, substitution parameter and the component name and short name are

modified
• the message identifier, severity and prefix remain the same
• none of the following keywords can be used for component identifiers or names:

CATEGORY
COMPONENT
PARAMETER
PREFIX
NAME
SEVERITY

Designer Messages
You can create application-specific designer messages for use with each PowerHouse component
and service layer message. Designer messages are meant to supplement default messages, whereas
alternative messages are meant to replace default messages.

To create designer messages, simply change the messages as required in the following message
files:

You can define both alternative message files and designer message files. The former replace
standard PowerHouse messages wherever they occur, while the latter are used to replace
hard-coded messages in your screen.

Designated Message File1 UNIX/Windows Environment Variable Component

qkmsgdes QKMSGDES QUICK

qtpmsgdes QTPMSGDES QTP

qzmsgdes QZMSGDES QUIZ

1The file extension for OpenVMS, UNIX and Windows message files is .txt.

Chapter 4: Messages in PowerHouse

PowerHouse Rules 271

Designer messages allow you to change messages in your screens without having to recompile the
screens. Instead, you simply change the designer messages as required in your designer message
files. These messages are retrieved as required at execution time.

Format of Message File

A designer message file is an order-dependent text file. PowerHouse 4GL uses the record number
to retrieve a message. A message may contain one or more message substitution characters, by
default, a caret (^), which PowerHouse uses to insert additional text.

When modifying a message or translating a message into another language, you may want to alter
the order of substitution. To do this, see (p. 271).

Example of a Designer Message File
•
•
•
Enter a valid employee name.
This value is not within the range for page length.

Notify ^. ^, billings are less than $300.
Not a valid project code.
•
•
•

Creating a Designer Message

In QUICK, the designer message file is created using the system editor. The designer message file
must be a flat text file. Message number 1 is contained in the first record, message number 2 in the
second record, and so on.

In QDESIGN, QTP, and QUIZ you can reference the designer messages in the SUBSTITUTE
statement.

In QDESIGN, you can also reference the designer messages in
• the MESSAGE option of the ERROR, INFORMATION, SEVERE, and WARNING verbs
• the LOOKUP MESSAGE option of the FIELD statement
• the BALANCE MESSAGE option of the ITEM statement

For example, instead of specifying a string for a particular message, you can specify the number of
a message in the QUICK designer message file, as in
> FIELD EMPLOYEE LOOKUP ON EMPLOYEES MESSAGE 10

In this example, QUICK uses the message number 10 in your QUICK designer message file. This
allows you to change messages without recompiling screens.

If QUICK cannot find a message relating to the number used, it displays a standard message
containing the missing message number and issues the appropriate warning or error message.

OpenVMS: After creating your Designer Message file, convert the message files using the
following command:
$convert/fdl=PH_MESSAGE_LOCATION:MSG.FDL/PAD=%D32 designermsgfile.txt
designermsgfile.txt

Text Order Numbering
Both PowerHouse 4GL and designer message files support text order numbering.

Text order numbers control the order in which message strings replace substitution characters.
You can use them only when a PowerHouse message contains more than one substitution
character and when you want to explicitly control the order of message substitutions going into
your message.

272 PowerHouse(R) 4GL Version 8.4E

Chapter 4: Messages in PowerHouse

When you use multiple substitution characters in a single string and you don't specify text order
numbers, all substitutions are made strictly in order of appearance. That is, the first value is
substituted for the first substitution character, the second value for the second substitution
character, and so on. This dependence on order can be limiting when a PowerHouse system is
being translated from one language to another. Translation often requires the reordering of
sentences, and consequently, message substitutions.

To modify the substitution order in a message, you must append text order numbers to the
message substitution characters in that message. For example, suppose that in preparing a
translated message file you decide to reverse the sentence structure of this message
Data name UPS may conflict with keyword UPSHIFT.

In this example, the message contains two substitution characters as follows:
Data name ^ may conflict with keyword ^.

To reverse the order in which the replacement text (in this case UPS and UPSHIFT) is inserted into
the message, you can restructure the original message and change it so that it contains text order
numbers, as in
Keyword ^2 may conflict with data name ^1.

At run time, messages are substituted into the string as follows:
Keyword UPSHIFT may conflict with data name UPS.

PowerHouse Rules 273

Chapter 5: PowerHouse Language Rules

Overview
This chapter contains detailed discussions of
• PowerHouse syntax and its presentation
• general terms that appear in syntax
• entering statements
• PowerHouse arrays, conditions, expressions, items, item datatypes, decimal alignment and

scaling, and pattern matching
• QUICK screen commands
• blob support
• null value support
• conditions, summary operations, expressions and pattern matching in SQL

Syntax Symbols in PowerHouse

Uppercase and Lowercase
Words shown in uppercase are keywords (for example, STATEMENT and OR). While shown in
uppercase in the syntax, keywords can be entered in uppercase, lowercase, or mixed case. For
more information about abbreviating keywords, see (p. 281).

Words shown in lowercase are general terms that describe what you should enter (for example,
general-term and this). For more information about general terms, see (p. 275).

Square Brackets
Square brackets ([]) indicate an option. (Anything not in square brackets must be entered.) Both
keywords and general terms can be optional. If a keyword is optional, it's enclosed within square
brackets. In this example,
SELECT record-structure [IF condition]

the IF condition is optional.

Uppercase
words indicate
PowerHouse
keywords

General terms
describe what
you enter

Braces group
options with
sub-options

Ellipsis indicate
you can repeat
a term

STATEMENT general-term this|that| {OR the other} [option] [options] ...

Or-bars denote
exclusive
options

Square brackets
indicate options

274 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules

You can enter options enclosed in square brackets ([]) in any order unless their description states
otherwise. For example, the syntax
SET NOVERIFY [DELETE] [ERRORS]

allows you to enter options like this:
> SET NOVERIFY DELETE ERRORS

or
> SET NOVERIFY ERRORS DELETE

Braces
Braces ({ }) indicate keywords and general terms that form a distinct group. In the example on
(p. 273), the mutually-exclusive option, "OR the other", is a group that must be entered together.

Ellipsis
An ellipsis (...) indicates that you can repeat the preceding option or general term. For example,
the syntax

SET option...
Indicates that you can specify more than one option, but you must specify at least one option.

Similarly,
SET JOB [option]...

indicates that you can specify as many options as are available for the SET JOB statement or not
specify any at all.

Or-Bars
An or-bar (|) indicates that you can only specify one listed option; these options are mutually
exclusive. In the example, you can enter
STATEMENT general-term this

or
STATEMENT general-term that

or
STATEMENT general-term OR theother

Stacked Syntax
Syntax is also mutually exclusive when it is stacked. For example,
SELECT [IF condition]
SELECT record-structure [IF condition]

Indented Syntax
Indented syntax indicates that a single statement or option is too long to fit on one line of text.

This indented syntax isn't mutually exclusive:
PAGE HEADING [ALIGN|NOALIGN] [report-group]

[KEEP [COLUMN] [HEADINGS]
[SKIP[n]]]

Chapter 5: PowerHouse Language Rules
General Terms in PowerHouse

PowerHouse Rules 275

General Terms in PowerHouse
General terms are part of the statement syntax. They are terms that describe what you should
enter.

This list defines the general terms that PowerHouse uses most frequently in PowerHouse syntax:

account The name of an MPE/iX account.

application-line A line in simulated terminal memory having the value of 1 to 240.

array An item declared as a repeating item in the data dictionary.

asc An application security class declared in the data dictionary.

case-expression-
set

Compares the value of an item against a value or range of values and selects
one expression-set to be used to determine the values for the linkitem.

case-processing A specification for comparing the value of an item against a known value or
series of values and performing actions based on the outcome of the
comparison.

char A single character (a letter, number, or special character) enclosed in double
or single quotation marks.

character A single character not enclosed in quotation marks.

characters One or more characters not enclosed in quotation marks.

colon-variable A variable-name prefixed by a colon (:) used in SQL to identify
PowerHouse variables.

column The name of a column in a table or view in a relational database declared in
the data dictionary.

column-name The name of a simple or derived column.

columnspec A fully qualified column-name.

condition A logical test that must be satisfied in order for a specified action to occur
(see (p. 289)).

conditional-
command-list

One or more commands separated by commas that specifies what
commands the PRECOMMANDS or POSTCOMMANDS options on the
DESIGNER procedure execute, and, optionally, under what conditions.

conditional-
expression

A means of evaluating a series of expressions based on conditions. See
(p. 298).

cursor The name of a set of data declared on a DECLARE CURSOR statement.

cursor-name The name of a cursor defined by the PowerHouse DECLARE CURSOR
statement.

cursor-reference A cursor-name or table-name named in a CURSOR statement.

database The name of a relational database declared in the data dictionary.

dataset The name of an IMAGE or Eloquence dataset.

datatype Determines the format that PowerHouse uses when it stores the item.

276 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
General Terms in PowerHouse

date-expression An expression that results in a six-digit or eight-digit date, or a datetime
(see (p. 301)).

date-format The sequence in which the day, month, and year portions of a date are
entered and displayed. A date-format specified as a system-wide option
must include the day, month, and year.

days A number of days.

dd A number representing a day of a month.

ddd A number representing a day of the year.

defined-item An item declared on a DEFINE statement in QDESIGN, QUIZ, or QTP.

derived-column A column derived from an expression. To directly reference the derived
column in PowerHouse, a name must be assigned to the expression, as in:
expression [AS column-name]

dsc A dictionary security class declared in the data dictionary.

element The name of an element defined in the data dictionary.

entity One of DATABASE, ELEMENT, FILE, SYSTEM, TRANSACTION, or
USAGE.

etp An execution time parameter declared in the data dictionary.

expression One of date-expression, numeric-expression, or string-expression.

extension A three character code indicating the type of file.

field An item declared on a FIELD statement in QDESIGN.

file A collection of data records. A file can contain more than one
record-structure. In syntax, the general term file refers to a file declared in
the data dictionary.

filelocation The physical location.

filename The name of a file without the filelocation (and, for UNIX files, without the
suffix).

filespec The specification for a physical file, as it is identified to the operating
system. A file specification takes the general form:

MPE/iX:

OpenVMS:

UNIX:

Windows

[*]filename[/lockword][.group[.account]

[device:][directory] filename[.extension][;<version>]

Square brackets are required around a directory name.

[/] [directory /] ... filename

[drive:\] [directory\] ... filename

Limit (OpenVMS, UNIX, Windows): The maximum length for a filespec is
256 characters. Filespecs are restricted to alphanumeric and punctuation
characters. The characters $ and leading question mark (?) have special
meanings and are prohibited. Filespecs are case sensitive.

format A set of options that govern how an item is displayed in QUIZ.

function-result The result of the operation of a data-manipulation function.

Chapter 5: PowerHouse Language Rules
General Terms in PowerHouse

PowerHouse Rules 277

group The name of an MPE/iX group.

highlight A screen enhancement. The AUDIBLE highlight is not available on the
FIELD statement in QDESIGN.

hours A number of hours with a value of 0 to 23.

hundredths A number of hundredths of a second.

index Provides a way to link records in one file with those in another. Indexes can
be either primary or alternate. The first index is the primary index by
default. All subsequent indexes are alternate indexes.

indexname The name of a PowerHouse index as defined in the data dictionary or a
relational database.

item A record item (an item declared in the data dictionary), a predefined item, a
temporary item, a global temporary, or a defined item.

keyword Any word in a statement or command that has a specific meaning to
PowerHouse.

linkage A connection between record-structures.

linkitem A segment of an index or a column in a relational table.

lockword The lockword for an MPE or KSAM file on MPE/iX.

logical function A function that can be tested directly in a condition. Logical functions can
be used within SQL. Any expression within SQL must be an sql-expression
but cannot reference defined-items, predefined-items, record-items,
table-columns, or temporary-items.

logonid The system logonid of a user.

MPE/iX:

OpenVMS:

has the general form

user.account

An OpenVMS user name with a limit of 12 characters.

metacharacter A PDL keyword describing a pattern matching metacharacter; either
ALPHA, ANY, DIGIT, ESCAPE, LEFTP, NOT, NULL, OPTIONAL,
OPTREP, OR, REPEAT, RIGHTP, or WILD.

minutes A number of minutes with a value of 0 to 60.

mm A number representing a month with a value of 1 to 12.

mmm A three-letter month abbreviation; either JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, or DEC.

m or n Values that you replace with numbers.

name A unique name identifying a PowerHouse entity. You use a name with the
keyword that appears immediately prior to it. All PowerHouse names must
start with a letter, and can contain letters, digits, and any of the special
characters specified in the SYSTEM OPTIONS statement in the dictionary.
You can specify a name up to 64 characters long.

Names are automatically shifted to uppercase unless the program is run
with the NOSHIFT parameter, or the SET NOSHIFT is in effect.

278 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
General Terms in PowerHouse

numeric-
expression

A single number or a series of terms that yield a numeric result (see
(p. 300)).

pattern A string of characters that describes a value or a group of values (see
(p. 351)).

open-name-string A valid database open specification that is passed directly to the database
server in order to gain access to the database.

predefined-
condition

An automatically defined condition.

predefined-item An automatically defined temporary item in QDESIGN; either
FIELDTEXT, FIELDVALUE, OCCURRENCE, PATH, or SUBPATH.

predefined-value Indicates a specific predefined value to display.

procedural-
statement

A series of procedural statements enclosed within BEGIN and END control
structures, a single procedural verb, or one of the control structures
BLOCK TRANSFER, DISABLE, FOR, IF, WHILE, or WHILE
RETRIEVING. If DISABLE is used, it must be the only procedural
statement in the procedure.

project-list A list of column-names selected by the query-expression. If duplicate names
exist in multiple declare cursors, the option OF cursor-name can be used to
identify the proper item.

query-expression A query specification or the union of two or more query-specifications.

query-
specification

Defines a collection of rows that will be accessible when the cursor is
opened.

record The name of a record-structure defined in the data dictionary.

record-complex Consists of a data record from the primary record-structure in the ACCESS
statement and one data record from each of the related "linked to"
record-structures; together they form a compound record. PowerHouse
builds a series of record complexes for each data record in the primary
record-structure.

record-item An item defined in a record-structure.

record-structure The name of a record-structure defined in the dictionary or a table in a
relational database.

report-group In QUIZ, determines the content and format of detail lines, headings, and
footings. The general form is:
[report-item]... [SKIP[n|PAGE]]
[RESERVE n [LINES]]

report-item In QUIZ, specifies what to report, its position and format, and whether to
print it on every line or only at a control break. The general form is:
[SKIP [N|PAGE]] [TAB n] content
[format-options]
[PRINT AT sort-item]

report-name In QUIZ, the name of a compiled PowerHouse report.

row A line relative to the current screen; has a value of 1 to 24.

seconds A number of seconds and has a value of 0 to 60.

Chapter 5: PowerHouse Language Rules
General Terms in PowerHouse

PowerHouse Rules 279

segment An item that is part of an index. An index can contain one or more
segments.

screen-name The name of a compiled screen.

sort-item An item that you name in a SORT or SORTED statement in QUIZ or QTP.
A change in the value of a sort-item signals a control break.

sql-conditions Conditions which are limited to use within SQL syntax (see (p. 298)).

sql-datatype One of BINARY, CHARACTER, DATE, DATETIME, DECIMAL,
DOUBLE, FLOAT, INTEGER, INTERVAL, LONGVARBINARY,
LONGVARCHAR, QUADWORD, SMALLINT, TIME, VARBINARY, or
VARCHAR.

sql-date-
expression

An sql-expression that yields a value of SQL type DATE, INTERVAL,
TIME, or TIMESTAMP.

sql-expression One of sql-date-expression, sql-numeric-expression, or
sql-string-expression.

sql-numeric-
expression

Has the general form:
sql-term [sql-operator sql-term]...

sql-operator Denotes a mathematical function and is one of +, -, *, or /.

sql-summary-
operations

AVG, COUNT, SUM, MAX, and MIN operations used within SQL.

sql-substitution An sql-substitution can be specified for any substitution variable defined on
the DECLARE CURSOR statement. Two default sql-substitutions, WHERE
and ORDERBY, will be inserted in generated SQL statements even if the
corresponding substitution-variables do not exist on a DECLARE
CURSOR statement.

The syntax for an sql-substitution is:
substitution-variable (text)

sql-substitution-
variable

A name for SQL syntax that is substituted for that name when the
statement is parsed.

sql-syntax Any SQL syntax that is valid when substituted for the corresponding
sql-substitution-variable.

string A series of characters (letters, numbers, or special characters) enclosed in
double or single quotation marks. In SQL a string must be enclosed in
single quotation marks.

string-expression A single string or series of items that yield a string result (see (p. 300)).

subfilespec The filespec for a self-describing file.

subquery Identical to a query-specification with two exceptions: the subquery must
project a single-column table and the syntax of the subquery includes
enclosing brackets.

subscript A numeric expression that evaluates to a number used to reference a
specific occurrence of an array.

280 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
General Terms in PowerHouse

substitution-
variable

A variable-name prefixed by the double colon (::) which is used in SQL to
identify the location for substitutions. The text is the default substitution if
no other substitution is specified.
::variable-name(text)

system-function A function that returns a value set by PowerHouse.

tablespec A fully qualified table-name.

table-name The name of a table or view defined in a relational database.

temporary-item An item declared on a TEMPORARY statement in QDESIGN or QTP, or a
GLOBAL TEMPORARY statement in QTP.

term Either string, number, item, expression, system-function, function-result,
case-expression-set, parameter specification, USER system variable, column
specification, or sql-summary-operation (see (p. 300)).

termtype A terminal type supported by QUICK.

transaction The name of a relational transaction declared on a TRANSACTION
statement in QDESIGN, or one of the predefined transactions: Consistency,
Query, or Update.

type Determines what type of data an item holds and what type of operations
are valid.

type-option An option that assigns special attributes to NUMERIC or DATE items.

usage The name of a usage declared in the data dictionary.

value A single string or a single number, depending on the item type.

value-set A single value or a range of values with the general form
value [TO value]

yy A number representing a year excluding the century.

yyyy A number representing a year including the century.

Chapter 5: PowerHouse Language Rules
Entering Statements

PowerHouse Rules 281

Entering Statements
The PowerHouse default prompt is >. Once you start a PowerHouse component, you can enter
one statement per line. For example
> FIELD EMPLOYEENUMBER OF EMPLOYEES REQUIRED &
> NOCHANGE LOOKUP NOTON EMPLOYEES

If you want to split a line for better readability, or if your statement exceeds one line, you can split
the statement across any number of lines by placing an ampersand (&) at the end of every
incomplete line. For example
> FIELD EMPLOYEENUMBER OF EMPLOYEES &
> REQUIRED &
> NOCHANGE &
> LOOKUP NOTON EMPLOYEES

Anything that appears after the continuation character in a line is ignored.

You can begin statements and continuation lines in any column.

You must separate each part of a statement (keywords, values, and entity names) by at least one
space.

You can enter options in any order, unless otherwise specified.

Abbreviating Keywords
In most instances, you can abbreviate PowerHouse keywords with the first three or more
characters. For example, you can abbreviate the REVISE statement to REV or ACCESS to ACC.
In some cases, you can abbreviate keywords to fewer than three characters. For example, you can
abbreviate the EXIT statement to EXI, EX, or E. PowerHouse displays a warning when you enter
a keyword abbreviation that could refer to more than one keyword. For example, the
abbreviation CON can refer to either CONSISTENCY or CONCURRENCY.

Avoiding Conflicts Between Keywords and Record or Item Names
If a record-structure name or item name is the same as a keyword or abbreviation, prefix the name
with a percent sign (%) to avoid ambiguity. For example, %MOD refers to a record-structure or
item named MOD rather than the data manipulation function named MOD.

What Happens When You Enter Statements
As you enter statements, PowerHouse checks for the proper syntax and content.

Statements are non-procedural and have a free-form syntax. In all components, statements must
be entered in a logical structure. For more information, see the statements chapters in the
reference manuals for QUIZ, QTP, QDESIGN, and PDL.

If PowerHouse finds an error or an unusual condition, an error or warning message is issued.

PowerHouse ignores:
• the remainder of the statement after issuing a syntax error (if you make a syntax error, a list of

expected statements is displayed)
• completely blank lines
• anything after a semicolon (indicating comments), unless a semicolon occurs within a string

Entering Comments
A comment begins with a semicolon and continues to the end of the line. For example,
> SCREEN INVOICE ;create screen named INVOICE
> FILE INVOICES OCCURS 9
> FILE STOCK REFERENCE
> ;multiply the value entered for PRICE with the
> ;value entered for QUANTITY and then
> ;add the TAX amount

282 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Entering Statements

> DEFINE DOUBLECHECK NUMERIC*8 = PRICE * QUANTITY &
> + TAX

Entering Conditional Compile Statements
Conditional compile statements include
@IF [NOT] name [[AND|OR] [NOT] name]...
[@ELSEIF name [[AND|OR] [NOT] name]...]
@ELSE
@ENDIF

You must include a predefined conditional compilation parameter or a name in the @IF and
@ELSEIF statements.

You must precede conditional compile statements with an at-sign (@) in column 1. The statement
following a conditional compilation statement must be on a separate line.

You can continue conditional compile statements by entering an ampersand (&) at the end of a
line and then beginning the continuation line with an at-sign (@) in column 1.

Creating Compound Condition Statements

You can create compound conditions by using the logical operators NOT, AND, and OR.
PowerHouse gives precedence in compound conditions in the following order:
1. NOT
2. AND
3. OR

Thus, PowerHouse will process the following:
NOT condition1 AND condition2 OR condition3

as
(((NOT condition1) AND condition2) OR condition3)

Types of Conditions

You can use conditional compilation for single, multiple or predefined conditions.

Single and Multiple Conditional Compilation
Single conditional compilation is when one conditional compile flag is specified; multiple
conditional compilation is when two or more conditional compile flags are specified.

Predefined Conditional Compilation
PowerHouse predefines one or more conditional compile flags to simplify cross-platform
development. These flags are always TRUE when PowerHouse is running on their associated
platform (hardware/OS). These flags indicate which hardware and operating system PowerHouse
is running on.

The following table lists these predefined conditional compile flags by hardware and operating
system:

Hardware Operating System Predefined Conditional Compile Flags

HP e3000 PA-RISC MPE/iX HPMPEXL

HP 9000 PA-RISC HP-UX UNIX, HPUX, PARISC

HP Integrity Itanium 2 HP-UX UNIX, HPUX, IA64

HP AlphaServer OpenVMS OPENVMS, VAXVMS, ALPHA

HP VAX OpenVMS OPENVMS, VAXVMS, VAX

HP Integrity Itanium 2 OpenVMS OPENVMS, VAXVMS, IA64

Chapter 5: PowerHouse Language Rules
Entering Statements

PowerHouse Rules 283

For each operating system in the preceding table, the conditional compile flags are listed in order
from generic to specific. For example, for the HP-UX operating system, the UNIX flag is generic
whereas the HPUX flag is specific. As a rule, use the most generic flag possible since specific flags
reduce the cross-platform portability of your applications. Specific flags should be used only when
some of the code is hardware dependent, such as floating point accuracy.

Operating System Commands
To execute an operating system command in PowerHouse:

To write an operating system command to the current save file:

IBM RS/6000, pSeries AIX UNIX, IBMR2AIX

Intel IA32 PC Windows WINDOWS

Sun SPARC Solaris UNIX, SOLARIS

Hardware Operating System Predefined Conditional Compile Flags

MPE/iX: begin a line with a colon (:).

OpenVMS: begin a line with a dollar sign ($).

UNIX, Windows: begin a line with an exclamation mark (!).

MPE/iX: begin a line with two colons (::) followed by the command.

In the save file, only one colon is stored.

OpenVMS: begin a line with two dollar signs ($$) followed by the command.

In the save file, only one dollar sign is stored.

UNIX, Windows: begin a line with two exclamation marks (!!) followed by the command.

In the save file, only one exclamation mark is stored.

284 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Arrays in PowerHouse

Arrays in PowerHouse
An array (also called a repeating item) is an item in a record or a temporary item that the designer
defines with multiple occurrences. For example, if you want to store twelve monthly totals in a
record, you can define a single item, AMOUNT, with twelve occurrences. The resulting structure
is an array. QSHOW lists this element with its name (AMOUNT) and attributes, and the
corresponding item includes the number of occurrences (12).

Using Arrays in QDESIGN
To manipulate data in arrays in QUICK, you must create a field for each occurrence of an item
defined with multiple occurrences. You do this by using the OCCURS WITH option of the
CLUSTER statement in QDESIGN. QDESIGN does this automatically if you use the GENERATE
statement to create your fields.

You cannot declare a repeating item within a file that repeats on the screen.

The following example shows how you can include all the occurrences of the item AMOUNT (as
defined in a record-structure named BILLINGS) on a QUICK screen:
> SCREEN YRAMT
> FILE BILLINGS PRIMARY
> FIELD CUSTOMERNO OF BILLINGS
> FIELD CUSTOMERNAME OF BILLINGS
> CLUSTER OCCURS WITH AMOUNT OF BILLINGS
> FIELD AMOUNT OF BILLINGS
> CLUSTER
> BUILD

The YRAMT screen contains one field for each occurrence of the array AMOUNT. PowerHouse
labels each of these AMOUNT fields identically with the label specified in the data dictionary. You
can suppress the common label with either the ALIGN statement or the NOLABEL option of the
FIELD statement. You can then use the TITLE statement to generate more meaningful labels, such
as JAN for the first occurrence, FEB for the second occurrence, and so on for the individual
occurrences of the array, AMOUNT.

Referencing an Occurrence

By default, each occurrence of a repeating item in an array appears on a screen with an
ID-number, allowing the QUICK screen user to reference each occurrence.

QDESIGN generates FOR control structure loops in the applicable procedures, based on
CLUSTER statements in the layout section. The FOR control structure sets the predefined item,
OCCURRENCE. This function controls which occurrence of a repeating item PowerHouse
addresses.

You can also address a specific occurrence of an item in an array using procedures, as in
> PROCEDURE INTERNAL FIXARRAY
> BEGIN
> FOR EACH ARRAY1
> IF OCCURRENCE = 1
> THEN LET ARRAY1 = 1
> ELSE IF OCCURRENCE = 2
> THEN LET ARRAY1 = 2
.
.
.
> END

Automatic Initialization of Arrays in QDESIGN

QUICK automatically handles the item initialization of arrays in the different record-structures
declared on the screen. When arrays in different record-structures, or an array and a
non-repeating item in different record-structures have the same name, QUICK performs automatic
initialization in the same way as QTP. For information about automatic initialization in QTP, see
(p. 287).

Chapter 5: PowerHouse Language Rules
Arrays in PowerHouse

PowerHouse Rules 285

QUICK follows specific rules when initializing individual occurrences of an array based on
occurrences of either another array or a non-repeating item. When arrays in different
record-structures or an array and a non-repeating item in different record-structures have the
same name, QUICK performs automatic initialization based on the target and source. The
following rules apply to automatic initialization of arrays:
• If the target array has the same number of occurrences as the source array, there is a

one-to-one correspondence between them.
• If the target array has fewer occurrences than the source array, there is a one-to-one

correspondence between them, up to the last occurrence of the target array.
• If the target array has more occurrences than the source array, there is a one-to-one

correspondence between them, up to the last occurrence of the source array. QUICK initializes
the extra occurrences in the target array to blank, zeros or default values.

• If the target is an array and the source is a non-repeating item, QUICK initializes all
occurrences of the array to the value of the item.

• If the target is a non-repeating item and the source is an array, QUICK initializes the item to
the value of the first occurrence of the array.

Subscripting in QUIZ and QTP
In QUIZ and QTP, you can reference individual occurrences within an array with subscripts. The
general syntax of a specific occurrence of an array is

The general term array is the name of the item defined with multiple occurrences;
numeric-expression is the subscript. In the REPORT statement, you must use literal numbers as
array subscripts, as in
amount(1)

When you reference an array occurrence in a DEFINE statement, you can use numeric expressions
or items as array subscripts. For example, if the numeric item AMT is such that the expression
AMT + 6

returns a number that lies within the range defined for AMOUNT, you can use AMOUNT (AMT
+ 6) to reference an individual occurrence of the array.

The maximum number of item occurrences within an array that QTP can address is 4,096.

Array subscripts must always lie within the range of values defined for the array in the data
dictionary. For example, if you define a single item AMOUNT with twelve occurrences, a
subscript that references an individual occurrence of the array AMOUNT must be greater than or
equal to 1 and less than or equal to 12.

Using Arrays in QUIZ
You can
• add some or all occurrences of an array
• reference individual occurrences of array items by subscripting

The SUM function can sum the entire array or a subset of the occurrences in an array. For a
detailed description of the SUM function, see (p. 466).

To report an individual occurrence of an array, you must use a number rather than a numeric
expression as the array subscript. Assume that PowerHouse stores a numeric value for each of the
twelve calendar months in the corresponding twelve occurrences of MONTHLYBILLINGS. To
report the value for January, enter
> REPORT MONTHLYBILLINGS(1)

Names the item defined with multiple occurrences

array(numeric expression)

The subscript

286 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Arrays in PowerHouse

If you reference an array without a subscript, PowerHouse reports only the first occurrence of the
array. If you want to report all occurrences, you must explicitly reference each occurrence of the
array by subscript or specify REPORT ALL.

In contrast to the report statement, the define statement allows you to use literal values, items, or
numeric expressions as array subscripts. For example, if the item, currentmonth, contains a value
in the range 1 to 12, you can report the occurrence of the array, MONTHLYBILLINGS, for the
current month by entering
> DEFINE CURRENTAMOUNT = MONTHLYBILLINGS(CURRENTMONTH)
> REPORT CURRENTAMOUNT

You can’t write arrays to QUIZ subfiles and later access them by individual occurrence.
PowerHouse defines the subfile content with the REPORT statement; therefore, PowerHouse
writes the array as a series of individual items with the same name. As a result, the only value that
you can report from the array is the first one.

To write all of the occurrences of an array to a subfile, you must create a defined item for each
array occurrence, and write the values of the defined items to the subfile. For example,
> DEFINE JANBILLINGS=MONTHLYBILLINGS (1)
.
.
.
> DEFINE DECBILLINGS=MONTHLYBILLINGS(12)
> REPORT JANBILLINGS ... DECBILLINGS
> SET SUBFILE NAME MONTHLYBILLINGS KEEP

Arrays in the EDIT Statement

QUIZ either edits the entire array or one particular occurrence within the array. If you use an
array in an EDIT statement without a subscript, each occurrence in the array must pass the edit. If
you use a subscript, you edit only that occurrence.

Using Arrays in QTP
In QTP, you can
• add some or all occurrences of an array
• perform calculations involving entire arrays
• access individual occurrences of an item

The SUM function can sum the entire array or a subset of the occurrences in an array. For a
detailed description of the SUM function, see (p. 466).

Array subscripts are either literal numbers such as AMOUNT(3) or numeric expressions such as
AMOUNT(AMOUNT+6). When you use a numeric expression as an array subscript and it results
in a fractional value, QTP truncates the value.

If you try to reference an individual array occurrence with a subscript that lies outside the range
defined for the array, QTP issues a calculation error.

You can use a subscripted array item almost anywhere that you can use an unsubscripted item.
However, you can’t use a subscripted array item as a sort-item or in the INCLUDE option list of a
SUBFILE statement. You can bypass both of these restrictions by defining a new item equated to
the array occurrence, as in
> define month = parm
> define sortitem = amount(month)
> sort on Sortitem

Arrays in the EDIT Statement

QTP either edits the entire array or one particular occurrence within the array. If you use an array
in an EDIT statement without a subscript, each occurrence in the array must pass the edit. If you
use a subscript, you edit only that occurrence.

Arrays in the ITEM Statement

You can use individual occurrences of an array in the item statement, as in

Chapter 5: PowerHouse Language Rules
Arrays in PowerHouse

PowerHouse Rules 287

> item amount(12) final 1000

In this case, QTP references only the designated occurrence.

You can also reference all occurrences of an array in the item statement. For example, the
statement
> item amount initial 0

initializes all 12 occurrences of the array amount to zero.

An array can be both the source and target in an ITEM statement, as in
> item array1 initial array2

In the preceding example, AMOUNT is declared to be OCCURS 12.

If both arrays have the same number of occurrences, QTP initializes each occurrence in ARRAY1
to the value of the corresponding occurrence in ARRAY2. If ARRAY2 has more occurrences than
ARRAY1, QTP ignores the extra occurrences in ARRAY2. However, if ARRAY2 has fewer
occurrences than ARRAY1, the run will terminate.

A non-repeating item cannot be the target of an array, but it can be the target of one occurrence of
an array, as in
> ITEM COST FINAL ARRAY1(2)

QTP gives the item COST the value of the second occurrence of ARRAY1.

Performing Calculations on Entire Arrays

When the target of an ITEM statement is an unsubscripted array, any expression that is a part of
that ITEM statement can also include the unsubscripted array. This is particularly useful for
performing calculations on entire arrays. If you perform such calculations, the unsubscripted
arrays referenced by the calculation must have at least as many occurrences as the unsubscripted
target array. If this is not the case, a calculation error occurs.

For example, suppose you have defined three arrays: monthtotcurr, monthtotprev, and
monthaverage. Each of these arrays contains twelve items (one for each month). The statement
> item monthaverage final &
> (monthtotprev + monthTotcurr) / numyears

calculates twelve different amounts for the array monthaverage using the corresponding twelve
values of the monthtotprev and monthtotcurr arrays. This ITEM statement is equivalent to the
following statements:
> item monthaverage(1) final &
> (monthtotprev(1) + monthtotcurr(1)) / Numyears
> item monthaverage(2) final &
> (monthtotprev(2) + monthtotcurr(2)) / numyears
.
.
.
> item monthaveraGe(12) final &
> (monthtotprev(12) + monthtotcurr(12)) / numyears

Automatic Initialization of Arrays in QTP

QTP follows specific rules when initializing individual occurrences of an array based on
occurrences of either another array or a non-repeating item. When arrays in different
record-structures or an array and a non-repeating item in different record-structures have the
same name, QTP performs automatic initialization based on the target and source. The following
rules apply to automatic initialization of arrays:
• If the target array has the same number of occurrences as the source array, there is a

one-to-one correspondence between them.
• If the target array has fewer occurrences than the source array, there is a one-to-one

correspondence between them, up to the last occurrence of the target array.
• If the target array has more occurrences than the source array, there is a one-to-one

correspondence between them, up to the last occurrence of the source array. QTP initializes
the extra occurrences in the target array to blank, zeros, or default values.

288 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Arrays in PowerHouse

• If the target is an array and the source is a non-repeating item, QTP initializes all occurrences
of the array to the value of the item.

• If the target is a non-repeating item and the source is an array, QTP initializes the item to the
value of the first occurrence of the array.

Referencing a specific occurrence of an array in the ITEM statement precludes automatic
initialization. If you use the ITEM statement to calculate the value of a specific occurrence of an
array, you should initialize all the occurrences in the array that aren’t calculated.

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

PowerHouse Rules 289

Conditions in PowerHouse
A condition is a logical test that must be satisfied in order for PowerHouse to perform a specific
action.

The general form of a condition is
[NOT] condition1 [{OR|AND} [NOT] condition2]...

where condition is one of:
• logical function
• logical expression
• predefined condition

Logical Function
A logical function is one that can be tested directly in a condition:
MATCHPATTERN (string-expression, pattern-string)

MATCHUSER (string-expression)

VALIDPATTERN (string-expression)

For more information about functions, see (p. 359).

Logical Expression
Logical expressions can be tested as a condition and have the form:
operand operator expression

operand

The operand in a condition is one of the following:
• a string
• a number
• a record item
• a temporary item
• a global temporary item
• a defined item
• a system function

operator

The operator causes a TRUE or FALSE response in a condition, as in

expression

See (p. 300).

LT or < less than

LE or <= less than or equal to

EQ or = equal to

GT or > greater than

GE or >= greater than or equal to

NE or <> not equal to

290 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

Predefined Conditions in QDESIGN
Predefined conditions are automatically defined. The designer can use them to test the current
state of QDESIGN.

The predefined conditions in QDESIGN are:

ACCESSOK

Tests whether the last attempted data retrieval succeeded. If you don't specify the OPTIONAL
keyword for the retrieval, then QUICK can't test the ACCESSOK condition because a failed
retrieval causes an error condition. The ACCESSOK condition relates to a QUICK session and not
to a specific QUICK screen.

ALTEREDRECORD [OF record-structure]
DELETEDRECORD [OF record-structure]
NEWRECORD [OF record-structure]

Determines the status of a record currently in a record buffer as follows:
• The NEWRECORD condition is true if the data record is new.
• The ALTEREDRECORD condition is true if QUICK changes the data record.
• The DELETEDRECORD condition is true if QUICK marks the data record for deletion.

The following tables illustrate the way in which QUICK sets the record status at different points
during Entry and Find mode processing. This table shows the status of predefined conditions in
Entry mode:

ACCESSOK ALTEREDRECORD

BLOCKMODE (MPE/iX) CHANGEMODE

CHARACTERMODE (MPE/iX) COMMANDOK

CORRECTMODE CURSOROPEN

DELETEDRECORD ENTRYMODE

item EXISTS item [IS] NULL|MISSING

FINDMODE NEWRECORD

OSACCESS PROMPTOK

RANGED (linkitem) SELECTMODE

SQLOK TRANSACTION

Processing Point NEWRECORD ALTEREDRECORD DELETEDRECORD

at Initialization True False False

after field entry True True False

U, UR, US, or UN in the
Action field

False False False

DELETE verb
encountered

True True or False True

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

PowerHouse Rules 291

This table shows the status of predefined conditions in Find mode:

If you omit the OF record-structure qualifier, the status is that of the assumed record-structure.
The assumed record-structure is the primary file unless it is changed with the SET ASSUMED
statement. If there is no assumed record-structure, the status is that of the current
record-structure.

BLOCKMODE
CHARACTERMODE (MPE/iX)

• The BLOCKMODE condition is true if the terminal has been switched to, or started in Block
mode.

• The CHARACTERMODE condition is true if the terminal has been switched to, or started in
Character mode

CHANGEMODE
CORRECTMODE
ENTRYMODE
FINDMODE
SELECTMODE

Determine which mode the screen is in.
• The CHANGEMODE condition is true if QUICK is in Find mode and is ready to accept

changes. The CHANGEMODE condition is also true after a successful Update Stay (US)
command and during execution of POSTFIND and DETAIL POSTFIND procedures.

• The CORRECTMODE condition is true if the screen is in Entry mode, has completed the
standard entry sequence, and is ready to accept corrections.

• The ENTRYMODE condition is true if the screen is in the standard entry sequence or in the
APPEND procedure.

• The FINDMODE condition is true if the screen performs Find mode initialization, retrieves
data records, or displays retrieved data. For more information, see "Find Mode Processing" in
Chapter 5, "QUICK’s Processing Modes", in the QDESIGN Reference.

• The SELECTMODE condition is true if QUICK is in Select mode, and until a record is found
and displayed on the screen. SELECTMODE is false when CHANGEMODE is true.

During the execution of the PATH and FIND procedures, both FINDMODE and SELECTMODE
return a true value when the FIND process is triggered by the Select Action command.

COMMANDOK

Tests the status of the last operating system command executed by the COMMAND statement or
the RUN COMMAND verb. The COMMANDOK condition is true unless an error was issued
during the execution of the last operating system command.

CURSOROPEN(cursor-name)

This condition checks if an SQL cursor is currently open. It returns TRUE if the cursor is currently
open; otherwise, FALSE is returned.

Processing Point NEWRECORD ALTEREDRECORD DELETEDRECORD

after first find False False False

DELETE verb
encountered

False True or False True

if data changed False True False

U, UR, US or UN in the
Action field

False False False

292 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

item EXISTS

EXISTS returns TRUE if the value for an item is not null; otherwise it returns FALSE.

item [IS] NULL|MISSING

IS NULL or IS MISSING returns TRUE if the value for the item is null; otherwise, it returns
FALSE.

For example, you can test for null values in the DEFINE statement, as in
> DEFINE DISPLAY_ADDRESS CHARACTER*50 = &
> "ADDRESS UNKNOWN" &
> IF ADDRESS IS NULL ELSE ADDRESS

or, by using the INITIAL and FINAL options of the ITEM statement:
> ITEM FLAG &
> FINAL "N/A" &
> IF RELITEM IS MISSING &
> ELSE " "

OSACCESS

Tests whether or not a QUICK screen user can access the operating system. Access to the
operating system is controlled through the osaccess|noosaccess program parameters, the dcl|nodcl
program parameters (OpenVMS), and the OSACCESS resource file statement.

PROMPTOK [FOR field]

Tests whether the QUICK screen user entered a value in response to the last ACCEPT, PROMPT,
REQUEST, or SELECT verb, or if a value was entered into FIELDTEXT by an input procedure.
The condition is true if the user entered a value.

The field option allows verification of an entry made in an explicit field. This is for use in Block
Transfer constructs.

RANGED(linkitem)

Returns TRUE if the linkitem value terminates with a generic search character. The RANGED
condition is used in the QDESIGN PATH procedure to set the SUBPATH variable for SQL.

SQLOK

Tests the status of the last SQL statement. The condition is TRUE unless an error has occurred
during execution of the last SQL statement. To determine which error occurred, use the
SQLCODE and SQLMESSAGE functions.

TRANSACTION transaction-name IS ACTIVE|INACTIVE

Determines whether a transaction is active or not. This predefined condition returns TRUE or
FALSE depending on whether the QUICK transaction has been started (and has not yet been
committed or rolled back).

Use this condition to decide whether a transaction should be committed or rolled back.

TRANSACTION transaction-name IS LOCALLY ACTIVE

Determines whether a transaction is locally active. This predefined condition returns TRUE or
FALSE depending on whether the QUICK transaction is locally active (and has not yet been
committed or rolled back). For more information about locally active transactions, see the
PowerHouse and Relational Databases book.

Use this condition to decide whether a transaction should be committed or rolled back, or to
imitate QUICK's automatic commit/rollback processing.

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

PowerHouse Rules 293

Predefined Conditions in QTP
Predefined conditions are automatically defined. They are:

ALTEREDRECORD OF record-structure

The ALTEREDRECORD condition is true if QTP changes the data record. This condition, along
with DELETEDRECORD and NEWRECORD, determine the status of a record currently in a
record buffer.

DELETEDRECORD OF record-structure

The DELETEDRECORD condition is true if QTP marks the data record for deletion. This
condition, along with ALTEREDRECORD and NEWRECORD, determine the status of a record
currently in a record buffer.

item EXISTS

EXISTS returns TRUE if the value for an item is not null; otherwise it returns FALSE.

item [IS] NULL|MISSING

IS NULL or IS MISSING returns TRUE if the value for the item is null; otherwise, it returns
FALSE.

For example, you can test for null values in the DEFINE statement, as in
> DEFINE DISPLAY_ADDRESS CHARACTER*50 = &
> "ADDRESS UNKNOWN" &
> IF ADDRESS IS NULL ELSE ADDRESS

or, by using the INITIAL and FINAL options of the ITEM statement:
> ITEM FLAG &
> FINAL "N/A" &
> IF RELITEM IS MISSING &
> ELSE " "

NEWRECORD OF record-structure

The NEWRECORD condition is true if the data record is new. This condition, along with
ALTEREDRECORD and DELETEDRECORD, determine the status of a record currently in a
record buffer.

RECORD record-structure EXISTS

Tests whether QTP retrieved a record for the specified record-structure. The condition is true if
the record-structure has been retrieved.

In the following example, QTP retrieves all the employee data records for which no billings exist:
> ACCESS EMPLOYEES LINK TO BILLINGS OPTIONAL
> SELECT IF NOT RECORD BILLINGS EXIST

You must ensure that the link to the BILLINGS record-structure is optional. Otherwise, all
employee data records that do not have billings associated with them are discarded prior to the
selection condition.

Using QTP Predefined Conditions

To determine what happened in the output phase, you can test the status of the output
record-structure record buffer. You can use the predefined conditions ALTEREDRECORD,
DELETEDRECORD, and NEWRECORD.

ALTEREDRECORD DELETEDRECORD

item EXISTS item [IS] NULL|MISSING

NEWRECORD RECORD

294 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

For example,
> REQ CUSTOMERUPDATE
> ACCESS SALESMASTER
> OUTPUT CUSTOMERMASTER UPDATE
> ITEM CURRENTBALANCE &
> FINAL (CURRENTBALANCE + SALESTOTAL)
> ITEM DATELASTMOD FINAL SYSDATE &
> IF ALTEREDRECORD OF CUSTOMERMASTER
> GO

Consider that the item, salestotal, in the input record-structure salesmaster has a value other than
zero. This means that
• when SALESTOTAL is added to the value item, CURRENTBALANCE, of the output

record-structure, the content of the output-file record buffer changes and the record status is
set to "changed." The predefined condition, ALTEREDRECORD, becomes true.

• the output record-structure is updated only if the values in the record change. If the
predefined condition, ALTEREDRECORD, becomes true, an update occurs.

• the last ITEM statement tests the predefined condition, ALTEREDRECORD. If TRUE, and
an update is to be performed, then the statement changes the value of item,
DATELASTMOD. The change in the date’s value and the update output action are both
caused by a change in some other part of the record.

This table shows the possible record status settings for the add, delete, and update output actions
at each stage of processing.

The following record status combinations don’t appear in the table, and never occur in QTP:
• new, changed, deleted
• new, unchanged, deleted
• old, changed, deleted

Thus, deleted can only appear with old, unchanged.

When the record buffer is initialized, the record status is set to new, unchanged, undeleted (that is,
the predefined condition, NEWRECORD, is true, and the predefined conditions,
ALTEREDRECORD and DELETEDRECORD, are false).

Any ITEM statement that causes a change in the content of the record buffer, including automatic
item initialization, causes QTP to set the record status to changed (the predefined condition,
ALTEREDRECORD, is true).

Timing ADD UPDATE DELETE

immediately after buffer
initialization

new,
unchanged,
undeleted

new,
unchanged,
undeleted

new,
unchanged,
undeleted

immediately after successful
record retrieval

n/a old,
unchanged,
undeleted

old,
unchanged,
undeleted

immediately after unsuccessful
record retrieval

n/a new,
unchanged,
undeleted

new,
unchanged,
undeleted

after processing ITEM
statements

new,
changed,
undeleted

old,
changed,
undeleted

n/a

after output action new,
changed,
undeleted

old,
changed,
undeleted

old,
unchanged,
deleted

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

PowerHouse Rules 295

For the DELETE and UPDATE output actions, QTP tries to retrieve the relevant data record from
the output record-structure. If the retrieval is successful, QTP sets the record status to old,
unchanged, undeleted (the predefined condition, NEWRECORD, is false). If the retrieval is
unsuccessful, record status remains new, unchanged, undeleted.

After an ADD output action, record status is set to new (the predefined condition,
NEWRECORD, is true). After a DELETE output action, QTP sets the record status to deleted (the
predefined condition, DELETEDRECORD, is true). In the case of the UPDATE output action,
only changed records are updated and the output action has no effect on record status.

Record status is not reset to new, unchanged, undeleted until the record buffer is reinitialized
following output. The timing of reinitialization depends on whether output occurs at detail
transaction time, at the beginning or end of a transaction set, or at the beginning or end of a
control group.

The record status of a subfile can be tested. The timing of status resetting for a subfile depends on
the timing of output to it. This is determined by the presence or the absence of an AT option in the
SUBFILE statement. ITEM statements with the FINAL option are processed and cause the record
status to be set to changed. Other options in ITEM statements for the subfile are invalid. When
the subfile record is written, record status is set to old and remains so until the status is reset.

Predefined Conditions in QUIZ
Predefined conditions are automatically defined. They are item EXISTS, item [IS]
NULL|MISSING, and RECORD record-structure EXISTS.

item EXISTS

EXISTS returns TRUE if the value for an item is not null; otherwise it returns FALSE.

item [IS] NULL|MISSING

IS NULL or IS MISSING returns TRUE if the value for the item is null; otherwise, it returns
FALSE.

For example, you can test for null values in the DEFINE statement, as in
> DEFINE DISPLAY_ADDRESS CHARACTER*50 = &
> "ADDRESS UNKNOWN" &
> IF ADDRESS IS NULL ELSE ADDRESS

or, by using the INITIAL and FINAL options of the ITEM statement:
> ITEM FLAG &
> FINAL "N/A" &
> IF RELITEM IS MISSING &
> ELSE " "

RECORD record-structure EXISTS

Tests whether PowerHouse retrieved a record for the specified record-structure. The condition is
true if the record has been retrieved. In the following example, QUIZ retrieves all the employee
data records for which no billings exist:
> ACCESS EMPLOYEES LINK TO BILLINGS OPTIONAL
> SELECT IF NOT RECORD BILLINGS EXISTS

You must ensure that the link to the BILLINGS record-structure is optional. Otherwise, all
employee data records that do not have billings associated with them are discarded prior to the
selection condition.

Simple Conditions
Simple conditions consist of an operand plus a single operator plus an expression.

296 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

Compound Conditions
You can create compound conditions by using the logical operators NOT, AND, and OR.
PowerHouse gives precedence in compound conditions in the following order:
1. NOT
2. AND
3. OR

Thus,
NOT condition1 AND condition2 OR condition3

means
(((NOT condition1) AND condition2) OR condition3)

With OR, the compound condition is true if either or both conditions are true. With AND, the
compound condition is true only if both conditions are true.

Order of Precedence

When you combine AND and OR, PowerHouse processes AND first, followed by OR. However,
parentheses can alter the order of precedence.

PowerHouse evaluates conditions within parentheses in the order in which they appear, from the
innermost set to the outermost set. When AND and OR are used together, use parentheses for
clarity.

In the following example, the records selected are those with a STARTDATE greater than January
1, 1994 and a CITY equal to BOSTON, or those with a CITY equal to OTTAWA:
> SELECT IF STARTDATE GT 19940101 &
> AND CITY = "BOSTON" &
> OR CITY = "OTTAWA"

In the next example, the records selected are those with a STARTDATE greater than January 1,
1994, and a CITY equal to BOSTON or OTTAWA:
> SELECT IF STARTDATE GT 19940101 &
> AND (CITY = "BOSTON" &
> OR CITY = "OTTAWA")

Modifying Simple and Compound Conditions
You can modify both simple and compound conditions with the keyword NOT. NOT means that
the reverse of the condition must be true for the test to be satisfied. The syntax for a NOT
condition is
[NOT] condition1 [{OR|AND} [NOT] condition2]...

Conditional Command List
The conditional command list can be used with the ACTIONMENU, KEY, and MENUITEM
statement, the PUSH verb, and with the PRECOMMANDS and POSTCOMMANDS options of
the DESIGNER procedure. The general form of the conditional command list is:
command-list [IF condition

[ELSE command-list| IF condition]...
[ELSE command-list]]

command-list

One or more commands separated by commas. A command list has the general form:
command [,command]...

For a list of the available commands, see (p. 334).

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

PowerHouse Rules 297

IF condition

The first command list is executed if the first condition is satisfied. A condition is a logical test
that has the general form:
[NOT] condition [AND|OR [NOT] condition]...

ELSE command-list IF condition

If no previous condition is satisfied, then the next command list is executed if its condition is
satisfied.

ELSE command-list

If no previous condition is satisfied, then the last command list is executed. If the specification is
omitted, and none of the previous conditions are satisfied, then QDESIGN proceeds as though the
NULL command option was present.

Conditions and NULL Values
The following standard truth tables show the results of Boolean operations, including those using
null operands:

If any operand in an expression has a null value, the result is set to NULL. Whenever a conditional
expression evaluates to NULL then PowerHouse treats it as "not true".

A NULL result is similar to a FALSE result, except that NOT NULL results in NULL, whereas
NOT FALSE results in TRUE. For example, if ITEM1 is null, and you specify
> DEFINE SWITCH &
> CHARACTER*3 = "YES" &
> IF ITEM1=5 &
> ELSE "NO "

when PowerHouse tests whether ITEM1 equals 5, the result is NULL. Similarly, if "IF NOT
ITEM1=5" is used, the result is also NULL. In both cases, PowerHouse assigns the value "NO" to
item SWITCH because the conditional test failed.

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

NOT TRUE FALSE NULL

FALSE TRUE NULL

298 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

Conditions in SQL
SQL conditions can only be used on SQL statements. For example, conditions on the WHERE
and HAVING options of query specifications are used to qualify or disqualify rows or groups of
rows for subsequent processing. The rows (or groups) that qualify are those for which the
condition evaluates to TRUE.

The operators used in sql-conditions are:

sql-expression operator {sql-expression|subquery}
The condition specifies the comparison used to qualify or disqualify rows for subsequent
processing. The subquery specification is identical to a query-specification with two exceptions:
the subquery must project a single-column table and the syntax of the subquery includes enclosing
brackets.
> SET LIST SQL
> SQL DECLARE X CURSOR FOR SELECT * FROM PAYMENTS &
> WHERE EXTRACT(MONTH FROM PAYMENT_DATE) = 04

sql-expression operator {ALL|SOME|ANY} subquery
The ALL option determines whether the condition is true for all values returned by the subquery.

The SOME or ANY options determine whether the condition is true for any (one or more) value
returned by the subquery. When the = operator is used, the SOME or ANY options are equivalent
to using IN subquery.

The subquery specification is identical to a query-specification with two exceptions: the subquery
must project a single-column table and the syntax of the subquery must include enclosing
brackets.
sql-expression [NOT]BETWEEN sql-expression AND

sql-expression

The BETWEEN condition specifies a range of values used to qualify or disqualify rows for
subsequent processing.
> DECLARE X CURSOR FOR &
> SELECT * FROM PAYMENTS &
> WHERE PAYMENT_AMT BETWEEN 15000 AND 20000

columnspec [NOT] LIKE 'sql-pattern' [ESCAPE 'character']
The LIKE condition is used for pattern-matching. The column specification must identify a
column of type character. If the ESCAPE option is not used, characters within the pattern are
interpreted as follows:
• The underscore (_) matches any single character (alphabetic, numeric or special).
• The percent sign (%) matches zero or more characters (alphabetic, numeric or special).
• All other characters match themselves.

The ESCAPE option indicates that the character immediately following the ESCAPE character in a
pattern is interpreted as a regular character rather than a metacharacter. The ESCAPE character
can be any character not used explicitly in your pattern.

Note that the metacharacters and the escape character used in SQL pattern matching are not the
same as those used in PowerHouse pattern matching.

< less than > greater than

<= less than or equal to >= greater than or equal to

= equal to <> not equal to

Chapter 5: PowerHouse Language Rules
Conditions in PowerHouse

PowerHouse Rules 299

columnspec IS [NOT] NULL
The condition IS NULL must be used to determine whether a value is null or not null. When a
value is compared to NULL using other conditions, the result is always NULL.

Testing for null in PowerHouse uses different syntax than testing for null in SQL.

sql-expression [NOT] IN (value, value[...])|subquery
Determines whether the expression is equal to any (one or more) of the values in the list, or values
returned by the subquery.

The subquery specification is identical to a query-specification with two exceptions: the subquery
must project a single-column table and the syntax of the subquery must include enclosing
brackets.

To find information about a group of provinces:
> SQL DECLARE X CURSOR FOR &
> SELECT * FROM PROVINCES WHERE &
> PROVINCE IN ('ONT', 'PQ', 'BC', 'PEI')

[NOT] EXISTS subquery
The EXISTS condition is FALSE if the subquery evaluates to an empty set; otherwise the condition
is TRUE.

The subquery specification is identical to a query-specification with two exceptions: the subquery
must either project a single-column table, or must be SELECT *. The syntax of the subquery must
include enclosing brackets.

300 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Expressions in PowerHouse

Expressions in PowerHouse
An expression consists of a term or combination of terms that yield a value. A term is one of the
following:
• a string
• a number
• an item
• an expression
• a system function
• a function result
• a NULL value

There are six types of expressions: string, numeric, date, case, conditional, and SQL.

When you use an expression, the type must be consistent with the use of the value that the
expression yields. For example, don't use a string expression to yield a value for a numeric item.

SQL expressions, including case-processing, use different syntax and are documented on (p. 303).

String Expressions
A string expression can be a single string or a series of terms that yield a string result. A string
expression has the general form
termA [+ termB]...

The plus sign (+) concatenates the second string (termB) and the first string (termA) to make a
single string. The length of the result is the sum of the length of the terms. Concatenation doesn't
eliminate spaces.

For example, a string expression consisting of
"SMITH " + "," + "JONES "

results in the string:
"SMITH ,JONES "

To concatenate SQL string expressions, use the || operator (p. 303).

Numeric Expressions
A numeric expression can be a single number or series of terms that yield a numeric result. A
numeric expression has the general form
termA [operator termB]...

The arithmetical operator in a numeric expression is one of the following:

To ensure that special characters function as you intend, add a space in front of them when you
use them as operators. For example, if you want to subtract the item UNITS from the item
TOTAL, you must add a space in front of the operator, as in
TOTAL - UNITS

The precedence for processing operators in a numeric expression is
1. exponentiation
2. multiplication and division
3. addition and subtraction

+ addition - subtraction

* multiplication / division

^ exponentiation
(raising to a power)

Chapter 5: PowerHouse Language Rules
Expressions in PowerHouse

PowerHouse Rules 301

PowerHouse evaluates operators that are at the same level of precedence from left to right. You
can use parentheses to override this order of precedence.

PowerHouse uses 8-byte floating point to evaluate numeric expressions. PowerHouse converts all
numeric values, except those already in floating point, to floating point prior to performing any
calculations. After the calculation, the result is converted to the target item's datatype when the
value is saved in the item buffer.

The number of significant digits available in 8-byte floating point varies with the hardware
architecture. For more information, see "FLOAT Datatype" (p. 318). If the datatype of the target
item is a fixed point datatype, the evaluation result is truncated and fractional values are lost. If
you require the fractional values, multiple by an appropriate power of 10. Also, due to the nature
of floating point, expression evaluation and truncation may result in a loss of precision in the ones
digit. To avoid this, you can apply a rounding factor by adding 0.5 and using the FLOOR function
as in
> DEFINE X INTEGER SIZE 4 = FLOOR((INPUT_VALUE_1 * INPUT_VALUE_2) + 0.5)

You can raise negative numbers to integer powers (positive or negative), but fractional powers
(such as -10^1.5) result in an error condition. You can raise positive numbers to any power
(positive, negative, or fractional).

A number divided by zero always results in zero and not in an error condition. However, an error
occurs if you use zero, or an expression that results in zero, as a subscript when accessing an array
in QDESIGN.

If possible, you should use multiplication instead of exponentiation. (For example, use n*n rather
than n^2.) Exponentiation executes more slowly than multiplication and is also less accurate.
Using a constant is faster than either multiplication or exponentiation.

Date Expressions
A date expression is similar to a numeric expression since you can manipulate it like a numeric
expression, with one exception: the result of the date expression must yield either a six-digit date
in YYMMDD format (010525) or an eight-digit date in YYYYMMDD format (20010525). If
you include a century prefix in the date item, then specify the eight-digit format. If you exclude a
century prefix in the date item, then specify the six-digit format.

Conditional Expressions
Conditional expressions use one or more of the basic types of expressions. They allow you to
evaluate a series of expressions based on conditions. The general form is
expression [IF condition

[ELSE expression IF condition]...
[ELSE expression]]

For process efficiency, arrange the conditions in the order that they are most likely to be met.

If null value support is enabled and you omit the final ELSE expression option and none of the
conditions are satisfied, PowerHouse sets the value to:
• zero, if the type is numeric or date and from a non-relational item
• spaces, if the type is character and a non-relational item
• null, if the type is a relational item

expression

A string, date, or numeric expression.

IF condition

If a condition is satisfied, then PowerHouse evaluates the first expression and assigns the resulting
value.

302 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Expressions in PowerHouse

ELSE expression IF condition...

If a previous condition hasn't been satisfied and if the next condition is satisfied, then
PowerHouse evaluates the expression and assigns the resulting value.

ELSE expression

If a previous condition hasn't been satisfied, then PowerHouse evaluates the expression and
assigns the resulting value.

Case Processing
Case processing compares the value of an item against a known value or series of values and
performs actions based on the outcome of the comparison.

If there is a match in a DEFINE statement, the resulting value is assigned to the defined item. If
there is no match, the specified default is assigned. If no default is specified, zeros, spaces, or nulls
are assigned.

When a defined item value is calculated based on the value of only one item, and those values are
known, case processing is more efficient than a conditional expression. The general form of case
processing used for the DEFINE statement is
CASE [OF] item

WHEN value-set|EXISTS|NULL|MISSING
{THEN|:} value|NULL|MISSING

[WHEN value-set|EXISTS|NULL|MISSING
{THEN|:} value|NULL|MISSING]...

[DEFAULT value|NULL|MISSING]

In the CHOOSE statement, the case compares the value of an item against a value or range of
values and selects one expression-set to be used to determine the values for the linkitem. If there is
no match, the specified default is used. If no default is specified, no records are chosen.

The general form of case processing used for the CHOOSE statement is
CASE [OF] item

WHEN value-set|EXISTS|NULL|MISSING
{THEN|:} expression-set|NULL|MISSING

[WHEN value-set|EXISTS|NULL|MISSING
{THEN|:} expression-set|NULL|MISSING]...

[DEFAULT expression-set|NULL|MISSING]

Chapter 5: PowerHouse Language Rules
Expressions in SQL

PowerHouse Rules 303

Expressions in SQL
Expressions may be used within SQL statements
• as part of the specification of the project list within a query specification
• as part of the condition within WHERE and HAVING options
• in assignments of values to columns (as in the INSERT and UPDATE statements).

There are five types of SQL expressions: string, numeric, date, case, and conditional.

Terms in SQL expressions can be a columns, functions, SQL summary operations, SQL
case-expressions, strings, numbers, NULL values, USER system variables, or SQL date-literals.

An sql-date-literal can be:
DATE 'yyyy-mm-dd'
INTERVAL [+|-] 'days[hours[:minutes[:seconds[.[hundredths]]]]]'
TIME 'hours:minutes:seconds[.[hundredths]]'
TIMESTAMP 'yyyy-mm-dd hours:minutes:seconds[.[hundredths]]'

Within SQL statements, data manipulation and SQL data manipulation functions may be used.
For a list of these functions, see (p. 359), where functions that can be used within SQL statements
are identified as DMF and SQL-DMF.

String Expressions
A string expression can be a single string or a series of terms that yield a string result. A string
expression has the general form:
termA [|| termB]

The || operator concatenates string expressions in SQL.

Numeric-Expressions
A numeric-expression can be a single number or a series of terms that yield a numeric result. A
numeric-expression has the general form:
termA [operator termB]

The arithmetic operators in an SQL numeric-expression are

Date Expressions
A date-expression is similar to a numeric-expression since you can manipulate it like a
numeric-expression. An SQL date expression yields a value of type DATE, INTERVAL, TIME, or
TIMESTAMP.

SQL Case Processing
Two forms of SQL case-processing are used in PowerHouse.
CASE

WHEN sql-condition THEN expression|NULL
[[WHEN sql-condition THEN expression|NULL]...]
[ELSE expression|NULL]
END

For information about SQL conditions, see (p. 298).

An example of the preceding form of case-processing is:
> SQL DECLARE X CURSOR FOR &
> SELECT EMPLOYEENO, &

+ addition - subtraction

* multiplication / division

304 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Expressions in SQL

> CASE WHEN CURRENCY = 'US' &
> THEN CASHADVANCE*1.20 &
> ELSE CASHADVANCE &
> END &
> FROM ACCOUNTBALANCE

CASE expression
WHEN expression THEN expression|NULL
[[WHEN expression THEN expression|NULL]...]
[ELSE expression|NULL]
END

An example of the preceding form of case-processing is:
> SQL DECLARE Y CURSOR FOR &
> SELECT EMPLOYEENO, &
> CASE CURRENCY &
> WHEN 'US' THEN CASHADVANCE*1.20 &
> ELSE CASHADVANCE &
> END &
> FROM ACCOUNTBALANCE

The two examples produce the same result.

Expressions within Program Variables
In PowerHouse SQL, program variables are not limited to simple references to items. PowerHouse
numeric, string, and date expressions may be used whenever program variables are valid in an
SQL statement. Since these expressions are program variables, they must be preceded by a colon
(:) to identify them as value provided by the application. The expressions may consist of references
to items and functions that can be evaluated by PowerHouse.

Expressions not preceded by a colon are evaluated by the database. All the terms in these
expressions must be known to the database for evaluation to occur.

SQL Summary Operations
Summary operations used in SQL are AVG, COUNT, MAX, MIN, and SUM.

SQL summary operations cannot be nested. Null values in the argument are eliminated before the
functions are applied.

The default, ALL, indicates that duplicate values are included in the calculations. DISTINCT
indicates that duplicate values are eliminated before the function is applied.

AVG({[ALL] expression}|{DISTINCT columnspec})
The argument must be numeric. If the argument is an empty set, the operation returns a null value.

COUNT{([ALL] expression)}|{(DISTINCT columnspec)}
Counts all non-null values.

COUNT(*)
Counts all rows in a table without eliminating duplicates. If the argument is an empty set,
COUNT returns a value of zero.

MAX({[ALL] expression}|{DISTINCT columnspec})
If the argument is an empty set, the operation returns a null value.

MIN({[ALL] expression}|{DISTINCT columnspec})
If the argument is an empty set, the operation returns a null value.

Chapter 5: PowerHouse Language Rules
Expressions in SQL

PowerHouse Rules 305

SUM({[ALL] expression}|{DISTINCT columnspec})
The arguments must be numeric. If the argument is an empty set, the operation returns a null
value.

306 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

Items and Datatypes in PowerHouse
An item is a location where PowerHouse can store data. PowerHouse supports the following types
of items:
• defined
• global temporary (QTP)
• predefined (QDESIGN)
• record
• temporary

Defined Items
A defined item in PowerHouse is a designer-created item that doesn't exist in the data dictionary;
it is declared with a DEFINE statement. A DEFINE statement either prompts the user for
information at execution-time or assigns a name to an expression that it evaluates when the data
required is available.

Global Temporary Items (QTP)
A global temporary item is a designer-created item that doesn’t exist in the data dictionary. You
declare it at the beginning of a QTP run with a GLOBAL TEMPORARY statement, and it remains
in effect for the duration of the run in which you declared it.

Predefined Items (QDESIGN)
A predefined item is an item automatically defined by QDESIGN and used in screen processing.

The predefined items are FIELDTEXT, FIELDVALUE, OCCURRENCE, PATH, and SUBPATH.

FIELDTEXT

Contains the most recent set of characters entered by the screen user (or designer via procedure
code) in a field on the screen or formatted for display on the screen. PowerHouse determines the
size of the FIELDTEXT predefined item by its current contents. PowerHouse includes any trailing
blanks in the size. The size is the number of characters entered.

FIELDVALUE

Contains the numeric value of the user's most recent entry into a numeric-type or date-type field.
PowerHouse determines the internal representation of the predefined item FIELDVALUE
(PACKED, ZONED, and so on) by the datatype of the item associated with that field.

Use the FIELDTEXT and FIELDVALUE predefined items in field-related procedures. The
FIELDTEXT predefined item changes when PowerHouse displays or accepts any value.

OCCURRENCE [OF record-structure|item]

Returns the occurrence number of the currently active FOR control structure.

If there is no active FOR control structure, the value 1 is returned. The OF qualifier is optional
and is used for documentation purposes only.

The FOR control structure sets the predefined item OCCURRENCE. This item controls which
occurrence of repeating records, items, or clusters is addressed by other verbs. The current setting
of OCCURRENCE can be addressed procedurally, although subscripting is not allowed. Outside
the range of a FOR control structure, the value of OCCURRENCE is 1.

Field procedures invoked by field verbs from within a FOR control structure are considered to be
within the range of the FOR control structure, and the current setting of OCCURRENCE is
unchanged.

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 307

A higher-level screen can invoke a lower-level screen by passing one occurrence of a file or item.
The lower-level screen can have an independent FOR control structure. Although the indicated
occurrence of the passed file or item is passed to lower-level screens, OCCURRENCE itself is not.
The value of OCCURRENCE on the lower-level screen is always 1 unless a FOR loop is active
there.

Only one FOR control structure can be active at one time; FOR loop nesting is not allowed within
a procedure. However, when an INTERNAL procedure is performed from within a FOR loop, it
can itself have a FOR loop.

The setting of occurrence in such situations is described by the following example:
> FILE A DESIGNER OCCURS 10
.
.
.
> PROCEDURE INTERNAL SHOWLOOP
> BEGIN
> LET X OF A = OCCURRENCE
> FOR A
> BEGIN
> LET X OF A = OCCURRENCE
> END
> LET X OF A = OCCURRENCE
> END
> PROCEDURE ENTRY
> BEGIN
.
.
.
> FOR A
> DO INTERNAL SHOWLOOP
.
.
.
> END

In this example, the INTERNAL procedure SHOWLOOP is performed ten times. On the fifth
time, the INTERNAL procedure sets the value of X to the following values:

5,1,2,3,4,5,6,7,8,9,10,5

At any time, there is only one setting of the predefined item, OCCURRENCE.

You cannot address all the occurrences of a repeating item within a repeating file on the same
screen. Instead, you must pass each occurrence of the file in turn to a subscreen and process the
repeating item there.

PATH

Contains a value set by the PATH procedure. This value directs the FIND procedure to one of
several retrieval alternatives that you can use to retrieve a record. The PATH predefined item is set
to zero at the start of Entry and Find mode initialization.

For information about the PATH procedure, see Chapter 4, "QDESIGN Procedures Overview",
in the QDESIGN Reference.

SUBPATH

SUBPATH is used in QDESIGN to distinguish between generic and exact match retrievals since
different cursors are opened in each case. It is used with the PATH predefined item to determine
which cursor to open for retrieval.

Record Items
A record item is an item declared in the data dictionary. The general form is
item [(subscript)] [OF record-structure]

308 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

Use the OF record-structure qualifier to clarify the record-structure in which PowerHouse stores
the item.

The subscript option applies only to items defined as repeating items. The subscript must be a
numeric expression.

For information about items defined as repeating, see (p. 284).

Temporary Items
A temporary item in PowerHouse is a designer-created item that doesn't exist in the data
dictionary. You declare it with a TEMPORARY statement. It can be used by the current screen or
be passed to a lower-level screen. In QTP, a TEMPORARY can be used in the current request.

To enter negative values on a screen for temporary items, add LEADING SIGN or TRAILING
SIGN options to the corresponding FIELD statements.

How QDESIGN Searches for Items
If an item is declared without an OF record-structure qualifier, QDESIGN searches for the item
using the following steps:
1. QDESIGN assumes that the item is a temporary or defined item.
2. If the item is not a temporary or defined item, then QDESIGN searches the current

record-structure from the last declared FILE.
3. If the item is not in the current record-structure, QDESIGN searches the assumed

record-structure.
4. If the item is not in the assumed record-structure, QDESIGN assumes it is in any other

record-structure where it uniquely exists.
5. If the item is not located by steps 1 to 4, QDESIGN issues an error message.

QDESIGN sets the current record-structure to blank at the beginning of a screen design.
• When you enter a FILE statement, the record-structure declared becomes the current

record-structure.
• When you enter a DEFINE or TEMPORARY statement, PowerHouse resets the current

record-structure to blank.
• When you enter any statement that affects the screen layout, PowerHouse resets the current

record-structure to blank.

In QDESIGN, you can set the assumed record-structure using the SET ASSUMED statement.
Otherwise, the assumed record-structure defaults to the PRIMARY file.

How QTP Searches for Items
If you declare an item without an OF record-structure qualifier, QTP searches for the item using
the following steps:
1. QTP assumes that the item is a temporary or defined item.
2. If the item is not a temporary or defined item, then QTP assumes it is in the current record

structure. The current record-structure is set as follows:
• When you enter an ACCESS statement, the primary input record structure becomes the

current record structure
• When you enter an OUTPUT statement, the specified record structure becomes the

current record structure.
• When you enter a SUBFILE statement, the specified subfile becomes the current record

structure. If an item that is included in the subfile exists in more than one file, it must be
qualified or an error is issued. This typically occurs when two subfiles are created from
the same input file. If both subfiles include an item with the same name, the name must be
qualified when included in the second subfile.

• When you enter a DEFINE or TEMPORARY statement, QTP sets the current record
structure to blank.

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 309

3. If the item is not in the current record structure, QTP assumes it is in any other record
structure where it uniquely exists.

4. If the item is not located by steps 1 to 3, QTP issues an error message.

Item Types
An item has element attributes such as type and size as well as its own attributes.

The element attribute type can be one of CHARACTER, NUMERIC or DATE. It is referred to in
this discussion as item type. The element attribute size is used to specify the number of characters
or digits allowed in the element. Typically, it is used to control the display size. It is referred to in
this discussion as item size.

The item attributes datatype and datatype size determine the internal format PowerHouse uses to
store the item.

Item Datatypes
The item datatype (distinct from the item type) determines the format that PowerHouse uses when
it stores the item. PowerHouse determines the datatype of an item from the statement that defines
the item.

The PowerHouse datatypes are listed in the following table:

Datatype Item Type Description

BLOB CHARACTER,
NUMERIC

Stores large objects whose structure is not
known to the database.

CHARACTER CHARACTER Stores any ASCII character items in one
character per byte.

DATE DATE Stores 6 to 16 digit dates.

DATETIME DATE Stores 10, 12, 14, 15 or 16 digit date and time
as two 4-byte integers.

FLOAT1 DATE, NUMERIC Stores numeric items as standard 32 or 64-bit
floating point numbers, precision 16 digits. The
internal format of floating point numbers is
platform specific.

FREEFORM1 DATE, NUMERIC Stores numeric items as a series of characters
that forms a number.

G_FLOAT
(OpenVMS)

DATE, NUMERIC Stores numeric items as 64-bit floating-point
number range 10+/-38, precision 15 digits.

INTEGER1 SIGNED|
UNSIGNED2

DATE,
NUMERIC

Stores numeric items as signed or unsigned
binary numbers in 1, 2, 4, 6, or 8 bytes.

INTERVAL NUMERIC Stores the difference between two datetimes as a
64-bit floating point number.

JDATE3 DATE Stores dates in Julian date format in 2 bytes.

NUMERIC4 DATE,
NUMERIC

Stores numeric items as 64-bit floating-point
numbers.

PACKED1 SIGNED|
UNSIGNED

DATE,
NUMERIC

Stores numeric items as signed or unsigned
packed decimal numbers.

310 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

Item Sizes
All items also have a logical size (also known as the element size) and a storage size (also known as
the item size).

The logical size determines how many characters from the item will be displayed. The storage size
specifies how much space the item takes in memory or in a data file.

You must consider the item datatype and storage size when you define a dictionary to match
existing data files or if you need to match data from non-PowerHouse programs.

If you give a date item a numeric datatype, you must make sure the item is large enough to hold
the date. A date that includes a century in the year has a logical size of eight digits; a date that
doesn't include a century has a logical size of six digits.

Datatype and size in QDESIGN, QUIZ, and QTP has the general form:
datatype [*n] [SIZE m]

where n is the maximum number of characters or digits in the item, and m is the storage size in
bytes.

PHDATE5 DATE Stores dates in PowerHouse date format in 2
bytes.

VARCHAR CHARACTER Stores one or more characters preceded by an
integer representing the current string length.

VMSDATE
(OpenVMS)

DATE Stores the standard eight-byte (64-bit)
OpenVMS date.

ZDATE DATE Stores dates in encoded date format, stored in 6
bytes.

ZONED1 SIGNED|
UNSIGNED

DATE,
NUMERIC

Stores numeric items as signed or unsigned
zoned decimal numbers.

ZONED1 NUMERIC
(OpenVMS)

DATE,
NUMERIC

Stores numeric items as signed zoned decimal
numbers.

1Note that FLOAT, FREEFORM, INTEGER, PACKED, and ZONED may be defined as the
item datatype for date type elements in PDL.

2 PowerHouse permits storage of only positive numbers in unsigned integer items. Because no bit
is reserved for a sign, you can store values twice as large as the maximum allowed for signed
integers.

3 In JDATE format, the higher-order seven bits are the year; the least significant nine bits are the
day.
4NUMERIC is only a valid item type for QDESIGN, QTP, and QUIZ.
5 In PHDATE format, the higher-order seven bits are the year; the following four bits are the
month, and the least significant five bits are the day.

Datatype Item Type Description

Defaults if n and m not
specified

Defaults for m if n
specified Defaults for n if m specified

Datatype n m n m m n

CHARACTER 1 1 1 to 32,767 same 1 to 32,767 same

DATE -- 2 or 4 -- 2 or 4 2 or 4 --

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 311

Non-Relational PowerHouse Datatypes
PowerHouse makes few restrictions on datatype usage for keys and indexes. File systems, on the
other hand, are much more restrictive, so PowerHouse maps its datatypes to the best match
available when the file is generated using QUTIL. In some cases, a mapping that works well in
RMS ISAM may not work well with C-ISAM or DISAM.

For relational PowerHouse datatypes see (p. 313).

DATETIME -- always 8 -- always 8 always 8 --

FLOAT 6 4 1 to 6

7 to 16

4

8

4

8

6

9

FREEFORM 6 6 1 to 31 same 1 to 31 same

G_FLOAT 9 8 1 to 16 always 8 always 8 9

INTEGER 4 2 1 to 4

5 to 9

10 to 14

15 to 31

2

4

6

8

2

4

6

8

4

9

14

18

INTERVAL -- always 4 -- always 4 always 4 --

JDATE -- always 2 -- always 2 always 2 --

NUMERIC 6 always 8 1 to 16 always 8 always 8 6

PACKED 6 4 1 to 31 FLOOR(n/2)
+ 1

1 to 16 2m-1

PHDATE -- always 2 -- always 2 always 2 --

VARCHAR 1 3 1 to 32765 n+2 1 to 32767 m-2

VMSDATE -- always 8 -- always 8 always 8 --

ZDATE 8 6 8 6 6 8

ZONED 6 6 1 to 31 same 1 to 31 same

n specifies the maximum number of characters or digits in the item.
It is not valid for date-type items.

m indicates the storage size in bytes.

Defaults if n and m not
specified

Defaults for m if n
specified Defaults for n if m specified

Datatype n m n m m n

PH
Datatype

Item
Size1

C
Type

FORTRAN
Type

COBOL
Type

IMAGE
Type
(MPE/iX)

OpenVMS
Type

RMS Type
(OpenVMS)

C-ISAM
(UNIX),
DISAM
(Windows)

CHARACTER 1 char CHARACTER
*n

X(n) Xn,Un CHARACTER STRING CHARTYPE

DATE 4 n/a n/a n/a n/a n/a n/a n/a

DATETIME 8 n/a n/a n/a n/a n/a n/a n/a

312 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

FLOAT 4 float REAL/REAL
*4

COMP-1 R2 F_FLOAT n/a FLOATTYPE

FLOAT 8 double DOUBLE
PRECISION
or REAL*8

COMP-2 R4 D_FLOAT n/a DOUBLETYPE

FREEFORM n n/a n/a n/a n/a n/a n/a n/a

G_FLOAT
(OpenVMS)

8 n/a REAL*8 n/a n/a G_FLOAT n/a n/a

INTEGER
SIGNED

1 n/a n/a n/a n/a INTEGER
BYTE

n/a n/a

INTEGER
SIGNED

2 short INTEGER*2 S9(4)
COMP

I1,J1 INTEGER
WORD

INT2 INTTYPE

INTEGER
SIGNED

4 int INTEGER*4 S9(9)
COMP

I2,J2 INTEGER
LONGWORD

INT4 LONGTYPE

INTEGER
SIGNED

6 n/a n/a n/a I3,J3 n/a n/a n/a

INTEGER
SIGNED

8 n/a n/a S9(18)
COMP

I4,J4 INTEGER
QUADWORD

INT8 n/a

INTEGER
UNSIGNED

1 n/a LOGICAL*1 n/a n/a INTEGER
BYTE

n/a n/a

INTEGER
UNSIGNED

2 unsigned
short

LOGICAL*2 9(4)
COMP

K1 INTEGER
WORD

BIN2 n/a

INTEGER
UNSIGNED

4 unsigned
long

LOGICAL*4 9(9)
COMP

K2 INTEGER
LONGWORD

BIN4 n/a

INTEGER
UNSIGNED

6 n/a n/a n/a K3 n/a n/a n/a

INTEGER
UNSIGNED

8 n/a n/a 9(18)
COMP

K4 INTEGER
QUADWORD

BIN8 n/a

INTERVAL 8 n/a n/a n/a n/a n/a n/a n/a

JDATE 2 n/a n/a n/a n/a n/a n/a n/a

PACKED
SIGNED

n n/a n/a S9(n)
COMP-3

Pn PACKED
DECIMAL

DECIMAL n/a

PACKED
UNSIGNED

n n/a n/a 9(n)
COMP-3

n/a PACKED
DECIMAL

DECIMAL n/a

PHDATE 2 n/a n/a n/a n/a n/a n/a n/a

VARCHAR n n/a n/a n/a n/a VARYING
CHAR

n/a n/a

VMSDATE
(OpenVMS)

8 n/a n/a n/a n/a ABS DATE &
TIME

n/a n/a

ZDATE 6 n/a n/a n/a n/a n/a n/a n/a

ZONED
SIGNED

n n/a n/a S9(n)
DISPLAY

Zn ZONED
OVERPUNCHE
D

STRING n/a

ZONED
UNSIGNED

n n/a n/a 9(n)
DISPLAY

n/a ZONED
OVERPUNCHE
D

STRING n/a

ZONED
NUMERIC
(OpenVMS)

n n/a n/a n/a n/a ZONED
NUMERIC

STRING n/a

PH
Datatype

Item
Size1

C
Type

FORTRAN
Type

COBOL
Type

IMAGE
Type
(MPE/iX)

OpenVMS
Type

RMS Type
(OpenVMS)

C-ISAM
(UNIX),
DISAM
(Windows)

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 313

Relational PowerHouse Datatypes (Part 1)

For more relational PowerHouse datatypes (Part 2), see(p. 315).

For non-relational PowerHouse datatypes, see (p. 311).

1 Item size is in bytes.

Symbols

n/a Not applicable. No direct equivalent exists for this PowerHouse storage type.
n Any number.

PH
Datatype

Item
Size1

C
Type

FORTRAN
Type

COBOL
Type

IMAGE
Type
(MPE/iX)

OpenVMS
Type

RMS Type
(OpenVMS)

C-ISAM
(UNIX),
DISAM
(Windows)

PH
Datatype

Item
Size1

ORACLE
(OpenVMS,
UNIX, Windows)

SYBASE (UNIX,
Windows)

DB2 (UNIX,
Windows)

SQL SERVER
(Windows)

ODBC (UNIX,
Windows)

blob2 n BFILE, BLOB,
CLOB, LONG,
LONG RAW,
NCLOB

IMAGE, TEXT BLOB, CLOB,
LONG VARCHAR

IMAGE,
NTEXT(n)
255<=n,
TEXT

SQL_LONGVARBI
NARY,
SQL_LONGVARCH
AR,
SQL_WLONGVARC
HAR

CHARACTER n CHAR(n),
NCHAR(n),
ROWID

BINARY, CHAR,
NCHAR,
NVARCHAR,
TIMESTAMP,
UNICHAR,
UNIVARCHAR,
VARBINARY,
VARCHAR

CHAR(n),
GRAPHIC

BINARY, CHAR,
NCHAR,
TIMESTAMP,
UNIQUEIDENTIF
IER

SQL_BINARY,
SQL_CHAR,
SQL_GUID,
SQL_NCHAR,
SQL_WCHAR

DATE 4 n/a n/a DATE n/a n/a

DATETIME 8 DATE DATETIME,
SMALLDATETIME

TIMESTAMP DATETIME,
SMALLDATETIME

SQL_TYPE_DATE
,
SQL_TYPE_TIME
STAMP

FLOAT 4 n/a FLOAT(n)
n<=15,
REAL

FLOAT(n)
1<=n<=21,
REAL

REAL SQL_REAL

FLOAT 8 NUMBER no
precision or
scale

DOUBLE
PRECISION,
FLOAT no n,
FLOAT(n)
16<=n

DOUBLE,
FLOAT no n,
FLOAT(n)
22<=n

FLOAT SQL_DOUBLE,
SQL_FLOAT

FREEFORM n n/a n/a n/a n/a n/a

G_FLOAT
(OpenVMS)

8 n/a n/a n/a n/a n/a

INTEGER
SIGNED

1 n/a n/a n/a n/a n/a

INTEGER
SIGNED

2 NUMBER(p[,s])
1<=p<=4

BIT,
SMALLINT,
TINYINT

SMALLINT BIT,
SMALLINT,
TINYINT

SQL_BIT,
SQL_SMALLINT,
SQL_TINYINT

INTEGER
SIGNED

4 NUMBER(p[,s])
5<=p<=9

INTEGER,
SMALLMONEY

INTEGER INT SQL_INTEGER

314 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

INTEGER
SIGNED

6 n/a n/a n/a n/a n/a

INTEGER
SIGNED

8 NUMBER(p[,s])
10<=p<=18

MONEY n/a BIGINT SQL_BIGINT

INTEGER
UNSIGNED

1 n/a n/a n/a n/a n/a

INTEGER
UNSIGNED

2 n/a n/a n/a n/a n/a

INTEGER
UNSIGNED

4 n/a n/a TIME3 n/a n/a

INTEGER
UNSIGNED

6 n/a n/a n/a n/a n/a

INTEGER
UNSIGNED

8 n/a n/a n/a n/a n/a

INTERVAL 8 n/a n/a n/a n/a n/a

JDATE 2 n/a n/a n/a n/a n/a

PACKED
SIGNED

n NUMBER(p,s)
19<=p<=38
NUMBER(p)
10<=p, s=0

DECIMAL(p,s),
NUMERIC(p,s)

DECIMAL(p,s),
NUMERIC(p,s)

DECIMAL,
MONEY,
NUMERIC,
SMALLMONEY,

SQL_DECIMAL,
SQL_NUMERIC

PACKED
UNSIGNED

n n/a n/a n/a n/a n/a

PHDATE 2 n/a n/a n/a n/a n/a

VARCHAR n INTERVAL DAY
TO SECOND,
INTERVAL YEAR
TO MONTH,
NVARCHAR2(n),
RAW, TIMESTAMP
WITH [LOCAL]
TIMEZONE,
VARCHAR(n),
VARCHAR2(n)

n/a VARCHAR(n) VARBINARY,
NTEXT(n)
1<=n<=254,
NVARCHAR,
VARCHAR

SQL_VARBINARY
,
SQL_VARCHAR,
SQL_WLONGVARC
HAR,
SQL_WVARCHAR

VMSDATE
(OpenVMS)

8 n/a n/a n/a n/a n/a

ZDATE 6 n/a n/a n/a n/a n/a

ZONED
SIGNED

n n/a n/a n/a n/a n/a

ZONED
UNSIGNED

n n/a n/a n/a n/a n/a

ZONED
NUMERIC
(OpenVMS)

n n/a n/a n/a n/a n/a

1 Item size is in bytes.
2 PowerHouse treats these datatypes as blobs internally.
3 The TIME datatype is mapped to an INTEGER UNSIGNED SIZE 4.

Symbols

n/a Not applicable. No direct equivalent exists for this PowerHouse storage type.
n Any number.
p Precision.
s Scale.

PH
Datatype

Item
Size1

ORACLE
(OpenVMS,
UNIX, Windows)

SYBASE (UNIX,
Windows)

DB2 (UNIX,
Windows)

SQL SERVER
(Windows)

ODBC (UNIX,
Windows)

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 315

Relational PowerHouse Datatypes (Part 2)
For more relational PowerHouse datatypes (Part 1), see (p. 313).

For non-relational PowerHouse datatypes, see (p. 311).

PH
Datatype

Item
Size1

Stored
Procedure
Result Set

ORACLE
Rdb SQL
(OpenVMS)

ORACLE
Rdb RDO
(OpenVMS)

CDD/
REPOSITORY
(OpenVMS)

ALLBASE/SQL
(MPE/iX)

blob2 n LONGVARBINAR
Y,
LONGVARCHAR

LIST OF BYTE
VARYING

SEGMENTED_
STRING

SEGMENTED
STRING

LONGBINARY,
LONGVAR-
BINARY

CHARACTER n BINARY,
CHARACTER

CHAR, NCHAR TEXT TEXT BINARY, CHAR

DATE 4 DATE n/a n/a n/a DATE

DATETIME 8 DATETIME DATE,
TIMESTAMP

n/a n/a DATETIME

FLOAT 4 FLOAT FLOAT(n)
1<=n<=24,
REAL

F_FLOATING F_FLOATING FLOAT(n)
1<=n<=24,
REAL

FLOAT 8 DOUBLE DECIMAL(n)
19<=n,
DOUBLE
PRECISION,
FLOAT no n,
FLOAT(n)
25<=n<=53
NUMERIC(n)
19<=n

n/a D_FLOATING DOUBLE
PRECISION,
FLOAT no n,
FLOAT(n)
25<=n<=53

FREEFORM n n/a n/a n/a n/a n/a

G_FLOAT
(OpenVMS)

8 n/a n/a G_FLOATING G_FLOATING n/a

INTEGER
SIGNED

1 n/a n/a SIGNED BYTE SIGNED BYTE n/a

INTEGER
SIGNED

2 SMALLINT DECIMAL(n)
1<=n<=4,
NUMERIC(n)
1<=n<=4,
SMALLINT,
TINYINT

SIGNED WORD SIGNED WORD SMALLINT

INTEGER
SIGNED

4 INTEGER DECIMAL(n)
5<=n<=9,
INTEGER,
NUMERIC(n)
5<=n<=9

SIGNED
LONGWORD

SIGNED
LONGWORD

INTEGER

INTEGER
SIGNED

6 n/a n/a n/a n/a n/a

INTEGER
SIGNED

8 QUADWORD DECIMAL(n)
10<=n<=18,
BIGINT,
NUMERIC(n)
10<=n<=18

SIGNED
QUADWORD

SIGNED
QUADWORD

n/a

INTEGER
UNSIGNED

1 n/a n/a n/a UNSIGNED BYTE n/a

INTEGER
UNSIGNED

2 n/a n/a n/a UNSIGNED WORD n/a

INTEGER
UNSIGNED

4 TIME TIME3 n/a UNSIGNED
LONGWORD

TIME3

316 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

Relational Datatypes Specifics

TIME Datatypes

PowerHouse internally sees many relational TIME datatypes as unsigned integers that have the
value HHMMSSTTT. Depending on the database, the thousandths of a second may or may not be
zero. In other words, TIME is seen as a 9-digit integer but the last three digits may always be 0.
For example, in ALLBASE/SQL, the thousandths are always 0. To display and enter data into an
ALLBASE/SQL TIME column, the following FIELD statement is useful:
 FIELD TIME_COLUMN INPUT SCALE 3 OUTPUT SCALE -3

You may optionally add PICTURE "^^:^^:^^" SIGNIFICANCE 8 VALUES 0 TO 235959.

To store SYSTIME into an ALLBASE/SQL TIME column, drop the fraction of a second:

INTEGER
UNSIGNED

6 n/a n/a n/a n/a n/a

INTEGER
UNSIGNED

8 n/a n/a n/a UNSIGNED
QUADWORD

n/a

INTERVAL 8 INTERVAL INTERVAL n/a n/a INTERVAL

JDATE 2 n/a n/a n/a n/a n/a

PACKED
SIGNED

n DECIMAL,
MONEY,
NUMERIC,
SMALLMONEY

n/a n/a PACKED
DECIMAL

DECIMAL(p[,s]),
NUMERIC(p[,s])

PACKED
UNSIGNED

n n/a n/a n/a PACKED
DECIMAL

n/a

PHDATE 2 n/a n/a n/a n/a n/a

VARCHAR n LONGVARCHAR,
VARBINARY,
VARCHAR

LONG
VARCHAR,
NCHAR
VARYING,
VARCHAR

VARYING
STRING

VARYING
STRING

VARBINARY,
VARCHAR

VMSDATE
(OpenVMS)

8 n/a DATE VMS DATE DATE n/a

ZDATE 6 n/a n/a n/a n/a n/a

ZONED
SIGNED

n n/a n/a n/a RIGHT
OVERPUNCHED
NUMERIC

n/a

ZONED
UNSIGNED

n n/a n/a n/a RIGHT
OVERPUNCHED
NUMERIC

n/a

ZONED
NUMERIC
(OpenVMS)

n n/a n/a n/a ZONED NUMERIC n/a

1 Item size is in bytes.
2 PowerHouse treats these datatypes as blobs internally.
3 The TIME datatype is mapped to an INTEGER UNSIGNED SIZE 4.

Symbols

n/a Not applicable. No direct equivalent exists for this PowerHouse storage type.
n Any number.
p Precision.
s Scale.

PH
Datatype

Item
Size1

Stored
Procedure
Result Set

ORACLE
Rdb SQL
(OpenVMS)

ORACLE
Rdb RDO
(OpenVMS)

CDD/
REPOSITORY
(OpenVMS)

ALLBASE/SQL
(MPE/iX)

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 317

LET <Name> = 1000 * FLOOR(SYSTIME/100)

Unsupported DB2 Datatypes

The following DB2 datatypes are not supported by PowerHouse: DBCLOB and LONG
VARGRAPHIC.

ODBC Datatypes

The PowerHouse datatype may change depending on the size of the ODBC column. For example,
an SQL_LONGVARCHAR of size 255 is considered a VARCHAR in PowerHouse, but if the size
is 32K then it is treated as a BLOB.

An ODBC data type is an intermediate data type that is assigned by the ODBC driver for a given
database data type. Then the ODBC datatype is converted by PowerHouse to the PowerHouse
datatype. For example: A Microsoft SQL Server MONEY data type is translated by the ODBC
driver into an SQL_DECIMAL datatype. SQL_DECIMAL is translated into the PowerHouse
PACKED datatype.

A Microsoft SQL Server TIMESTAMP datatype, which is not a PowerHouse datetime value, is
translated by the ODBC driver into SQL_BINARY. SQL_BINARY is translated into a
PowerHouse CHARACTER datatype.

If you are not sure what the ODBC data source column type has been mapped to in PowerHouse,
you can use the QSHOW SHOW RECORD statement to describe the table layout.

BLOB Datatype
A BLOB datatype stores large objects whose structure is not known to the database. The item
types for a BLOB datatype are CHARACTER (C) and NUMERIC (N). BLOB datatypes are not
applicable for non-relational databases.

Any blob content can be used internally in QUICK screens, QTP runs or QUIZ reports. You can
concatenate any blob to a string, or to another blob, and assign the result to a blob. However, the
display of blobs is limited by the blob contents. PowerHouse best supports text blobs as fields on
QUICK screens or as QUIZ report items. PowerHouse supports binary and text blobs.

You may use the DO BLOB verb to call external utilities such as editors.

All PowerHouse components support the following operations:
• assign contents of a blob to a string
• assign a string to a blob (creating a new blob)
• assign the contents of one blob to another blob field (in the same or a different database)
• concatenate a blob and a string (the result is a blob or string)

For more information about blob support, see (p. 345).

OpenVMS: Blobs in PowerHouse 4GL on the host are limited to 32,767 bytes.

CHARACTER Datatype
PowerHouse stores one character per byte using the native character set of the host system.

DATE Datatype
Dates with the century included are handled as 8-digits numbers representing YYYYMMDD in an
INTEGER UNSIGNED SIZE 4 datatype. Dates with the century excluded are handled as 6-digits
representing YYMMDD encoded in a PHDATE datatype. For more information, see the
INTEGER Datatype and PHDATE Datatype sections on (p. 320) and (p. 322), respectively.

Limit: This datatype can only be used as a type for the DEFINE, GLOBAL TEMPORARY, and
TEMPORARY statements in either QDESIGN, QUIZ, or QTP.

318 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

DATETIME Datatype
DATETIME is stored as eight bytes where the first four bytes represent the date portion and the
last four bytes represent the time portion. Since the century is always included in the date, the date
portion is an eight-digit number. The time portion is stored as a nine-digit number.

For example, 1991/12/13 23:59:59.99 is stored in eight bytes where the value of the first four
bytes as an integer is 19911213 (date portion) and the value of the last four bytes as an integer is
235959990 (time portion).

DATETIME is valid for DATETIME items in ALLBASE/SQL.

FLOAT Datatype
PowerHouse stores and manipulates items of FLOAT datatype as follows:

For additional MPE/iX information, see (p. 319).

For additional OpenVMS information, see (p. 319).

For additional UNIX/Windows information, see (p. 320).

For elements defined in the dictionary with a display size of more than nine digits, PowerHouse
assigns a default datatype of FLOAT SIZE 8 rather than INTEGER SIZE 6 or INTEGER SIZE 8.
This is because PowerHouse converts item values to FLOAT SIZE 8 before performing any
calculations.

Although some other datatypes are able to represent numbers greater than 16 digits without loss
of precision, significant information can be lost when converting from a more precise datatype to
FLOAT SIZE 8.

Advantages: Stores very large or very small numbers without losing significant information.

PowerHouse converts all numeric values to float size 8 before performing calculations. Float
datatypes do not have to be converted.

Disadvantages: Floating point storage does not always represent fractions or very large numbers
exactly because of hardware restrictions. For example, 0.20 may be represented as 0.1999... This
loss of precision means that you should never test to see if an item is strictly equal to a constant.
Instead, test to see if the value of the floating point item is within a small range of the constant.
For example,
> ...IF FLOAT_NUM LE 2.1 AND
> FLOAT_NUM GE 1.9

The internal representation of all monetary amounts should be scaled consistently, regardless of
datatype. Therefore, if a monetary amount is declared as a datatype FLOAT, it should be given an
INPUT SCALE of 2(102=100), which is the same input scale given to monetary amounts that are
stored as integers.

The combination of format and size determines the range of values that may be represented
without loss of precision or significance.

Syntax Description

MPE/iX: [IEEE|NONIEEE]
FLOAT[SIZE 4|8]

four or eight-byte, IEEE or NONIEEE floating point
numbers. IEEE format (which is governed by an industry
standard) is the native floating point format for MPE/iX.
NONIEEE format is provided for compatibility with MPE/V
machines.

OpenVMS: FLOAT[SIZE 4|8] four or eight-byte, floating point numbers

Default: D_FLOAT

UNIX,
Windows:

FLOAT[SIZE 4|8] four or eight-byte, floating point numbers

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 319

In floating point representation, numbers are represented by an exponent and a mantissa. The
exponent represents the magnitude of a floating number (digits to the right). The mantissa
represents the significant digits in a floating point number (digits to the left).

In a floating point datatype, a certain number of bits are used to represent the mantissa and
remaining bits are used to represent the exponent. The number of bits used in each case
determines the range of the mantissa and the exponent.

Loss of precision occurs when a number gets so large that digits on the right become inaccurate.
Loss of significance occurs when a number gets so large that digits on the left are lost.

MPE/iX
The table below summarizes the characteristics of the four floating point types available on
MPE/iX machines.

PowerHouse running in Native mode will support all four floating point formats as item syntax.
The default format is IEEE. If neither IEEE or NONIEEE is specified, a default format is taken
from the dictionary options.

A default format may be declared in the dictionary. If no default format is specified, IEEE is
assumed. The designer may change this default to NONIEEE in the SYSTEM OPTIONS
statement.

If your application is running on a Compatibility Mode dictionary, the default format will be
NONIEEE. There is no supported mechanism for using IEEE FLOAT formats.

OpenVMS
PowerHouse stores items of FLOAT datatype as either D or F floating point numbers. A
PowerHouse float item can have a storage size of four or eight-bytes. A four-byte FLOAT item is
represented by a VAX F_FLOAT item. You can optionally specify a G_FLOAT item.

Default: D_FLOAT

Advantages: Stores very large or very small numbers without losing significant information. For
example, 198,753,481,513 is stored in a four-byte float as roughly 1.98753 X 1011. Although
precision (the digits to the right of the number) is lost, significance (the digits to the left) is not.

PowerHouse does not have to convert float items for calculations and comparisons because all
values are converted to D_FLOAT floats before any calculations are performed.

Floating Point Compatibility on OpenVMS
PowerHouse uses the D-Floating data type to manipulate numerical data internally. The VAX
D_Float precision is 56 bits. The AXP D_Float precision is 53 bits. Since the D_Floating data type
is not fully supported on AXP, some loss of precision may occur. Where PowerHouse is precise to
16 digits, some values on AXP may get rounded. For example,
> SCREEN DATATYPE
> DEFINE MYVAL NUM*16 = 9999999999999999
> FILED MYVAL DISPLAY PREDISPLAY
> GO

The value for MYVAL differs on VAX and AXP. On AXP, MYVAL contains the value
10000000000000000 (1e+16) which does not fit in the display field.

Format
Exponent
(bits) Mantissa

Smallest
(value)

Largest
(value)

Significance
(digits)

Float 4 IEEE 8 23 1.1e-38 3.4e38 7

Float 4 NONIEEE 9 22 8.6e-78 1.1e77 6

Float 8 IEEE 11 52 2.2e-308 1.7e308 15

Float 8 NONIEEE 9 54 8.6e-78 1.7e308 16

320 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

UNIX, Windows
The table below summarizes the characteristics of the two floating point types available on UNIX
and Windows machines.

Range Overflow

Converting between floating point types can result in loss of precision, due to rounding.

Loss of precision can be detected by converting the source type to the target type, and then back to
the source type. If the original and final values differ, then precision has been lost.

This procedure can become more complicated because the most precise FLOAT format available
to PowerHouse for internal computations is FLOAT 8. The CHARACTERS function may be of
use when the user wants to do comparisons on float values.

FREEFORM Datatype
PowerHouse stores items of FREEFORM datatype as a string of characters that forms a number.
The FREEFORM datatype allows PowerHouse to read edited or formatted data from other
systems. The FREEFORM datatype is not recommended in other cases and should not be used for
segments in indexes.

Advantages: Allows you to read data from other systems.

Disadvantages: Not compact when stored in a data file; PowerHouse must convert FREEFORM
items to FLOAT for calculations and comparisons. Cannot be used for index segments.

How PowerHouse Stores FREEFORM Values

PowerHouse stores FREEFORM values as whole numbers with no fractional portion.
PowerHouse stores negative FREEFORM values with leading minus signs, whether or not you
specify a leading or trailing sign for display purposes. However, PowerHouse will accept a
fractional value as part of a FREEFORM number if it follows a decimal character.

Leading and Trailing Signs in FREEFORM Items

On input, a leading or trailing plus sign (+), leading or trailing spaces, and an embedded decimal
character (by default, a period) are allowed in a FREEFORM item. A FREEFORM item accepts a
negative value when the LEADING SIGN or TRAILING SIGN format-options are used and the
specified PICTURE string includes corresponding spaces to contain the sign. For such items, a
leading or trailing minus sign is allowed on input, and the sign is then displayed as specified by the
PICTURE string.

Examples of FREEFORM Numbers

PowerHouse can read the following valid FREEFORM numbers:

123 -123

123- +123

123.45 -123.45

INTEGER Datatype
PowerHouse stores items of INTEGER datatype as binary numbers. PowerHouse integers can
have a storage size of one to eight bytes. The number is stored in 2’s-complement representation.

Format
Exponent
(bits) Mantissa

Smallest
(value)

Largest
(value)

Significance
(digits)

Float 4 8 23 1.1e-38 3.4e38 7

Float 8 11 52 2.2e-308 1.7e308 15

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 321

An integer datatype can be signed or unsigned. For example, signed integers of size 2 can contain
numbers between -32,768 and 32,767. Unsigned integers of size 2 can contain numbers between 0
and 65,535.

Advantages: Compact.

Disadvantages: PowerHouse must convert INTEGER values to FLOAT for calculations and
comparisons.

INTERVAL Datatype
In PowerHouse, an INTERVAL item is manipulated as a floating point decimal number, with the
fractional part representing time.

To display an INTERVAL item correctly, a picture which scales the value of the interval is needed.
An input scale is not used, so on input an explicit decimal point separates the days and time fields.

When entering data, you can enter a four-digit day value followed by a decimal of up to eight
digits. Entering 23595999 displays 23:59:59.990. If an input scale of -8 is used, the entire
eight-digit time field must be entered.

JDATE Datatype
The storage size of a JDATE (Julian date) item is two bytes. The first seven bits represent the year
and the last nine bits represent the day of the year (from 1 to 366).

To specify a century-excluded date in PDL, use DATE SIZE 6 on the ELEMENT or USAGE
statement. To specify a century-excluded defined, temporary, or global temporary JDATE item,
use JDATE CENTURY EXCLUDED or simply JDATE. The default is CENTURY EXCLUDED
regardless of the CENTURY system option in the dictionary. A century excluded JDATE item has
year values from 00 to 99. PowerHouse assumes that the date is within the default century.

If you want to define an item as type JDATE CENTURY EXCLUDED and derive its value from an
eight-digit date, you must use the REMOVECENTURY function, as in
> DEFINE LONGDATE DATE CENTURY INCLUDED = 19990925
> DEFINE JULIANDATE JDATE = REMOVECENTURY(LONGDATE)

A JDATE item can derive its value directly from a six-digit date:
> DEFINE SHORTDATE DATE CENTURY EXCLUDED = 990431
> DEFINE JULIANDATE JDATE = SHORTDATE

To specify a century-included date in PDL, use DATE SIZE 8 on the ELEMENT or USAGE
statement. To specify a century-included defined, temporary, or global temporary JDATE item, use
JDATE CENTURY INCLUDED. For century-included JDATE items, the first seven bits represent
the number of years after the year 1900, so the years from 1900 to 2027 may be represented.

In spite of the way JDATE is stored, it is processed internally as a six-digit number in the order
YYMMDD or an eight-digit number in the order YYYYMMDD.

NUMERIC Datatype
NUMERIC [*n] is always handled as a FLOAT SIZE 8.

MPE/iX: If the dictionary SYSTEM OPTIONS is set to NOIEEE, then NUMERIC is set to
FLOAT SIZE 4.

For more information about the FLOAT datatype, see (p. 309).

Note: This datatype can only be used as a type for the DEFINE, GLOBAL TEMPORARY, and
TEMPORARY statements in one of QDESIGN, QUIZ, or QTP. It is not a valid datatype for PDL.

PACKED Datatype
PowerHouse stores items of PACKED datatype as packed decimal numbers. If the element size of
a packed item is n, the storage size is
Floor(n/2) + 1

322 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

Packed items can have element sizes of 1 to 31 digits, and storage sizes of 1 to 20 bytes.

The byte that contains the least significant digit also contains the sign.

Each byte of a packed item contains two digits, except the lower-order bit on the last byte, which
contains one digit and the item’s sign. Thus, a six-byte PACKED item can contain 11 digits (6x2
=12, less one for the sign).

If datatype PACKED is specified without the SIGNED or UNSIGNED option, the default is
PACKED SIGNED. The sign nibble of a PACKED item is the low-order nibble of the low-order
byte. For a PACKED SIGNED item, a positive number is explicitly indicated by a hexadecimal C
in the sign nibble.

When PowerHouse writes PACKED UNSIGNED items to a data file, it puts hexadecimal F in the
sign field for positive values and hexadecimal D in the sign field for negative values.

Advantages: Compact; holds up to 31 digits.

Disadvantages: PowerHouse must convert PACKED items to FLOAT for calculations and
comparisons. Large numbers (that is, those with more than 16 digits) lose precision when
converted by PowerHouse for calculations.

PHDATE Datatype
The storage size of a PHDATE item is two bytes. The first seven bits are used for the year, the next
four bits for the month, and the last five bits for the day.

To specify a century excluded date in PDL, use DATE SIZE 6 on the ELEMENT or USAGE
statement. To specify a century-excluded defined, temporary, or global temporary PHDATE item,
use PHDATE CENTURY EXCLUDED or simply PHDATE. The default is CENTURY
EXCLUDED regardless of the CENTURY system option in the dictionary. A century excluded
PHDATE item has year values from 00 to 99. PowerHouse assumes that the date is within the
default century.

To specify a century-included date in PDL, use DATE SIZE 8 on the ELEMENT or USAGE
statement. To specify a century-included defined, temporary, or global temporary PHDATE item,
use PHDATE CENTURY INCLUDED. For century-included PHDATE items, the first seven bits
represent the number of years after the year 1900, so the years from 1900 to 2027 may be
represented.

Regardless of the way PHDATE is stored, it is processed internally as a six-digit number in the
order YYMMDD or an eight-digit number in the order YYYYMMDD.

VARCHAR Datatype
A VARCHAR item has a maximum string length, but a variable storage length. A two-byte integer
representing the current string length precedes the string. Trailing blanks entered into a field
defined as VARCHAR are accepted as part of the entry; that is, they are significant. VARCHAR is
valid for defined items, and for columns in relational tables.

Advantages: VARCHAR retains its actual size when added and stored.

Disadvantages: VARCHAR occupies space up to the item size plus two bytes in a non-relational
database.

VMSDATE Datatype (OpenVMS)
The item datatype, VMSDATE, is an eight-byte date with a format specified by the data dictionary
date picture in effect. The value stored represents the number of 100-nanosecond units of time
elapsed from the base date (00:00:00:00 November 17, 1858). It can display either a two or
four-digit year that is manipulated in the format YYMMDD or YYYYMMDD respectively.
VMSDATE allows you to use the OpenVMS system date.

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

PowerHouse Rules 323

ZDATE Datatype
The ZDATE datatype is a century-included date. It is always SIZE 6. For example, the definition
of a ZDATE element would be:
ELEMENT DATEFIELD DATE SIZE 8 DATATYPE ZDATE SIZE 6

Any other size is invalid, therefore the size specification on the datatype is optional. A ZDATE is
represented by six alpha-numeric characters. The first character represents the first three digits of
the century-included year and the remaining characters represent the rest of the numbers in the
date—the last digit of the year, the month, and the day.

The century-included year is represented as follows:

For example, 991231 is the internal representation for the century-included date 1999/12/31. The
initial "9" represents "199". The remaining digits, "91231", represents the rest of the numbers in
the date - the final digit in the year, the month and the day. C91025 represents 2029/10/25.

ZONED Datatype
PowerHouse stores items of datatype, ZONED, as zoned decimal numbers. The storage size of a
zoned item is the same as the element size. Zoned items can be 1 to 31 digits.

Each byte of a zoned item contains one digit. The low-order byte also contains the sign (positive
or negative), encoded in the high-order four bits.

Zoned items may be signed or unsigned; both can contain positive and negative values.
PowerHouse displays positive values of unsigned items with no leading sign.

If datatype ZONED is specified without the SIGNED or UNSIGNED or NUMERIC options, the
default option is ZONED UNSIGNED. Both ZONED SIGNED and ZONED UNSIGNED items
can store positive or negative values. The sign of a ZONED item is an "overpunch" on the
lower-order byte (which also contains the least significant digit).

The lower-order byte is represented by a character as follows:

First
Character Century Represented (first three digits)

0 190

1 191

2 192

…

9 199

A 200

B 201

C 202

…

Z 225

Positive Values ending in 0,
1 - 9

Negative Values ending in 0,
1 - 9

ZONED UNSIGNED 0 1 - 9 }, J - R

ZONED SIGNED {, A - I }, J - R

324 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Items and Datatypes in PowerHouse

A through I represents positive 1 through 9 respectively for ZONED SIGNED; J through R
represent negative 1 through 9 for datatypes ZONED SIGNED and ZONED UNSIGNED;
lowercase q through y represent negative 1 through 9 for datatype ZONED NUMERIC
(OpenVMS).

Advantages: Holds up to 31 digits. Because ZONED UNSIGNED numbers have the same internal
requirements as character items, they are useful for redefining character fields. They can also be
used for segmented indexes.

Disadvantages: Not very compact; PowerHouse must convert ZONED items to FLOAT for
calculations and comparisons.

Compatibility with Other Languages

Although the exact representation specified for zoned items is unimportant in a new application,
you must specify the correct datatype for existing applications to avoid inadvertently creating data
items that are incompatible with other languages. For example, if an item declared in COBOL is a
PIC 9(4) DISPLAY item, PowerHouse correctly interprets it if it is defined in the data dictionary as
either ZONED SIGNED or ZONED UNSIGNED. However, if a PowerHouse item contains a
negative number and that item is read by a COBOL application and moved into a PIC 9(4)
DISPLAY item, COBOL ignores the sign and treats the value as a positive number.

If PowerHouse writes a negative number in a ZONED SIGNED data item and COBOL does not
move it but only redefines it as a PIC 9(4) DISPLAY, then the sign is not changed. However, if
COBOL reads and displays the number, its last digit appears as the right brace (}) or as one of the
alphabetic characters J through R.

OpenVMS: Use ZONED NUMERIC to be compatible with the numeric data type in DIBOL.

User-Defined Datatypes
User-defined datatypes are supported since they are defined using underlying system datatypes.
For example, if a user-defined datatype called "LARGECHAR" is defined in terms of the SYBASE
datatype "CHAR", PowerHouse treats it as CHARACTER item.

ZONED NUMERIC
(OpenVMS)

0 1 - 9 P q - y

Positive Values ending in 0,
1 - 9

Negative Values ending in 0,
1 - 9

Chapter 5: PowerHouse Language Rules
ORACLE Synonyms in PowerHouse

PowerHouse Rules 325

ORACLE Synonyms in PowerHouse
ORACLE synonyms are alternative user-defined names for certain database entities. These
synonyms can be used in SQL DML statements supported by PowerHouse, and in certain
PowerHouse statements.

The SQL DML statements supported by PowerHouse in which ORACLE synonyms can be used
are:
• [SQL] CALL
• [SQL] DELETE
• [SQL] INSERT
• [SQL] UPDATE
• [SQL] DECLARE CURSOR (query-expression)
• [SQL] DECLARE CURSOR (stored-procedure)

The PowerHouse statements in which ORACLE synonyms can be used are:

To access a public synonym, you can either run the PowerHouse component with owner=public,
or prefix the synonym name with "public.", as in "select * from public.name1".

Limitations to PowerHouse Statements
PowerHouse uses index information to perform many default tasks, such as creating default
linkages, generating QDESIGN PATH procedures, and so forth. If the specified synonym is for an
entity in a remote database—which means the synonym definition includes a
database-linkname—or, if it references another user's synonym, then PowerHouse cannot retrieve
index information from the base entity.

When PowerHouse does not have access to index information, standard defaulting based on
indexes cannot be done. In these cases, the designer may be required to specify explicit linkage
criteria, or provide ACCESS statements that can be used to generate the desired PATH procedure.

• ACCESS (QUIZ and QTP only)

• CURSOR (QDESIGN)

• EDIT (QTP)

• FILE (QDESIGN)

• OUTPUT (QTP)

• TRANSACTION (PDL, QDESIGN)

326 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Attributes of Numeric Elements

Attributes of Numeric Elements
The attributes of numeric elements govern the conversion of values from the input form (the
group of characters entered by a QUICK screen user) to the internal storage form, and from the
internal storage form to the display form (the group of characters that represents the value in a
report or on a screen when it is recalled from storage).

Input conversion occurs in QUICK during data entry or data modification, and in QTP when
run-time parameters are accepted from the user. Display conversion occurs in all PowerHouse
products whenever data is reported or displayed.

The Input Conversion Process
The attributes that affect the input conversion process for numeric values are:
• item datatype
• element type
• leading sign
• trailing sign
• pattern
• allowed values
• input scale

Assume that a user entered the characters "-123.45" for an item that has these attributes:

The process for converting from input to internal form is as follows:
1. The numeric value of the characters entered by the user is determined. (In the preceding

example, the value is -123.45.)
2. This value is multiplied by ten raised to the power of the input scale. (In the preceding

example, -123.45 is multiplied by 100 for a result of -12345.)
3. The value is compared with the previously scaled allowed values. (In the preceding example,

-12345 is between -100000 and + 100000.) Negative values are accepted only if a nonblank
leading and/or trailing sign is specified.

4. The value is "normalized" to a right-justified and blank-filled value with a leading minus sign
(-) if negative, and a decimal point if required for comparison with a pattern. (The preceding
example does not include a pattern.)

5. The scaled value is converted to the internal storage form (in this case, a signed four-byte
binary) and stored.

Component Attributes

item datatype INTEGER SIGNED

item size 4

element type size 8 decimal 2

leading sign (

trailing sign)

allowed values -1000 to +1000

input scale 2

Chapter 5: PowerHouse Language Rules
Attributes of Numeric Elements

PowerHouse Rules 327

Default Assumptions Governing Input
Unless otherwise specified, PowerHouse assumes that the values for numeric items are to be stored
internally as integer values. Therefore, if an input scale is not declared, an assumed input scale is
determined based on the number of decimal positions specified in the element type. (In the
preceding example, the input scale attribute could have been omitted since the value assigned to it
is equivalent to the number of decimal positions.)

If the allowed values attribute is omitted, acceptable values are defaulted according to the element
type, and leading and/or trailing sign attributes. If no nonblank leading or trailing sign is specified,
it is assumed that only positive values or zero are acceptable.

It is also assumed for all item datatypes other than FLOAT that the user cannot enter a value that
contains more decimal positions than the number declared for that element in the dictionary, and
that a value cannot exceed the number of digits allowed by the size.

If the allowed values attribute had not been included or if neither leading nor trailing sign had
been specified in the preceding example, the implied acceptable values would have been in the
range
0 to 9999.99

If a nonblank leading or trailing sign had been specified, the acceptable values would have been in
the range
-9999.99 to +9999.99

The Output Conversion Process
The attributes that affect the output conversion process for numeric elements are:
• item datatype
• element type
• output scale
• numeric picture
• leading sign
• trailing sign
• fill character
• float character
• significance
• blank when zero

Assume that the value -123.45 is to be displayed with the following attributes:

Component Attributes

item datatype INTEGER SIGNED

item size 4

element type size 8 decimal 2

output scale 0

picture " ^^^^^^,^^ "

leading sign (

trailing sign)

fill character *

float character $

328 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Attributes of Numeric Elements

The process for converting the value from its internal storage form to the display form is as
follows:
1. The internal value is multiplied by ten raised to the power of the output scale and rounded to

the nearest integer value. (When ten is raised to the power of zero as in the preceding
example, the value is not changed since 10

0

=1.)
2. The digits of the scaled integer value (without sign) are substituted into the picture from right

to left until no more character positions are needed. (When the value 12345 is substituted into
the picture "^^^^^^.^^ " the result is "^^^ 123.45 ".)

3. Zeros are substituted into the picture until the specified significance is attained. (In the
preceding example, no zeros were substituted into the picture because the number of digits in
the stored value 12345 met the significance of five as soon as the digit 3 was substituted into
the picture.) If the stored value had been 5 instead of 12345, the result after significance
would have been "^^^^^0.05". The number of significant positions is determined by
counting all character positions in the picture (including the decimal point and the blank
immediately to the left of the closing quotation mark), starting from the right.

4. The float character (if specified) is substituted. (In the preceding example, the result is
"^^$123.45".) When a float character has been specified, sufficient substitution or
nonsubstitution characters to display it must be declared in the picture. Using a
nonsubstitution character (for example, a space) is recommended.

5. The leading and trailing signs, if specified, are substituted. If a trailing sign is specified,
provision must be made for its insertion in the right-most portion of the picture. When a
trailing sign has been specified, sufficient characters other than the substitution characters (^)
must be declared in the picture. (In the preceding example, the result is "^($123.45)"). When
a leading sign has been specified, sufficient characters (substitution or nonsubstitution) to
display it must be declared in the picture. Using a nonsubstitution character (for example, a
space) is recommended.

6. The fill character replaces all remaining characters in the picture. (In the preceding example,
the result is "**($123.45)").

Default Assumptions for Display Attributes
If no picture is specified, a default picture is constructed based on the element type. For the
element discussed previously, which has a size of eight and two decimal positions, the default
picture would have been
"^^^^^^.^^"

By default no fill, float, leading sign, and trailing sign are assumed. Significance defaults to one
greater than the number of decimal positions. The default output scale is zero. While these
defaults are consistent with each other, specifying the picture, significance, leading sign, trailing
sign, output scale, or float character may disturb the anticipated default picture and default
significance. Therefore, it is recommended that you review the picture and significance whenever
any of the other attributes that govern the output conversion process are specified.

Specifying Decimal Currencies
There are two common approaches to handling dollar amounts in PDL. The previous example
illustrates the one that is most often used. Two decimal positions are declared for the element. At
input, it is assumed an amount will be entered in dollars and cents, using a decimal point. This
amount is scaled by an input scale of two and stored as cents. For display, the internal value is not
scaled. Instead, a decimal point is inserted in the picture as an editing character.

Alternatively, the element could be declared with no decimal positions. In this case, it is assumed
the amount will be entered in cents only; in other words, without a decimal point. The input scale
would default to zero, which is suitable for the value being entered.

significance 5

blank when zero yes

Component Attributes

Chapter 5: PowerHouse Language Rules
Attributes of Numeric Elements

PowerHouse Rules 329

However, the default significance of one would not force the display of the decimal point for
values less than one dollar. A significance of three or more should be specified. All other attributes
governing display are as in the previous example.

Displaying Negative Values
The following table demonstrates how various combinations of numeric attributes are used in
displaying negative values for the most common commercial notations.

Multiplication and Percentage Calculations
For most numeric elements used in business applications, it is preferable to store values as
integers. This prevents rounding problems.

Elements such as the conversion factor, CONV-UNIT, and discount percentage, DISC-PCT, are a
common exception.

Rounding and calculations are facilitated by storing actual fractional values as four-byte or
eight-byte floating-point items. Scaling required to produce the integer value needed for display is
performed by an output scale. The conversion factor, CONV-UNIT, is stored in the same units in
which it is entered (that is, with an input scale of zero) and is scaled to an integer value for display
by specifying an output scale of five.

In this case of the discount percentage element, DISC-PCT, the value is accepted as a percent (such
as 12.3 for 12.3%) and an input scale of -2 is used to store the true fractional value as a real
number (for example, .123). This facilitates calculations based on the element DISC-PCT. An
output scale of four combined with a picture of "^^.^^%" creates the correct integer value for
display. (In this case, 12.30% is displayed.)

Value Leading sign Trailing sign Picture
Resulting
Display Comments

20 " " " " "^^^" "20"

-20 " " " " "^^^" "###" overflow

20 "-" " " "^^" "20"

-20 "-" " " "^^" "-20" leading sign

20 " " "-" "^^^" "20"

-20 " " "-" "^^^" "20-" trailing sign

20 " " "CR" "^^^" "20"

-20 " " "CR" "^^^" "20CR" negative credit

20 " " "CR" "^^^DR" "20DR"

-20 " " "CR" "^^^DR"" "20CR" credit/debit

20 "(" ")" "^^" "20"

-20 "(" ")" "^^" "(20)" parentheses

330 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Decimal Alignment and Scaling

Decimal Alignment and Scaling
To ensure proper decimal alignment for INTEGER, ZONED, and PACKED numeric items in
PowerHouse, you must consider the role played by scaling. Scaling affects both the storage and
display of these numeric datatypes because, by default, PowerHouse performs scaling on input
and output data, and stores only whole numbers in INTEGER, ZONED, and PACKED numeric
items. The exception is FLOAT datatype, discussed later in this section.

A default scaling factor is taken from the PICTURE option, defined in either the appropriate
QDESIGN statement or the dictionary (if no PICTURE is defined on a QDESIGN statement). For
example, a numeric item with the characteristics 9(5)V9(2) gives a scaling factor of 2, while
9(5)V9(1) gives a scaling factor of 1.

There are two types of scaling in PowerHouse, input scaling and output scaling. INPUT SCALE n
means that an entered value is multiplied by the nth power of ten ("n" represents the specified
number) before being stored. OUTPUT SCALE n means that a stored value is multiplied by the
nth power of ten before being displayed.

The power of ten is called the "scale". An input scale of two means that the entered value is
multiplied by 100 (10^2) before being stored. If an input or output scale is in the range -5 to +5,
PowerHouse scales data by means of a single multiplication. If the scale is outside this range,
PowerHouse scales data by means of exponentiation (that is, by a series calculation).

Scaling is required to correctly display output values containing a fraction for INTEGER,
ZONED, and PACKED numeric datatypes. In PowerHouse, the display format for a numeric item
is specified by the picture string. PowerHouse supplies a default picture string for an item, based
on the dictionary definition.

For example, if an element is defined in the data dictionary as 9(2)V9(2), PowerHouse assigns
"^^.^^" as the default picture string. On output, PowerHouse substitutes digits into the picture
string from right to left, but uses only the digits from the whole number portion of the item value.
Thus when a stored value of 12.34 is not scaled on output, and is formatted for output by a
picture string of "^^.^^", the fractional portion is ignored, and substitution begins at the digit 2
and proceeds to the left, yielding .12 as the result. To obtain the desired display of 12.34, the value
12.34 must be multiplied (scaled) by 10^2 (100) to produce the whole number 1234. The rule is
that if the picture string specifies n decimal positions, an entered value with n decimal positions
must be multiplied by the nth power of ten in order to ensure the correct display.

In PowerHouse, numeric datatypes INTEGER, ZONED, and PACKED cannot represent
fractional amounts. Input scaling provides the means for working around this restriction. If an
element SAMPLE is defined in the dictionary as 9(2)V9(2), its corresponding item datatype is
INTEGER SIZE 2, by default. An item of datatype INTEGER can represent the value 12, or the
value 1234, but not the value 12.34.

Input scaling makes it possible to enter a value and retain the fractional portion. If the value 12.34
is entered with an input scale of 2, it will be multiplied by 100, yielding the whole number 1234.
PowerHouse stores 1234, not 12.34. On output, the digits of the whole number are substituted
into the default picture string "^^.^^". Each caret (^) in the picture string is a substitution
character, and is replaced by a digit. The decimal point, however, is a nonsubstitution character,
and is not replaced by a digit. Thus the displayed value is 12.34.

PowerHouse uses scaling only on the input and output of data; scaling is not used on the stored
data. If PowerHouse applications perform only input and output, with no calculations, then the
default values for INPUT SCALE, OUTPUT SCALE, and PICTURE ensure that the values of
numeric items are displayed correctly, because one value is taken from the other. However,
whenever you specify a calculation or condition that acts on the stored value in an item of
datatype INTEGER, ZONED, or PACKED, you must compensate for the fact that the stored
value is a scaled value (that is, no decimal points exist within the stored data).

Chapter 5: PowerHouse Language Rules
Decimal Alignment and Scaling

PowerHouse Rules 331

Conditions and Scaled Values
A condition will test a stored value, which, because of input scaling, may not be necessarily the
same as the entered value. For example, if element A is defined in the data dictionary as 9(3)V9(1),
then the default INPUT SCALE is 1, and the stored value is ten times greater that the entered
value. If you want to select values of A that are less than or equal to 10, you must compensate for
input scaling on your conditional test by specifying a selection criterion of less than or equal to
100 (10^2). For example, you would use a statement like
> SELECT IF A LE 100

to select all values for A that are less than or equal to 10.

VALUES Options and Scaled Values
Unlike the SELECT statement, the VALUES option of the FIELD statement in QDESIGN does not
require you to compensate for input scaling. If you use the VALUES option to stipulate an
acceptable range of values for an item to which input scaling has been applied, when you code the
VALUES option you must code the exact values that define the range, rather than scaled versions.
For example, you can stipulate that only values in the range 5 to 15 are acceptable for item A, as
in
> FIELD A VALUES 5 TO 15

The VALUES option must be coded this way, regardless of input scaling for the item.

Calculations and Scaled Values
If you specify calculations involving items of datatypes INTEGER, ZONED, or PACKED, you
must compensate for input scaling in order to obtain correct results. For example, assume that the
following elements are defined in the data dictionary:

The expression X + Y sums the stored values of X and Y, and yields the value 24457, not 33.466
as expected. The expression that yields 33.466 is ((X/10^2)+(Y/10^3)).

When you specify a calculation involving datatypes INTEGER, ZONED or PACKED, the
following steps will compensate for input scaling. They will also ensure proper alignment of the
decimal point in the result:
1. Divide each value involved in the calculation by 10^n where n is the input scale for the item.
2. Perform the calculation.
3. Scale the result of the calculation to convert the number for storage or display.

If the result of a calculation has n decimal places, then in order not to lose the less significant
digits, the result should be multiplied by the nth power of ten before it is stored or displayed.

In the previous example, the result 33.466 has three decimal places, so it should be multiplied by
10^3 (1000) before it is formatted by the picture string for display. Multiplication by 1000 can be
accomplished by specifying an OUTPUT SCALE of 3 in the QDESIGN FIELD statement for the
item, as in
> DEFINE ANSWER1 NUMERIC*6 = ((X/100) + (Y/1000))
.
.
.
> FIELD ANSWER1 PICTURE "^^^.^^^" OUTPUT SCALE 3

Element
Name

Display
Size Default Datatype

Decimal
Positions

Default
Input Scale

Entered
Value

Stored
Value

X 4 INT. SIZE 2 2 2 10.01 1001

Y 5 INT. SIZE 4 3 3 23.456 23456

Z 6 INT. SIZE 4 4 4 23.4567 234567

332 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Decimal Alignment and Scaling

The advantage to using this method is that ANSWER1 contains the unscaled value of the sum.
This value can be used in further calculations. The PICTURE for ANSWER1 requires an
OUTPUT SCALE of 3. To accomplish the multiplication by 1000, embed it directly in the
calculation, as in
> DEFINE ANSWER2 NUMERIC*6 = &
> ((X/100) + (Y/1000)) * 1000
.
.
.
> FIELD ANSWER2 PICTURE "^^^.^^^"

Both ANSWER1 and ANSWER2 have an item datatype of NUMERIC*6. NUMERIC*6 is the
default datatype for defined items, and is supplied by PowerHouse if no datatype is explicitly
specified. NUMERIC*6 is a floating point representation that has the same storage format as
FLOAT SIZE 8.

If either ANSWER1 or ANSWER2 is displayed, the result is 33.466. The floating point items are
able to represent the fractional portion of the sum, so the last three digits of the result will appear
correctly in the display.

In contrast, the last three digits can be lost if the result is stored in an INTEGER, rather than a
FLOAT item:
> DEFINE ANSWER3 INTEGER SIZE 4 = ((X/100) + (Y/1000))
.
.
.
> FIELD ANSWER3 PICTURE "^^.^^^" OUTPUT SCALE 3

The internal calculation is done in floating point, but an INTEGER item cannot represent the
fractional portion of the result. So, when the result is placed in an INTEGER item, truncation of
the fractional portion of the number will occur, and ANSWER3 will contain 33. The OUTPUT
SCALE 3 multiplies ANSWER3 by 1000, yielding 33000, and the formatted answer appears as
33.000. The fractional portion is lost.

It is possible to use datatype INTEGER and still obtain the correct answer for a calculation on
stored data with a fractional portion. To accomplish this, the result of a calculation must be scaled
(that is, converted to a whole number) before it is stored in the INTEGER item. Input scaling
cannot be used because a calculation is being performed, rather than a value being entered. To
scale the result, embed a multiplication by the approximate factor of 10 in the calculation. Then
ANSWER4 will contain the whole number 33466, and the answer, formatted by the PICTURE
"^^.^^^", will appear as 33.466. For example,
> DEFINE ANSWER4 & INTEGER SIZE 4 =
> (X/100) + (Y/1000)) * 1000
.
.
.
> FIELD ANSWER4 PICTURE "^^.^^^"

Floating Point Calculations
To use items in calculations, it is most efficient to define them as datatype FLOAT. Floating point
numbers can represent the fractional portions of numbers, so input scaling of floating point items
is not necessary and can be overridden by specifying INPUT SCALE 0. When you use a floating
point item with INPUT SCALE 0, the value that is stored is the same value that is entered,
including any fractional portion. Floating point items must, however, be scaled for correct display.
So when the INPUT SCALE is 0, you must specify OUTPUT SCALE n, where n is the number of
decimal positions in the PICTURE string.

For example,
> TEMPORARY FLOATPOINT FLOAT SIZE 8
.
.
.
> FIELD FLOATPOINT &
> PICTURE "^^^.^^^^" INPUT SCALE 0 OUTPUT SCALE 4

Chapter 5: PowerHouse Language Rules
Decimal Alignment and Scaling

PowerHouse Rules 333

Note that in the previous example, the values of the input and output scales are the reverse of the
default values. Where PowerHouse would, by default, have applied an input scale of 4 (based on
the PICTURE "^^^.^^^^") and an output scale of 0, the reverse applies.

Examples of Calculations
With the same items as used in the table on (p. 331), you can obtain correct results by defining
floating point items XF and YF (which represent the same values that were originally entered for
X and Y). When you sum these, then scale the result for display, as in
> DEFINE XF FLOAT SIZE 8 = X / 100
> DEFINE XF FLOAT SIZE 8 = X / 1000
> DEFINE XFPLUSYF FLOAT SIZE 8 = XF + YF
.
.
.
> FIELD XFPLUSYF PICTURE "^^.^^^" OUTPUT SCALE 3

XF and YF will contain the unscaled values of X and Y. These values can be used in further
calculations. If these values are not required for further calculations, the conversions of X and Y
can be embedded in the calculation, as in
> DEFINE XPLUSY NUMERIC *6 = (X/100) + (Y/1000))
.
.
.
> FIELD XPLUSY PICTURE "^^.^^^" OUTPUT SCALE 3

The methods illustrated in the previous examples make easy work of a complex expression,
because the values involved are converted to floating point before the expression is evaluated. The
required OUTPUT SCALE must be determined by the number of decimal positions to be
displayed, as specified in the PICTURE option.

Notes on Scaling Efficiency
In all the previous examples, multiples of ten are explicitly coded, and exponential notation is not
used. This practice is recommended because exponentiation uses a series calculation, and
therefore executes more slowly and is less accurate.

In complex calculations, efficiency can be improved by using algebraic factoring techniques to
reduce calculations to simpler forms.
> DEFINE CAL1 FLOAT SIZE 8 &
> = ((X/100) / (Z/1000)) * (Y/1000)
> DEFINE CAL2 FLOAT SIZE 8 &
> = ((X/100) + (Y/1000)) / (Z/1000)
.
.
.
> FIELD CAL1 PICTURE "^^.^" OUTPUT SCALE 1
> FIELD CAL2 PICTURE "^^.^^" OUTPUT SCALE 2

The following example executes more quickly than the previous example.
> DEFINE CAL1 FLOAT SIZE 8 = (X * Y) / (Z * 100)
> DEFINE CAL2 FLOAT SIZE 8 = ((10 * X) + Y) / Z
.
.
.
> FIELD CAL1 PICTURE "^^.^" OUTPUT SCALE 1
> FIELD CAL2 PICTURE "^^.^^" OUTPUT SCALE 2

334 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

QUICK Screen Commands
The QUICK screen commands are listed in the tables on the following pages. For each screen
command, there is a description, the syntax you use in command lists and conditional command
lists, and the mnemonics you use during QUICK sessions.

Each of these commands has a default mapping to one or more function keys on each supported
terminal type. You can find out what these mappings are for a terminal type by looking them up in
the appropriate QKGO Context Binding Screen.

Using Screen Commands in Command Lists
In the following tables, the "QDESIGN syntax" column lists the syntax you use in command lists
and conditional command lists. In this syntax, you will find the general terms, id-option and
id-range.

id-option

Specifies the field on which the command operates. One of n, MARK, or PROMPT.
• n specifies an explicit field, where n is the field ID-number
• MARK specifies the field that is currently fieldmarked
• PROMPT prompts the user for an ID-number with a pop-up box

Default: If no id-option is specified, or if MARK is specified but no field is currently fieldmarked,
then PROMPT is assumed.

id-range

Specifies the field or fields on which the command operates. One of n [TO m], MARK, or
PROMPT.
• n [TO m] specifies an explicit range of fields, where n and m are the first and last field

ID-numbers in the range
• MARK specifies the field that is currently fieldmarked.
• PROMPT prompts the user for ID-numbers with a pop-up box

Default: If no id-range is specified, or if MARK is specified but no field is currently fieldmarked,
then PROMPT is assumed.

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

PowerHouse Rules 335

Action Commands:

Command1 Description
QDESIGN
Syntax

Default
Mnemonic

Function Key/ Alternate
Function Key (OpenVMS)

Action Bar Prompts you for Action
commands by way of an Action
bar and/or drop-down menus if
they are available.

ACTIONBAR BAR GOLD_B

F7

Action Field Prompts you for Action
commands by way of the Action
field if it is available.

ACTIONFIELD ACT GOLD_A

F8

Append Prompts you to add data to the
data already on the screen.

APPEND A KEY_PAD_8

GOLD_INSERT

Block Mode
(MPE/iX)

Switches the terminal to Block
mode, if supported.

BLOCK
[MODE]

B

Character
Mode
(MPE/iX)

Switches the terminal to
Character mode.

CHARACTER
[MODE]

C

Delete Deletes all entries on the screen
or in the occurrence window.

DELETE D KEY_PAD_3

REMOVE

Delete Range Deletes the fields at the specified
IDs.

DELETE[id-
range]

D-n/m GOLD_REMOVE

Designer Executes the named DESIGNER
procedure for a field or fields.

DESIGNER
name [id-range]

Entry Mode Prompts you to enter data in
each field, then returns you to
the Action field.

ENTRY
[MODE]

E KEY_PAD_7

INSERT

Exit
(OpenVMS)

Terminates the current QUICK
session. All changes since the
last update are lost.

CONTROL/Z F10

Extended
Field Help2

Displays a detailed help message
for a field or fields.

EXTENDED
FIELD HELP
[id-range]

??-n/m GOLD_ HELP

Extended
Help2

Displays a detailed help message
for the screen.

EXTENDED
HELP

?? GOLD_ PF2

Field Help2 Displays a one-line help message
for a field or fields.

FIELD HELP
[id-range]

?-n/m HELP

Field Mark Prompts you to enter data in
each field by way of
fieldmarking.

FIELDMARK MARK GOLD_M

F9

Field Page
Down

Scrolls down a page in the
specified scrolling field.

PAGEDOWN
[id-option]

PD-n GOLD_J

Field Page
Up

Scrolls up a page in the specified
scrolling field.

PAGEUP
[id-option]

PU-n GOLD_K

336 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

Field Scroll
Down

Scrolls down a line in the
specified scrolling field.

SCROLLDOW
N [id-option]

SD-n GOLD_D

Field Scroll
Up

Scrolls up a line in the specified
scrolling field.

SCROLLUP
[id-option]

SU-n GOLD_U

Find Mode Prompts you for a value (or
values), then retrieves the
specified data.

FIND [MODE] F KEY_PAD_4

FIND

First Record Moves the occurrence window
to the top of the cache. If there
is no cache, or if the occurrence
window is at the top, then no
action is taken.

FIRST
[RECORD]

FR GOLD_F

Help2 Displays a one-line help message
giving the allowed commands
for the screen.

HELP ? PF2

ID range Moves you to each specified
field in turn to enter or modify
values.

ID [id-range] n/m

Information2 Displays the name of the current
screen and the date it was
created, as well as version and
copyright information about
PowerHouse.

INFORMATIO
N

I [Tab]

Last Record Moves the occurrence window
to the bottom of the cache. If
there is no cache, or if the
occurrence window is at the
bottom, then no action is taken.

LAST
[RECORD]

LR GOLD_L

List2 Prints the data records in the
occurrence window, not the
complete cache contents.

LIST L KEY_PAD_2

F20

List All2 Prints the active screens in the
current thread. For each screen,
QUICK only prints the data
records that are in the
occurrence window, not the
complete cache contents.

LIST ALL L@ GOLD_ KEY_PAD_2

GOLD_F20

Logical
Function Key
1

•

•

•

Logical
Function Key
8

Executes the commands defined
in the association KEY
statement or in QKGO.

GOLD_1

•

•

•

GOLD_8

Command1 Description
QDESIGN
Syntax

Default
Mnemonic

Function Key/ Alternate
Function Key (OpenVMS)

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

PowerHouse Rules 337

Modify Allows you to Tab between
fields in a panel, entering or
changing data.

MODIFY M

Next Retrieves next primary data
record when there is a primary
record structure with a
repeating detail; otherwise,
same as Next Data.

NEXT N KEY_PAD_5

GOLD_NEXT_
SCREEN

Next Data Moves the occurrence window
down one full window length.

NEXT DATA [Return] GOLD_N

NEXT_SCREEN

Next Record Moves the occurrences window
down to the next record buffer.

NEXT
RECORD

NR GOLD_ CURSOR_ DOWN

Previous
Data

Moves the occurrence window
up one full window length.

PREVIOUS
[DATA]

\ GOLD_KEY_
PAD_5

Previous
Record

Moves the occurrence window
up to the previous record buffer.

PREVIOUS
RECORD

PR GOLD_ CURSOR_ UP

Refresh2 Re-draws the active screen. REFRESH CONTROL/G

Refresh All2 Re-draws the screens in the
terminal buffer.

REFRESH ALL CONTROL/W

Refresh Line
(OpenVMS)

Re-draws the current line. REFRESH LINE CONTROL/R

Restore Keys Resets logical function keys to
map to the default terminal
function keys.

RESTORE
KEYS

K

Restore
Labels
(MPE/iX,
UNIX)

Resets the function key labels to
those specified in the current
PowerHouse application.

RESTORE
LABELS

KL

Return Moves you up one screen. If
there is no higher screen, exits
QUICK.

RETURN ^ PF4

PREV_SCREEN

Return to
Start

Moves you up to the startscreen
(usually a menu screen). If there
is no startscreen, exists QUICK.

RETURN TO
START

^^^ GOLD_ ENTER

GOLD_ PREV_ SCREEN

Return to
Stop

Moves you up to the
next-highest stopscreen. If there
is no stopscreen, exits QUICK.

RETURN TO
STOP

^^ GOLD_ PF4

Select Mode First prompts you for a value
(or values), then returns you to
the Action field. You can enter
more selection values. The
specified data is then retrieved.

SELECT
[MODE]

S KEY_PAD_1

SELECT

Command1 Description
QDESIGN
Syntax

Default
Mnemonic

Function Key/ Alternate
Function Key (OpenVMS)

338 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

Separator Changes the rapid-fire separator
character (by default, a
semicolon) to the one you
specify. Allows you to enter the
default separator character as
part of a field entry.

SEPARATOR SEP char

Shift2 Shifts function key levels by the
number you specify, to the
number you specify, or to the
next level. By default, the new
level remains in effect until you
override it with another Shift
command, make an entry, or
return to the Action field. the
LOCK option retains the new
level until you override it with
another Shift command.

SHIFT [n| {TO
[LEVEL] n}]
[LOCK]

System Takes you to the operating
system prompt. To return to
QUICK, enter the operating
system’s Exit command.

SYSTEM MPE/IX: :

OpenVMS: $

UNIX: !<shell-
abbreviation>
(e.g., !csh)

Windows: !

DO

Toggle2 Cycles between screen threads. TOGGLE
[THREAD]

T GOLD_T

Update Updates and continues with the
current mode. In Entry mode,
QUICK stores the date, then
prompts for more; in Find
mode, QUICK retrieves the next
set of data.

UPDATE U PF3

Update Next If the screen does not have a
primary record structure with
an occurring detail, works the
same as UPDATE. Otherwise, in
Entry mode, if the user has not
filled the cache, UPDATE
prompts for more detail records.
If the user has filled the cache or
issued UPDATE NEXT, QUICK
prompts for the next primary
record. In Find mode, UPDATE
retrieves the next set of detail
records if they exits, otherwise it
retrieves the next primary.
UPDATE NEXT always
retrieves the next primary.

UPDATE NEXT UN KEY_PAD_6
GOLD_F19

Update
Return

Stores the data and returns to
the parent screen. If there is no
parent screen, exits QUICK.

UPDATE
RETURN

UR GOLD_ PF3

Command1 Description
QDESIGN
Syntax

Default
Mnemonic

Function Key/ Alternate
Function Key (OpenVMS)

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

PowerHouse Rules 339

Update Stay Stores the data and keeps the
record buffer and cache intact.

UPDATE STAY US KEY_PAD_9
F19

User Break Interrupts QUICK’s processing
and prompts at the Action field.
Any internal loops, data
retrieval and procedural logic
are interrupted. If QUICK is run
with debug enabled, calls
Debugger.

MPE/iX:
Ctrl-Y

OpenVMS,
UNIX,
Windows:
Ctrl-C

1 For more information about how these commands map to function keys on various terminal types, see the
section, "The Terminal Interface Configuration Screen" in Chapter 6, "Customizing QUICK with QKGO", in
the QDESIGN Reference.
2 Indicates Action and Data commands (commands that are valid in both Action and Data context). The
behavior of these commands may be slightly different depending upon whether they are entered in Action or
Data context. Compare the descriptions with those in the Data commands table for details.

Command1 Description
QDESIGN
Syntax

Default
Mnemonic

Function Key/ Alternate
Function Key (OpenVMS)

340 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

Data Commands:

Command1 Description
QDESIGN
syntax

Default
mnemonic

Function Key/ Alternate
Function Key
(OpenVMS)

Backout Erases any entries or changes you
have made, clears the cache (if
there is one), and returns you to
the Action field. Any entered or
appended data records, or
modifications to retrieved data
records, are lost regardless of the
current location of the occurrence
window.

BACKOUT ^ PF4

PREV_SCREEN

Backup Moves you to the previous field.
QUICK scrolls the occurrence
window as necessary.

BACKUP \ KEY_PAD_ MINUS

GOLD_F17

Duplicate Duplicates the last entry you made
in the field.

DUPLICATE _ KEY_PAD_0

Exit
(OpenVMS)

Terminates the current QUICK
session. All changes since the last
update are lost.

CONTROL/Z F10

Extended
Field Help2

Displays a detailed help message
for a field (or fields).

EXTENDED
FIELD HELP
[id-range]

??-ID GOLD_ HELP

Extended
Help2

Displays a detailed help message
for the field.

EXTENDED
HELP

?? GOLD_ PF2

GOLD_HELP

Field Help2 Displays a one-line help message
for a field (or fields).

FIELD HELP
[id-range]

?-ID HELP

Help2 Displays a one-line help message
for the field.

HELP ? PF2

HELP

Information2 Displays the name of the current
screen and the date it was created,
as well as version and copyright
information about PowerHouse.

INFORMATIO
N

[Tab]

List2 Prints the data records in the
occurrence window, not the
complete cache contents.

LIST KEY_PAD_2

F20

List All2 Prints the active screens in the
current thread. For each screen,
QUICK only prints the data
records that are in the occurrence
window and not the complete
cache contents.

LIST ALL GOLD_ KEY_PAD_2

GOLD_F20

Next Field Moves you to the next field. If
there are no more fields or if you
have filled the cache, prompts you
at the Action field.

NEXT FIELD [Return]

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

PowerHouse Rules 341

Popup Field Opens a pop-up Data field, if one
is available.

POPUP + GOLD_P

DO

Refresh2 Re-draws the active screen. REFRESH CONTROL/G

Refresh All2 Re-draws the screens in the
terminal buffer.

REFRESH ALL CONTROL/
W

Refresh Line
(OpenVMS)

Re-draws the current line. REFRESH
LINE

CONTROL/R

Reverse Input
Toggle

Accepts and displays data in
reverse order (right to left).

| GOLD_R

Selectbox Opens up a pop-up selection box
of valid values or captions, if one is
available.

SELECTBOX # GOLD_S

SELECT

Shift2 Shifts function key levels by the
number you specify, to the number
you specify, or to the next level. By
default, the new level remains in
effect until you override it with
another Shift command, make an
entry, or return to the Action field.
The LOCK option retains the new
level until you override it with
another Shift command.

SHIFT [n| {TO
[LEVEL] n}]
[LOCK]

Skip All Takes you to the Action field
unless there are unsatisfied
required fields.

SKIP ALL // KEY_PAD_ ENTER

F18

Skip Cluster Takes you to the first field of the
next repeating group of fields,
unless there are unsatisfied
required fields.

SKIP CLUSTER / KEY_PAD_ COMMA

F17

Skip to n Takes you to the specified field
unless there are unsatisfied
required fields.

SKIP TO n /n

Toggle2 Cycles between screen threads. TOGGLE
[THREAD]

T

1 For more information about how these commands map to function keys on various terminal types, see the
section, "The Terminal Interface Configuration Screen", in Chapter 6, "Customizing QUICK with QKGO", in
the QDESIGN Reference.
2 Indicates Action and Data commands (command that are valid in both Action and Data context). The
behavior of these commands may be slightly different depending upon whether they are entered in Action or
Data context. Compare the descriptions with those in the Data commands table for details.

Command1 Description
QDESIGN
syntax

Default
mnemonic

Function Key/ Alternate
Function Key
(OpenVMS)

342 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

Action Bar Commands

Field Marking Commands

Line Edit Commands

Command OpenVMS Function Key OpenVMS Alternate Function Key

Accept RETURN

Next Option CURSOR_DOWN CURSOR_RIGHT

Previous Option CURSOR_UP CURSOR_LEFT

Command OpenVMS Function Key OpenVMS Alternate Function Key

Accept RETURN

Next Option CURSOR_DOWN CURSOR_RIGHT

Previous Option CURSOR_UP CURSOR_LEFT

Command OpenVMS Function Key OpenVMS Alternate Function Key

Clear Field
(MPE/iX, UNIX)

Delete Character DEL_CHAR

Delete Previous
Character

Delete to Start of
Line

CONTROL/U

Delete Word CONTROL/J F13

Input Completion RETURN

Insert Toggle CONTROL/A F14

Move Left 1
Character

CONTROL/D CURSOR_LEFT

Move Right 1
Character

CONTROL/F CURSOR_RIGHT

Move to End of
Line

CONTROL/E

Move to Start of
Line

CONTROL/H F12

Recall CONTROL/B CURSOR_UP

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

PowerHouse Rules 343

Menu/List/Selection Box Commands

Popup Commands

System Commands

Text Edit Commands

Command OpenVMS Function Key OpenVMS Alternate Function Key

Accept RETURN

Cancel REMOVE PF4

Move Down CURSOR_DOWN

Move Up CURSOR_UP

Page Down GOLD_CURSOR_DOWN NEXT_SCREEN

Page Up GOLD_CURSOR_UP PREV_SCREEN

Command OpenVMS Function Key OpenVMS Alternate Function Key

Accept RETURN

Cancel REMOVE PF4

Scroll Down CURSOR_DOWN

Scroll Up CURSOR_UP

Page Down GOLD_CURSOR_DOWN NEXT_SCREEN

Page Up GOLD_CURSOR_UP PREV_SCREEN

Command OpenVMS Function Key OpenVMS Alternate Function Key

Refresh Screen CTRL-G

Refresh All CTRL-W

Command OpenVMS Function Key OpenVMS Alternate Function Key

Clear Field
(MPE/iX, UNIX,
Windows)

Delete Character DEL_CHAR

Delete Previous Character
(MPE/iX, UNIX,
Windows)

Delete to Start of Line CONTROL/U

344 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
QUICK Screen Commands

Delete to End of Line CONTROL/N

Delete Word CONTROL/J F13

Input Completion RETURN

Insert Toggle CONTROL/A F14

Move Left 1 Character CONTROL/D CURSOR_LEFT

Move Right 1 Character CONTROL/F CURSOR_RIGHT

Move Up 1 Line CURSOR_UP

Move Down 1 Line CURSOR_DOWN

Move Up 1 Page PREV_SCREEN

Move Down 1 Page NEXT_SCREEN

Move to End of Line CONTROL/E

Move to Start of Line CONTROL/H F12

New Paragraph CONTROL/P INSERT_HERE

Recall CONTROL/B

Command OpenVMS Function Key OpenVMS Alternate Function Key

Chapter 5: PowerHouse Language Rules
Blob Support in PowerHouse

PowerHouse Rules 345

Blob Support in PowerHouse
A blob (binary large object) is a data type only supported in relational databases. It is used for
storing large objects of arbitrary size whose structure is not known to the database. Blobs are used
to store large quantities of variable length text or objects such as images, video and sound. Blobs
may require special routines and utilities to enter, display, change and update them. For more
information about blobs, refer to your database documentation set.

Different databases have different datatypes for blob items. For a complete list, see "Relational
PowerHouse Datatypes (Part 1)" (p. 313)

PowerHouse can reference the blob contents which can be used internally in QUICK screens, QTP
runs, or QUIZ reports. You can concatenate any blob to a string, or to another blob, and assign
the result to a blob. However, the display of blobs is limited by the blob contents. PowerHouse
supports text blobs as fields on QUICK screens or as QUIZ report items.

For information about restrictions concerning blobs, see (p. 346).

You may use the DO BLOB verb to call external utilities such as editors to handle the contents of
the blob. For more information about the DO BLOB verb, see Chapter 8 "QDESIGN Verbs and
Control Structures," in the QDESIGN Reference.

All PowerHouse components support the following operations:
• assign contents of a blob to a string
• assign a string to a blob (creating a new blob)
• assign the contents of one blob to another blob field (in the same or a different database)
• concatenate a blob and a string (the result is a blob or string)

Using Blobs in PowerHouse Expressions

Assigning a Blob to a Character Item

When the target of an assignment is a character item (VARCHAR or CHARACTER), any blob
assigned to that item is treated as a character item. If the blob size exceeds the size of the character
item, it is truncated.

If the size of the source blob is larger than 32,767 bytes, then the target blob will be NULL after
assignment.

In the following examples, the contents of the blob, BLOBITEM, are assigned to the character
item, STRITEM.
LET STRITEM = BLOBITEM
DEFINE STRITEM CHARACTER*2000 = BLOBITEM
ITEM STRITEM FINAL BLOBITEM

In the next examples, BLOBITEM is concatenated to a string and assigned to the character item.
LET STRITEM = BLOBITEM + "a string"
DEFINE STRITEM CHARACTER*2000 = BLOBITEM + "a string"

Using Blobs
When you use the GENERATE statement, the default options CHARACTER and FOR 1,18 are
generated on any FIELD statements for blob items. These are optional.

In the following example, the item, DESCRIPTION, is a text blob of arbitrary size.
> FIELD DESCRIPTION OF EMPLOYEES &
> FOR 1,50 &
> POPUP FROM 20,1 TO 23,50 &
> ON DATA

The following FIELD statement options are useful when dealing with large quantities of text:
• FOR to specify scrolling, multi-line fields
• POPUP to specify pop-up multi-line fields

346 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Blob Support in PowerHouse

Using Blobs in QUIZ

Multi-line fields, such as character, text blobs (maximum size 32,767 bytes) and varying character
items, can be reported in QUIZ using the WRAP option in the report-item syntax.

Restrictions on Blobs
The restrictions on blobs are as follows:
• Only the contents of blobs smaller than 32,767 bytes can be manipulated. If the source blob is

larger than 32,767 bytes, PowerHouse will give an error message.
• If the size of the source blob is larger than 32,767 bytes, then the target blob will be NULL

after assignment.
• Pattern matching is supported, with the exception of QUICK in Select mode.
• Edits and other processing done in FIELDTEXT are performed only on the first 2,047 bytes of

the blob.
• A blob field cannot be modified after the user does an Update Stay action. An error message

"Record has been changed since you found it"

will result if the user tries to modify the blob after an Update Stay. The record must be
retrieved again, and then modified.

• The DUPLICATE, PICTURE, RJ, UPSHIFT, and DOWNSHIFT FIELD statement options
don’t apply to blob fields.

Chapter 5: PowerHouse Language Rules
Null Value Support in PowerHouse

PowerHouse Rules 347

Null Value Support in PowerHouse
PowerHouse supports null values. Null values can occur in relational items, defined items,
temporary items, and in predefined items such as FIELDTEXT and FIELDVALUE. PowerHouse
maintains null values in expressions, conditions, and aggregate functions. Nulls can be assigned to
items, and items can be tested to see if they are null.

PowerHouse works with the null value constraints of supported relational databases. If null
values are not permitted at the database level, PowerHouse does not allow the use of null values.

Null values cannot be used in non-relational data structures, such as subfiles. When items
containing null values are written to a non-relational data-structure, QUIZ, QTP, and QUICK use
the default initialization values.

Enabling Null Value Item Initialization
By default, the use of null values is disabled. To indicate that items should be initialized to null,
use the NULL VALUES ALLOWED option on the FILE or DATABASE statement in PDL.

If null values are not allowed, default initialization values are blanks for character items, and
zeros for date and numeric items.

If null values are allowed in PowerHouse and the underlying database, the default item
initializations are:
• blank for character items
• zeros for date and numeric items
• null for relational items regardless of datatype

Initializing Null Values in QUICK and QTP

In QUICK and QTP, relational items are initialized according to the following procedure:
1. If there is an ITEM INITIAL option for the ITEM statement, the item is initialized to this

value.
2. If there is no ITEM INITIAL option, and an element with an initial value corresponds to this

item, the item is initialized to the element initial value.
3. If neither of the above is true, the item is initialized to null if null is allowed for the item, or it

is initialized to default values.

When initializing items of one relational record structure based on the items of another relational
record, a null value is copied, provided the target item allows null values. Otherwise, the target
item is initialized to default values.

When a non-relational data structure is initialized from a relational data structure and the source
item has a null value, the non-relational item is initialized to default values.

Automatic Item Initialization
PowerHouse can read item values from relational record structures and write these values to items
in non-relational record structures. Since null values are allowed in relational record structures,
but are not allowed in non-relational record structures, PowerHouse provides initial values
automatically when initializing items in non-relational data structures.

Entering and Displaying Null Values
The character used to display a null value can be redefined using the NULL VALUE
CHARACTER option on the SYSTEM OPTIONS statement in PDL. QUICK and QUIZ use this
character to display a null value in a field. When an item is null, the display character is
left-justified in the field for a character or date item, and right-justified for a numeric item.

A null value can also be entered on a QUICK screen by using the QKGO Null Value Character.

Note: Both the Null Value Character and the QKGO key can be configured in QKGO.

348 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Null Value Support in PowerHouse

Assigning Null Values
NULL can be defined as a term in any PowerHouse expression to assign a null value to a defined,
temporary or relational item.

For example, NULL may be used in statements such as DEFINE, LET, and ITEM:
> DEFINE PROJECT-NAME CHARACTER*20 = &
> CASE OF EMPLOYEES &
> WHEN 1001 THEN "PRODUCTION" &
> WHEN 1002 THEN "PROMOTIONS" &
> DEFAULT NULL
> ITEM RELITEM INITIAL NULL
> LET RELITEM = NULL

Testing for Null Values
You can test for null values in PowerHouse using the pre-defined condition:
item [IS] NULL|MISSING

This condition can be used wherever a condition can be specified in PowerHouse. The MISSING
keyword can be used in place of the NULL keyword in the PowerHouse predefined condition, but
not in the SQL predefined condition. For more information about conditions, see (p. 289).

The condition IS NULL or IS MISSING must be used to determine whether a value is null or not
null. When a value is compared to NULL using other conditions, the result is always NULL.

If any operand in an expression has a null value, the result is set to NULL. Whenever a conditional
expression evaluates to NULL then PowerHouse treats it as "not true".

The following condition is used for testing null values in SQL
columnspec IS [NOT] NULL

The following example reports the number of employees in the record structure EMPLOYEES
that have dependents and the number that do not:
> ACCESS EMPLOYEES
> DEFINE EXISTINGCOUNT = 1 &
> IF DEPENDENTS EXISTS AND DEPENDENTS > 0 &
> ELSE 0
> DEFINE NULLCOUNT = 1 &
> IF DEPENDENTS IS NULL OR DEPENDENTS = 0 ELSE 0
> REPORT LASTNAME FIRSTNAME DEPENDENTS
> FINAL FOOTING SKIP 3 &
> "Number of employees with dependents: " &
> EXISTINGCOUNT SUBTOTAL &
> "Number of employees without dependents:" &
> NULLCOUNT SUBTOTAL

With the SELECT statement, you can specify record selection based on whether or not a null value
occurs in an item by using the IS NULL predefined condition. For example,
> FILE EMPLOYEES IN REGIONAL
> SELECT IF DEPENDENTS IS NULL

or, in QTP or QUIZ, enter:
> ACCESS EMPLOYEES IN REGIONAL
> SELECT IF DEPENDENTS IS NULL

Operating on Null Values in PowerHouse
If NULL VALUES ALLOWED is specified in the dictionary, you can operate on null values. With
the exception of summary-operations, if a term in a string, date, or numeric expression has a null
value, the value of the expression is set to null. Similarly, if a null value is used as a parameter to a
function, the result is null.

Chapter 5: PowerHouse Language Rules
Null Value Support in PowerHouse

PowerHouse Rules 349

For summary-operations, null values are ignored. If all the values used in a summary-operation
are null, the result is null. As an example, when a null value is encountered during an averaging
calculation it is not included in the subtotal or count. The averaging is based only on the non-null
values. The following table lists the summary-operations for each PowerHouse component.

Selective Record Retrieval Based on Null Values
With the SELECT statement, you can specify record selection based on whether or not a null value
occurs in an item. For example, suppose that you want to retrieve only those records from a
database where the DEPENDENTS item is null. In QDESIGN, enter
> FILE EMPLOYEES IN REGIONAL
> SELECT IF DEPENDENTS IS NULL

or in QTP, enter
> ACCESS EMPLOYEES IN REGIONAL
> SELECT IF DEPENDENTS IS NULL

NULL cannot be used as a value for a linkitem on statements such as the CHOOSE statement or
the ACCESS statement since PowerHouse cannot pass NULL as retrieval criteria in a request to a
database.

Controlling Null Value Entry in QDESIGN
The following table shows the null value specifications which affect how PowerHouse applies null
value support in QDESIGN with relational tables.

If a view is specified in the FILE or CURSOR statement, QDESIGN cannot determine if any
columns are NOT NULL. In these cases, QDESIGN does not generate the NULL VALUE NOT
ALLOWED option for the FIELD statement unless the dictionary says NULL VALUES NOT
ALLOWED

The output of the QSHOW SHOW RECORD statement will display the letter "r" to the left of
each column where values are required.

PowerHouse
Component Summary-operations and Null Values

QDESIGN SUM option on the ITEM and TEMPORARY statements

QTP SUM function

AVERAGE, MAXIMUM, MINIMUM, and SUBTOTAL summary-operation

QUIZ AVERAGE, MAXIMUM, MINIMUM, PERCENT, RATIO, and SUBTOTAL
summary-operation

Database column
specification

PDL FILE or
DATABASE option

Default QDESIGN
FIELD option

QSHOW SHOW
RECORD display

nulls allowed NULL VALUES NOT
ALLOWED

NULL VALUE NOT
ALLOWED

"r"

nulls not allowed NULL VALUES NOT
ALLOWED

NULL VALUE NOT
ALLOWED

"r"

nulls allowed NULL VALUES
ALLOWED

NULL VALUE
ALLOWED (not
generated)

nulls not allowed NULL VALUES
ALLOWED

NULL VALUE NOT
ALLOWED

"r"

350 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Null Value Support in PowerHouse

A null value can be explicitly entered on a QUICK screen by using the QKGO Null Value
Character. The Null Value Character can be configured on the Data Field Commands Screen in
QKGO.

For a column that allows null values, the FIELD option, NULL VALUE NOT ALLOWED,
prevents you from explicitly entering the null value character in the field. However, QUICK will
store a null value if a null response (such as a carriage return) is entered. To prevent QUICK from
supplying unintended null values, specify REQUIRED with NULL VALUE NOT ALLOWED.

QDESIGN automatically generates the REQUIRED option only for fields that correspond to
indexes.

Chapter 5: PowerHouse Language Rules
Pattern Matching in PowerHouse

PowerHouse Rules 351

Pattern Matching in PowerHouse
A pattern is a special string of characters that you can use to validate values during data entry or
to specify selective retrieval of data records.

Patterns have broad applications throughout PowerHouse. Typically, you define patterns for
individual elements in the data dictionary. The other PowerHouse components use the pattern
definitions specified in your data dictionary. You can specify patterns for matching purposes in
QTP, QUICK, PDL, and QUIZ.

Types of Characters Used in Pattern Matching
Patterns are made up of two types of characters:
• exact-match characters
• metacharacters

Using Exact-Match Characters

The simplest type of pattern matching involves exact-match characters. Exact-match characters
match only themselves. There is a literal match between each exact-match character and its
corresponding digit or character of the item value. For example, if the pattern is "a2b", then only
the value "a2b" matches the pattern.

All alphabetic and numeric characters used in pattern matching are exact-match characters:

Nonprinting ASCII characters are not allowed in patterns.

The following non-alphabetic and non-numeric special characters match themselves:

+ { } - ` ’ ~ $. , % / "_

Note: The underscore matches itself if it is not in the Reserved Metacharacter string. If it is
included in the Reserved Metacharacter string, it must be preceded in pattern matching by the
escape character (!).

Using Metacharacters

You can construct useful patterns using metacharacters. A metacharacter is a character that
describes a class of characters or something about the pattern rather than simply matching itself.

A-Z uppercase characters match uppercase characters

a-z lowercase characters match lowercase characters

0-9 a digit matches itself

a blank (or a space) matches itself

Default
Metacharacter

PowerHouse
Keyword Function

^ ALPHA Matches any single uppercase or lowercase alphabetic
character. The characters in the upshift downshift table are
also used as valid alphabetic characters. For example, the
pattern "^^##" matches values such as "aa22" and
"ab23". The metacharacter ^ matches uppercase or
lowercase alphabetic characters, so the pattern would
match both "ab23" and AB23".

352 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Pattern Matching in PowerHouse

Reserved Metacharacters

The following metacharacters aren't defined, and are reserved for future expansion of the
PowerHouse pattern matching feature:

? ANY Matches any single character (alphabetic, numeric, or
special). For example, in the pattern "a?b", the question
mark is a metacharacter; it matches any single special,
alphabetic, or numeric character. The pattern "a?b"
matches the values "aAb", "aab", "a2b", and so on.

DIGIT Matches any single numeric digit.

! ESCAPE Signifies that the character immediately following the
escape character is interpreted as a regular character rather
than as a metacharacter. For example, the pattern "^^^^!?"
requires a question mark as the fifth character. You can't
use this metacharacter with alphabetic or numeric
characters (except !0). It doesn't affect non-alphabetic or
non-numeric characters that aren't metacharacters.

() LEFTP,
RIGHTP

Indicates the precedence in which the characters in the
pattern are interpreted.

\ NOT Disallows the character that immediately follows. For
example, the pattern "###\0" accepts any three-digit
number followed by any character other than zero.

!0 NULL Matches a null entry. Precede 0 with the current escape
metacharacter, which is, by default, an exclamation mark
(!).

< OPTIONAL Matches zero or any occurrence of the immediately
preceding character (or pattern string in parentheses). This
is the "optional" character. For example, the pattern "a<"
accepts the null value or an "a".

* OPTREP Matches zero or more occurrences of the immediately
preceding character (or pattern string in parentheses). This
is the "optional repeating" character. For example, the
pattern "a*" accepts the null value or any number of "a"s.

| OR Matches the character (or characters enclosed in
parentheses) on either side of this metacharacter. Use this
metacharacter to specify alternatives. PowerHouse accepts
a value that matches any one alternative.

> REPEAT Matches one or more occurrences of the immediately
preceding character (or pattern string in parentheses). This
is the "repeating" character. For example, the pattern "a>"
doesn't accept the null value but does accept any number of
"a"s.

@ WILD Matches zero or more characters (alphabetic, numeric, or
special). For example, the pattern "Th@" matches any
value beginning with "Th". The pattern "@th" matches any
value ending with "th". The pattern "M@th" matches any
value beginning with "M" and ending with "th" (including
the value "Mth").

Default
Metacharacter

PowerHouse
Keyword Function

Chapter 5: PowerHouse Language Rules
Pattern Matching in PowerHouse

PowerHouse Rules 353

[] : = ; &

or

[] : = ; _ &

Note: The underscore can be removed from the Reserved Metacharacters strong or left in for
backward compatibility.

Matching Characters that are Metacharacters

To match characters that are metacharacters in patterns, you must precede them with the escape
metacharacter (!).

Changing the Metacharacters Used for Pattern Matching

Typically, the metacharacters used for pattern matching in PowerHouse applications are
established in the dictionary. It is recommended that you do not change the dictionary default
metacharacters listed in the table on (p. 351) except when they conflict with the character set of a
language other than English.

The facility to change the reserved metacharacters is provided to support alternative-language
character sets, although it is not recommended. The reserved metacharacters are associated in
PDL with the RESERVED CHARACTERS option of the SYSTEM OPTIONS statement. You
must match replacement characters one-for-one with the preceding reserved metacharacters. The
first character specified replaces the left brace ([), the second replaces the right brace (]), and so on.

Precedence of Metacharacters in Pattern Matching

The normal sequence of processing is
1. !
2. ()
3. \ * > <
4. concatenation
5. |

Use parentheses () as metacharacters to override the normal order of interpretation of characters
within the pattern. For example, the pattern "ab|c" accepts the values "ab" or "c". The pattern
"a(b|c)" accepts the values "ab" or "ac".

Types of Patterns
The three types of patterns used in pattern matching are character, numeric, and date.

Character Patterns

Character patterns match whatever characters you specify.

Numeric Patterns

PowerHouse evaluates and reformats the value of a numeric entry by
1. Inserting a decimal character in the number in the correct position if you indicate that one is

required in the PICTURE and INPUT SCALE options.
2. Suppressing leading zeros in the number up to the decimal character (if any). The one

exception to this rule is an item that contains all zeros and does not require a decimal
character. In this case, one zero is left: "00000" defaults to "0".

3. Providing a floating minus sign (-) if the number is negative.
4. Right-justifying and padding the number with blanks on the left.

354 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Pattern Matching in PowerHouse

If you specify an item names PRICE as numeric SIZE 5 DECIMAL 2 with an INPUT SCALE of
two, PowerHouse converts the values entered by a user to the following standard forms for
numeric items:

You should design numeric patterns that match the standard form described in the previous table.
It is not necessary to match the leading spaces since PowerHouse applications automatically
extend the pattern to match the leading spaces by adding " *" to the start of the pattern.

For example, the pattern

"-<#*.##"

matches all the previous examples since PowerHouse programs extend the pattern to

" *-<#*.##"

Date Patterns

The standardized form of date items is the full date (year, month, day), converted to the date
format and date separator that you specify for the item. If item PURCHASE-DATE has an
MMMDDYY format and the SEPARATOR is a slash (/), the correct pattern to match all the dates
for February is "FEB/##/##". Since normal date editing still applies, PowerHouse accepts the use
of "##" for the DD and YY portions of the date.

Formal Pattern Matching Syntax
In Backus Naur form, the precise syntax of PowerHouse patterns is

Entered value Standard form

005.23 5.23

+5.23 5.23

-05.23 -5.23

-5.23 -5.23

0.01 .01

000.00 .00

<pattern> ::=<pattern>|<term>

::=<term>

<term> ::=<term><factor>

::=<factor>

<factor> ::=\<char>

::=<token>*

::=<token><

::=<token>>

::=<token>

<token> ::=(<pattern>)

::=<char>

<char> ::=!<escape char>

::=character other than \ | () ! > < *

Chapter 5: PowerHouse Language Rules
Pattern Matching in PowerHouse

PowerHouse Rules 355

Characters with an ASCII value of 31 or less (nonprinting ASCII characters such as carriage return
and line feed) are not allowed in patterns.

Example Patterns
The following examples demonstrate how to construct useful patterns:
• A ten-digit telephone number of the form (506) 555-1212 that accepts left-justified entries

with or without an area code:
(!(###!)) <###-####
Note that a blank is used here to match itself.

• The pattern "(\0)*" doesn't allow entries of zeros in any position.
Note that the string "\0*" is not a valid pattern since both metacharacters operate on the
same object.

• A Canadian postal code or a 5- or 9- digit U.S. zip code:
(^#^ #^#)|(#####(-####)<)

<escape char> ::=0 or any special character

356 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Pattern Matching in SQL

Pattern Matching in SQL

columnspec [NOT] LIKE sql-pattern [ESCAPE character]

The LIKE condition is used for pattern-matching. The column specification must identify a
column of type character. If no ESCAPE option is used, characters within the pattern are
interpreted as follows:
• The underscore (_) matches any single character (alphabetic, numeric, or special).
• The percent sign (%) matches zero or more characters (alphabetic, numeric, or special).
• All other characters match themselves.

The ESCAPE option indicates that the character immediately following the ESCAPE character in a
pattern is interpreted as a regular character rather than a metacharacter. The ESCAPE character
can be any character not used explicitly in your pattern.

Note that the metacharacters and the escape character used in sql-pattern matching are not the
same as those used in PowerHouse pattern matching.

Chapter 5: PowerHouse Language Rules
Using the SOUNDEX Option

PowerHouse Rules 357

Using the SOUNDEX Option
The SOUNDEX option systematically abbreviates words and names according to the rules of
English phonetics. You use SOUNDEX with either the GENERATE or SHOW statement in
QSHOW.

The SOUNDEX option takes the following form:
SOUNDEX(string-expression [,numeric-expression])

string-expression

Specifies the word to be coded.

numeric-expression

Controls the number of characters in the resulting code string. This parameter is optional.

Default: 4 characters

The optional numeric expression entered after the string expression determines the size of the key
used for the search. The size of the number controls the number of names that the string matches:
the larger the number, the fewer names are retrieved. The default of 4 is adequate for most
searches, but increasing the number can be useful in some circumstances. For example, if most of
the file names in your data dictionary begin with STOCK, searching for sound-alike files with a
key of size 5, 6, or 7 will probably produce better results.

SOUNDEX Option Rules
The SOUNDEX option uses the following rules to generate soundex codes:
1. If adjacent letters are identical, then only the first occurrence of the letter is kept.
2. The first character is always retained.
3. The vowels A, E, I, O, U, Y and consonants W and H are dropped (except when they are the

first character in the string).
4. For each of the remaining letters, except the first, a numeric value is assigned, as follows:

5. If adjacent assigned numeric values are equal, then only the first occurrence is kept.
6. If there are insufficient letters to produce a result with the number of characters that are

specified by the size parameter (numeric-expression), then the remainder is filled with zeros.

The preceding rules work for most words or names that conform to English spelling conventions.
However, the SOUNDEX function may not produce satisfactory results for data that contains
many non-English words or names.

Number
assigned For these letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

358 PowerHouse(R) 4GL Version 8.4E

Chapter 5: PowerHouse Language Rules
Using the SOUNDEX Option

PowerHouse Rules 359

Chapter 6: Functions in PowerHouse

Overview
This chapter describes PowerHouse functions in detail. For each function, you’ll find
• detailed syntax descriptions
• detailed function discussions
• examples where applicable

About Functions in PowerHouse
Four kinds of functions are used in PowerHouse:
• data manipulation functions (string, numeric, date)
• logical functions
• system functions
• SQL data manipulation functions

Any number of functions can be combined or nested as long as the results are compatible, as in
> DEFINE FUNC = &
> MOD(ABSOLUTE(CEILING(TRANS_AMT)), &
> INDEX(VENDOR_CODE,"HIJ"))

String, numeric, and date data manipulation functions are used in the following form:
function(expression)

The result is called a function result. A function result can also be used within an expression as
one of the terms of the expression.

Functions with system-generated input are used in the following form:
function

System functions are used to monitor aspects of the operating system and program processing.
System functions can be tested at any time and you can use them as terms in an expression.

Note: If an expression evaluates to null, then the result of a function applied to that expression is
also set to null.

In the descriptions that follow, a short example is included. Underlining indicates relative
positioning; it isn't part of the input or the result.

Summary of PowerHouse Functions
The following table summarizes the PowerHouse functions:

Function Description Type Input Result Qdesign Quiz Qtp

ABSOLUTE Returns the absolute
value of a number.

DMF N N ✔ ✔ ✔

ADDCENTURY Converts a 6-digit
date to 8 digits.

DMF D,N D ✔ ✔ ✔

360 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse

ASCII Converts a number
to a character string.

DMF N S ✔ ✔ ✔

ATTRIBUTE Returns the specified
system option being
used in the current
session.

SF S S ✔

AUDITSTATUS Returns a single
character indicating
the current audit trail
status of a record
buffer.

SF * S ✔

Bit Extract Extracts bits from a
number.

DMF N N ✔ ✔ ✔

BITEXTRACT Extracts bits from a
value.

SQL-
DMF

N N ✔ ✔ ✔

CEILING Rounds an integer
up.

DMF N N ✔ ✔ ✔

CENTER|CENTRE Centers characters in
a string.

DMF S S ✔ ✔ ✔

CENTURY Extracts the century
from a date item or
expression.

DMF D N ✔ ✔ ✔

CHARACTERS Specifies an item that
is addressed as a
character string.

SF N S ✔ ✔ ✔

CHARACTER_
LENGTH
CHAR_LENGTH

Returns the size of a
string expression in
characters.

SQL-
DMF

S N ✔ ✔ ✔

CHECKSUM Returns a checksum
for a string.

DMF S N ✔ ✔ ✔

COMMANDCODE Returns the status
code issued when an
operating system
command is
executed.

SF * S ✔

COMMANDMESSAGE Returns the text of
any warning or error
message issued when
executing an
operating system
command.

SF * S ✔

COMMANDSEVERIT
Y (OpenVMS)

Returns the severity
level of the most
recently executed
operating system
command.

SF * S ✔

Function Description Type Input Result Qdesign Quiz Qtp

Chapter 6: Functions in PowerHouse

PowerHouse Rules 361

COMMANDSTATUS
(OpenVMS)

Returns the numeric
value stored in
$STATUS.

SF * N ✔

CONTENTS Returns the contents
of a blob as a
character string.

SF S S ✔ ✔ ✔

DATE Calculates the date
that is a specified
number of days from
the base date.

DMF N D ✔ ✔ ✔

DATEEXTRACT Extracts part of a
date item, such as the
month or hour.

DMF D N ✔ ✔ ✔

DAYS Returns a quantity of
days from a date.

DMF D N ✔ ✔ ✔

DECIMALTIME Returns the
fractional quantity of
time between two
dates.

DMF D N ✔ ✔ ✔

DECRYPT Decodes an
encrypted key.

DMF S S ✔ ✔ ✔

DELETESYSTEMVAL Deletes values
defined at the
operating system
level.

LF S B ✔ ✔ ✔

DOWNSHIFT Shifts characters to
lowercase.

DMF S S ✔ ✔ ✔

ENCRYPT Creates an
encryption key.

DMF S S ✔ ✔ ✔

EXTRACT Extracts the
requested part of a
datetime or interval
value expression.

SQL-
DMF

D N ✔ ✔ ✔

FIRST Returns the value of
the item in the first
occurrence of the
associated file.

SF * D, N, S ✔

FLOOR Rounds a number
down to an integer.

DMF N N ✔ ✔ ✔

FORMATNUMBER Formats a number
according to a format
string.

DMF N,S S ✔ ✔ ✔

GETSYSTEMVAL Retrieves values
defined at the
operating system
level.

SF S S ✔ ✔ ✔

Function Description Type Input Result Qdesign Quiz Qtp

362 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse

HEXDECODE Converts a
hexadecimal string to
an ASCII string.

DMF S S ✔

HEXENCODE Converts an ASCII
string to a
hexadecimal string.

DMF S S ✔

INDEX Finds the starting
position of one
substring within
another.

DMF S N ✔ ✔ ✔

INTERVAL Returns the days/time
value of a string or
number as a
fractional value

DMF D N ✔ ✔ ✔

JCW (MPE/iX) Returns an integer
indicating the value
of the specified JCW.

SF S N ✔ ✔ ✔

LASTDAY Sets a date to the last
date of the month.

DMF D D ✔ ✔ ✔

LEFT JUSTIFY|LJ Left-justifies
characters in a string.

DMF S S ✔ ✔ ✔

LINKVALUE Returns the highest,
lowest or equal value
of a linkitem in the
VIA option of an
ACCESS statement in
QDESIGN or the
CHOOSE statement
in QUIZ and QTP.

SF * D,N,S ✔ ✔ ✔

LOGONID Returns a username
and an account name
(MPE/iX), or a
user-id (OpenVMS),
or a user logonid
(UNIX, Windows).

SF * S ✔ ✔ ✔

LOWER Downshifts a string
expression.

SQL-
DMF

S S ✔ ✔ ✔

MATCHPATTERN Compares a string to
a pattern.

LF S B ✔ ✔ ✔

MATCHUSER Determines whether
a user belongs to a
given application
security class.

LF S B ✔ ✔ ✔

MISSING Returns NULL. SF * NULL ✔ ✔ ✔

MOD Returns a remainder
after division.

DMF N N ✔ ✔ ✔

Function Description Type Input Result Qdesign Quiz Qtp

Chapter 6: Functions in PowerHouse

PowerHouse Rules 363

NCONVERT Converts a character
string to a number.

DMF S N ✔ ✔ ✔

NULL Returns NULL. SF * NULL ✔ ✔ ✔

OCCURRENCE Returns the
occurrence number
for the currently
active FOR
construct.

SF * N ✔

OCTET_LENGTH Returns the size of a
string expression in
bytes.

SQL-
DMF

S N ✔ ✔ ✔

OLDVALUE Returns the existing
value of the item
during editing.

SF * D, N, S ✔

PACK Packs characters in a
string.

DMF S S ✔ ✔ ✔

PORTID Identifies the
terminal device.

SF * S ✔ ✔ ✔

POSITION Gives the starting
position of the first
string in the second
string.

SQL-
DMF

S N ✔ ✔ ✔

PROCESSLOCATION Returns the value of
the procloc program
parameter.

SF * S ✔

RANDOM Returns a random
number.

SF N N ✔ ✔

RECORDLOCATION Returns the physical
record number of the
current occurrence of
a data record.

SF * N ✔

REMOVECENTURY Converts an 8-digit
date to 6 digits.

DMF D D ✔ ✔ ✔

REVERSE Reverses the
characters in a string
so that characters
entered left to right
appear right to left.
Blanks appear to the
left.

DMF S S ✔ ✔ ✔

RIGHT JUSTIFY|RJ Right-justifies
characters in a string.

DMF S S ✔ ✔ ✔

ROUND Returns a rounded
number.

DMF N N ✔ ✔ ✔

Function Description Type Input Result Qdesign Quiz Qtp

364 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse

SCREENLEVEL Returns the level
number of the
current screen.

SF * N ✔

SETSYSTEMVAL Assigns values at the
operating system
level.

LF S B ✔ ✔ ✔

SHIFTLEVEL Returns the current
shift level of the
function keys.

SF * N ✔

SIGNONACCOUNT
(MPE/iX)

Returns a string of up
to eight characters
that contains the
user’s logon account.

SF * S ✔ ✔ ✔

SIGNONGROUP
(MPE/iX)

Returns a string of up
to eight characters
that contains the
user’s logon group.

SF * S ✔ ✔ ✔

SIGNONUSER Returns a string of up
to eight characters
that contains the
user's logon user id.

SF * S ✔ ✔ ✔

SIZE Returns the size of a
string.

DMF S N ✔ ✔ ✔

SOUNDEX Creates a phonetic
code from a string.

DMF S,N S ✔ ✔ ✔

SPREAD Adds an additional
space between each
character of a string
expression.

DMF S S ✔ ✔ ✔

SQLCODE Returns the status
code of the last SQL
statement executed.

SF * N ✔

SQLMESSAGE Returns the error
message that explains
the status code of the
last SQL statement
executed.

SF * S ✔

SUBSTITUTE Retrieves messages
from a designer
message file.
Replaces any
substitution
characters in a string
or designer message.

DMF S, N S ✔ ✔ ✔

SUBSTRING Extracts a portion of
a string expression.

SQL-
DMF

S,N S ✔ ✔ ✔

Function Description Type Input Result Qdesign Quiz Qtp

Chapter 6: Functions in PowerHouse

PowerHouse Rules 365

Substring Extract Extracts a substring
from a string.

DMF S,N S ✔ ✔ ✔

SUM Sums items in an
array.

DMF N N ✔ ✔

SYSDATE Returns the current
system date.

SF * D ✔ ✔ ✔

SYSDATETIME Returns the current
system date and time.

SF * D ✔ ✔ ✔

SYSNAME Returns the
dictionary title
specified in the data
dictionary as a
40-character string.

SF * S ✔ ✔ ✔

SYSPAGE Returns the QUIZ
report page number.

SF * N ✔

SYSTIME Returns the current
system time.

SF * N ✔ ✔ ✔

TERMTYPE Returns a string
expression
containing full
specifications for the
terminal type.

SF * S ✔

TRUNCATE Removes trailing
blanks from a string.

DMF S S ✔ ✔ ✔

UIC
(OpenVMS, UNIX)

Returns user’s
[gid,uic].

SF * S ✔ ✔ ✔

UPPER Upshifts a string
expression.

SQL-
DMF

S S ✔ ✔ ✔

UPSHIFT Shifts characters to
uppercase.

DMF S S ✔ ✔ ✔

VALIDPATTERN Checks a pattern
string.

LF S B ✔ ✔ ✔

VMSTIMESTAMP
(OpenVMS)

Returns the current
system date and time.

SF * D ✔ ✔ ✔

WEBLOGONID Returns the
authenticated
username.

SF * S ✔

ZEROFILL Replaces leading
spaces with zeros.

DMF S S ✔ ✔ ✔

Function Description Type Input Result Qdesign Quiz Qtp

366 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse

S - string N - numeric D - date B - boolean * - system-generated

Types

DMF data manipulation function

SQL-DMF SQL data manipulation function

LF logical function

SF system function

Function Description Type Input Result Qdesign Quiz Qtp

Chapter 6: Functions in PowerHouse
ABSOLUTE

PowerHouse Rules 367

ABSOLUTE

Returns the absolute value of a number.

Syntax
ABSOLUTE(numeric-expression)

numeric-expression

A single number or a series of terms that yields a numeric result. For information about numeric
results, see (p. 303).

Examples
Input: ABSOLUTE(-465)
Result: 465

Input: DEFINE ITEMA NUM*5 = 10
 DEFINE ITEMB NUM*5 = 24
 DEFINE ABSNUM NUM*5 = ABSOLUTE(ITEMA - ITEMB)
Result: ABSNUM = 14

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔ ✔

368 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
ADDCENTURY

ADDCENTURY

Converts a 6-digit date to an 8-digit date.

Syntax
ADDCENTURY(date-expression[,numeric-expression])

date-expression

Specifies the input date.

numeric-expression

Overrides the default century that is established in the dictionary. This parameter is optional.

Examples
Input: ADDCENTURY(900525)
Result: 1990/05/25

Input: ADDCENTURY(010704,20)
Result: 2001/07/04

When you mix 6-digit and 8-digit dates in an expression, or compare dissimilar date types in a
condition, use either the REMOVECENTURY function or the ADDCENTURY function. For
example, if the system options are set to century excluded, SYSDATE is a 6-digit date. You can use
ADDCENTURY to define an 8-digit version of this system date, as in
> DEFINE LONGSYSDATE DATE CENTURY INCLUDED &
> FORMAT YYYYMMDD = ADDCENTURY(SYSDATE)

or to make comparisons, as in
> SELECT IF LATEDATE = ADDCENTURY(SYSDATE)

Use the ADDCENTURY function to derive the value of an 8-digit date from a 6-digit date. For
example:
> DEFINE SHORTDATE DATE CENTURY EXCLUDED = 851128
> DEFINE LONGDATE DATE CENTURY INCLUDED = &
> ADDCENTURY(SHORTDATE)

Type Input Result QDESIGN QUIZ QTP

DMF Date,

Numeric

Date ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
ASCII

PowerHouse Rules 369

ASCII

Converts a number to a character string.

Syntax
ASCII(numeric-expression1[,numeric-expression2])

numeric-expression1

Specifies the number to be converted.

numeric-expression2

Specifies the size of the output string. This is an optional parameter. If it is present, the output
string is right-justified and zero-filled to the size specified.

Discussion
The ASCII function ignores digits to the right of the decimal point.

Examples
Input: ASCII(236)

Result: 236
Input: ASCII(236,5)
Result: 00236

The following example extracts the month portion of today’s date assuming CENTURY
INCLUDED:
> DEFINE NUMTOCHAR CHAR*8 = ASCII(SYSDATE,8)
> DEFINE MONTHPORTION CHAR*2 = NUMTOCHAR[5:2]

Type Input Result QDESIGN QUIZ QTP

DMF Numeric String ✔ ✔ ✔

370 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
ATTRIBUTE

ATTRIBUTE

Returns the specified character being used within the current Application.

Syntax
ATTRIBUTE(class, option)

class

CHARACTER

option

One of the following:

Discussion
The ATTRIBUTE function returns the specified dictionary system option character (generic
retrieval, message substitution, multiline column heading, or picture substitution) being used
within the current session.

Examples
Input: ATTRIBUTE (CHARACTER, RETRIEVAL)
Result: @

To verify which character is currently being used as the message substitution character, you could
establish a defined item, as in
 DEFINE SUBCHAR CHAR*1 = ATTRIBUTE (CHARACTER, MESSAGE)

Type Input Result QDESIGN QUIZ QTP

SF String String ✔

Option Returns

MESSAGE the current message substitution character

MULTILINE the current multi-line column heading character

PICTURE the current picture substitution character

RETRIEVAL the current generic retrieval character

Chapter 6: Functions in PowerHouse
AUDITSTATUS

PowerHouse Rules 371

AUDITSTATUS

Returns a single character indicating the current audit trail status of a record buffer.

Syntax
AUDITSTATUS [OF record-structure]

record-structure

The name of a record-structure defined in the dictionary or table in a relational database.

Discussion
The character is one of
• C (for old changed record)
• D (for old deleted record)
• N (for new record)

If the OF file qualifier is omitted, the status is that of the assumed file.

The purpose of the AUDITSTATUS function is to document the data record status in an AUDIT
file. If you want to test the data record status during screen processing for any other reason, you
should use the predefined conditions, NEWRECORD, DELETEDRECORD, and
ALTEREDRECORD. The predefined conditions are used because AUDITSTATUS returns a value
of C for all old and undeleted data records whether they are changed or not.

AUDITSTATUS cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

372 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
Bit Extract

Bit Extract

Extracts bits from a number.

Syntax
numeric-expression[start:length]

The square brackets are required syntax in this function.

numeric-expression

Specifies the input number. Before bit extraction takes place, the numeric-expression is converted
to a 2-byte unsigned integer. Bit numbering starts at zero, which is the most significant bit of the
2-byte integer.

start

Specifies the starting position of the extract. The most significant bit is 0; the least is 15.

length

Specifies the length of the extract.

Discussion
The Bit Extract function cannot be performed on any values that cannot be converted into a
2-byte integer. For example, PHDATE datatypes or 4 or 8-byte integers containing values too
large for a 2-byte integer.

Examples
Input: DEFINE ITEMX INTEGER UNSIGNED SIZE 2 = 3[13:3]
Result: 3

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔ ✔

bit extract numeric-exp bit pattern result

255[7:4] 255 0000 0000 1111 1111 7

1[0:1] 1 0000 0000 0000 0001 0

1[15:1] 1 0000 0000 0000 0001 1

3[13:3] 3 0000 0000 0000 0011 3

Chapter 6: Functions in PowerHouse
BITEXTRACT

PowerHouse Rules 373

BITEXTRACT

Extracts bits from a numeric value.

Syntax
BITEXTRACT(numeric-expression,start,number)

Limit: Valid only in SQL.

numeric-expression

Specifies the input value.

start

Specifies the starting position (bit number) for the extract. Bit numbering starts at zero.

number

Specifies the number of bits to extract.

Type Input Result QDESIGN QUIZ QTP

SQL-DMF Numeric Numeric ✔ ✔ ✔

374 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
CEILING

CEILING

Rounds an integer up.

Syntax
CEILING(numeric-expression)

numeric-expression

Specifies the input number.

Discussion
This function is commonly used to round up monetary values to the nearest dollar. Whole
numbers are not increased.

Examples
Input: CEILING(79.04)
Result: 80

Input: CEILING(79)
Result: 79

Input: CEILING(-79.04)
Result: -79

Input: CEILING(-79)
Result: -79

Input: > DEFINE ITEMX NUM*8 = CEILING(45.6 - .5)
Result: 46

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
CENTER|CENTRE

PowerHouse Rules 375

CENTER|CENTRE

Centers characters in a string.

Syntax
CENTER(string-expression)

CENTRE(string-expression)

string-expression

Specifies the string to be centered.

Discussion
The CENTER function centers nonblank text within the length of a string expression.

Example
Input: CENTER("word ")
Result: ..word..

The length of a character item on the left of the equal sign (=) in a DEFINE statement has no effect
on the evaluation of the string expression on the right of the equal sign. The result of the string
expression is moved into the defined item from left to right. If the length of the expression result is
longer than the defined item, the extra characters are truncated. If the length is shorter than the
defined item, the defined item is padded with blanks. For example, the string-expression, called
name, a 20 character item, is centered in a 30 character item, c_name.
> DEFINE c_name CHARACTER*30 = CENTER (name)

The result is the name centered in 20 characters and then moved into c_name from left to right
with 10 blanks added to the right. So, using "Williams" would result in 6 blanks, the name
"Williams" and 16 blanks.

To correctly center the name in the defined item, use the SUBSTRING function to expand the item
length to be the same as the defined item.
> DEFINE c_name CHARACTER*30 = CENTER (name[1:30])

Ensure that you use the SUBSTRING function on the item and not on the function result. In this
example, the SUBSTRING function [1:30] must be placed inside the parentheses of the CENTER
function. Putting the SUBSTRING function outside the parentheses does not change the item
length.

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

376 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
CENTURY

CENTURY

Extracts the century from a date item or expression.

Syntax
CENTURY([date-expression[,century-expression,

start-year-expression]])

If no parameters are used, the function returns the value specified in the DEFAULT CENTURY
option of the SYSTEM OPTIONS statement.

Limit: The function returns a value from 1 to 99.

date-expression

If the date has a non-zero century, the century from the date-expression is returned, regardless of
the other parameters specified.

If the date-expression has a century value of zero and no other parameters are specified, the return
value will be determined using the values specified in the INPUT CENTURY option of the
SYSTEM OPTIONS statement. If INPUT CENTURY is not specified, the function returns the
DEFAULT CENTURY.

If the date-expression has a century value of zero and both century-expression and
start-year-expression are specified, the function uses these to calculate the return value.

century-expression

The century to be used if the year of the date-expression is equal to or greater than the year of the
start-year-expression. The value of century + 1 will be used if the year of the date-expression is less
than the year of the start-year-expression.

Limit: If the century-expression is specified, the start-year-expression must also be used.

start-year-expression

The lower limit of the century window. The upper limit is always 99.

Limit: If the start-year-expression is specified, the century-expression must also be used.

Examples
If SYSDATE is a century-included date, the following example would return the current century
from the SYSDATE. If SYSDATE is a century-excluded date, PowerHouse uses the INPUT
CENTURY option of the SYSTEM OPTIONS statement to determine the century. If the INPUT
CENTURY option is not used, PowerHouse returns the DEFAULT CENTURY.
Input: CENTURY(SYSDATE)
Result: the current century

If no parameters are used, the function returns the value specified in the DEFAULT CENTURY
option of the SYSTEM OPTIONS statement. For example:
Input: CENTURY()
Result: the DEFAULT CENTURY

In the following example, the function returns "19" because the year, 97, is greater than 76, the
start-year.
Input: CENTURY(971231,19,76)
Result: 19

Type Input Result QDESIGN QUIZ QTP

DMF Date Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
CENTURY

PowerHouse Rules 377

In the next example, the function returns "20" because the year, 00, is less than 76, the start-year.
The function uses the century-expression and start-year-expression parameters to calculate the
return value.
Input: CENTURY(001231,19,76)
Result: 20

When the century and start year parameters are not specified, PowerHouse uses the INPUT
CENTURY option of the SYSTEM OPTIONS statement to determine the century. If the INPUT
CENTURY option is not used, PowerHouse returns the default century.
Input: CENTURY(980127)
Result: 19 (assuming INPUT CENTURY 19 FROM 85)

378 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
CHARACTERS

CHARACTERS

Specifies an item that is addressed as a character string.

Syntax
CHARACTERS(numeric-item)

numeric-item

Specifies the item that is to be addressed as a character string.

Discussion
The CHARACTERS function allows the numeric item to be concatenated to the binary
representation of a character item so that it can be used to combine common selection items. No
internal data conversion occurs; therefore, the bit pattern remains unchanged. This allows you to
use numeric items as parameters of functions that require character-type parameters.

Limit: Expressions are not allowed.

Examples
You can use the characters function with many PowerHouse functions that require character-type
parameters. For example, you can turn on highlighting on DEC terminals by combining numeric
items with character items or building strings of nonprinting characters.
> DEFINE ESC INT*2 = 27
> DEFINE ESCAPE CHAR*1 = CHAR(ESC)
> DEFINE BOLD CHAR*10 = ESCAPE + "[1m"
> DEFINE NOBOLD CHAR*10 = ESCAPE + "[0m"

You can also combine parts of an index from individual fields where one or more of the fields is
numeric:
> FILE MIXED
> ACCESS VIA PUREINDEX &
> USING FIRSTPART + CHARACTERS(SEQNO) &
> REQUEST FIRSTPART, SEQNO

Type Input Result QDESIGN QUIZ QTP

SF Numeric String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
CHARACTER_LENGTH|CHAR_LENGTH

PowerHouse Rules 379

CHARACTER_LENGTH|CHAR_LENGTH

Returns the size of a string expression in characters.

Syntax
CHARACTER_LENGTH(string-expression)

CHAR_LENGTH(string-expression)

Limit: Valid only in SQL.

string-expression

Specifies the input string.

Type Input Result QDESIGN QUIZ QTP

SQL-DMF String Numeric ✔ ✔ ✔

380 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
CHECKSUM

CHECKSUM

Returns a checksum for a string.

Syntax
CHECKSUM(string-expression)

Range: -32768 to 32767

Default: INTEGER SIGNED SIZE 2 item

string-expression

Specifies the string for which a checksum is to be generated.

The CHECKSUM function takes a string-expression and returns an integer value (a checksum) for
that string. The value returned can be used later to determine if the string has been changed.

Discussion

Calculating Check Digits with the CHECKSUM Function

You can use the CHECKSUM function to calculate a check digit for data items such as account
numbers. A check digit is a single digit that you compute using a specific algorithm. If you use a
check digit to form part of a data item, you can check the validity of the item by using the
algorithm that generated the check digit.

For example, when an account is first created, the checksum function can be used in conjunction
with the absolute function, the mod function, and the characters function to calculate a check
digit. If you attach the check digit to the end of the original account number, you can later use it
for data validation. Suppose that you want to create a new account number, and you begin with
the number 6478, which is stored in the item account-number. Use the checksum function to
generate a check digit for this number, as in
ABSOLUTE(MOD(CHECKSUM(CHARACTERS(ACCOUNT-NUMBER)),10))

The MOD function returns the last digit of the value returned by the CHECKSUM function, and
the ABSOLUTE function ensures that this digit is positive. Attach this check digit (in this case, the
number 3) to the end of the original number, yielding a final account number 64783.

Using this type of account numbering system, you can easily detect the entry of invalid account
numbers without accessing your files. When an account number is entered, you split it into two
parts: one part is composed of all the digits except the final digit, and the other part is composed
solely of the final digit. The check digit of the first part is recalculated using the method just
described and compared to the final digit. If the recomputed check digit and the final digit of the
number entered are not identical, an invalid account number has been entered.

Note: This type of scheme does not detect all data entry errors. In the previous example, if an even
number of errors were made entering the account number, it is possible that the same checksum
would be produced. Consequently, you should not use it to replace lookup options, which verify
data against a file of acceptable entries.

Generating Compressed Indexes with the CHECKSUM Function

You can use the checksum function to generate compressed indexes for efficient access to
high-volume online files. For example, instead of using an index of 30-character names, you can
use the checksum function to generate much shorter indexes, as in the following example:
> SCREEN CHECKSUM
> TEMPORARY TEMPNAME CHARACTER*30 RESET AT MODE

Type Input Result QDESIGN QUIZ QTP

DMF String Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
CHECKSUM

PowerHouse Rules 381

> TEMPORARY CHECKNAME NUMERIC*1 RESET AT MODE
> FILE EMPLOYEES
> ACCESS VIA NAMEINDEX USING &
> (NAME[1:1] + NAME[3:1] + NAME[5:1] + NAME[7:1] &
> + CHARACTERS (CHECKNAME)) REQUEST LASTNAME
> ITEM NAMEINDEX FINAL &
> (NAME[1:1] + NAME[3:1] + NAME[5:1] + NAME[7:1] &
> + CHARACTERS (CHECKNAME))
> SELECT IF LASTNAME OF EMPLOYEES = TEMPNAME
> FIELD LASTNAME OF EMPLOYEES REQUIRED NOCHANGE
.
.
.
.
.
.
> PROCEDURE PATH
> BEGIN
> REQUEST NAME OF EMPLOYEES
> IF PROMPTOK
> THEN LET PATH = 1
> IF PATH = 0
> THEN ERROR "KEY REQUIRED."
> END
> PROCEDURE POSTPATH
> BEGIN
> LET TEMPNAME = NAME OF EMPLOYEES
> LET CHECKNAME = CHECKSUM(NAME)
> END

The temporary item, CHECKNAME, is set to the value returned by the CHECKSUM function in
the POSTPATH procedure. The CHARACTERS function in the ACCESS statement then
addresses the value in the temporary item, CHECKNAME, as a character string. The ITEM
statement also uses the CHARACTERS function for the same purpose when assigning the final
value to NAMEINDEX.

The ITEM statement with the FINAL option assigns a value to the abbreviated index,
NAMEINDEX, when a data record is updated. An index composed of abbreviated names
occupies less space than an index composed of full names. While the abbreviated names are not as
unique as the full names, the degree of uniqueness is sufficient for most applications. When Find
mode is initiated, the user is prompted at the NAME field, but data is retrieved via the abbreviated
names in the index, NAMEINDEX, using the value of the DEFINED-NAMEINDEX item. If
duplicate names exist in the record-structure's associated file, the name that the user entered is
used to select the correct data record. The name that the user enters in the NAME field is
overwritten and thus lost. Therefore, before data record selection can occur, you must use the
POSTPATH procedure. Before the NAME field is overwritten, the POSTPATH procedure saves
the name in the TEMPNAME item, and that item is subsequently used for record selection.

Using the CHECKSUM Function for Data Record Security

You can also use the CHECKSUM function for security purposes. By comparing an original
checksum with a recomputed value, you can detect whether or not data has been altered. When a
checksum is used for this purpose, you should calculate a checksum for a part of each data record
rather than for the entire data record.

For the best possible security, use the CHECKSUM function together with the ENCRYPT
function. For example, suppose you want to store encrypted passwords in a file of employee data
records. When you originally enter employee data, you can concatenate the source password
before it is encrypted with the employee's name, compute a checksum for the resulting string, and
store the checksum inconspicuously somewhere else in the data record. When you later retrieve
employee data records, you can decrypt the password, concatenate it with the employee's name,
and recompute the checksum. You can then compare this new checksum to the original value. If
they are not identical, you know that the original data has been altered.

Combining the ENCRYPT and CHECKSUM functions can provide a high degree of security.
Security can be further enhanced by imaginative applications of the NCONVERT and substring
extract functions in conjunction with the CHECKSUM function.

382 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
CHECKSUM

Example
Input: CHECKSUM("Top Secret")
Result: 17913

Input: > ACCESS ACCOUNTS-REC
> DEFINE ITEMX INT*4 = &
> ABS(MOD(CHECKSUM(ASCII(CUST-NO)),10))

Chapter 6: Functions in PowerHouse
COMMANDCODE

PowerHouse Rules 383

COMMANDCODE

Returns the status code issued when an operating system command is executed.

Syntax
COMMANDCODE

Discussion
The COMMANDCODE function returns information on error messages issued when trying to
execute an operating system command. If the COMMANDCODE function returns an empty
string, then the command returns an exit status of 0.

COMMANDCODE cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

MPE/iX
The status code is either 0 (OK), CIWARN# (warning), or CIERR# (error). For example, IF
COMMANDCODE = "CIERR907" identifies if a LISTF was successful or not.

OpenVMS
The format of the returned string is FACILITY-SEVERITY-ID. The string is converted from the
value saved in the DCL reserved symbol $STATUS when the DCL command completes execution.

UNIX
If it’s a string in the form "UX-WRN #xxxx", the command exits with the status xxxx (in
hexadecimal). If it’s of the form #xxxx", the command terminates with a signal, returning status
xxxx (in hexadecimal). If the string is of the form "UX-ERR #nnnn", the command cannot be
executed because of a UNIX error number nnnn.

Windows
If it’s a string in the form "WIN-WRN #xxxx", the command exits with the status xxxx (in
hexadecimal). If it’s of the form #xxxx", the command terminates with a signal, returning status
xxxx (in hexadecimal). If the string is of the form "WIN-ERR #nnnn", the command cannot be
executed because of a Windows error number nnnn.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

384 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
COMMANDMESSAGE

COMMANDMESSAGE

Returns the text of any warning or error message that appears when the operating system
command is executed.

Syntax
COMMANDMESSAGE

Discussion
Like the COMMANDCODE function, the COMMANDMESSAGE function returns information
on error messages issued when trying to execute an operating system command. However, the
information that the COMMANDMESSAGE function returns is more detailed.

If the COMMANDMESSAGE function returns an empty string, the command returns an exit
status of 0.

COMMANDMESSAGE cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

MPE/iX
For errors, the MPE/iX error message is returned, for example
"Non-existent file (CIERR 907)."

OpenVMS
The format of the returned string is FACILITY-SEVERITY-ID.

UNIX
If the COMMANDMESSAGE function returns an empty string, the command returns an exit
status of 0. For exit status codes other than 0, a string "Command exited on ’nnn’signal" is
returned, where nnn is a description of the signal (for example, Hangup). For exec errors, the
UNIX error code description is returned.

Windows
If the COMMANDMESSAGE function returns an empty string, the command returns an exit
status of 0. For exit status codes other than 0, a string "Command exited on ’nnn’signal" is
returned, where nnn is a description of the signal (for example, Hangup). For exec errors, the
Windows error code description is returned.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

Chapter 6: Functions in PowerHouse
COMMANDSEVERITY (OpenVMS)

PowerHouse Rules 385

COMMANDSEVERITY (OpenVMS)

Returns the severity of the most recently executed operating system command.

Syntax
COMMANDSEVERITY

Discussion
The value is extracted from the DCL symbol $SEVERITY and is one of

I Information

S Success

W Warning

E Error

F Fatal

COMMANDSEVERITY cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

386 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
COMMANDSTATUS (OpenVMS)

COMMANDSTATUS (OpenVMS)

Returns the numeric value saved in the DCL reserved symbol $STATUS when the COMMAND
verb completes execution.

Syntax
COMMANDSTATUS

Discussion
COMMANDSTATUS cannot be
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

Chapter 6: Functions in PowerHouse
CONTENTS

PowerHouse Rules 387

CONTENTS

Returns the contents of a blob as a character string.

Syntax
CONTENTS(item)

Limit: The maximum size of the resulting string is 32,767 bytes.

item

Specifies a blob from a relational database.

Discussion
The CONTENTS function ensures that PowerHouse works with the blob contents rather than the
blob id. Since blob ids are no longer used as of PowerHouse 8.4xC, the CONTENTS function is
no longer required. However, it is retained for backwards compatibility

For more information about blobs, see (p. 345).

Example
Use the CONTENTS function to copy the contents from one blob to another blob:
LET TOBLOB = CONTENTS(FROMBLOB)

or, to concatenate a string to the end of a blob and assign the result to another blob.
LET TOBLOB = CONTENTS(FROMBLOB) + "a string"

Type Input Result QDESIGN QUIZ QTP

SF String String ✔ ✔ ✔

388 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DATE

DATE

Calculates the date that is a specified number of days from the base date.

Syntax
DATE(numeric-expression)

DATE(numeric-expression, date-expression)

numeric-expression

Specifies a number of days.

Part of a day is expressed as a fraction. For example, 100.5 means one hundred and a half days.

date-expression

Specifies the base date.

The base date may be century included or excluded, and may include a time in the form
"hhmmsstt".

When the date-expression is not used, and the numeric-expression is positive, the resulting date is
greater than or equal to January 1, 1900 (which is a Monday).

When the date-expression is not used, and the numeric-expression is negative or zero, the resulting
date is less than or equal to December 31, 1899 (which is a Sunday).

Discussion
The DATE function calculates the date that is a number of days from the base date. The number of
days is specified by the numeric-expression. If the base date is not supplied using the
date-expression, the default base date of December 31, 1899 is used.

If the CENTURY INCLUDED system option is in effect, the DATE function returns an 8-digit
date.

If the CENTURY EXCLUDED system option is in effect, the function returns a six-digit date. If
the result is not within the default century, a data conversion error occurs.

Examples
If the target of the function does not allow a date/time result, the fractional portion of the
numeric-expression is ignored in the result. For example,
Input: DEFINE X DATE = DATE(100.5)
Result: 1900/04/10

In this example, X is defined as DATETIME. Therefore, half a day (.5) is included in the result as
12:00:00.00.
Input: DEFINE X DATETIME = DATE(100.5)
Result: 1900/04/10 12:00:00.00

A time portion in the form "hhmmsstt" can be specified on the date-expression. For example,
Input: DEFINE X DATETIME = DATE(100.5,19990101.12304478)
Result: 2000/04/10 00:30:44.78

This DEFINE statement calculates the date 15 days from today:
DEFINE NEWDATE DATE = DATE(DAYS(SYSDATE) + 15)

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Date ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
DATE

PowerHouse Rules 389

If the CENTURY EXCLUDED system option is in effect, the following will cause a data
conversion error because the function result is not within the default century. The default century
is 19.
DEFINE X DATE=DATE(100,19991231)

The following examples show the default base date in both date and date/time formats:
Input: DEFINE X DATE = DATE(0)
Result: 1899/12/31

Input: DEFINE Y DATETIME = DATE(0)
Result: 1899/12/31 00:00:00.00

390 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DATEEXTRACT

DATEEXTRACT

Extracts part of a date item, such as the month or hour.

Syntax
DATEEXTRACT(date-item,extract-option)

date-item

Specifies a date item.

extract-option

You can specify the following options for the DATEEXTRACT function:

Discussion
When DATEEXTRACT is used to extract the TIME, 9 digits are returned representing hours,
minutes, seconds, tenths of a second, hundredths of a second, and thousands of a second.
However, the thousands of a second will always be zero because it is greater than the precision of
the floating point value.

Example
To extract the month from the system date,
> DEFINE X DATE = SYSDATE
> DEFINE MONTHVALUE = DATEEXTRACT(X,MONTH)

Type Input Result QDESIGN QUIZ QTP

DMF Date Numeric ✔ ✔ ✔

Option Returns

YEAR a 4-digit year

MONTH a number between 1 and 12

DAY a number between 1 and 31

HOUR a number between 0 and 23

MINUTE a number between 0 and 59

SECOND a number between 0 and 59

DATE the date portion of the specified item as a number in the form YYYYMMDD

TIME the time portion of the specified time as a number in the form HHMMSSTTT
(where TTT represents thousandths of seconds)

For the date item types that do not store the time portion (PHDATE and JDATE),
TIME will always be 0.

Chapter 6: Functions in PowerHouse
DAYS

PowerHouse Rules 391

DAYS

Returns a quantity of days from a date.

Syntax
DAYS(date-item)

date-item

Specifies the input date.

Discussion
If the century prefix is 19 or greater, DAYS converts the number of days since and including
Monday, January 1, 1900. If the century prefix is less than 19, the date is converted to a negative
number that represents the days prior to Sunday, December 31, 1899.

Examples
Input: DAYS(010101)
Result: 366

Input: DAYS(19010101)
Result: 366

Input: DAYS(18990101)
Result: -364

The following example will calculate the difference between two dates:
Input: DEFINE DIFF NUM*5 = DAYS(19920131) - DAYS(19911230)
Result: 32

The following example calculates the day of the week for START_DATE which could be any date
or date-time item type.
> DEFINE DAY_NUMBER = MOD(DAYS(START_DATE), 7)
> DEFINE DAY_OF_WEEK CHAR*9 =CASE OF DAY_NUMBER &
> WHEN 0 THEN "Sunday " &
> WHEN 1 THEN "Monday " &
> WHEN 2 THEN "Tuesday " &
> WHEN 3 THEN "Wednesday " &
> WHEN 4 THEN "Thursday " &
> WHEN 5 THEN "Friday " &
> WHEN 6 THEN "Saturday " &

As the base date is a Sunday, when DAY_NUMBER is 0 the date is a Sunday.

Type Input Result QDESIGN QUIZ QTP

DMF Date Numeric ✔ ✔ ✔

392 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DECIMALTIME

DECIMALTIME

Returns the fractional quantity of time between two dates.

Syntax
DECIMALTIME(date-item [,base-date])

date-item

Specifies the input date or date-time item.

base-date

Specifies a date to be used as the base in calculating the amount of time between the two dates.

Default: Sunday, December 31, 1899 00:00:00:00

Discussion
The DECIMALTIME function returns the time period between two dates expressed as a number
of days, with the remainder expressed as a fraction of a day. The time portion of this function only
applies to the DATETIME datatypes.

Example
In the following example, the START_DATE is set to June 7, 1993 18:00:00 and the BASE_DATE
is set to June 6, 1993 12:00:00
> DEFINE INTERVAL NUMERIC = &
 DECIMALTIME(START_DATE,BASE_DATE)

The value assigned to INTERVAL is 1.25, which represents one day and 6 hours.

Type Input Result QDESIGN QUIZ QTP

DMF Date Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
DECRYPT

PowerHouse Rules 393

DECRYPT

Decodes an encrypted key.

Syntax
DECRYPT(string-expression1,string-expression2)

string-expression1

Specifies the string to be decoded.

string-expression2

Specifies the decryption key.

Limit: The decryption key must be the same as the one that was used originally during encryption.

Discussion
For more information about decryption and encryption, see (p. 402).

Example
Input: DECRYPT(CODE,"key")
Result: a decrypted value for the encrypted item CODE

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

394 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (MPE/iX, UNIX, and Windows)

DELETESYSTEMVAL (MPE/iX, UNIX, and Windows)
For DELETESYSTEMVAL (Open VMS), see (p. 397).

Allows the deletion of values defined at the operating system level.

Syntax
DELETESYSTEMVAL(string-expression)

string-expression

Specifies the name of the file equation (MPE/iX) or environment variable (UNIX, Windows) to be
deleted.

Discussion
The DELETESYSTEMVAL, GETSYSTEMVAL, and SETSYSTEMVAL functions support the
deletion, retrieval, and assignment of operating system values. This provides execution-time
control of values through the definitions made at the operating system level and allows values to
be passed between PowerHouse components.

DELETESYSTEMVAL returns a logical result of True if it successfully deletes the environment
variable. Otherwise it returns False. As this is a logical function, it must be used in a conditional
expression.

At parse time, use of the DELETESYSTEMVAL function will cause a syntax error if either of the
following conditions exist:
• the noaccess program parameter is specified
• the OSACCESS resource file option equals OFF

Because the function accesses operating system values, its use is not permitted when operating
system access is restricted.

There is no effect on the function in compiled screens, reports and runs if the noaccess program
parameter or OSACCESS=OFF resource file statement is used at runtime.

Examples
The following QUICK example attempts to delete a variable named ENV1. If it can't be deleted,
the error message is displayed.
.
.
.
> PROCEDURE EXIT
> BEGIN
> ; Clean up environment variable
> IF NOT DELETESYSTEMVAL("ENV1")
> THEN BEGIN
> ERROR "Could not delete systemvalue ENV1."
> END
.
.
.

The following example shows how a global value is created and referenced in each of the
PowerHouse components: QUICK and QUIZ.
> SCREEN REPORT_MENU MENU NOMODE ACTION LABEL &
> "Enter 1 for Employee address, 2 for Positions." &
> AT 3,2

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (MPE/iX, UNIX, and Windows)

PowerHouse Rules 395

> PROCEDURE DESIGNER 1
> BEGIN
> IF NOT SETSYSTEMVAL ("REP_NUM",(ASCII(1)))
> THEN BEGIN
> ERROR "Could not set variable."
> END
> ELSE
> BEGIN
> CLEAR SCREEN
> RUN COMMAND "quiz auto=REPORT1"
> REFRESH ALL
> END
> END
> PROCEDURE DESIGNER 2
> BEGIN
> IF NOT SETSYSTEMVAL ("REP_NUM",(ASCII(2)))
> THEN BEGIN
> ERROR "Could not set variable."
> END
> ELSE
> BEGIN
> CLEAR SCREEN
> RUN COMMAND "quiz auto=REPORT2"
> REFRESH ALL
> END
> END
> PROCEDURE EXIT
> BEGIN
> ; Clean up variable
> IF NOT DELETESYSTEMVAL("REP_NUM")
> THEN BEGIN
> ERROR "Could not delete variable."
> END
> END

The values are then picked up by QUIZ.
> ; REPORT 1
> ACCESS EMPLOYEES
> DEFINE REP_NUM NUM*3 = &
> NCONVERT(GETSYSTEMVAL("REP_NUM"))
> SORT ON LASTNAME
> INITIAL HEADING "This is REPORT " REP_NUM
> REPORT EMPLOYEE LASTNAME FIRSTNAME STREE
> GO
> ;REPORT 2
> ACCESS EMPLOYEES LINK TO POSITION
> DEFINE REP_NUM NUM*3 = &
> NCONVERT(GETSYSTEMVAL("REP_NUM"))
> SORT ON POSITION
> INITIAL HEADING "This is REPORT " REP_NUM
> REPORT EMPLOYEE LASTNAME FIRSTNAME TITLE
> GO

The following example shows how a global value is created in QUICK. The QTP run executed
depends on the value of the QTP_PARMS variable.
> SCREEN REPORT_MENU MENU NOMODE ACTION LABEL &
> "Enter 1 to begin" AT 3,4
> TEMPORARY REPORT_REQ CHAR*10
> FIELD REPORT_REQ LABEL &
> "Enter required report name: " AT 5,4 &
> DATA AT 6,15 &
> HELP &
> "Enter 1 for address report 2 for position report."
> PROCEDURE DESIGNER 1
> BEGIN
> ACCEPT REPORT_REQ
> IF NOT SETSYSTEMVAL("QTP_PARMS",&
> ("REPORT" + REPORT_REQ))

396 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (MPE/iX, UNIX, and Windows)

> THEN BEGIN
> ERROR "Could not set variable."
> END
> ELSE RUN COMMAND "qtp auto=$QTP_PARMS" &
> REFRESH ALL
> END
> PROCEDURE EXIT
> BEGIN
> ; Clean up environment variable
> IF NOT DELETESYSTEMVAL &
> ("QTP_PARMS")
> THEN BEGIN
> ERROR "Could not delete variable."
> END
> END
> GO

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (OpenVMS)

PowerHouse Rules 397

DELETESYSTEMVAL (OpenVMS)
For DELETESYSTEMVAL (MPE/iX, UNIX, and Windows), see (p. 394).

Allows the deletion of values defined at the operating system level.

Syntax
For OpenVMS logical names:
DELETESYSTEMVAL
 (string-expression1 [,LOGICAL [,string-expression2]])

For DCL global symbols:
DELETESYSTEMVAL(string-expression1, SYMBOL)

string-expression1

Specifies the name of the OpenVMS logical name or DCL symbol to be deleted. If the LOGICAL
or SYMBOL keyword is not explicitly used, a logical name is assumed.

string-expression2

Optionally specifies the logical name table to delete the logical name from, such as LNM$JOB or
LNM$GROUP.

Default: LNM$PROCESS

LOGICAL

Specifies retrieval of an OpenVMS logical name. If the LOGICAL or SYMBOL keyword is not
explicitly used, a logical name is assumed.

SYMBOL

Specifies retrieval of a DCL symbol. Local symbols are retrieved before global symbols.

Discussion
The DELETESYSTEMVAL, GETSYSTEMVAL, and SETSYSTEMVAL functions support the
deletion, retrieval, and assignment of operating system values. This provides execution-time
control of values through the definitions made at the operating system level and allows values to
be passed between PowerHouse components.

DELETESYSTEMVAL returns a logical result of True if it successfully deletes the environment
variable. Otherwise it returns False. As this is a logical function, it must be used in a conditional
expression.

At parse time, use of the DELETESYSTEMVAL function will cause a syntax error if either of the
following conditions exist:
• the noaccess or nodcl program parameter is specified
• the OSACCESS resource file option equals OFF

Because the function accesses operating system values, its use is not permitted when operating
system access is restricted.

There is no effect on the function in compiled screens, reports and runs if the noaccess or nodcl
program parameter or OSACCESS OFF resource file statement is used at runtime.

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

398 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (OpenVMS)

Examples
The following QUICK example attempts to delete a logical named LOG1 in the LNM$JOB logical
name table. If the logical name can’t be deleted, the error message is displayed.
.
.
.
> PROCEDURE EXIT
> BEGIN
> ; Clean up logical name
> IF NOT DELETESYSTEMVAL("QUIZ_PARMS", &
> LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not delete logical name."
> END
.
.
.

The following example shows how a global value may be created and referenced in QUICK and
QUIZ.
> SCREEN REPORT_MENU MENU NO MODE ACTION LABEL &
> "Enter 1 for Employee address list 2 for Position list:" &
> AT 3, 2
> PROCEDURE DESIGNER 1
> BEGIN
> IF NOT SETSYSTEMVAL ("REP_NUM", (ASCII(1)), &
> LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not set logical name."
> END
> ELSE
> BEGIN
> CLEAR SCREEN
> RUN COMMAND "QUIZ AUTO=REPORT1"
> REFRESH ALL
> END
> END
> PROCEDURE DESIGNER 2
> BEGIN
> IF NOT SETSYSTEMVAL ("REP_NUM", (ASCII (2)), &
> LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not set logical name."
> END
> ELSE
> BEGIN
> CLEAR SCREEN
> RUN COMMAND "QUIZ AUTO=REPORT2"
> REFRESH ALL
> END
> END
> PROCEDURE EXIT
> BEGIN
> ; Clean up logical name
> IF NOT DELETESYSTEMVAL("REP_NUM", &
> LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not delete logical name."
> END
> END

The values are then picked up by QUIZ.
> ; REPORT 1
> ACCESS EMPLOYEES
> DEFINE REP_NUM NUM*3 = &
> NCONVERT(GETSYSTEMVAL("REP_NUM"))

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (OpenVMS)

PowerHouse Rules 399

> SORT ON LASTNAME
> INITIAL HEADING "This is REPORT " REP)NUM
> REPORT EMPLOYEE LASTNAME FIRSTNAME STREET
> GO

> ;REPORT 2
> ACCESS EMPLOYEES LINK TO OSITION
> DEFINE REP_NUM NUM*3 = &
> NCONVERT(GETSYSTEMVAL("REP_NUM"))
> SORT ON POSITION
> INITIAL HEADING "This is REPORT " REP_NUM
> REPORT EMPLOYEE LASTNAME FIRSTNAME TITLE
> GO

The following example shows how a global value may be created and referenced in QUICK and
QTP.
> SCREEN REPORT_MENU MENU NOMODE ACTION LABEL &
> "Enter 1 to begin" AT 3,4
> TEMPORARY REPORT_REQ CHAR*10
> FIELD REPORT_REQ LABEL &
> "Enter required report name: " AT 5,4 &
> DATA AT 6,15 &
> HELP &
> "Enter 1 for address report 2 for position report."
> PROCEDURE DESIGNER 1
> BEGIN
> ACCEPT REPORT_REQ
> IF NOT SETSYSTEMVAL("QTP_PARMS", &
> ("REPORT" + REPORT_REQ) &
> , LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not set logical name."
> END
> ELSE RUN COMMAND "QTP AUTO=QTP_PARMS"
> REFRESH ALL
> END
> PROCEDURE EXIT
> BEGIN
> ; Clean up logical name
> IF NOT DELETESYSTEMVAL &
> ("QTP_PARMS",LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not delete logical name."
> END
> END
> GO

The values are then picked up by QTP which creates a temporary subfile to pass to QUIZ to
report on.
> ;REPORT 1
> SET NOSTATISTICS
> ACC EMPLOYEES
> SUBFILE HOLD INCL EMPLOYEE, FIRSTNAME, &
> LASTNAME, STREET, CITY, POSTALZIP
> GO
> $QUIZ AUTO=HOLD
> EXIT

> ;REPORT 2
> SET NOSTATISTICS
> ACC EMPLOYEES
> SUBFILE HOLD INCLUDE EMPLOYEE, FIRSTNAME, &
> LASTNAME, POSITION
> GO
> $QUIZ AUTO=HOLD
> EXIT

QUIZ report to report on the subfile created in the QTP run.

400 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
DELETESYSTEMVAL (OpenVMS)

> ACC *HOLD
> REP ALL
> GO
> EXIT

Chapter 6: Functions in PowerHouse
DOWNSHIFT

PowerHouse Rules 401

DOWNSHIFT

Shifts uppercase characters to lowercase characters.

Syntax
DOWNSHIFT(string-expression)

string-expression

Specifies the string to be downshifted.

Discussion
Non-alphabetic characters remain unchanged. If present in the dictionary, the alternate language
downshift table is used.

Example
Input: DOWNSHIFT("TEXT")
Result: text

The following example formats LASTNAME with the first letter in uppercase and the remaining
letters in lowercase:
> DEFINE NAME CHAR*20 = &
> UPSHIFT(LASTNAME[1:1]) + &
> DOWNSHIFT(LASTNAME[2:19])

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

402 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
ENCRYPT

ENCRYPT

Creates an encryption key.

Syntax
ENCRYPT(string-expression1,string-expression2)

string-expression1

Specifies the string to be encoded.

string-expression2

Specifies the encryption key. Encryption keys can contain nonprinting control codes as well as
characters.

Discussion

Encryption Guidelines

Encryption goes beyond PowerHouse application security. Application security protects sensitive
information from unauthorized access from within PowerHouse. However, file-dump utilities and
programs written in other languages can be used to make copies of the files regardless of
PowerHouse application security. You can help prevent unauthorized access to data at the
operating system level by encrypting sensitive PowerHouse data.

You will achieve the best results when encrypting data if you
• use double encryption keys that contain at least five characters
• ensure that double encryption keys are as distinct from each other as possible, with a

minimum of shared characters
• never use identical keys for double encryption
• always truncate trailing blanks from string expressions that are used as encryption keys
• use encryption keys that are inconspicuous. For example, use strings that are already

contained in the source code, such as field labels, report headings, help messages, and so on.

Double Encryption

Double encryption refers to the nesting of the encrypt function, and ensures better security than
single encryption. When using encryption, you should always doubly encrypt items, as in
> DEFINE ENCODEDITEM CHARACTER*13 &
> = ENCRYPT(ENCRYPT("SOURCE STRING","FIRST"),"SECOND")

Here the string "SOURCE STRING" is encrypted using the "FIRST" key. The result of this
operation is in turn encrypted using the "SECOND" key, giving the string "FCDNYG:DDIACF".

In order to decode a doubly encrypted item, you must use double decryption by nesting the
decrypt function. When you use double decryption, the sequence of the keys in the expression
must be the reverse of the sequence used for encryption. In the previous example, you can decrypt
the item encodeditem by entering
> DEFINE DECODEDITEM CHARACTER*13 &
> = DECRYPT(DECRYPT(ENCODEDITEM,"SECOND"),"FIRST")

The encoded item ENCODEDITEM is decrypted using the "SECOND" key. The result of this
operation is in turn decrypted using the "FIRST" key.

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
ENCRYPT

PowerHouse Rules 403

Examples
To encrypt only the data in a field, excluding trailing spaces, use the TRUNCATE function before
you encrypt.

To decrypt correctly, the sequence of the encryption keys must be reversed.
> SCREEN ENCRYPT ACTIVITIES FIND
> FILE EMPLOY1 OCCURS 10 TIMES
>
> DEFINE CODED CHARACTER*20= &
> ENCRYPT(ENCRYPT(TRUNC(LASTNAME),"secret"),"agent")
>
> DEFINE DECODED CHARACTER*20 = &
> DECRYPT(DECRYPT(TRUNC(CODED),"agent"),"secret")
>
> TITLE "Last Name" at 4,4
> TITLE "Encrypted" at 4,26
> TITLE "Decrypted" at 4,55
> SKIP 1
> CLUSTER OCCURS WITH EMPLOY1
> ALIGN (,,4) (,,26)(,,55)
> FIELD LASTNAME OF EMPLOY1
> FIELD CODED
> FIELD DECODED
> GO

The following screen shows the LASTNAME field values and the encrypted values. The third
column displays the results of the correct decryption:

If each data record in an employees file contains the items address, civilstatus, and password, and
employee passwords are to be encrypted, then the "CIVIL" and "ADDRESS" strings are good
choices for double encryption keys, as in
> define ENCRYPTITEM character*13 &
> = ENCRYPT(ENCRYPT(PASSWORD,"CIVIL"),"ADDRESS")

These encryption keys meet the minimum length recommended and contain no characters in
common.

MODE: F ACTION:

Last Name Encrypted Decrypted

Burton Pwth"{ Burton

BURDEN PWTXT [burden BURDEN

BARTON PCTH^[BARTON

NEALE \GGPT NEALE

LYNCH ^[H_Y LYNCH

LYON ^[ir LYON

STANLEY AVGR]PM STANLEY

Smith Aoohy Smith

Jones Xmhyb Jones

Palmer Bcjqtg Palmer

404 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
EXTRACT

EXTRACT

Extracts the requested part of a datetime or interval value expression.

Syntax
EXTRACT(extract-option FROM date-expression)

Limit: Valid only in SQL.

extract-option

You can specify the following options for the EXTRACT function:

date-expression

The date-expression must be a datetime or interval expression.

Type Input Result QDESIGN QUIZ QTP

SQL-DMF Date Numeric ✔ ✔ ✔

Option Returns

YEAR a 4-digit year

MONTH a number between 1 and 12

DAY a number between 1 and 31

HOUR a number between 0 and 23

MINUTE a number between 0 and 59

SECOND a number between 0 and 59

Chapter 6: Functions in PowerHouse
FIRST

PowerHouse Rules 405

FIRST

Returns the value of the item in the first occurrence of the associated file on the screen.

Syntax
FIRST(item)

item

Refers to a record item (an item declared in the data dictionary), a predefined item, a temporary
item, or a defined item.
item [OF file]

Discussion
FIRST cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

If one of the items in a record on a multiple-record screen always has the same value for each
screenload of data, you can position the field for the item outside of the cluster boundaries. If a
field is outside of the cluster, QDESIGN treats the field as part of the first occurrence of the
cluster.

To specify that the value of each occurrence of the item is to take the same value as the first
occurrence of the item, use the system function first, as in
> SCREEN BILL
> FILE BILLINGS OCCURS 14
> ITEM EMPLOYEE FINAL FIRST(EMPLOYEE)
> FILE EMPLOYEES REFERENCE
> TITLE "BILLING BY EMPLOYEE" AT 1,31
> FIELD EMPLOYEE OF BILLINGS LOOKUP ON EMPLOYEES
> CLUSTER OCC WITH BILLINGS
> FIELD BILLING OF BILLINGS
> FIELD PROJ OF BILLINGS
.
.
.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Date,
Numeric,
String

✔

406 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
FLOOR

FLOOR

Rounds an integer down.

Syntax
FLOOR(numeric-expression)

numeric-expression

Specifies the input number.

Discussion
The FLOOR function decreases a fractional value to the next lowest integer. Whole numbers are
not decreased.

This function is commonly used to round monetary values down to the nearest integer.

Examples
Input: FLOOR(79.04)
Result: 79

Input: FLOOR(-34.44)
Result: -35

Input: DEFINE ITEMX NUM*8 = FLOOR(45.6 + .5)
Result: 46

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
FORMATNUMBER

PowerHouse Rules 407

FORMATNUMBER

Formats a number according to a format string.

Syntax
FORMATNUMBER(numeric-expression,string-expression1)

FORMATNUMBER(numeric-expression,[string-expression1],
string-expression2)

FORMATNUMBER(numeric-expression,[string-expression1],
[string-expression2], string-expression3)

numeric-expression

Specifies the number to be formatted.

string-expression1

Specifies the format string to be used if the number is positive. Also specifies the format string to
be used if the number is zero and string-expression3 is not specified. If the number is positive and
string-expression 1 is not specified, overflow characters (#) are displayed.

string-expression2

Specifies the format string to be used if the number is negative. If the number is negative and
string-expression 2 is not specified, overflow characters (#) are displayed

string-expression3

Specifies the format string to be used if the number is zero. If the number is zero and
string-expression3 is not specified, the number is formatted using string-expression1. If
string-expression1 is not specified, overflow characters (#) are displayed.

Discussion
FORMATNUMBER takes a number, formats it based on a format string, and returns a variable
length-string. A format string is a string of characters that indicates how the number is to be
formatted.

FORMATNUMBER recognizes both the integer and fractional portions of the number to be
formatted. The numeric expression is a floating point number and the designer must ensure that
the number input to the function is exactly the number desired. PowerHouse doesn’t perform any
scaling of the number before applying the format string. The number is rounded automatically to
the number of decimal places indicated by the format string.

The last string expression must be followed by a closing parenthesis. Each string expression is
optional except the last (that is, the last comma must be followed by a string expression).

If a negative number rounds to zero, the zero format string is used. If there is no zero format
string, the negative format string is used. If there is no negative format string, overflow characters
(#) are displayed.

If the number to be formatted is NULL, the function result is NULL.

Type Input Result QDESIGN QUIZ QTP

DMF Numeric and
String

String ✔ ✔ ✔

408 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
FORMATNUMBER

Format String Special Characters

The following special characters are valid in a format string:

Substitution Characters

A substitution character identifies a location where a digit from the number is substituted into the
format string. The type of substitution character determines what is displayed when the digit is
zero. Non-zero digits are always displayed. If there aren’t enough substitution characters to
display the non-zero digits to the left of the decimal place, overflow characters (#) are displayed.
Non-zero digits to the right of the decimal place are automatically rounded to the number of
decimal digits indicated by the format string.

Zero Substitution Character
A substitution character of zero (0) indicates that a leading or trailing zero should be displayed. It
is used to force the display of leading and trailing zeros. For example:

FORMATNUMBER(amount, "00,000.00")
returns "01,234.56" if amount is 1234.56
returns "00,123.40" if amount is 123.4
returns "00,000.00" if amount is 0

Blank Substitution Character
A substitution character of a question mark (?) indicates that a leading or trailing zero should be
displayed as a blank. It is used to suppress the display of leading and trailing zeros. For example:

FORMATNUMBER(amount, "$??,??0.?? US")
returns "$ 1,234.56 US" if amount is 1234.56
returns "$ 123.4 US" if amount is 123.4
returns "$ 0 US" if amount is 0

Note: When a digit is blank due to the blank substitution character, any text not enclosed in
quotes that is between the blanked digit and the decimal or the nearest substitution character
towards the decimal (whichever is closest) is also blanked. A blank is substituted for the zero digit
and the blank takes a character position. Therefore, the dollar sign and the "US" do not float.

Text enclosed in quotes is never blanked out. For example:
FORMATNUMBER(phone, "???'-'????")

returns "123-4567" if phone is 1234567
returns " - " if phone is 0

Null Substitution Character
A substitution character of a crosshatch (#) indicates that a leading or trailing zero should be
discarded. It is used to provide for floating characters. For example:

FORMATNUMBER(amount, "$##,##0.## US")
returns "$1,234.56 US" if amount is 1234.56
returns " $123.4 US " if amount is 123.4
returns " $0 US " if amount is 0

Note: When a digit is discarded due to the null substitution character, any text not enclosed in
quotes that is between the discarded digit and the decimal or the nearest substitution character
(whichever is closest) is also discarded. In the second example, the comma is discarded. In the
third example, the decimal is also discarded. A discarded digit or character does not take a
character position. Therefore, the dollar sign and the "US" float.

0 Zero substitution {} Fill text

? Blank Substitution ’’ Quoted text

NULL substitution "" Quoted text

. Decimal character \ Escape character

Chapter 6: Functions in PowerHouse
FORMATNUMBER

PowerHouse Rules 409

The default for null substitutions is that the left side is blank filled to fill the number of positions
discarded to the left of the decimal. The right side is blank filled to fill the number of positions
discarded to the right of the decimal.

Text enclosed in quotes is never discarded. For example:
FORMATNUMBER(id, "###'-'###'-'###")

returns "123-456-789" if id is 123456789
returns " -123-456" if id is 123456
returns " --123" if id is 123
returns " --" if id is 0

Decimal Character
The decimal character is a period (.). It identifies the beginning of fractional digits within a format
string.

The decimal character itself is displayed only if fractional digits are displayed (which depends on
the substitution characters used). If text immediately follows the decimal character, that text is
displayed instead of the decimal character. If the text is not enclosed in quotes, it is displayed only
if fractional digits are displayed. If the text is enclosed in quotes, it is displayed regardless of
whether fractional digits are displayed or not. When the decimal character or text not enclosed in
quotes isn’t displayed, it is blank filled if the next substitution character is a question mark (?) or
discarded if the next substitution character is a crosshatch (#). For example:

FORMATNUMBER(weight, "??0.?? Kg")
returns " 10.5 Kg" if weight is 10.5
returns " 10 Kg" if weight is 10.0

FORMATNUMBER(weight, "??0.0? Kg")
returns " 10.0 Kg" if weight is 10.0

FORMATNUMBER(weight, "??0.'.'?? Kg"
returns " 10. Kg" if weight is 10.0

FORMATNUMBER(weight, "##0. point ## Kg"
returns " 10 point 5 Kg " if weight is 10.5
returns " 10 Kg " if weight is 10
returns " 0 Kg " if weight is 0

There is no dictionary override for the decimal character in a format string. To display a comma
rather than a decimal point, include the comma as text immediately following the decimal
character, as in:

FORMATNUMBER(amount, "??? ??0.,??")
returns " 12 345,67" if amount is 12345.67

If there is no decimal character in the format string, the logical decimal position is immediately to
the right of the rightmost substitution character.

Only the first decimal character is interpreted as a decimal. Subsequent decimal characters are
treated as text enclosed in quotes and will always be displayed.

Fill Text
The default fill character is a blank. Fill text is substituted into character positions discarded by
null substitution. You can override the default fill character by enclosing text in braces ({}). For
example:

FORMATNUMBER(price, "{*}$###,##0.00")
returns "**$1,000.00" if price is 1000.00
returns "******$1.23" if price is 1.23
returns "******$0.00" if price is 0

Fill text characters are inserted in the same location as the fill text appears in the format string.
The number of characters inserted is the number of characters discarded by null substitution. For
example:

FORMATNUMBER(value, "##{*}###.#")
returns "***12.3" if value is 12.3
returns "1*234.5" if value is 1234.5

410 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
FORMATNUMBER

If more than a single character is used as the fill text, individual characters from the fill text are
used to fill discarded characters in a one-to-one correspondence. The fill text is repeated to fill the
space of discarded characters. For example:

FORMATNUMBER(amount, "{VOID } #,###,###,###"
returns "VOID 1,234,567" if amount is 1234567
returns "VOID V 123,456" if amount is 123456
returns "VOID VOID VOI " if amount is 0

FORMATNUMBER(phone, "({___) ___-____}###) ###-####"
returns "(123) 456-7890" if phone is 1234567890
returns "(___) 123-4567" if phone is 1234567
returns "(___) ___-____" if phone is 0

When there are two fill text groups, the one on the left fills positions discarded to the left of the
decimal, while the one on the right fills positions discarded to the right of the decimal. For
example:

FORMATNUMBER(volume, "US {*}###,##0.###{!} GAL")
returns "US **1,000!!!! GAL" if volume is 1000
returns "US ******1.23! GAL" if volume is 1.23

You can affect the alignment and justification of the formatted result by using an empty fill text
string, that is, opening and closing braces with no text in between, or by positioning the decimal
fill text to the left of the decimal character. For example:

FORMATNUMBER(quantity, "{ }{ }##,###.###"
returns " 1.23" if quantity is 1.23
returns " 12.3" if quantity is 12.3
returns " 1,234" if quantity is 1234

FORMATNUMBER(quantity, "{}#,###,##0")
returns "1,235" if quantity is 1234.5
returns "12" if quantity is 12

If there is an unmatched brace PowerHouse assumes there is a closing brace at the end of the
format string. If there is an extra closing brace, it is treated as quoted text. Only two fill text
groups are allowed. Subsequent fill text groups are treated as quoted text.

Quotes
Single or double quotes are used to enclose text that is not to be interpreted as special characters.
If the format string is enclosed in double quotes, any quoted text inside the format string must be
enclosed in single quotes and vice versa. To represent a quote or a backslash within quoted text,
place a backslash before it.

If there is an unmatched quote, PowerHouse assumes there is a closing quote at the end of the
format string.

Escape Character
The backslash (\) is the escape character. It is used to indicate that the character immediately
following the backslash is not to be interpreted as a special character. For example:

FORMATNUMBER(value, "\{###,##0\}")
returns " {1,234}" if value is 1234

Within fill text, only the backslash is a special character. To represent a right brace or a backslash
within fill text, put a backslash before it.

Leading and Trailing Signs
Leading or trailing signs to indicate positive or negative numbers are included as text. For
example:

FORMATNUMBER(quantity, "+###0", "-###0")
returns " +123" if quantity is 123
returns " -123" if quantity is -123

FORMATNUMBER(balance, "$##,##0 CR", "$##,##0 DR")
returns " $1,234 CR" if balance is 1234
returns " $1,234 DR" if balance is -1234

Chapter 6: Functions in PowerHouse
FORMATNUMBER

PowerHouse Rules 411

FORMATNUMBER(balance, " ##,##0 ", "(##,##0)"
returns " 1,234 " if balance is 1234
returns " (1,234)" if balance is -1234

You can suppress the negative indication if desired. For example:
FORMATNUMBER(quantity, "##0", "##0")

returns "123" if quantity is -123

Zero Values
To represent a zero value with a blank or special text, include a format string for the value zero.
For example:

FORMATNUMBER(value, "###0", , " ")
returns " " if value is 0

FORMATNUMBER(value, "###0", , " N/A")
returns " N/A" if value is 0

412 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
GETSYSTEMVAL (MPE/iX, UNIX, and Windows)

GETSYSTEMVAL (MPE/iX, UNIX, and Windows)
For GETSYSTEMVAL (OpenVMS), see (p. 413).

Retrieves values defined at the operating system level.

Syntax
GETSYSTEMVAL(string-expression)

string-expression

Specifies the name of the system variable (MPE/iX) or environment variable (UNIX, Windows) to
be retrieved.

Discussion
The DELETESYSTEMVAL, GETSYSTEMVAL, and SETSYSTEMVAL functions support the
deletion, retrieval, and assignment of operating system values. This provides execution-time
control of values through the definitions made at the operating system level and allows values to
be passed between PowerHouse components.

GETSYSTEMVAL returns a string equal to the value of the environment variable. If the system
value does not exist or cannot be retrieved for any reason, a string of zero-length is returned.

Example
For examples showing the use of the DELETESYSTEMVAL, GETSYSTEMVAL, and
SETSYSTEMVAL functions, see (p. 394).

Type Input Result QDESIGN QUIZ QTP

SF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
GETSYSTEMVAL (OpenVMS)

PowerHouse Rules 413

GETSYSTEMVAL (OpenVMS)
For GETSYSTEMVAL (MPE/iX, UNIX, and Windows), see (p. 412).

Retrieves values defined at the operating system level.

Syntax
For OpenVMS logical names:
GETSYSTEMVAL(string-expression1
 [,LOGICAL [,string-expression 2]])

For DCL symbols:
GETSYSTEMVAL(string-expression1, SYMBOL)

string-expression1

Specifies the name of the OpenVMS logical name or DCL symbol to be retrieved.

string-expression2

Optionally specifies the logical name table to be searched.

Default: The standard OpenVMS logical name table search order, set by LNM$FILE_DEV is
used. Typically, the process table (LNM$PROCESS) is searched first, followed by the job table
(LNM$JOB), the group table (LNM$GROUP), and finally the system table (LNM$SYSTEM).

LOGICAL

Specifies retrieval of an OpenVMS logical name. If the LOGICAL or SYMBOL keyword is not
explicitly used, a logical name is assumed.

SYMBOL

Specifies retrieval of a DCL symbol. Local symbols are retrieved before global symbols.

Discussion
The DELETESYSTEMVAL, GETSYSTEMVAL, and SETSYSTEMVAL functions support the
deletion, retrieval, and assignment of operating system values. This provides execution-time
control of values through the definitions made at the operating system level and allows values to
be passed between PowerHouse components.

GETSYSTEMVAL returns a string equal to the value of the symbol or logical. If the system value
does not exist or cannot be retrieved for any reason, a string of zero-length is returned.

Examples
For examples showing the use of the DELETESYSTEMVAL, GETSYSTEMVAL, and
SETSYSTEMVAL functions, see (p. 398).

Type Input Result QDESIGN QUIZ QTP

SF String String ✔ ✔ ✔

414 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
INDEX

INDEX

Gives the starting position of a substring.

Syntax
INDEX(string-expression1,string-expression2)

string-expression1

Specifies the string to be searched.

string-expression2

Specifies the shorter string to be found in string-expression1.

Discussion
String-expression1 must be longer than string-expression2 or else the result will always be 0.

If string-expression2 does not exist in string-expression1, the INDEX function returns a result
of 0.

If string-expression2 starts in the first position of string-expression1, the INDEX function returns
a 1.

Examples
Input: INDEX("ABCD","BC")
Result: 2

Input: INDEX ("ABC", "XY")
Result: 0

Input: > DEFINE ITEMX CHAR*10 = "ABCDEFGHIJ"
 > DEFINE ITEMY CHAR*1 = "H"
 > DEFINE ITEMZ = INDEX (ITEMX,ITEMY)
Result: 8

A new string may be defined that will contain all of the characters from the original string up to
and including the first comma:
> DEFINE LOCOMMA NUM*2 = INDEX(LASTNAME, ",")
> DEFINE NEWITEM CHAR*20 = TRUNC(LASTNAME[1:LOCOMMA])

Type Input Result QDESIGN QUIZ QTP

DMF String Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
HEXDECODE Function

PowerHouse Rules 415

HEXDECODE Function

Converts a hexadecimal string to an ASCII string.

Syntax
HEXDECODE(string-expression)

string-expression

Specifies a string expression containing an even number of hexadecimal characters.

Discussion
The HEXDECODE function takes a string of hexadecimal characters and converts it to the
equivalent ASCII string. Each pair of hexadecimal characters is converted to one ASCII character.

Examples
Encrypted strings can contain non-printing characters. Non-printing characters cannot be passed
between PowerHouse Web pages. The HEXENCODE and HEXDECODE functions can be used
to overcome this restriction. Use HEXENCODE to encode the encrypted string. Use
HEXDECODE to decode the hexadecimal encoded string before decrypting it.
> TEMPORARY ENCODED_ID CHARACTER*20
> TEMPORARY INPUT_ID CHARACTER*10
> TEMPORARY OUTPUT_ID CHARACTER*10
> TEMPORARY T_KEY CHARACTER*10
...
> PROCEDURE DESIGNER ENC
> BEGIN
> LET ENCODED_ID = &
> HEXENCODE(ENCRYPT(TRUNCATE(INPUT_ID),T_KEY))
> END
> PROCEDURE DESIGNER DEC
> BEGIN
> LET OUTPUT_ID = DECRYPT(HEXDECODE(ENCODED_ID),T_KEY)
> END

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔

416 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
HEXENCODE Function

HEXENCODE Function

Converts an ASCII string to a hexadecimal string.

Syntax
HEXENCODE(string-expression)

string-expression

Specifies a string expression containing ASCII characters to be encoded.

Discussion
The HEXENCODE function takes a string of ASCII characters and converts it to the equivalent
hexadecimal string. Each ASCII character is converted to two hexadecimal characters.

Examples
Encrypted strings can contain non-printing characters. Non-printing characters cannot be passed
between PowerHouse Web pages. The HEXENCODE and HEXDECODE functions can be used
to overcome this restriction. Use HEXENCODE to encode the encrypted string. Use
HEXDECODE to decode the hexadecimal encoded string before decrypting it.
> TEMPORARY ENCODED_ID CHARACTER*20
> TEMPORARY INPUT_ID CHARACTER*10
> TEMPORARY OUTPUT_ID CHARACTER*10
> TEMPORARY T_KEY CHARACTER*10
...
> PROCEDURE DESIGNER ENC
> BEGIN
> LET ENCODED_ID = &
> HEXENCODE(ENCRYPT(TRUNCATE(INPUT_ID),T_KEY))
> END
> PROCEDURE DESIGNER DEC
> BEGIN
> LET OUTPUT_ID = DECRYPT(HEXDECODE(ENCODED_ID),T_KEY)
> END

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔

Chapter 6: Functions in PowerHouse
INTERVAL

PowerHouse Rules 417

INTERVAL

Returns the days/time value of a string or number as a fractional value.

Syntax
INTERVAL(days-expression)

INTERVAL(days-expression,days-format)

days-expression

A days-expression is a numeric or string expression that yields a date in the form
ddddd.hhmmssttt.

days-format

The default days-format is ddddd.hhmmssttt. The days-format can be an expression.

Both forms result in a numeric days/time value in the form ddddd.frac.

Example
In the following example, the INTERVAL function converts 10 days, 12 hours, and 15 minutes to
10.5097 days.
Input: INTERVAL(10.1215, "dddd.hhmm")
Result: 10.5097

Type Input Result QDESIGN QUIZ QTP

DMF Date Numeric ✔ ✔ ✔

418 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
JCW (MPE/iX)

JCW (MPE/iX)

Returns an integer indicating the value of the specified JCW.

Syntax
JCW(string)

Discussion
The JCW function returns an unsigned integer indicating the value of the JCW specified by the
string expression. The range of the integer is from 0 to 65535. If the specified JCW doesn’t exist,
the JCW function returns a value of -3.

Example
If you do not have the JCW QTP set, then the following returns a value of -3:
> DEFINE J-VALUE NUMERIC * 4 = JCW("QTP")

Type Input Result QDESIGN QUIZ QTP

SF String Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
LASTDAY

PowerHouse Rules 419

LASTDAY

Sets a date to the last day of the month.

Syntax
LASTDAY(date-expression)

date-expression

Specifies the input date. It can be a 6-digit date with the format YYMMDD or an 8-digit date with
the format YYYYMMDD.

Example
Input: LASTDAY(900525)
Result: 90/05/31

To calculate the number of days left in the current month:
> DEFINE DAYSLEFT = LASTDAY(SYSDATE) - SYSDATE

Type Input Result QDESIGN QUIZ QTP

DMF Date Date ✔ ✔ ✔

420 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
LEFT JUSTIFY | LJ

LEFT JUSTIFY | LJ

Left-justifies characters in a string.

Syntax
LEFT JUSTIFY(string-expression)

LJ(string-expression)

string-expression

Specifies the string to be left-justified.

Example
Input: LJ(" J SMITH")
Result: J SMITH

FIELDA and FIELDB both contain data with blanks at the beginning and end. The fields may be
concatenated and the blanks removed. Left justifying eliminates the starting blanks, and
truncating eliminates the trailing blanks.
> DEFINE ITEMX = TRUNC(LJ(FIELDA)) + TRUNC(LJ(FIELDB))

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
LINKVALUE

PowerHouse Rules 421

LINKVALUE

LINKVALUE returns the highest, lowest or equal value of a linkitem in the VIA option of an
ACCESS statement in QDESIGN or the CHOOSE statement in QUIZ and QTP.

Syntax
LINKVALUE (linkitem[{,LOWEST}|{,HIGHEST}|{,EQUAL}])

Discussion
LINKVALUE is used by QDESIGN when generating SQL procedural code and referring to
expressions or user input. It is also visible in the SQL displayed in QUIZ and QTP when SET LIST
SQL is in effect.

Example
> DECLARE PATIENT CURSOR FOR &
> SELECT * FROM PATIENTS
>
> ACCESS PATIENT
> CHOOSE PATIENTID PARM &
> PROMPT "Enter first patient ID: " &
> RANGE TOPROMPT "Enter last patient ID: "

The following three queries are generated from the above cursor definition. At runtime, the
correct query is used based on the values entered for the prompts.
> SELECT * FROM PATIENTS
> SELECT * FROM PATIENTS &
> WHERE PATIENTID BETWEEN &
> :LINKVALUE(PATIENTID,LOWEST) AND &
> :LINKVALUE(PATIENTID,HIGHEST)
> SELECT * FROM PATIENTS &
> WHERE PATIENTID = &
> :LINKVALUE(PATIENTID,EQUAL)

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Date,
Numeric,
String

✔ ✔ ✔

Option Returns

LOWEST the lowest possible matching value of a USING expression when the
expression ends with a generic character

HIGHEST the highest possible matching value of a USING expression when the
expression ends with a generic character

EQUAL the exact value that was specified. If the expression ends with a generic
character, the EQUAL option will return the lowest possible matching value.

422 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
LOGONID

 LOGONID

Syntax
LOGONID

Discussion
In QDESIGN, LOGONID cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Examples

MPE/iX
If the current user is logged on as USER1.ACCOUNT1, then the following returns
USER1.ACCOUNT1
> DEFINE D-LOGONID CHARACTER*17 = LOGONID

OpenVMS
If the current user is logged on as USER1, the following DEFINE statement returns USER1:
> DEFINE DLOGONID CHARACTER*12 = LOGONID

UNIX
If the current user is logged on as USER1, the following DEFINE statement returns USER1:
> DEFINE DLOGONID CHARACTER*8 = LOGONID

Windows
If the current user is logged on as USER1, the following DEFINE statement returns USER1:
> DEFINE DLOGONID CHARACTER*20 = LOGONID

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

MPE/iX: Returns a string of up to 17 characters that contains the username and account
name used by the current user to log onto the system.

OpenVMS: Returns a string of up to 12 characters that contains the username used by the
current user to log onto the system.

UNIX: Returns a string of up to 8 characters that contains the logonid of the current
user.

Windows: Returns a string of up to 20 characters that contains the logonid of the current
user.

Chapter 6: Functions in PowerHouse
LOWER

PowerHouse Rules 423

LOWER

Downshifts a string expression.

Syntax
LOWER(string-expression)

Limit: Valid only in SQL.

string-expression

Specifies the string to be downshifted.

Type Input Result QDESIGN QUIZ QTP

SQL-DMF String String ✔ ✔ ✔

424 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
MATCHPATTERN

MATCHPATTERN

Compares a string to a pattern.

Syntax
MATCHPATTERN(string-expression, pattern-string)

string-expression

Specifies the string to be checked.

pattern-string

Specifies the pattern to compare the string to.

Discussion
The MATCHPATTERN function returns a boolean TRUE value if the string expression exactly
matches the specified pattern string. For information on pattern matching, see (p. 351).

Example
The matchpattern function is used to apply pattern matching procedurally, and is best used with
other functions to remove leading and trailing spaces, as in
> IF NOT MATCHPATTERN &
> (TRUNCATE(LJ(LASTNAME)), &
> (TRUNCATE(TESTPATTERN))
> THEN ERROR "PATTERN DID NOT MATCH."

The following example selects all records that do not meet standard North American postal code
formats:
> SELECT IF NOT MATCHPATTERN &
> (POSTAL-CODE,"(^#^#^#)|(^^^^^)")

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
MATCHUSER

PowerHouse Rules 425

MATCHUSER

Determines whether or not a user belongs to a given application security class (ASC).

Syntax
MATCHUSER(asc)

asc

Specifies the application security class to be checked.

For more information about application security classes, see Chapter 2, "PDL Statements", in the
PDL and Utilities Reference.

Discussion
The MATCHUSER function returns a Boolean TRUE value if the asc is an application security
class associated with the current user as defined in the data dictionary.

Example
The following example returns the TRUE value if the current user belongs to the application
security class CLERK, or FALSE if the current user belongs to an application security class other
than CLERK:
> DEFINE CLERKSTAT CHARACTER*20 = "TRUE" &
> IF MATCHUSER("CLERK") ELSE "FALSE"

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

426 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
MISSING

MISSING

Returns NULL.

Syntax
MISSING

Discussion
The MISSING function is used to assign a NULL to an item or column. The MISSING function is
identical to the NULL function. Also see "Testing for Null Values" (p. 348).

Examples
ITEM BRANCH FINAL MISSING

Type Input Result QDESIGN QUIZ QTP

SF System
generated

NULL ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
MOD

PowerHouse Rules 427

MOD

Returns a remainder after division.

Syntax
MOD(numeric-expression1,numeric-expression2)

numeric-expression1

Specifies the number to be divided.

numeric-expression2

Specifies the divisor.

Discussion
The MOD function returns the remainder when the numeric-expression1 is divided by
numeric-expression2.

Example
Input: MOD(126,10)
Result: 6

For example, to calculate the day of the week
> DEFINE DAYOFWEEK NUM*5 = MOD(DAYS(19920101),7)
Result: 3

As the base date for the DAYS function is Sunday, December 31, 1899 (day 0), the resulting day of
the week is a Wednesday.

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔ ✔

428 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
NCONVERT

NCONVERT

Converts a character string to a number.

Syntax
NCONVERT(string-expression)

string-expression

Specifies the input string. A negative sign can be included. Numbers to the right of a decimal point
are ignored for variables defined as INTEGER, but used for rounding for variables defined as
NUMERIC.

Examples
The following examples use a NUMERIC variable:
Input: NCONVERT("-12236")
Result: -12236

Input: NCONVERT("12.5")
Result: 13

Input: NCONVERT("-12.5")
Result: -13

A value for last year may be obtained by extracting the year from today's date and subtracting
one:
> DEFINE CURRYR NUM*4 = &
> NCONVERT(ASCII(SYSDATE)[1:4])
> DEFINE LASTYR NUM*4 = CURRYR - 1

Type Input Result QDESIGN QUIZ QTP

DMF String Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
NULL

PowerHouse Rules 429

NULL

Returns NULL.

Syntax
NULL

Discussion
The NULL function is used to assign a NULL to an item or column. The NULL function is
identical to the MISSING function. Also see "Testing for Null Values" (p. 348).

Examples
ITEM BRANCH FINAL NULL

Type Input Result QDESIGN QUIZ QTP

SF System
generated

NULL ✔ ✔ ✔

430 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
OCCURRENCE

OCCURRENCE

Returns the number of times a loop has been executed.

Syntax
OCCURRENCE [OF record-structure|item]

record-structure

The name of a record-structure defined in the dictionary or a table in a relational database.

item

A location where PowerHouse can store data. An item is a record item declared in the data
dictionary, a defined item, a temporary item, a global temporary, or a predefined defined item.
The general form of a record item is:
item[OF record-name]

Discussion
If there is no active loop, the value 1 is returned.

OCCURRENCE cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Setting the OCCURRENCE System Function

The FOR control structure sets the system function, OCCURRENCE. This function controls
which occurrence of repeating records, items, or clusters is addressed by other verbs. The current
setting of OCCURRENCE can be addressed procedurally, although subscripting is not allowed.
Outside the range of a FOR control structure, the value of OCCURRENCE is 1. Field procedures
invoked by field verbs from within a FOR control structure are considered to be within the range
of the FOR control structure, and the current setting of OCCURRENCE is unchanged.

A higher-level screen can invoke a lower-level screen by passing one occurrence of a file or item.
The lower-level screen can have an independent FOR control structure. Although the indicated
occurrence of the passed file or item is passed to lower-level screens, OCCURRENCE itself is not.
The value of OCCURRENCE on the lower-level screen is always 1 unless a FOR loop is active
there.

Only one FOR control structure can be active at one time; FOR loops nesting is not allowed
within a procedure. However, when an INTERNAL procedure is performed from within a FOR
loop, it can itself have a FOR loop.

The setting of occurrence in such situations is described by the following example:
> FILE A DESIGNER OCCURS 10
.
.
.
> PROCEDURE INTERNAL SHOWLOOP
> BEGIN

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

Chapter 6: Functions in PowerHouse
OCCURRENCE

PowerHouse Rules 431

> LET X OF A = OCCURRENCE
> FOR A
> BEGIN
> LET X OF A = OCCURRENCE
> END
> LET X OF A = OCCURRENCE
> END
> PROCEDURE ENTRY
> BEGIN
.
.
.
> FOR A
> DO INTERNAL SHOWLOOP
.
.
.
> END

In this example, the INTERNAL procedure, SHOWLOOP, is performed ten times. On the fifth
time, the INTERNAL procedure sets the value of X to the following values:
5,1,2,3,4,5,6,7,8,9,10,5

At any time, there is only one setting of the function, OCCURRENCE.

You cannot address all the occurrences of a repeating item within a repeating file on the same
screen. Instead, you must pass each occurrence of the file, in turn, to a subscreen and process the
repeating item there.

432 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
OCTET_LENGTH

OCTET_LENGTH

Returns the size of a string expression in bytes.

Syntax
OCTET_LENGTH(string-expression)

Limit: Valid only in SQL.

string-expression

Specifies the input string.

Type Input Result QDESIGN QUIZ QTP

SQL-DMF String Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
OLDVALUE

PowerHouse Rules 433

OLDVALUE

Returns the existing value of the item during editing.

Syntax
OLDVALUE(item)

item

Refers to a record item (an item declared in the data dictionary), a predefined item, a temporary
item, or a defined item. The general form of a record item in QUIZ, and QTP is:
item [(subscript)] [OF file]

The general form of a record item in QDESIGN is:
item [OF file]

Discussion
OLDVALUE cannot be
• used after the edit procedure has been completed
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Within an EDIT procedure, there are two values associated with the named field: the old (or
existing) value in the record or temporary item buffer, and the new value entered by the QUICK
user. The new value can be referenced in an expression using either the predefined items
FIELDTEXT (for character data) or FIELDVALUE (for numeric and date data) or the item name.
The old value of the item can be referenced in an expression by using the OLDVALUE function.
The new value can be changed by using FIELDTEXT or FIELDVALUE (depending on the data
type) as the target of a LET verb. Do not target the item directly in the EDIT procedure. For more
information, see Chapter 7, "QDESIGN Procedures," in the QDESIGN Reference book.

Limit: OLDVALUE cannot be used after the EDIT procedure has been completed.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Date,
Numeric,
String

✔

434 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
PACK

PACK

Packs characters in a string.

Syntax
PACK(string-expression)

string-expression

Specifies the string to be packed.

Discussion
The PACK function eliminates leading spaces and all but one intervening space between words. It
removes leading and trailing commas and semicolons, and removes leading spaces from words
that begin with a comma, period, colon, or semicolon. The resulting size is unchanged.

Example
Input: PACK("J SMITH")
Result: J SMITH

The following example will format MICHAEL SMITH to Smith, M:
> ACCESS EMPLOYEES
> DEFINE NAME CHAR*22 = &
> PACK(LASTNAME[1:1] + &
> DOWNSHIFT(LASTNAME[2:19]) + &
> " , " + FIRSTNAME[1:1])

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
PORTID

PowerHouse Rules 435

PORTID

Identifies the terminal device.

Syntax
PORTID

Discussion
The PORTID function returns a string identifying the terminal device used in the current session.
In a batch job, the PORTID function returns a string of length 0. On Windows, PORTID returns
a blank.

In QDESIGN, PORTID cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Example
The following returns the terminal device currently in use:
> DEFINE PRT CHARACTER*12 = PORTID

The results might be:
MPE/iX: 14
OpenVMS:LTA1
UNIX: \dev\ttyp4

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

436 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
POSITION

POSITION

Gives the starting position of the first string in the second string.

Syntax
POSITION(string-expression1 IN string-expression2)

Limit: Valid only in SQL.

string-expression1

Specifies the string to be found in string-expression2.

string-expression2

string-expression2 must be longer than or equal to string-expression1 or the result will always be
0.

Example
The following example returns a value of 4:
POSITION('ing' IN 'string')

Type Input Result QDESIGN QUIZ QTP

SQL-DMF String Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
PROCESSLOCATION

PowerHouse Rules 437

PROCESSLOCATION

Returns the value of the procloc program parameter.

Syntax
PROCESSLOCATION

Discussion
PROCESSLOCATION cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Example
If QUICK is initiated as follows:

The following DEFINE statement returns the process location specified in the procloc program
parameter:
DEFINE D-PROCLOC CHARACTER*20 = PROCESSLOCATION

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

MPE/iX: QUICK PROCLOC=.DEVELOP.DOC

OpenVMS: QUICK PROCLOC=path$disk:[dev.beta]

UNIX: quick procloc=/develop

Windows: QUICK PROCLOC=C:\DEVELOP

438 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
RANDOM

RANDOM

Returns a random number.

Syntax
RANDOM(seed)

seed

The seed must be a temporary item of datatype FLOAT SIZE 4 or INTEGER SIZE 4, or all
resulting values will be zero. The value of the seed is modified by the function.

Discussion
The RANDOM function returns a random number of datatype FLOAT SIZE 8 greater than or
equal to zero and less than one.

If the same seed is used, then the same random number is returned.

Example
This example uses the system time as a seed to generate a series of random numbers. If the same
seed is used twice, the generated numbers are identical.
> SCREEN RANDOM
> FILE EMPLOY1
> TEMP X FLOAT SIZE 4 INIT MOD(SYSTIME,10000)
> DEFINE Y FLOAT SIZE 8 = RANDOM(X) * 1000000
> SKIP 2
> FIELD X LABEL "Seed" HELP &
> "Enter a random seed or press Return to use &
> System Time"
> TITLE "Random Numbers:"
> ALIGN (,,18)
> CLUSTER OCCURS 10 AT 6,18
> FIELD Y

Type Input Result QDESIGN QUIZ QTP

SF Numeric Numeric ✔ ✔

Chapter 6: Functions in PowerHouse
RECORDLOCATION

PowerHouse Rules 439

RECORDLOCATION

Returns the physical record number of the current occurrence of a data record.

Syntax
RECORDLOCATION [OF record-structure]

Limit: This function is useful only with relative or direct files; the function result is meaningless
with relational tables.

record-structure

The name of a record-structure defined in the dictionary or table in a relational database.

Discussion
The first data record is record number 0 (MPE/iX, UNIX, Windows) or 1 (OpenVMS). If the OF
record-structure qualifier is omitted, the value is that of the assumed record-structure. If there are
no records, RECORDLOCATION returns -1.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

440 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
REMOVECENTURY

REMOVECENTURY

Converts an 8-digit date to a 6-digit date.

Syntax
REMOVECENTURY(date-expression)

date-expression

Specifies the input date.

Discussion
When you mix 6-digit and 8-digit dates in an expression or compare dissimilar date types in a
condition, use either the REMOVECENTURY function or the ADDCENTURY function. For
example, if the system default is century included, SYSDATE is an 8-digit date. You can use
REMOVECENTURY to define a 6-digit version of this system date, as in
> DEFINE SHORTDATE DATE CENTURY EXCLUDED = REMOVECENTURY(SYSDATE)

or to make comparisons, as in
> SELECT IF LATEDATE = REMOVECENTURY(SYSDATE)

If a 6-digit date item is to derive its value from an 8-digit date, use the REMOVECENTURY
function. For example, the following DEFINE statements assign the value 850630 to the 6-digit
date SHORTDATE:
> DEFINE LONGDATE DATE CENTURY INCLUDED = 19850630
> DEFINE SHORTDATE DATE CENTURY EXCLUDED = &
> REMOVECENTURY (LONGDATE)

Example
Input: REMOVECENTURY(19900525)
Result: 90/05/25

Type Input Result QDESIGN QUIZ QTP

DMF Date Date ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
REVERSE

PowerHouse Rules 441

REVERSE

Reverses the characters in a string.

Syntax
REVERSE(string-expression)

string-expression

Specifies the string to be reversed.

Discussion
Characters entered left to right appear right to left. Blanks appear to the left.

Example
Input: REVERSE("J Smith ")
Result: htimS J

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

442 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
RIGHT JUSTIFY | RJ

RIGHT JUSTIFY | RJ

Right-justifies characters in a string.

Syntax
RIGHT JUSTIFY(string-expression)

RJ(string-expression)

string-expression

Specifies the string to be right-justified.

Example
Input: RJ("J SMITH ")
Result: ...J SMITH
> DEFINE ITEMX CHAR*20 = RJ(LASTNAME[1:20])

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
ROUND

PowerHouse Rules 443

ROUND

Returns a rounded number.

Syntax
ROUND(numeric-expression1[,[numeric-expression2]

[,round-option]])

numeric-expression1

Specifies the number to be rounded.

numeric-expression2

Specifies the precision with which numeric-expression1 is rounded.

If numeric-expression2 is positive, it establishes the precision of numeric-expression1 by allowing
you to declare the number of decimal places to keep in the result.

If numeric-expression2 is negative, numeric-expression1 is rounded by the specified factor of 10.
For example,
• if -1 is entered, numeric-expression1 is rounded to the nearest 10
• if -2 is entered, numeric-expression1 is rounded to the nearest 100
• if -3 is entered, numeric-expression1 is rounded to the nearest 1000

Limit: If numeric-expression2 is not entered as an integer, PowerHouse truncates it to an integer.

Default: The default precision is zero (0). Numeric-expression1 is rounded to an integer.

round-option

You can specify the following options for the ROUND function:

Default: NEAR

Examples
Input: ROUND(4.5)
Result: 5

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔ ✔

Option Rounds

NEAR to the nearest number

UP toward positive infinity

DOWN toward negative infinity

ZERO toward zero

444 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
ROUND

Using the Default Precision

If you use the round function without specifying a round-option or a precision, the default
round-option, NEAR, is used with the default precision of zero. The results are as follows:

If you select the up round-option without specifying a precision number, the default of zero is
assumed. Note, however, that an extra comma is required in the syntax. The results are as follows:

If you select the down round-option with the default precision of zero, the results are as follows:

If you select the zero round-option with a default precision of zero, the results are as follows:

Specifying the Precision

The following examples demonstrate the effect that specifying both a precision number
(numeric-expression2) and a round-option has on the result of the ROUND function. This set of
examples shows the results when numeric-expression2 is equal to
• 1 (meaning round to a precision of one decimal place)

• -3 (meaning round to the nearest thousand or 103)

• -2 (meaning round to the nearest hundred or 102)

If you select the near round-option, the results are as follows:
ROUND (123.44, 1, NEAR) = 123.4
ROUND (-123.4, 1, NEAR) = -123.4
ROUND (12334, -3, NEAR) = 12000
ROUND (-12334, -3, NEAR) = -12000
ROUND (12654, -3, NEAR) = 13000
ROUND (-12654, -3, NEAR) = -13000
ROUND (126.54, -2, NEAR) = 100
ROUND (-126.54, -2, NEAR) = -100

If you select the up round-option, the results are as follows:
ROUND (123.44, 1, UP) = 123.5
ROUND (-123.44, 1, UP) = -123.4
ROUND (12334, -3, UP) = 13000
ROUND (-12334, -3, UP) = -12000
ROUND (12654, -3, UP) = 13000
ROUND (-12654, -3, UP) = -12000
ROUND (126.54, -2,UP) = 200
ROUND (-126.54, -2, UP) = -100

If you select the down round-option, the results are as follows:
ROUND (123.44, 1, DOWN) = 123.4
ROUND (-123.44, 1, DOWN) = -123.5

ROUND (4.4) = 4 ROUND (-4.4) = -4

ROUND (4.5) = 5 ROUND (-4.5) = -5

ROUND (4.6) = 5 ROUND (-4.6) = -5

ROUND (4.4, ,UP) = 5 ROUND (-4.4, ,UP) = -4

ROUND (4.5, ,UP) = 5 ROUND (-4.5, ,UP) = -4

ROUND (4.6, ,UP) = 5 ROUND (-4.6, ,UP) = -4

ROUND (4.4, ,DOWN) = 4 ROUND (-4.4, ,DOWN) = -5

ROUND (4.5, ,DOWN) = 4 ROUND (-4.5, ,DOWN) = -5

ROUND (4.6, ,DOWN) = 4 ROUND (-4.6, ,DOWN) = -5

ROUND (4.4, ,ZERO) = 4 ROUND (-4.4, ,ZERO) = -4

ROUND (4.5, ,ZERO) = 4 ROUND (-4.5, ,ZERO) = -4

ROUND (4.6, ,ZERO) = 4 ROUND (-4.6, ,ZERO) = -4

Chapter 6: Functions in PowerHouse
ROUND

PowerHouse Rules 445

ROUND (12334, -3, DOWN) = 12000
ROUND (-12334, -3, DOWN) = -13000
ROUND (12654, -3, DOWN) = 12000
ROUND (-12654, -3, DOWN) = -13000
ROUND (126.54, -2, DOWN) = 100
ROUND (-126.54, -2, DOWN) = -200

If you select the zero round-option, the results are as follows:
ROUND (123.44, 1, ZERO) = 123.4
ROUND (-123.44, 1, ZERO) = -123.4
ROUND (12334, -3, ZERO) = 12000
ROUND (-12334, -3, ZERO) = -12000
ROUND (12654, -3, ZERO) = 12000
ROUND (-12654, -3, ZERO) = -12000
ROUND (126.54, -2, ZERO) = 100
ROUND (-126.54, -2, ZERO) = -100

446 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SCREENLEVEL

SCREENLEVEL

Returns the level number of the current screen.

Syntax
SCREENLEVEL

Discussion
Level 1 is the highest level screen. For a new thread, the value of SCREENLEVEL starts at 1. The
number of screen levels allowed in an application is controlled by the QKGO execution-time
parameters file. The maximum level is 15.

SCREENLEVEL cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Example
The following DEFINE statement returns the current screen level:
> DEFINE DLEVEL NUMERIC*2 = SCREENLEVEL

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

Chapter 6: Functions in PowerHouse
SETSYSTEMVAL (MPE/iX, UNIX, and Windows)

PowerHouse Rules 447

SETSYSTEMVAL (MPE/iX, UNIX, and Windows)
For SETSYSTEMVAL (OpenVMS), see (p. 449).

Assigns operating system values.

Syntax
SETSYSTEMVAL (string-expression1, string-expression2)

string-expression1

Specifies the name of the system variable (MPE/iX) or environment variable (UNIX, Windows) to
be assigned.

string-expression2

Specifies the value to be assigned to the system variable (MPE/iX) or environment variable
(UNIX, Windows).

Discussion
The DELETESYSTEMVAL, GETSYSTEMVAL, and SETSYSTEMVAL functions support the
deletion, retrieval, and assignment of operating system values. This provides execution-time
control of values through the definitions made at the operating system level and allows values to
be passed between PowerHouse components.

SETSYSTEMVAL returns a logical result of True if it successfully assigns the environment
variable. Otherwise, it returns False. As this is a logical function, it must be used in a conditional
expression.

At parse time, use of the SETSYSTEMVAL function will cause a syntax error if either of the
following conditions exist:
• the noaccess program parameter is specified
• the OSACCESS resource file option equals OFF

Because the function accesses operating system values, its use is not permitted when operating
system access is restricted.

There is no effect on the function in compiled screens, reports and runs if the noaccess program
parameter or OSACCESS OFF resource file statement is used at runtime.

Example
The following QUICK example attempts to set a variable called "QTP_PARMS" to the value
"RUN" plus the run number entered by the screen user. If the variable can't be set, an error
message is displayed, otherwise the QTP run is started.

MPE/iX
TEMP RUN_REQ CHAR*1
.
.
.
> PROCEDURE DESIGNER 1
> BEGIN
> ACCEPT RUN_REQ
> IF NOT SETSYSTEMVAL("QTP_PARMS", ("RUN" + RUN_REQ))
> THEN ERROR "Could not set system variable"
> ELSE RUN COMMAND "qtp auto=!QTP_PARMS"

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

448 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SETSYSTEMVAL (MPE/iX, UNIX, and Windows)

.

.

.

UNIX, Windows
TEMP RUN_REQ CHAR*1
.
.
.
> PROCEDURE DESIGNER 1
> BEGIN
> ACCEPT RUN_REQ
> IF NOT SETSYSTEMVAL("QTP_PARMS", ("RUN" + RUN_REQ))
> THEN ERROR "Could not set environment variable"
> ELSE RUN COMMAND "qtp auto=$QTP_PARMS"
.
.
.

For more examples showing the use of the DELETESYSTEMVAL, GETSYSTEMVAL, and
SETSYSTEMVAL functions, see (p. 394).

Chapter 6: Functions in PowerHouse
SETSYSTEMVAL (OpenVMS)

PowerHouse Rules 449

SETSYSTEMVAL (OpenVMS)
For SETSYSTEMVAL (MPE/iX, UNIX, and Windows), see (p. 447).

Assigns values at the operating-system level.

Syntax
For OpenVMS logical names:
SETSYSTEMVAL (string-expression1, string-expression2,
 [,LOGICAL[,string-expression3]])

For DCL global symbols:
SETSYSTEMVAL (string-expression1, string-expression2,
 SYMBOL)

string-expression1

Specifies the name of the OpenVMS logical name or DCL symbol to be assigned.

string-expression2

Specifies the value to be assigned to the system variable.

string-expression3

Optionally specifies the logical name table to be searched, such as LNM$JOB or LNM$GROUP.
LNM$JOB should be used for logicals passed between processes.

Default: LNM$PROCESS

LOGICAL

Specifies that an OpenVMS logical name be defined. This is the default. If the keyword LOGICAL
or SYMBOL is not explicitly used, a LOGICAL name is assumed.

SYMBOL

Specifies that a DCL global symbol be created.

Discussion
The DELETESYSTEMVAL, GETSYSTEMVAL, and SETSYSTEMVAL functions support the
deletion, retrieval, and assignment of operating system values. This provides execution-time
control of values through the definitions made at the operating system level and allows values to
be passed between PowerHouse components.

SETSYSTEMVAL returns a logical result of True if it successfully assigns the logical name or
global symbol. Otherwise, it returns False. As this is a logical function, it must be used in a
conditional expression.

Example
The following QUICK example attempts to set a logical named QTP_PARMS to the value of
"REPORT" plus the value of the REPORT_REQ item in the LNM$JOB logical name table. If the
logical name can’t be set, an error message is displayed.
.
.
.

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

450 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SETSYSTEMVAL (OpenVMS)

> PROCEDURE DESIGNER 1
> BEGIN
> ACCEPT REPORT_REQ
> IF NOT SETSYSTEMVAL ("QTP_PARMS",&
> ("REPORT" + REPORT_REQ)&
> , LOGICAL, "LNM$JOB")
> THEN BEGIN
> ERROR "Could not set logical name."
> END
> ELSE RUN COMMAND "QTP AUTO=QTP_PARMS"
.
.
.

For more examples showing the use of the DELETESYSTEMVAL, GETSYSTEMVAL, and
SETSYSTEMVAL functions, see (p. 398).

Chapter 6: Functions in PowerHouse
SHIFTLEVEL

PowerHouse Rules 451

SHIFTLEVEL

Returns the current shift level of the function keys.

Syntax
SHIFTLEVEL

Discussion
SHIFTLEVEL determines what the current function key shift level is. You can use this function to
control an application’s behavior based on shiftlevel, as shown in the following example.

Example
> SCREEN EMPLOYEES
> KEY 1 LEVEL 1 ACTION AND DATA SHIFT
> KEY 1 LEVEL 2 ACTION AND DATA SHIFT TO 1
> KEY 2 LEVEL 1 ACTION AND DATA HELP
> KEY 2 LEVEL 2 ACTION AND DATA EXTENDED HELP
> KEY 3 LEVEL 1 ACTION UPDATE
> KEY 3 LEVEL 2 ACTION UPDATE RETURN
.
.
> KEY 8 LEVEL 1 ACTION DESIGNER KEYHELP
> KEY 8 LEVEL 2 ACTION DESIGNER KEYHELP
.
.
> PROCEDURE DESIGNER KEYHELP
> BEGIN
> IF SHIFTLEVEL = 1
> THEN
> INFO = "F1=Shift to 2, F2=Help, F3=U, " + &
> "... F8=Key Help" NOW RESPONSE
> ELSE
> INFO = "F1=Shift to 1, F2=Ext Help, F3=UR, " + &
> "... F8=Key Help" NOW RESPONSE
> END
.
.
.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

452 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SIGNONACCOUNT (MPE/iX)

SIGNONACCOUNT (MPE/iX)

Returns a string of up to eight characters that contains the user’s logon account.

Syntax
SIGNONACCOUNT

Example
If the current user logged on as USER1.ACCOUNT1, then SGNACCT contains the user’s logon
account, ACCOUNT1.
> DEFINE SGNACCT CHARACTER SIZE 8 = SIGNONACCOUNT

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
SIGNONGROUP (MPE/iX)

PowerHouse Rules 453

SIGNONGROUP (MPE/iX)

Returns a string of up to eight characters that contains the user’s logon group.

Syntax
SIGNONGROUP

Example
If the current user logged on as USER1.ACCOUNT1 in the group GRP1, then GR contains GRP1.
> DEFINE GR CHARACTER SIZE 8 = SIGNONGROUP

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

454 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SIGNONUSER

SIGNONUSER

Syntax
SIGNONUSER

Discussion
In QDESIGN, SIGNONUSER cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Example

MPE/iX
If the current user is logged on as USER1.ACCOUNT1, then D-USER contains USER1.
> DEFINE D-USER CHARACTER*8 = SIGNONUSER

OpenVMS
If the current user is logged on as USER1, the following DEFINE statement returns USER1:
> DEFINE DUSER CHARACTER*12 = SIGNONUSER

UNIX
If the current user is logged on as USER1, the following DEFINE statement returns USER1:
> DEFINE DUSER CHARACTER*8 = SIGNONUSER

Windows
If the current user is logged on as USER1, the following DEFINE statement returns USER1:
> DEFINE DUSER CHARACTER*20 = SIGNONUSER

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

MPE/iX: Returns a string of up to 8 characters that contains the user’s username.

OpenVMS: Returns a string of up to 12 characters that contains the username used by the
current user to log onto the system.

UNIX: Returns a string of up to 8 characters that contains the logonid of the current
user.

Windows: Returns a string of up to 20 characters that contains the logonid of the current
user.

Chapter 6: Functions in PowerHouse
SIZE

PowerHouse Rules 455

SIZE

Returns the size of a string.

Syntax
SIZE(string-expression)

string-expression

Specifies the input string.

Discussion
If an item is used as the argument to SIZE, then the function returns the size of the item, not the
size of the contents of the item. If a string expression is used, then the length of the result of the
string expression is returned.

Example
When the string-expression is a character item, this function sometimes returns the length of the
item rather than the length of string-expression’s value, as demonstrated by the following
example:
> DEFINE X CHARACTER*5 = "abc"

Input: SIZE("ABC ")
Result: 5

Input: SIZE(X)
Result: 5

Input: SIZE("abc")
Result: 3

Input: SIZE(X + "de")
Result: 7

Input: SIZE(TRUNCATE(X))
Result: 3

The following example finds the length of last names:
> DEFINE ITEMX NUM*5 = SIZE(TRUNCATE(LASTNAME))

Type Input Result QDESIGN QUIZ QTP

DMF String Numeric ✔ ✔ ✔

456 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SOUNDEX

SOUNDEX

Creates a phonetic code from a string.

Syntax
SOUNDEX(string-expression [,numeric-expression])

string-expression

Specifies the word to be coded.

numeric-expression

Controls the number of characters in the resulting code string. This parameter is optional.

Default: 4 characters

Discussion
The optional numeric expression entered after the string expression determines the size of the
phonetic code string. The size of the number controls the number of names that the string
matches: the larger the number, the fewer names are retrieved. The default of 4 is adequate for
most searches, but increasing the number can be useful in some circumstances. For example, if
most of the file names in your data dictionary begin with STOCK, searching for sound-alike files
with a key of size 5, 6, or 7 will probably produce better results.

SOUNDEX Function Rules

The SOUNDEX function uses the following rules to generate soundex codes:
1. If adjacent letters are identical, only the first occurrence of the letter is kept.
2. The first character is always retained.
3. The vowels A, E, I, O, U, and Y and consonants W and H are dropped (except when they are

the first character in the string).
4. All special characters, including spaces and apostrophes, are dropped unless they are the first

character. If they are the first character, they are left as is in the final SOUNDEX code.
5. For each of the remaining letters, except the first, a numeric value is assigned, as follows:

6. If adjacent assigned numeric values are equal, then only the first occurrence is kept.

Type Input Result QDESIGN QUIZ QTP

DMF String,
Numeric

String ✔ ✔ ✔

Number assigned For these letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

Chapter 6: Functions in PowerHouse
SOUNDEX

PowerHouse Rules 457

7. If there are insufficient letters to produce a result with the number of characters that are
specified by the size parameter (numeric-expression), then the remainder is filled with zeros.

The rules and operation of the SOUNDEX function are unaffected by the CHARACTER SET
option specified in the data dictionary. The rules work for most words or names that conform to
English spelling conventions. However, the SOUNDEX function may not produce satisfactory
results for data that contains many non-English words or names.

Using the SOUNDEX Function with Indexed Retrieval of Data Records

You can use the soundex function to generate alternate indexes for a record-structure. For
example, if it's necessary to do phonetic inquiry on a name field, a soundex index field can be
included in the record-structure design. The following QDESIGN statements maintain a soundex
index field in the data records of the customers record-structure, and permit the retrieval of one or
more customer names based on a phonetic match to a name entered by the user:
> SCREEN CUSTSCR
> FILE CUSTOMERS PRIMARY OCCURS 10
> ACCESS VIA CUSTINDEX USING SOUNDEX(CUSTNAME) &
> REQUEST CUSTNAME
> ITEM CUSTINDEX FINAL SOUNDEX(CUSTNAME)
.
.
.
> TITLE "CUSTOMER NAME" AT 3,1
> SKIP TO LINE 5
> CLUSTER OCCURS WITH CUSTOMERS
> FIELD CUSTNAME
> CLUSTER
> BUILD

In the screen created by these statements, data records are retrieved by means of CUSTINDEX,
using the soundex value of the item CUSTNAME. The ACCESS statement modifies the normal
PATH and FIND procedures generated by QDESIGN, so that the QUICK-screen user is prompted
for a value in the CUSTNAME field, and retrieval is by means of the soundex key. The FINAL
option of the ITEM statement ensures that an appropriate value for the item CUSTINDEX is
generated when a new customer is placed in the file and when a customer name is changed.

Example
Input: SOUNDEX("BURTON")
Result: B635

This example results in finding names such as Bertin, Burtin, and Burdon.

458 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SPREAD

SPREAD

Adds an additional space between each character of a string expression.

Syntax
SPREAD(string-expression)

string-expression

Specifies the input string.

Example
Input: SPREAD("TEST")
Result: T E S T
Input: > DEFINE ITEMA CHAR*25 = "FUTURE'S INVENTORY"
 > DEFINE ITEMX CHAR*60 = SPREAD(ITEMA) + "!"
Result: F U T U R E ' S I N V E N T O R Y !

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
SQLCODE

PowerHouse Rules 459

SQLCODE

Returns the status code of the last SQL statement.

Syntax
SQLCODE

Discussion
An SQLCODE of 250 or above indicates an informational and warning code. The following table
contains some of the more common informational and warning codes and messages that users
may encounter while using SQL.

An SQLCODE less than 0 indicates an error. The following table contains some of the more
common error codes and messages that users may encounter while using SQL.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

SQLCODE SQLMESSAGE

262 '^1' not supported; raised to '^2'.

263 The operation is pending.

265 The uniqueness of the dbkey value cannot be guaranteed.

267 The blob data has been truncated to the size specified at creation.

268 The target database has performed truncation on data.

269 The target database has returned information concerning the '^1' operation.

270 An attempt to cancel the '^1' operation has been rejected by the target database.

271 The '^1' database does not support transactions.

SQLCODE SQLMESSAGE

-3 Corrupt or obsolete metadata has been encountered during operation '^1'.

-4 A connection has been rejected by the remote interface during operation '^1'.

-5 An internal system failure has occurred during operation '^1'.

-6 An illegal data conversion has been attempted during operation ' ^1'.

-7 Corrupt database data structures have been encountered during operation '^1'.

-8 A lock conflict with another process has been encountered during operation
'^1'.

-9 A general exception has occurred during operation '^1'.

-10 An internal implementation limit has been exceeded during operation '^1'.

460 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SQLCODE

-11 An invalid database has been encountered during operation '^1'.

-12 A low-level input/output error has occurred during operation '^1'.

-14 A non-recoverable transport layer error has occurred during operation '^1'.

-15 Memory allocation failure.

-16 An error was detected during processing of the SQL request.

-17 The server on '^1' for user '^2' has timed out.

-18 An operation was attempted without appropriate permissions during operation
'^1'.

-19 The operating system returned an error during operation '^1'.

-27 Feature '^1' in function '^2' is not supported.

-26 Function '^1' is not supported.

-39 Invalid database name: ^1.

-40 The size of the ^1 record (^2) exceeds the maximum supported size (^3).

-41 Null parameter values are not supported.

-45 The database type '^1' associated with the database name '^2' is not supported.

-49 It was not possible to access the '^1' database.

-50 It was not possible to establish an arithmetic trap.

-51 An arithmetic exception was detected.

-53 Unable to load the '^1' gateway.

-60 The operation '^1' has been cancelled since you did not provide the requested
security information.

-69 The underlying database detected an error during processing of the SQL
request.

-71 A CALL request can only be executed in a read-write transaction.

-72 The database specific native language is not supported.

-73 Insert/Update/Delete requests are not permitted in read-only transactions.

-74 The current transaction has been rolled back by the underlying database during
operation '^1'.

SQLCODE SQLMESSAGE

Chapter 6: Functions in PowerHouse
SQLMESSAGE

PowerHouse Rules 461

SQLMESSAGE

Returns the error message that explains the status code of the last SQL statement executed.

Syntax
SQLMESSAGE

Discussion
For a detailed description of the status codes and their descriptions, see (p. 459).

Example
> SQL CALL STORENAME_PROC &
> IN ASSETSDB(STORENAME) &
> RETURNING STORECOUNT &
> ON ERROR CONTINUE
.
.
.
> IF SQLOK
.
.
.
> ELSE
> BEGIN
> LET ERRORMESSAGE = SQLMESSAGE
> IF SQLCODE EQ ... &
> THEN INFO=ERRORMESSAGE NOW

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

462 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SUBSTITUTE

SUBSTITUTE

Replaces substitution characters (if any) in a string or in a message retrieved from a designer
message file.

Syntax
SUBSTITUTE (string-expression1|numeric-expression

[,string-expression2]...)

Limit: Total length of a string after substitution cannot exceed 132 characters.

string-expression1

A string expression containing substitution characters. The default substitution character is a caret
(^).

numeric-expression

A number corresponding to a message in a designer message file.

string-expression2

String expression(s) to replace a substitution character in string-expression1 or the designer
message.

Discussion
The first parameter to this function is a designer message. The designer message is either
determined from a string expression or from the record number in a designer message file. The
designer message may contain one or more substitution characters.

Using SUBSTITUTE and string-expression1

The first substitution character in string-expression1 is replaced by string-expression2. Similarly,
the second substitution character in string-expression1 is replaced by string-expression3, and so
on. A substitution character is not replaced if you do not supply a corresponding string
expression.

Using SUBSTITUTE with Designer Messages and numeric-expression1

The SUBSTITUTE function is typically used with designer messages where numeric-expression1
identifies a message in the designer message file.

The following is the processing order:
1. The designer message file is opened if it has not been already.
2. The corresponding message is retrieved from the designer message file. Message number 1

corresponds to the first record in the designer message file since there is no message number
zero.

3. A standard error message appears if the designer message file cannot be opened, or if the
message record cannot be retrieved. The message appears as "Designer Message Number n.",
where n is the designer message number.

4. If the message is blank then it is displayed as a blank message.

Type Input Result QDESIGN QUIZ QTP

DMF String,
Numeric

String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
SUBSTITUTE

PowerHouse Rules 463

5. The first substitution character in the message is replaced by string-expression2. Similarly the
second substitution character in the message is replaced by string-expression3, and so on. A
substitution character is not replaced if you do not supply a corresponding string expression.

The name of the designer message file cannot be changed while the products are running.
Therefore, if you intend to use a designer message file, you must point the component to the
appropriate file or files before you start it. For more information about designer message files, see
(p. 270).

When creating designer messages, you may want to use the text order number feature. This allows
you to specify the order in which substitution strings replace substitution characters in a message
by appending an order number to the substitution characters in a string. For more information,
see (p. 271).

Example
In the following QUIZ report, the SUBSTITUTE function is used to define the item,
NOTIFY_EMPLOYEE. In this case, the item values for FIRST_INITIAL and LASTNAME are
substituted into the string "NOTIFY ^. ^, BILLINGS ARE LESS THAN $300." This string either
exists in the syntax (string-expression1) or in a message file (numeric-expression). The resulting
report lists employees who should be notified that their billings for a specific month and project
are too low.

Using string-expression1:
> SET REPORT DEVICE PRINTER
> ACCESS EMPLOYEES LINK TO BILLINGS
> DEFINE FIRSTINITIAL CHAR*1 = FIRSTNAME [1:1]
> DEFINE NOTIFYEMPLOYEE CHAR*50 = SUBSTITUTE &
> ("NOTIFY ^. ^, BILLINGS ARE LESS THAN $300", &
> FIRSTINITIAL, LASTNAME) IF BILLING LT 30000
> REPORT PROJECT MONTH BILLING NOTIFYEMPLOYEE
> GO

Using numeric-expression where message number 14 contains "NOTIFY ^. ^, BILLINGS ARE
LESS THAN $300":
> SET REPORT DEVICE PRINTER
> ACCESS EMPLOYEES LINK TO BILLINGS
> DEFINE FIRSTINITIAL CHAR*1 = FIRSTNAME [1:1]
> DEFINE NOTIFYEMPLOYEE CHAR*50 = SUBSTITUTE &
> (14, FIRSTINITIAL, LASTNAME) IF BILLING LT 30000
> REPORT PROJECT MONTH BILLING NOTIFYEMPLOYEE
> GO

Both methods produce the same result:

PROJECT MONTH BILLING NOTIFY EMPLOYEE

P000001 01/93 100.00 NOTIFY M. SMITH, BILLINGS ARE LESS THAN $300

P000001 04/93 420.00

P000003 03/93 315.00

P000006 06/93 120.00 NOTIFY R. HALLADAY, BILLINGS ARE LESS THAN $300

P000006 03/93 152.00 NOTIFY R. HALLADAY, BILLINGS ARE LESS THAN $300

P000002 05/93 470.00

P000001 02/93 945.00

464 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SUBSTRING

SUBSTRING

Extracts a portion of a string expression.

Syntax
SUBSTRING(string-expression FROM start [FOR length])

Limit: Valid only in SQL.

string-expression

Specifies the string from which the substring is to be extracted.

start

A numeric expression specifying the starting position of the extract. The first position is 1.

length

A numeric expression specifying the length of the extract.

Default: 1

Type Input Result QDESIGN QUIZ QTP

SQL-DMF String,
Numeric

String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
Substring Extract

PowerHouse Rules 465

Substring Extract

Extracts a substring from a string.

Syntax
string-expression[start:length]

The square brackets are required syntax in this function.

string-expression

Specifies the string from which the substring is to be extracted.

start

A numeric expression specifying the starting position of the extract. The first position is 1.

length

A numeric expression specifying the length of the extract.

Discussion
The Substring Extract function can be used on numeric or date values if these values are first
converted to character values. The square brackets are required syntax in this function.

Byte Ordering

Take byte ordering into account when extracting values from numeric or date values. Byte
ordering depends on whether the computer is little endian or big endian. For example, this is a
common technique used to put the escape character into a single character byte:
> DEFINE ESC INTEGER SIZE 2 = 27
> DEFINE ESC_CHAR CHARACTER SIZE 1 = CHARACTERS(ESC)[2:1]

The substring extract takes the value from the second byte. This works as expected on a big
endian computer. However, on a little endian computer, the byte order is reversed and the
substring extract must be:
> DEFINE ESC_CHAR CHARACTER SIZE 1 = CHARACTERS(ESC)[1:1]

MPE/iX, HP-UX, AIX, and Solaris are big endian platforms. OpenVMS and Windows are little
endian platforms.

Examples
Input: "ABCD"[2:2]
Result: BC

This example extracts the month portion of an 8-digit date:
> DEFINE MM CHARACTER*2=(ASCII(SYSDATE))[5:2]

Type Input Result QDESIGN QUIZ QTP

DMF String,
Numeric

String ✔ ✔ ✔

466 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SUM

SUM

Sums items in an array.

Syntax
SUM(array[,numeric-expression1,numeric-expression2

[,numeric-expression3]])

array

Specifies the array to be summed.

numeric-expression1,numeric-expression2

Used to specify a subset of the occurrences of an array. Numeric-expression1 specifies the
beginning subscript; numeric-expression2, the ending subscript. The first occurrence in an array is
1.

numeric-expression3

Controls the increment for the subset of occurrences used in the summing process.

Discussion
The SUM function sums the individual items in an array (a repeating item) from
numeric-expression1 to numeric-expression2. The increment is numeric-expression3.

It sums all non-null values in a series of temporary items and returns the value null if all the
temporary items used in the calculation are null.

Assumptions Made by the SUM Function

The sum function makes the following assumptions if you specify inconsistent information:
• The parameters numeric-expression1, numeric-expression2 and numeric-expression3 are

floored (changed to the largest integer not larger than the value). For example, if
numeric-expression1 is 3.4, the value 3 is used. Likewise, if numeric-expression3 is -1.5, the
value -2 is used.

• If numeric-expression3 is zero, the result is zero.
• If numeric-expression1, numeric-expression2, and numeric-expression3 define a null range

(such as sum(amount,12,1) or sum(amount,1,12,-1)), a calculation error occurs. If the on
calculation errors report option is specified in the request statement, the result is zero.

• An out-of-range subscript causes a calculation error. If the on calculation errors report option
is specified in the request statement, the result is zero.

Examples

Summing Entire Arrays

The sum function eliminates the need to reference individual array occurrences when you want to
add them together. For example, the statement
> DEFINE TOTALAMOUNT = SUM(AMOUNT)

stores the sum of all occurrences of the array amount in the item totalamount. If the array amount
has 12 occurrences, then the item sum(amount) is equivalent to

Type Input Result QDESIGN QUIZ QTP

DMF Numeric Numeric ✔ ✔

Chapter 6: Functions in PowerHouse
SUM

PowerHouse Rules 467

AMOUNT(1) + AMOUNT(2) + AMOUNT(3) + . . . + AMOUNT(12)

Summing Subsets of Array Occurrences

If you want to sum a subset of the occurrences of an array, you can use numeric-expression1 and
numeric-expression2 to specify the beginning and ending subscripts in the sum function, as in
> DEFINE CURRENTMONTH NUMERIC = PARM
> EDIT CURRENTMONTH VALUES 1 TO 12
> DEFINE YTDTOTAL = SUM(AMOUNT,1,CURRENTMONTH)

Here, the SUM function performs a year-to-date sum of the occurrences in the array, AMOUNT.

You can use the optional beginning and ending subscripts to overcome such things as
inconsistencies between calendar years and fiscal years. For example, if your fiscal year starts in
June instead of January and the array amount is still organized with January as the item
amount(1), you might require an algorithm that calculates a year-to-date total. Assuming the item,
currentmonth, is still the current month, you can define a fiscal total as
> DEFINE FISCAL = RUN(AMOUNT,6,CURRENTMONTH) &
> IF CURRENTMONTH >= 6 &
> ELSE SUM(AMOUNT,6,12) + &
> SUM(AMOUNT,1,CURRENTMONTH)

Summing Intermittent Occurrences of an Array

The final optional parameter for the sum function (numeric-expression3) specifies an index
increment for the summing operation. If you want to sum only the odd occurrences of the array
amount, use numeric-expression3, as in
> DEFINE ODDAMOUNT = SUM(AMOUNT,1,11,2)

This example sums the values of every second occurrence of the array amount. The item
sum(amount,1,11,2) is equivalent to
AMOUNT(1)+AMOUNT(3)+AMOUNT(5)+AMOUNT(7)+AMOUNT(9)+AMOUNT(11)

For more information about arrays and subscripting see (p. 284).

468 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SYSDATE

SYSDATE

Returns the current system date.

Syntax
SYSDATE

Discussion
The SYSDATE function returns the current system date in the format YYMMDD (if dates are
defined in the dictionary as not including a century prefix) or in the format YYYYMMDD (if
dates include a century prefix).

In QDESIGN, SYSDATE cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

QTP gets the system date every time this function is executed (as opposed to QUIZ which gets it
once at the start of the report).

Example
If dates are defined in the dictionary as century excluded, the following DEFINE statement returns
the value 97/11/24 if it is November 24, 1997:
> DEFINE DSYSDATE DATE = SYSDATE

If dates are defined as century included, the same DEFINE statement returns 1997/11/24.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Date ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
SYSDATETIME

PowerHouse Rules 469

SYSDATETIME

Returns the current system date and time.

Syntax
SYSDATETIME

Description
The SYSDATETIME function returns the current system date and time in the DATETIME format.
The general form of SYSDATETIME is:
yyyymmdd.hhmmssth

t represents tenths and h represents hundreths of a second. Hundredths may not be supported on
all platforms because of FLOAT limitations.

In QDESIGN, SYSDATETIME cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

QTP gets the system date every time this function is executed (as opposed to QUIZ which gets it
once at the start of the report).

Type Input Result QDESIGN QUIZ QTP

SF System
generated

D ✔ ✔ ✔

470 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SYSNAME

SYSNAME

Returns the system title specified in the dictionary.

Syntax
SYSNAME

Discussion
The SYSNAME function returns the dictionary title specified in the data dictionary as a
40-character string.

In QDESIGN, SYSNAME cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Example
Programmers can use the SYSNAME function to retrieve a standard title to be used on all screens.
The application title retrieved by the following DEFINE statement is "Future Industries Staff
System":
> DEFINE DSYSNAME CHARACTER*40 = SYSNAME

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
SYSPAGE

PowerHouse Rules 471

SYSPAGE

Returns the current page number of a report.

Syntax
SYSPAGE

Discussion
The SYSPAGE function is only valid as a report-item within statements that use a report-group.
The value returned is ten digits long with leading zeros suppressed. The maximum value is
2,147,483,647.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔

472 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
SYSTIME

SYSTIME

Returns the current system time.

Syntax
SYSTIME

Discussion
In QDESIGN and QTP, the SYSTIME function returns the system time as a number in the form
HHMMSSTH (for example, 11080008).

In QUIZ, the SYSTIME function returns the system time as a number in the form HHMM (for
example, 1108).

QTP gets the system date every time this function is executed (as opposed to QUIZ which gets it
once at the start of the report).

In QDESIGN, SYSTIME cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Limit (MPE/iX): Since the MPE/iX internal clock does not return hundredths of a second, the last
digit will be 0 (zero) if it is displayed or used.

Example
The following example returns the current system time:
> DEFINE SYSTEMTIME NUMERIC*8 = SYSTIME

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Numeric ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
TERMTYPE

PowerHouse Rules 473

TERMTYPE

Returns a string expression containing the terminal characteristics specified in either the program
parameter or the terminal prompt.

Syntax
TERMTYPE

Limit: The string can be up to 35 characters in length. For example,
HP2392-48 or vt100

Discussion
TERMTYPE cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

474 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
TRUNCATE

TRUNCATE

Removes trailing blanks from a string.

Syntax
TRUNCATE(string-expression)

string-expression

Specifies the string from which trailing blanks are to be removed. The length of the resulting string
is reduced by the number of blanks removed.

Discussion
The truncate function can be used to facilitate pattern matching. Removing trailing blanks from a
string makes pattern matching less error-prone, since trailing blanks can often prevent strings
from matching specified patterns.
> DEFINE TESTPATTERN CHARACTER*8=PARM &
> PROMPT="ENTER SURNAME SELECTION PATTERN:"
> SELECT IF MATCHPATTERN (LASTNAME, &
> TRUNCATE(TESTPATTERN))

It can also be used when concatenating strings to create a formatted result:
> DEFINE FULLNAME CHARACTER*60 = &
> TRUNCATE(LASTNAME) + ", " + &
> TRUNCATE(FIRSTNAME)

If the TRUNCATE function is not used with MATCHPATTERN, and "A@" is entered at the
prompt (indicating all last names beginning with the letter A are selected), then the defined item,
TEST-PATTERN, contains the letter A, followed by the ampersand metacharacter (@), which is in
turn followed by six blanks, "A@ ". With this pattern, only last names beginning with the
letter A and ending in six blanks are selected.

Removing trailing blanks from the defined item, TEST-PATTERN, ensures that your SELECT
statement selects all names beginning with the letter A, as intended.

Example
Input: TRUNCATE("text ")
Result: text

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
UIC (OpenVMS, UNIX)

PowerHouse Rules 475

UIC (OpenVMS, UNIX)

Syntax
UIC

Discussion
In QDESIGN, UIC cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

OpenVMS
The UIC function returns the numeric user identification code as a 14-character string in the form
[GGGGG,MMMMMM]

where GGGGG represents the group-ID number and MMMMMM represents the member-ID. By
default, the brackets are included in the result.For compatibility with UNIX and Windows, you
can use the nouicbrackets program parameter to obtain results without brackets

UNIX
The results of the function is a string of up to 11 characters in the form
gid,uid

where gid represents group-ID number and uid represents the user-ID used by the current user to
log on to the system.

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔ ✔ ✔

OpenVMS: Returns a user identification code of the current user by group-ID and
member-ID.

UNIX: Returns a string that identifies the current user by group-ID and user-ID.

476 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
UPPER

UPPER

Upshifts a string expression.

Syntax
UPPER(string-expression)

Limit: Valid only in SQL.

string-expression

Specifies the string to be upshifted.

Type Input Result QDESIGN QUIZ QTP

SQL-DMF String String ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
UPSHIFT

PowerHouse Rules 477

UPSHIFT

Shifts characters to uppercase.

Syntax
UPSHIFT(string-expression)

string-expression

Specifies the string to be converted to uppercase.

Discussion
The function uses the upshift/downshift tables defined in the data dictionary to determine the
appropriate shift characters.

Example
Input: UPSHIFT("text")
Result: TEXT

The following example will display the employee names with the first letter of the firstname in
uppercase, the first letter of the lastname in uppercase, and the remaining letters of the lastname in
lowercase (as in M Smith)
> ACCESS EMPLOYEES
> DEFINE NAME CHAR*30 = &
> UPSHIFT(FIRSTNAME[1:1]) + " " +&
> UPSHIFT(LASTNAME[1:1]) + &
> DOWNSHIFT(LASTNAME[2:19])

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

478 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
VALIDPATTERN

VALIDPATTERN

Checks a pattern string.

Syntax
VALIDPATTERN(string-expression)

string-expression

Specifies the string to be checked.

Discussion
The VALIDPATTERN function returns a boolean value, TRUE, if the pattern specified by the
string expression is valid.

Example
Before using the MATCHPATTERN function, you can use VALIDPATTERN to determine
whether a user-entered pattern or a calculated pattern is syntactically valid, as in
> DEFINE USERPATTERN char*10 = PARM
> DEFINE FINALPATTERN = USERPATTERN &
> IF VALIDPATTERN(USERPATTERN)

or
> IF NOT VALIDPATTERN(USER-PATTERN)
> THEN ERROR "Invalid Pattern"

Invalid patterns occur, for example, when pattern-matching metacharacters clash or when
reserved metacharacters are used without the escape metacharacter.

For more information about patterns and pattern matching, see (p. 351).

Type Input Result QDESIGN QUIZ QTP

LF String Boolean ✔ ✔ ✔

Chapter 6: Functions in PowerHouse
VMSTIMESTAMP (OpenVMS)

PowerHouse Rules 479

VMSTIMESTAMP (OpenVMS)

Returns the system date and time in OpenVMS binary-time format.

Syntax
VMSTIMESTAMP

Discussion
In QDESIGN, VMSTIMESTAMP cannot be
• passed to other screens
• represented as input fields
• represented as display fields
• passed to external subroutines
• changed by a LET verb

Type Input Result QDESIGN QUIZ QTP

SF System
generated

Date ✔ ✔ ✔

480 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
WEBLOGONID

WEBLOGONID

Returns the authenticated username.

Syntax
WEBLOGONID

Discussion
WEBLOGONID returns the authenticated username used by the user in response to an
authentication prompt. If Web authentication is not used, WEBLOGONID is blank.

Examples
If the current user entered User1 to the authentication prompt, then the following returns User1:
> DEFINE D-WEBLOGONID CHARACTER*20 = WEBLOGONID

Type Input Result QDESIGN QUIZ QTP

SF System
generated

String ✔

Chapter 6: Functions in PowerHouse
ZEROFILL

PowerHouse Rules 481

ZEROFILL

Replaces leading spaces with zeros.

Syntax
ZEROFILL(string-expression)

string-expression

Specifies the string to be filled with zeros.

Example
Input: ZEROFILL(" 562")
Result: 00562

The following example shows how an integer size 4 field may be changed to a field with leading
zeros. For example, change 1234 to 01234
> DEFINE INITITEM INT*4 = 1234
> DEFINE ITEMX CHAR*5 = ASCII(INTITEM)
> DEFINE ITEMY CHAR*5 = ZEROFILL(RJ(ITEMX))

Type Input Result QDESIGN QUIZ QTP

DMF String String ✔ ✔ ✔

482 PowerHouse(R) 4GL Version 8.4E

Chapter 6: Functions in PowerHouse
ZEROFILL

PowerHouse Rules 483

Glossary

This table compares PowerHouse, SQL, and Relational Entities.

PowerHouse Entity SQL Entity Relational Entity

file schema database

record-structure table|view relation|view

element domain|abstract
datatype

global field

item column local field

index index index

record row/tuple row

segment index column index field

access list Refers to all record-structures declared in an ACCESS statement in
QUIZ or QTP.

Action bar An alternative to the traditional Action field entry mechanisms.

Action field A special field in the top left-hand corner of every PowerHouse
screen created with default user interface options. Commands
entered here control what the QUICK-screen user can do on
the screen.

alias An alternative name that can be given to a file or item.

allowed syntax The syntax PowerHouse allows you to enter.

alternate index An index on a file defined in the PowerHouse dictionary that's
associated with the physical file. It contains the same fields, in the
same order, as the physical file.

application A set of programs designed to solve a specific problem or meet a
specific need.

application line The general term that specifies the location of your application on
the terminal screen.

application
manager

A dictionary user who has access to the PHD Screen System
through the Application Management Menu. This menu provides
options used to supervise application development and maintain
existing applications.

484 PowerHouse(R) 4GL Version 8.4E

Glossary

application
security

Specifies which PowerHouse users have access (through
PowerHouse) to the data used in the application. Application
security doesn't override the operating system's security. (See also
security)

application
security class

A group of PowerHouse users who share the same access (through
PowerHouse) to the data used in the application.

argument See general term.

array An item that's defined with multiple occurrences in the data
dictionary. Also called a repeating item. For example, if the array
item month as 12 occurrences, one for each month, then it's
possible to identify any one of the occurrences by using a subscript
with the array item name, as in month(6). QDESIGN doesn't allow
subscripting. (See also occurrence and subscript.)

ASCII American Standard Code for Information Interchange. Determines
the character set and default sorting sequence used in PowerHouse.
Also the name of a PowerHouse data manipulation function.

attach Connects PowerHouse to a relational database.

attribute A characteristic (such as size) that you assign to a particular entity.

automatic
definition

PHD Screen System process whereby entities are automatically
defined as related entities are defined. For example, as a
record-structure is defined, an automatic definition is generated for
its file if the file has not yet been defined.

break-item An item named in the SORT or SORTED statement that declares
when a control break occurs; it tells PowerHouse which item you
want to use to organize your report.

buffer An area of computer memory used to temporarily store
information.

character Any letter, number, or special character supported by your
computer system (that is, any valid ASCII character).

checksum A mechanism to detect data corruption. An algorithm that returns
a value (checksum) for the input string. This value is held with the
data, and when the data is later read from storage, the checksum is
recomputed from the data. If the checksum has changed, the data
has changed.

class See application security class.

cluster A group of fields that repeats on one screen.

coded
record-structure

A record-structure identified by a specific value of an item. The
value is declared using the SELECT option of the ITEM statement
in PDL.

column The smallest data entity that you can reference (also referred to as
an item or field).

commit
transaction

Saves any changes made by the transaction permanently to the
database, and ends the transaction.

Glossary

PowerHouse Rules 485

compile In PowerHouse, the actions required to transform a source
statement file into the compiled file containing the tables that
control processing.

compiled file An executable PowerHouse file.

component Refers to one of the PowerHouse programs: PDL, PHDPDL, PHD
Screen System, QDESIGN, QUICK, QUIZ, and QTP.

conceptual
transaction

One or more PowerHouse transactions which span QUICK screen
boundaries that the screen designer views as a related group of
operations. The screen designer must maintain the integrity of these
transactions.

concurrency A measure of the degree to which simultaneous transactions can
operate in a database without being involved in excessive
(unnatural) waiting caused by other transactions. Generally,
strategies employed by databases to increase concurrency result in
reduced consistency.

concurrency
control

The mechanism used by a database to support concurrent database
transactions as well as to protect data integrity. Generally, a
database preserves data integrity by controlling concurrent access
to data, and by detecting and resolving conflicts between
transactions. (See also optimistic locking and pessimistic locking.)

condition A logical test that must be satisfied in order for some action to be
performed.

conditional
expression

Contains a series of expressions and conditions that are evaluated
in order until a condition is met.

consistency A measure of the degree to which each database transaction
appears to be isolated from the effects of other simultaneous
transactions. The term "isolation" is also used. Generally, strategies
employed by databases to increase consistency result in reduced
concurrency.

control break A division that indicates a change in the value of a break-item.

control file A file used in file maintenance continuing the maintenance actions
being performed on a group of files.

[Ctrl-Y]
 (MPE/iX)

[Ctrl-C]
(UNIX,OpenVMS)

A user break initiated by pressing the control key and the indicated
letter key at the same time. It sends a signal that interrupts
processing and returns control to the program.

control group The group of record complexes, sharing the same break-item value,
that are processed between consecutive control breaks. (See also
control break.)

cursor A cursor is the name of a set of data declared on a DECLARE
CURSOR statement.

database Refers to the name of a relational database.

486 PowerHouse(R) 4GL Version 8.4E

Glossary

database
transaction

Also known as a physical transaction, it is a unit of work known to
the relational database management system. A database transaction
can be used to access one or more different databases and,
indirectly through gateways, different database types. The
relational database management system maintains the integrity of
these transactions.

data definition The characteristics of an application's data, which is stored in the
data dictionary. The data definitions determine how PowerHouse
accesses data for the application.

data dictionary A storehouse of information about the data that you use in your
applications.

data file The characteristics of an application's data as stored in the data
dictionary. The data definition determines how the data is accessed
and formatted by the application.

data item See item.

data manipulation
function

Used to manipulate and test item values or return values. (See also
system function.)

data record See record.

datatype The way an item is stored in a record.

date expression See expression.

deadlock The stalemate that can occur when more than one program
attempts to lock two or more files at the same time.

default An automatic response built into a program to ensure that
appropriate actions are performed or that acceptable values are
provided. Defaults can be overridden by the user if desired.

default-location Refers to a device or directory specification.

defined item An item that you create and use to combine and manipulate
information. Although these items are used and referenced in the
same way as all the other items in your data dictionary, they exist
only for the duration of your screen, report, or run. You can use
them as report-items and they can be referenced by other
statements for calculations. (See also item.)

definition See data definition.

designated file A file opened by a PowerHouse component and its utilities for their
internal use.

detail information The information typically contained in one detail line - usually
from a single record or record complex. Detail information is the
opposite of summary information. (See also summary information.)

detail lines The lines that constitute the body of a report, as distinguished from
heading lines and footing lines. Usually each line corresponds to a
single record or to a single record complex.

detail report In QSHOW, produces a listing of all the details about all the
elements in the data dictionary.

dictionary See data dictionary.

Glossary

PowerHouse Rules 487

dictionary
definition

The data definition, security specification, system-wide standards,
and other information stored in a data dictionary.

domain Can be shared by columns of various tables (also referred to as a
global field or element).

dictionary
manager

A dictionary user who has access to the PHD Screen System
through the Dictionary Management Menu. A dictionary manager
has access to all the functions and capabilities of the PHD Screen
System, including dictionary security and maintenance.

dictionary security Specifies who has access to a dictionary and the level of access.
Established by the dictionary manager.

dictionary security
class

A list of dictionary users who share the same access to a dictionary.

driver file In an ACCESS statement, the record-structure to which two or
more related record-structures are linked in parallel.

element The smallest category of data described in the data dictionary.
Elements are the basic building blocks of a PowerHouse application
since they represent many individual values. It is physically
represented in a record-structure by a record item. It is physically
represented in an index structure by a segment. (See also item and
segment.)

element usage See usage.

entity The building blocks of a PowerHouse application. Entities include
databases, files, elements, items, records, record-structures and
transactions. They are described in the data dictionary.

expected list A list of syntax that PowerHouse expects you to enter.

expression A term or combination of terms that yield a value.

extract The bit extract or substring extract data manipulation function.

field An item declared in a FIELD statement in QDESIGN. It becomes a
location on a QUICK screen used for entering, finding, changing,
and deleting data. (See also required field.)

file Declares a relation, table, or view on a screen, run, or report.

file-location The physical location of a file as it is known to the operating
system.

file specification The name of a file as it is known to the operating system. It can
include a location.

fine-grained A lock which affects a small quantity of data, for example, a row
or record.

footing line The line displayed or printed at the end of a report, at the end of
each page of a report, or at a control break. Footing lines usually
contain summary information.

function Used to manipulate and test item values or return values. (See also
system function.)

general term A part of a PowerHouse statement that you replace with a value
when you enter the statement.

488 PowerHouse(R) 4GL Version 8.4E

Glossary

generic retrieval Retrieves the text you specify. You can use the PowerHouse default
generic retrieval character (@) as a wildcard to match one or more
unspecified character in the retrieval text.

generic retrieval
character

A character used for partial index retrieval. The at-sign (@)
character is the default character.

global dictionary
options

PDL enables you to use definitions that are always in effect
throughout an application. Global dictionary definitions are
available for the standard date format, standard date separator, the
language of the character set, the release and version numbers,
special characters allowed in names, and pattern-matching
characters.

global field In a relational database, a global field is similar to a PowerHouse
element. In SQL, it corresponds to a domain or abstract datatype.

global temporary
item

An item that lasts for the duration of a QTP run. (See also item.)

heading line A line containing identifying information. A heading line occurring
before a group of detail lines can either identify the data in the
detail lines, or can identify a report as a whole. A heading line can
be displayed or printed at the beginning of a report, at the
beginning of each page of a report, or at the beginning of a section
of a report.

hex or
hexadecimal

Refers to the hexadecimal numbering system.

ID-number A number identifying a field or group of fields on a PowerHouse
screen.

index A data structure used by relational systems or indexed file systems
to locate records quickly. The index for each record contains an
index value and the address for the rest of the information
associated with that index value.

indexed file A type of file organization in which all the information in a record
is associated with the value of the index or segment of an index in
the record. For an indexed file, the operating system automatically
creates and maintains an index.

inherited
transaction

The properties of a transaction have been defined on one screen
and are known on another screen only at execution-time.

initialize The process of filling a record buffer with assigned values, default
values, or a mixture of assigned and default values for each item.

initial subset Includes the first segment of the index. Optionally, it can include
more than one segment of the index if the index is a
multiple-segment index.

intermediate file A transaction file used as required by QTP for processing.

isolation See consistency.

Glossary

PowerHouse Rules 489

isolation levels Isolation levels specify the degree to which each transaction is
isolated from the actions of other transactions. It may be one of:
PHANTOM PROTECTION, READ COMMITTED, READ
UNCOMMITTED, REPEATABLE READ, SERIALIZABLE, or
STABLE CURSOR. Different database products support different
transaction isolation levels - some offer a choice of isolation levels,
some provide just one. Low levels of isolation mean that
transactions are not well protected from each other; in other words,
simultaneous transactions may get inconsistent results. Higher
levels of isolation generally mean that transactions are better
protected from each other. At the highest levels, each transaction
may be entirely unaware of changes being made by other
transactions.

item An entity in a record-structure that holds a value. (See also defined
item, temporary item.)

item overlay An item (or item structure) that's defined as occupying the same
areas as another item (or item structure) in a record-structure. Item
overlays are specified with item substructures and item
redefinitions.

keyword A word in a PowerHouse statement that's entered exactly as it
appears in syntax.

label A descriptive title for a field on a PowerHouse screen.

library A file provided by OPENVMS in which you can store frequently
used modules of code or text.

local field The name of a Oracle Rdb local field. A local field is similar to a
PowerHouse item, or an SQL column.

local transaction A transaction that is not inherited.

locally active
transaction

A transaction is locally active when a local record is updated, added
or retrieved. A local record is a record-structure referenced on a
given screen but not passed down from a parent screen.

locking The most common method used to prevent conflicts between
transactions in a database. Locking is often used to support a
pessimistic concurrency control strategy (see pessimistic locking).
Depending on the database, a variety of database resources (for
example, rows, tables, parts of tables, indexes, pages, even the
database itself) are locked to control access to them. Various levels
of locking are usually supported, including shared, protected, and
exclusive locks, as well as locks for read or write.

Files can be locked with different sharing options and records can
be locked to further control access.

lock granularity The amount of information affected by a single lock, for example,
an index, a file, a database page, or a relation.

coarse-grained

A lock which affects a large quantity of data, for example, an entire
database or file.

fine-grained

A lock which affects a small quantity of data, for example, a row
or record.

490 PowerHouse(R) 4GL Version 8.4E

Glossary

logical entity An entity describing how the data in your application is entered
and displayed. The main logical entities are elements,
record-structures, and index structures. (See also physical entity.)

logical function Used to test item values. (See also function.)

logical transaction See PowerHouse transaction.

login file A file containing commands that are automatically executed when
you log onto the system. Also called logon file.

menu screen Serves as a table of contents for other screens, programs, or
commands.

metacharacter A special character used in a pattern to represent a group of other
characters. For example, the crosshatch (#) metacharacter
represents any single digit; the caret (^) metacharacter represents
any single letter. A metacharacter may appear either singly in a
one-character pattern, or as a character in a multi-character
pattern.

metadata Metadata, or data about data, refers to the database definitions
contained in a relational database. These definitions are held within
the database itself, in the same form as application data, and can be
accessed in the same way as the application data is.

minidictionary When QUIZ or QTP creates a portable subfile, two files are
subsequently created on the host machine: a data file and a
minidictionary. The minidictionary describes the contents of the
data file. (See also portable subfile.)

missing value See null value.

Mode field A special field found in the top left-hand corner of every
PowerHouse screen with default user interface options. The Mode
field indicates the current mode: E (Enter), F (Find), or S (Select).

multiple-segment
index

An index that has more than one segment.

nonsubstitution
character

Any character other than the substitution character, which is by
default a caret (^). It's used with the PICTURE option. (See also
substitution character.)

null response Refers to pressing the [Return] key without entering data.

null value A null value means either that the value for the column is unknown
at this time; or that there is no value to assign. A null value is not
the same as zero, because zero can be a meaningful value.

numeric
expression

See expression.

occurrence One item of a group of items that constitute an array. For example,
an array months can have 12 occurrences, one for each month. (See
also array and subscript.)

optimistic locking An approach to concurrency control, based on the assumption that
most data that is read is not changed, and that it is therefore not
necessary for the database to protect data until a transaction tries
to change something. (See also concurrency control.)

Glossary

PowerHouse Rules 491

option In syntax, refers to features of a particular statement that a user can
select.

parallel driver file See driver file.

parameter See program parameter or general term.

pattern A string of characters or metacharacters or both that describe a
value or group of values.

pattern matching The process of describing a value by specifying a pattern rather
than an exact value.

permanent save file A permanent file that's used to store PowerHouse statements. (See
also temporary save file.)

pessimistic locking An approach to concurrency control based on the assumption that
anything that is read might be changed, and that the database
should therefore protect everything read in case a transaction tries
to change something. (See also concurrency control.)

physical entity An entity that describes how and where the data in your
application is stored in the computer. The main physical entities are
items, records, and files. (See also logical entity.)

picture A combination of substitution and nonsubstitution characters used
to format data for display.

portable subfile A self-describing direct file that's stored in standard ASCII format
and used to transfer PowerHouse data between different machine
architectures.

PowerHouse
transaction

PowerHouse handles logical transactions. Existing only inside
PowerHouse, a logical transaction coordinates and manages as
many physical database transactions as needed as a single unit.
PowerHouse maintains the integrity of these transactions.

Any PowerHouse screen, report, or run may involve accessing and
manipulating data from several relational databases and/or
database products (as well as from other file systems). A single
logical PowerHouse "transaction", therefore, may encompass
several database transactions.

predefined
condition

In syntax, refers to a condition that's permanently defined.

prepare phase Refers to the first phase of a two-phase commit. This phase usually
involves verifying that all databases are accessible and capable of
committing the transaction prior to the commit being issued.

primary file See primary record-structure.

primary index An index on the physical file.

primary
record-structure

A record-structure whose information is most important to the
screen, report, or request. In QUIZ and QTP, the primary
record-structure is the first record-structure named in the ACCESS
statement. In QDESIGN, it is either the first record-structure
named in a screen design (that is not received from a higher-level
screen) or the record-structure labeled primary.

492 PowerHouse(R) 4GL Version 8.4E

Glossary

procedure In QDESIGN, a procedure is a sequence of instructions directing
one of the actions affected by the QUICK screen, such as data entry,
data correction, or data retrieval. QDESIGN procedures can be
produced automatically by QDESIGN or specified directly by the
QUICK screen designer or both.

program
parameter

Controls attributes such as the dictionary PowerHouse uses and
where components look for input.

prompt The character used to indicate that the computer is ready for your
next entry. The default PowerHouse prompt is >.

QTP transaction A compound record formed from records in multiple
record-structures. It comprises a record from the primary
record-structure and related records from the secondary
record-structure. (See also transaction set.)

query-
specification

A query-specification defines a collection of rows that will be
accessible when the cursor is opened.

rapid-fire entry A series of entries, separated by the separator character which is by
default a semicolon (;), in a field on a PowerHouse screen. Each
entry in the series is acted on as if it had been entered separately.

read-chain A set of related records or data.

read-only
transaction

Default for Query transaction.

read/write
transaction

Default for all transactions except Query.

record One set of the items in a record-structure and their values. A record
is stored in a file. (See also row.)

record buffer The area of computer memory used to temporarily store the values
for the items in a record.

record complex In QUIZ, a compound record formed from records in multiple
record-structures. It comprises a record from the primary
record-structure and related records from the secondary
record-structure.

record item See item.

record-structure An ordered collection of items. Each record-structure is associated
with exactly one file. For example, the record-structure of a file
used to store a mailing list of your customers might consist of
several items, including NAME, ADDRESS, POSTALCODE, and
PHONENUMBER.

record/tuple A row in a table. It is a meaningful collection of one or more fields.

related
record-structure

A record-structure declared in an ACCESS statement that's in a
parallel relationship to a previous record-structure in the ACCESS
statement.

relational database Data in a relational database is organized into tables which are
made up of rows and columns. No physical linkages between tables
are specified.

Glossary

PowerHouse Rules 493

relationship A dependency of one entity on another. For example,
record-structures are related to files; application security classes can
be related to both elements and record-structures; and so on.

repeating index Indicates that the value entered for that field can repeat in more
than one data record in the record-structure.

repeating item See array.

report Data selected and displayed on the screen or printed on paper in a
readable format specified by the user.

report-group A group of report-items.

report-item An item you include in a report.

report security The means of protecting a compiled QUIZ report from
unauthorized use.

request Performs a set of related processes that reads through one or more
input files, usually to update one or more output files.

required field A field on a PowerHouse screen in which an entry is required.

rollback Ends a transaction and undoes changes made by the transaction.
Data is returned to its state prior to the start of the transaction, or
the last committed instance if this was the second phase in a
two-phase commit.

row A group of data values (fields, columns) from a file. (See also
record.)

run Consists of one or more QTP requests.

save file See temporary save file and permanent save file.

secondary
record-structure

Any record-structure declared in an ACCESS statement other than
the first record-structure (which is the primary record-structure).

security Protects software and information from unauthorized use. Security
in PowerHouse is based on application security classes defined in
the data dictionary. (See also application security.)

segment An item that's part of an index. Each index is composed of one or
more segments.

slave screen A screen that's part of another screen.

sort-item See break-item.

source file See permanent save file and temporary save file.

special character Any character that isn't a letter or a number.

statement A line of instructions to one of the PowerHouse components that
can either be entered in response to the PowerHouse prompts or
entered into a text editor file.

stopscreen A logical stopping point for a system of screens that the user can
return to at any time using a QUICK screen command.

494 PowerHouse(R) 4GL Version 8.4E

Glossary

storage option Options governing the datatype used to store the item, how its sign
is stored, and the size (in bytes) that the item occupies in each
record.

string A series of characters, enclosed in double or single quotation
marks.

subfile A self-describing data file; that is, it's a file that contains both data
and the information that describes the data. A subfile is not
described in a PowerHouse dictionary.

subordinate
record-structure

See secondary record-structure.

subquery A subquery is identical to a query-specification with two
exceptions: the subquery must project a single-column table and the
syntax of the subquery includes enclosing brackets.

subscript A number used to refer to a specific item in an array. For example,
if array month contains 12 occurrences, the individual items can be
identified as month(1), month(2), and so on. QDESIGN doesn't
allow subscription. (See also array and occurrence.)

substitution
character

A character, by default a caret (^), in an element picture. Each
substitution character in the picture is replaced by a character from
a value for display.

substitution-
variable

Is a variable-name prefixed by the double colon(::) which is used in
SQL to identify the location for substitutions. The text is the
default substitution if no other substitution is specified.

::variable-name(text)

summary
information

Information summarizing a group of records or record complexes.
Usually, summary information appears in a footing line, where it
summarizes the detail information in the preceding detail lines. (See
also detail information.)

summary report In QSHOW, produces a one-line-per-entity summary of important
information.

syntax PowerHouse language, statements and commands, containing
specific rules and conventions (for example, the use of case,
brackets, slashes) that enable communication to take place between
the user and the computer.

system function Returns values that can be tested. (See also function.)

system-wide
standards

The set of attributes governing the defaults used by the
PowerHouse components.

table/relation A two-dimensional structure that holds an arbitrary number
of records.

temporary item An item you create that doesn't exist in the data dictionary. You can
use temporary items in calculations and summary operations. (See
also item.)

temporary save file A temporary file that's used to store PowerHouse statements as you
enter them. (See also permanent save file.)

Glossary

PowerHouse Rules 495

term A term is one of the following: string, number, item, expression,
system-function, function-result, case-expression-set, parameter
specification, USER system variable, column specification,
sql-summary-operation.

text file A file of ASCII characters stored on disk. (See also ASCII.)

transaction See also database transaction, PowerHouse transaction, and
conceptual transaction.

A group of operations treated as a unit by the database. It has clear
beginning and ending points, and may consist of one or more data
operations (as determined by the transaction designer). All
database activities take place within one or more transactions. Data
accesses from PowerHouse are done within database transactions.

A transaction has several important characteristics:
• it starts at a specific point in time
• it can include many individual database retrievals and updates
• it ends by being committed as a unit, or rolled back as a unit.

Transactions are used to transform a database from one consistent
state to another and to prevent partial updates from occurring.
When a transaction is committed, its changes are made permanent
in the database. When a transaction is rolled back, the effects of its
changes are undone from the database. The extent of a transaction
is determined by the application designer and is called the
transaction duration.

transaction
commit

Saves any changes made by the transaction permanently to the
database, and ends the transaction.

transaction
rollback

Ends a transaction and undoes changes made by the transaction.
Data is returned to its state prior to the start of the transaction.

transaction set In QTP, the record-structures that you access with the ACCESS
statement in a request. QTP retrieves data from the
record-structures to make a transaction. (See also QTP
transaction.)

transaction start The point at which a transaction begins. This is an important factor
in determining what data can be read for certain isolation levels.

two-phase commit A protocol supported by some databases to commit a transaction
that affects more than one database. It usually involves a
preliminary verification phase prior to the actual commit phase. Its
purpose is to allow a transaction to span multiple independent
databases, that is, the complete group of activities is either
completed or is undone as a unit. For example, if a transaction
involves moving information about an employee from one database
to another, the two-phase commit protects against information
being removed from one database but not added to the other
because of some system failure.

two-phase commit:
prepare phase

Refers to the first phase of a two-phase commit. This phase usually
involves verifying that all databases are accessible and capable of
committing the transaction prior to the commit being issued.

unique index Guarantees that the value entered for a field is unique.

usage A template for defining elements.

496 PowerHouse(R) 4GL Version 8.4E

Glossary

use file A text file of QDESIGN, QTP, PDL, PHDPDL or QUIZ source
statements stored on disk. The contents of the file can be loaded
into a PowerHouse component using the USE statement.

user break Sends a signal that interrupts processing and returns control to the
program. For UNIX and OpenVMS, the user break is [Ctrl C]. For
MPE/iX, the user break is [Ctrl Y].

user mode A group of PowerHouse users who access data in the same
location.

value The literal contents assigned to items. In syntax, it can indicate a
string or a number, depending on the item type. (See also default.)

versioning Another method used to prevent conflicts between transactions in a
database (also called multi-generational record versioning).
Versioning is used most frequently to support an optimistic
concurrency control strategy (see optimistic locking).

view Relational systems allows users the ability to define views of the
tables in their database that consist of a subset of the rows and/or
columns of one or more tables. A single-table view consists of a
subset of the rows and/or columns from one table. Multiple-table
views are views defined as a relational join expression composed
from multiple tables.

PowerHouse Rules 497

Symbols
@SETPOWERHOUSE command, 32

A
abbreviating keywords

syntax, 281
ABSOLUTE function, 367
absolute value

returning, 367
access

preventing unauthorized, 402
access list

definition, 483
ACCESSOK predefined condition, 290
account general term, 275
Action bar

definition, 483
Action commands

table, 334
Action field

definition, 483
ADDCENTURY function, 368
addition

plus sign (+), 300
alias

definition, 483
aligning

decimals, 330
ALLBASE MODULE EXTENSION resource file statement,

180
ALLBASE/SQL

database modules specifying owners, 224
DATETIME datatype, 318

allowed syntax
definition, 483

alpha (^) metacharacter, 351
ALTEREDRECORD predefined condition, 290, 293
alternate index

definition, 483
generating SOUNDEX function, 457

alternative message files
service layer, 269

alternative messages, 261
displaying, 262
in PowerHouse, 264
PowerHouse, 262
templates, 263

ampersand (&)
continuation character, 281
in conditional compile statements, 282

AND logical operator
compound conditions, 282, 296

any (?) metacharacter, 351
application

definition, 483
application line

definition, 483
general term, 275

application manager
definition, 483

application security
definition, 484

application security class (ASC)
definition, 484
determining users, 425

argument
definition, 484

arithmetic operators
numeric expressions, 300

array
definition, 484
general term, 275

arrays, 284, 285, 286-287
automatic initialization, 287
calculating, 287
editing, 286
in QTP, 286
in QUIZ, 287
OCCURRENCE predefined item, 306
referencing without subscripts, 285, 286
reporting individual occurrences, 285, 286
subscripts, 285
subscripts, values, 285
summing entire, 466
summing intermittent occurrences, 467
summing items, 466
summing subsets, 467
writing all occurrences to subfiles, 285

asc general term, 275
ASCII

converting from hexadecimal, 415
converting to hexadecimal, 416
definition, 484
function, 369

ASSUMED option
SET statement, 308

asterisk (*)
metacharacter, 351
multiplication, 300

at-sign (@)
as a continuation character, 282
in conditional compile statements, 282
metacharacter, 351

attach
definition, 484

Index

498 PowerHouse(R) 4GL Version 8.4E

Index

attribute
definition, 484

ATTRIBUTE function, 370
attributes

displaying default assumptions, 328
numeric elements, 326, 326-329

AUDITSTATUS
function, 371

auto program parameter, 75
locating files, 42

autodetach program parameter, 76
AUTODETACH resource file statement, 181
automatic

initialization of arrays, 284
automatic initialization

arrays, 287
AVG

sql-summary-operation, 304
avoiding

conflicting names, 281
Axiant

Terminal Compatible property, 130

B
backslash (\)

in messages in the service layer, 267
metacharacter, 351

base-date general term
DECIMALTIME function, 392

BETWEEN condition
specifying ranges of values, 298

binary numbers
storing, 345

bit extract function, 372
BITEXTRACT function, 373
blank when zero

output conversion, 327
blanks

removing trailing from strings, 474
BLOB datatype, 317
blobs

assigning to a character item, 345
handling contents, 345
non-text, 345
QDESIGN, 345
restrictions when treated as text items, 346
sizes, 345
support, 345-346
working with contents, 387

BLOCK TRANSFER control structure
charmode program parameter, 81
PROMPTOK predefined condition, 292

BLOCKMODE, 291
blockmode program parameter, 77
boolean operations

truth table, 297
BOTTOM UP option

UPDATE resource file statement, 257
bottomup option

update program parameter, 170

braces ({ })
syntax symbol, 274

break-item
definition, 484

BRIEF option
DBAUDIT resource file statement, 195

brief option
dbaudit program parameter, 96

broadcast program parameter, 78
BROADCAST resource file statement, 182
buffer

definition, 484
BUILD statement

locating files, 41
bulkfetch program parameter, 79
BULKFETCH resource file statement, 183

C
calculating

arrays, 287
checksums, 380
compensating for input scaling, 331
floating point numbers, FLOAT datatype, 332
number of days from a base date, 388
numeric items, 331
value of expressions, 301

calculations
multiplication and percentage, 329

calling
operating systems from PowerHouse, 223

caret (^) metacharacter, 351
case

syntax characters, 273
case sensitive names, 113
case-expression-set

CHOOSE statement, 302
general term, 275

case-processing
CHOOSE statement, 302
DEFINE statement, 302
general term, 275
SQL, 303

case-value
DEFINE statement, 302

CATEGORY statement
service layer message file, 267

cc program parameter, 80, 282
CC resource file statement, 184
CEILING function, 374
CENTER|CENTRE function, 375
centering text, 375
CENTURY function, 376-377
CHANGEMODE predefined condition, 290, 291
changing (see also editing, modifying, redefining)

conditions, 296
order of precedence, 296

char general term, 275
CHARACTER

datatype, 317
character

definition, 484

Index

PowerHouse Rules 499

character (cont'd)
general term, 275
patterns, 353

CHARACTER option
TERMINAL READ resource file statement, 248

character strings
inverting, 441
items, 415, 416
left-justified, 420

CHARACTER_LENGTH function, 379
CHARACTERMODE, 291
characters

adding space between, 458
centering strings, 375
general term, 275
item assignment to blobs, 345
items addressed as strings, 378
replacing substitution, 462
shifting case, 401, 477
strings, converting numbers, 369

CHARACTERS function, 378
characters strings

converting to numbers, 428
reversing, 441

charmode program parameter, 81
check digit

calculating, 380
checksum

definition, 484
CHECKSUM function, 380-381
CHECKSUM710, 82, 185
checksum710 program parameter, 82-83

backwards compatibility switch for 8.30D, 82
using in PHD dictionaries, 82, 185

CHECKSUM710 resource file statement, 185
checksums

data record security, 381
returning, 380

class
definition, 484

CLOSE DETACH resource file statement, 187
close_detach program parameter, 84
cluster

definition, 484
coarse-grained lock granularity

definition, 489
code

processing based on conditional compile statements, 80,
282

coded record-structure
definition, 484

codes
creating phonetic, 456-457
phonetic, constructing for string, 357
QTP error status, 24, 25

colon-variable general term, 275
column

definition, 484
column general term, 275
column-name general term, 275
columnowner program parameter, 85
COLUMNOWNER resource file statement, 188

columnspec general term, 275
combining functions, 359
COMMANDCODE function, 383
COMMANDMESSAGE function, 384
COMMANDOK predefined condition, 291
commands

action field AMGR, 34
action field DMGR, 34
action field USER, 34
entering shell, 283
PowerHouse (OpenVMS), 31
SETDICTIONARY, 36
SHOWDICTIONARY, 38
SHOWPOWERHOUSE, 39
SHOWQUOTA, 40

COMMANDSEVERITY function, 385
COMMANDSTATUS function, 386
comments

entering, 281
service layer message file, 268

commit transaction
definition, 484

COMMITPOINTS OBSOLETE resource file statement, 190
commitpoints program parameter, 87
committing

transactions, 292
comparisons

relational terminology, summary, 483
COMPATIBLE option

TERMINAL BLOCKMODE resource file option, 244
compatible option

blockmode program parameter, 77
compile

definition, 485
flags, predefined, 282

compile flags
conditional, 80, 184

compiled file
definition, 485

compiled reports
establishing, 75

compiled screens
locating with the GO statement, 44

component
definition, 485

COMPONENT statement
service layer message file, 266

compound
conditions, 282, 296

COMPRESS BUFFERS resource file statement, 191
compress_buffers program parameter, 88
concatenation

in SQL, 303
conceptual transaction

definition, 485
concurrency

definition, 485
concurrency control

definition, 485
condition

definition, 485
EXISTS, SQL, 299

500 PowerHouse(R) 4GL Version 8.4E

Index

condition (cont'd)
general term, 275

conditiona
expressions, 301

conditional
compilation, multiple, 282
compilation, single, 282
compile flags, 184
compile flags, predefined, 282
compile statements, at-sign (@), 282
compile statements, entering, 282
expression, 301
expression, definition, 485

conditional compile flags, 80
conditional error status codes, 22, 23
conditional error status settings

QTP, 24, 25
conditional expression

ELSE, 302
IF, 301

condition-command-list general term, 275
condition-expression general term, 275
conditions, 289-297

compound, 296
creating compound, 282
general form, 289
IS NULL in SQL, 299
logical expression, 289
logical-function, 289
null values, 297
order of precedence, 296
predefined, 290-293, 295
predefined EXISTS, 295
predefined RECORD EXISTS, 295
predefined transactions, 292
simple, 295
SQL, 298-299
testing stored values, 331

confirmer program parameter, 89
conflicting names

avoiding, 281
consistency

definition, 485
consistency checks, 57
CONSOLE KEYS resource file statement, 192
consolekeys program parameter, 90
constructing

phonetic code for a string, 357
CONTENTS function, 387
continuation character

ampersand (&), 281, 282
at-sign (@), 282

continuing
comments, 281
conditional compile statements, 282
statements, 281

control break
definition, 485

control file
definition, 485

control group
definition, 485

converting
ASCII to hexadecimal, 416
character strings to numbers, 428
dates to number of days since January 1 1900, 391
eight-digit dates to six-digit dates, 440
hexadecimal to ASCII, 415
input, 326
numbers to character strings, 369
output, 327
six-digit dates to eight-digit dates, 368
values, storage, 326, 326-329

converting redefinitions, 66
converting substructures

for DISAM, 66
copyright, 2
CORRECTMODE predefined condition, 290, 291
correlation names

COLUMNOWNER resource file statement, 188
COUNT

sql-summary-operation, 304
counting

null values in QUIZ, 348
createall program parameter, 91
createbase program parameter, 92
createfile program parameter, 93
creating

compound conditions, 282
messages in PowerHouse, 264
messages, designer, 271
service layer alternative message file, 269

Ctrl-C
definition, 485

Ctrl-Y
definition, 485

currencies
decimal, specifying, 328

CURRENT option
VMSDATE resource file statement, 259

cursor
definition, 485
general term, 275

cursor-name general term, 275
CURSOROPEN predefined condition, 291
cursorowner program parameter, 94
cursor-reference general term, 275

D
data

detecting invalid, 380
dictionary, definition, 486
encrypting numeric, 378
file, definition, 486
item, definition, 486
manipulation function, definition, 486
record, definition, 486

data definition
definition, 486

data dictionaries
opening, 108, 202
returning system title, 470

Index

PowerHouse Rules 501

data dictionary
locating, 41

data storage
DISAM, 65

database
definition, 485
general term, 275

DATABASE resource file statement, 193
database transaction

definition, 486
databases

providing password and userid, 193, 194
dataset general term, 275
datatype

definition, 486
general term, 275

datatype mappings
DISAM, 65

datatypes
and items in PowerHouse, 306
BLOB, 317
CHARACTER, 317
DATE, 317
DATETIME, 318
default, defined items, 331
FLOAT, 318, 332, 438
forms of storage, 309
FREEFORM, 320
INTEGER, 320, 330
INTERVAL, 321
items, 306
JDATE, 321
non-relational, 311
NUMERIC, 321
numeric, fractional amounts, 330
numeric, scaling, 330-333
ODBC, 317
PACKED, 321, 330
PHDATE, 322
PowerHouse relational, 313-316
relational specifics, 316
TIME, 316
unsupported DB2, 317
user-defined, 324
VARCHAR, 322
VMSDATE, 322
ZDATE, 323
ZONED, 323, 330

DATE
sql-date-literal, 303

date
expression, definition, 486

DATE datatype, 317
DATE function, 388
DATE general term

DATEEXTRACT function, 390
date-expression general term, 275
date-expressions

SQL, 303
DATEEXTRACT function, 390
date-format general term, 275

dates
calculating number of days from a base date, 388
converting eight-digit to six-digit, 440
converting number of days since January 1 1900, 391
converting six-digit to eight-digit, 368
expressions, 301
extracting items, 390
mixing eight-digit and six-digit, 440
mixing six-digit with eight-digit, 368
negative values, 391
patterns, 354
returning current, 468, 469
setting to last day of a month, 419

DATETIME datatype, 318
DAY extract-option

EXTRACT function, 404
DAY general term

DATEEXTRACT function, 390
DAYS function, 391
days general term, 275
DB2

unsupported datatypes, 317
dbaudit program parameter, 96, 96-97
DBAUDIT resource file statement, 195
dbdetach program parameter, 98
DBDETACH resource file statement, 197
dbwait program parameter, 99
DBWAIT resource file statement, 198
dclt program parameter, 100
dd general term, 275
ddd general term, 275
deadlock

definition, 486
debug (QDESIGN) program parameter, 101
debug (QUICK) program parameter, 102
DEBUG resource file statement, 199
Debugger

controlling level of capacity, 199
debugger

controlling level of capacity, 102
decimal

alignment in display, 330-333
characters embedded in FREEFORM items, 320
currencies, specifying, 328
numbers, PACKED, 321
numbers, ZONED, 323

DECIMALTIME function, 392
decoding

encrypted keys, 393
DECRYPT function, 393
default

assumptions, display attributes, 328
assumptions, input conversion, 327
definition, 486
messages, 262
PowerHouse files, 48

DEFAULT CURSOR OWNER resource file statement, 200
DEFAULT option

BROADCAST resource file statement, 182
default option

broadcast program parameter, 78

502 PowerHouse(R) 4GL Version 8.4E

Index

default-location
definition, 486

defaults
datatype, defined items, 331
INPUT SCALE, 331
picture string, 330
prompt character, 281
scaling factor, numeric items, 330

DEFERRED option
BROADCAST resource file statement, 182

deferred option
broadcast program parameter, 78

DEFINE statement
testing for null values, 292, 295

defined items, 306
default datatype, 331
definition, 486
missing values, 292
null values, 292, 293, 295, 347
testing, 292, 293, 295

defined-item general term, 275
DELAY option

SUBDICTIONARY resource file statement, 239
delay option

subdictionary program parameter, 160
deleteall program parameter, 103
deletebase program parameter (MPE/iX), 104
DELETEDRECORD predefined condition, 290, 293
deletefile program parameter, 105
DELETESYSTEMVAL function, 394-401
deleting

shared memory sections, 57
derived-column general term, 275
designated files, 48

definition, 486
designer messages, 261, 270-271

creating, 271
format, 271
SUBSTITUTE function, 462

DESIGNER NORETAIN resource file statement, 201
designer_noretain program parameter, 106
detail information

definition, 486
detail lines

definition, 486
detail program parameter, 107
detail report

definition, 486
dictionaries

opening at startup, 108
dictionary, 487

accessing installed, 56
accessing uninstalled, 57
definition, 486
displaying current name, 38
establishing for PowerHouse session, 36
installing PDL, 56
opening at startup, 202
PDC shared, 53
PDL shared, 56
PHD shared, 55
returning system title, 470

dictionary manager
definition, 487

dictionary program parameter, 108
DICTIONARY resource file statement, 202
dictionary security

definition, 487
dictionary security class

definition, 487
dicttype (OpenVMS) program parameter, 109
direct_file_base_zero program parameter, 110
DIRECTORY resource file statement, 204
DISABLE NULLS resource file statement, 205
DISABLE option

SUBDICTIONARY resource file statement, 239
disable option

subdictionary program parameter, 160
disable_nulls program parameter, 111
disabling

support for null values, 347
DISAM

converting, 66
data storage on NT/2000/XP, 65
datatype mappings, 65
reading and writing, 65
retrieving, 65

displaying
current dictionary name, 38
name of active version of PowerHouse, 39
negative values, 329
numeric datatypes, 330-333
process quotas, 40
statistics, 237
statistics in QTP, 25

displaying default messages, 262
division

by zero, 300
returning remainders, 427
slash (/), 300

DO BLOB verb, 345
domain

definition, 487
domains

SQL entity, corresponding to PowerHouse entities, 483
dont_store_module program parameter, 112
double

asterisk (**), exponentiation, 300
encryption, 402

DOWN option
ROUND function, 443
SHIFT resource file statement, 236

DOWNSHIFT function, 401
downshift program parameter, 113
driver file

definition, 487
dsc general term, 275

E
EDIT statement, 286
editing

arrays, 286

Index

PowerHouse Rules 503

eight-digit dates
converting to six-digit, 440
mixing with six-digit dates, 368, 440

element
definition, 487
general term, 275
usage, definition, 487

elements
numeric, attributes, 326, 326-329
size, 310
typed, input conversion, 326
types, output conversion, 327

ellipsis (...)
syntax symbol, 274

ELSE
conditional compile statements, 282
conditional expression, 302

ELSEIF
conditional compile statements, 282

ENABLE option
SUBDICTIONARY resource file statement, 239

enable option
subdictionary program parameter, 160

encoding encrypted keys, 402-403
ENCRYPT function, 402-403

CHECKSUM function, 381
encrypted keys

decoding, 393
encoding, 402-403

encrypting
numeric data, 378, 415, 416

encryption
double, 402
security, 402

endian data formats, 65
ENDIF

conditional compile statements, 282
entering

comments, 281
conditional compile statements, 282
general terms, 273
keywords, 273
PDL program parameters, 27
PHDPDL program parameters, 28
program parameter syntax, 67
QDESIGN program parameters, 20
QSHOW program parameters, 29
QTP program parameters, 24
QUICK program parameters, 21
QUIZ program parameters, 22
QUTIL program parameters, 30
shell commands, 283
statements, 281

entity
definition, 487
general term, 275

Entry mode
status of predefined conditions, 290

ENTRY RECALL resource file statement, 206
ENTRYMODE predefined condition, 290, 291
entryrecall program parameter, 114

environment variables
PHEDIT, 138

EQUAL option
LINKVALUE function, 421

equal sign
operator in conditions, 298

equal to (=)
operator in conditions, 289

errlist program parameter, 115
error

messages, alternative, 264
messages, locating, 261-262

error messages
prompting user for verification, 89
returning text, 384

ERROR option
DEBUG resource file statement, 199
NONPORTABLE resource file statement, 218
OBSOLETE resource file statement, 221

error option
debug program parameter, 102
nonportable program parameter, 129
obsolete program parameter, 136

error status settings in QTP, 24, 25
error status settings in QUIZ, 22, 23
errors

entering statements, 281
escape (!) metacharacter, 351, 353
ESCAPE option

SQL, 298, 356
etp general term, 275
evaluating series of expressions

based on conditions, 301
exact-match characters

pattern matching, 351
exceptions

null value rules, summary, 348
exclamation mark (!)

metacharacter, pattern matching, 351
exclamation mark and zero (0!) metacharacter

pattern matching, 351
exclusions

null values, 349
EXECUTE statement

locating files, 42
procloc program parameter, 145

EXISTS
predefined condition, 295

EXISTS predefined condition, 293
EXIT resource file statement, 207
EXIT statement

QUICK, 21
exiting

PDL, 27
PHDPDLPHDPDL, 28
QDESIGN, 20
QSHOW, 29
QTP, 24
QUICK, 21
QUIZ, 22
QUTIL, 30

504 PowerHouse(R) 4GL Version 8.4E

Index

expected list
definition, 487

exponent
floating point numbers, 318

exponentiation, 333
double asterisk (**), 300

expression
definition, 487

expression general term, 275
expressions, 300-302

calculating value, 301
case-expression-set, 302
case-processing, 303
case-value, 302
conditional, 301
date, 301, 303
logical, 289
numeric, 300, 303
SQL, 303
string, 303
strings, 300
within program variables, 304

extension general term, 275
extract

definition, 487
EXTRACT function, 404
extracting

bits from numbers, 372
substrings from strings, 465

extract-option general term
DATEEXTRACT function, 390
EXTRACT function, 404

F
FALSE results, 297
fastread program parameter, 116
fdl program parameter, 117
field

definition, 487
general term, 275

FIELD option
TERMINAL CHARACTERMODE resource file

statement, 245
field option

charmode program parameter, 81
FIELD statement

VALUES option, input scaling, 331
FIELDTEXT

predefined item, 306
predefined item, null values, 347

FIELDVALUE, 347
predefined item, 306
predefined item, null values, 347

file
definition, 487
general term, 275
message, 261
specification, definition, 487

File Definition Language See fdl
file names

locating ODS5, 46

FILE option
DBAUDIT resource file statement, 195

file option
dbaudit program parameter, 96

file-location
definition, 487

filelocation general term, 275
filename general term, 275
files

designated, 48
locating, 41-44, 145
locating a data dictionary, 41
message templates, 263
PowerHouse default, 48

filespec general term, 275
fill character

output conversion, 327
Find mode

status of predefined conditions, 290
FIND procedure

PATH predefined item, 307
FINDMODE predefined condition, 290, 291
fine-grained

definition, 487
fine-grained lock granularity

definition, 489
FIRST function, 405
fkc_put_order option

update program parameter, 170
flags

conditional compile, 80, 184
predefined conditional compile, 282

FLOAT
item, storage, 331

float character
output conversion, 327

FLOAT datatype, 318
RANDOM function, 438

floating point
representation, calculations, 332
types, 318

FLOOR function, 406
footing line

definition, 487
FOR control structure, 284

OCCURRENCE predefined item, 306
FOREIGN KEY CONSTRAINT option

UPDATE resource file statement, 257
format

general term, 275
messages, designer, 271

FORMAT option, 161, 240
FORMATNUMBER function, 407
formatting

messages in PowerHouse, 263
fractional

amounts, retaining fractional portion, 330
fractional values

rounding down, 406
rounding up, 374

FREEFORM datatype, 320

Index

PowerHouse Rules 505

FULL option
DBAUDIT resource file statement, 195

full option
dbaudit program parameter, 96

function
definition, 487
SIGNONGROUP, 453

function-result general term, 275
functions

ABSOLUTE, 367
ADDCENTURY, 368
ASCII, 369
ATTRIBUTE, 370
AUDITSTATUS, 371
bit extract, 372
BITEXTRACT, 373
CEILING, 374
CENTER|CENTRE, 375
CENTURY, 376-377
CHARACTER_LENGTH, 379
CHARACTERS, 378
CHECKSUM, 380-381
combining, 359
COMMANDCODE, 383
COMMANDMESSAGE, 384
COMMANDSEVERITY, 385
COMMANDSTATUS, 386
CONTENTS, 387
DATE, 388
DATEEXTRACT, 390
DAYS, 391
DECIMALTIME, 392
DECRYPT, 393
DELETESYSTEMVAL, 394-401
DOWNSHIFT, 401
ENCRYPT, 402-403
EXTRACT, 404
FIRST, 405
FLOOR, 406
FORMATNUMBER, 407
GETSYSTEMVAL, 412-414
HEXDECODE, 415
HEXENCODE, 416
INDEX, 414
INTERVAL, 417
JCW, 418
LASTDAY, 419
LEFT JUSTIFY|LJ, 420
LINKVALUE, 421
LOGONID, 422
LOWER, 423
MATCHPATTERN, 424
MATCHUSER, 425
MISSING, 426
MOD, 427
NCONVERT, 428
nesting, 359
NULL, 429
OCCURRENCE, 430
OCTET_LENGTH, 432
OLDVALUE, 433
PACK, 434

functions (cont'd)
PORTID, 435
POSITION, 436
PowerHouse, 359-481
PowerHouse table, 359-365
PROCESSLOCATION, 437
QDESIGN, 359-481
RANDOM, 438
RECORDLOCATION, 439
REMOVECENTURY, 440
REVERSE, 441
RIGHT JUSITFY|RJ, 442
ROUND, 443-445
SCREENLEVEL, 446
SETSYSTEMVAL, 447-450
SHIFTLEVEL, 451
SIGNONACCOUNT, 452
SIGNONGROUP, 453
SIGNONUSER, 454
SIZE, 455
SOUNDEX, 456-457
SPREAD, 458
SUBSTITUTE, 462-463
SUBSTRING, 464
SUBSTRING EXTRACT, 465
SUM, 466
SYSDATE, 468
SYSDATETIME, 469
SYSNAME, 470
SYSPAGE, 471
SYSTIME, 472
TERMTYPE, 473
TRUNCATE, 474
UIC, 475
UPPER, 476
UPSHIFT, 477
VALIDPATTERN, 478
VMSTIMESTAMP, 479
WEBLOGONID, 480
ZEROFILL, 481

G
general term

definition, 487
general terms, 275
GENERATE option

LIST resource file statement, 213
generating

alternate indexes, 457
generating indexes

compressed, 380-381
generic retrieval

definition, 488
generic retrieval character

definition, 488
GETSYSTEMVAL function, 412-414
global dictionary options

definition, 488
global field

definition, 488

506 PowerHouse(R) 4GL Version 8.4E

Index

global temporary item
definition, 488

global temporary items, 306
GO statements

locating compiled screens, 44
greater than (>)

operator in conditions, 289, 298
greater than or equal to (>=)

operator in conditio, 298
operator in conditions, 289

group general term, 275

H
handling

contents of blobs, 345
heading line

definition, 488
hex or hexadecimal

definition, 488
hexadecimal

converting from ASCII, 416
converting to ASCII, 415

HEXDECODE function, 415
HEXENCODE function, 416
HIGHEST option

LINKVALUE function, 421
highlight general term, 275
HOUR extract-option

EXTRACT function, 404
HOUR option

DATEEXTRACT function, 390
hours general term, 275
HPSLAVE EXTRA LINE resource file statement, 208
HPSLAVE SPLIT LINE resource file statement, 209
hundredths general term, 275

I
ID-number

definition, 488
IF

conditional compile statements, 282
conditional expression, 301

IGNORE option
OBSOLETE resource file statement, 221

ignore option
obsolete program parameter, 136

indented syntax, 274
index

definition, 488
general term, 275

INDEX function, 414
indexed file

definition, 488
indexes

generating alternate, 457
generating compressed, 380-381

indexname general term, 275
informational messages

alternative, 264
confirmation by user, 89
locating, 261-262

inherited transaction
definition, 488

initial subset
definition, 488

initialization
arrays, 284, 287

initialize
definition, 488

INITIALIZE NULLS resource file statement, 210
initializing

non-relational data structure, 347
null values, 347

initnulls program parameter, 118
input

conversion, 326
conversion, default assumptions, 327
scaling, 330
scaling, fractional amounts, 330

installed dictionaries
accessing, 56

INTEGER
datatype, 330
item, storage, 331

INTEGER datatype, 320
fractional amounts, 330

INTEGER SIZE 6 resource file statement, 211
intermediate file

definition, 488
intermittent occurrences of arrays

summing, 467
internal

messages, 261
INTERVAL

sql-date-literal, 303
INTERVAL datatype, 321
INTERVAL function, 417
intsize6 program parameter, 119
invalid data

detecting, 380
invalid patterns

detecting, 478
inverting

character strings, 441
IS NULL condition

SQL, 299
isolation

definition, 488
isolation levels

definition, 489
item

and datatypes in PowerHouse, 306
definition, 489
general term, 275

item EXISTS predefined condition, 293
item MISSING predefined condition, 293
item names

size, 161, 240
item NULL predefined condition, 293
item overlay

definition, 489
ITEM statement

arrays, 286

Index

PowerHouse Rules 507

ITEM statement (cont'd)
assigning null values, 348

itemname EXISTS predefined condition, 293
items

addressed as character strings, 378
arrays, subscripts, 285
datatype defaults, 310
datatypes, 306
datatypes, input conversion, 326
datatypes, output conversion, 327
defined, 306
global temporary, 306
numeric alignment and storage, 330
operands in conditions, 289
record, 307
searching, 308
size, 310
subscripting, 285
summing in arrays, 466
temporary, 308
types, 309

items addressed as character strings, 415, 416

J
JCW function, 418
jcwbase program parameter, 120
JCWBASE resource file statement, 212
JDATE datatype, 321

DATEEXTRACT function, 390
Julian date, 321

K
keyword

definition, 489
keyword general term, 275
keywords

abbreviating, 281
entering, 273

L
label

definition, 489
language

compatibility, ZONED datatype, 324
languages in messages, 261
LASTDAY function, 419
LAYOUT option

LIST resource file statement, 213
leading

sign, input conversion, 326
sign, output conversion, 327
spaces, FREEFORM items, 320
spaces, replacing with zeros, 481

leading spaces
eliminating, 434

LEFT JUSTIFY|LJ function, 420
left parenthesis (() metacharacter, 351
left-justification

characters in strings, 420

length general term
bit extract function, 372
Substring Extract function, 465
SUBSTRING function, 464

less than (<)
operator in conditions, 289, 298

less than or equal to (<=)
operator in conditions, 289, 298

LET verb
AUDITSTATUS function, 371

levels
number of current screen, 446

LIKE condition
pattern-matching, 298, 356

LINE option
TERMINAL READ resource file statement, 248

lineread program parameter, 121
lines

preventing splitting, 126
linkage general term, 275
linkitem general term, 275
LINKVALUE function, 421
LIST option

SET resource file statement, 234
USE resource file statement, 258

list program parameter, 122
LIST resource file statement, 213
listing

resource files, 234
source statements, 122, 213

local transaction
definition, 489

locally active transaction
definition, 489
testing, 292

locating
compiled screens with the GO statement, 44
data dictionary, 41
files, 41-44, 145
items, 308
messages, 261-262
ODS5 file names, 46
QKGO files, 43
service layer message files, 265
start screens, 43
subfiles, 44

locating files
auto program parameter, 42
BUILD statement, 41
EXECUTE statement, 42
SAVE statement, 41
USE statement, 42

LOCATION MODULE resource file statement, 214
location option

DIRECTORY resource statement, 204
LOCATION PROCESS resource file statement, 215
lock granularity

definition, 489
locking

definition, 489
lockword general term, 275
lockword program parameter, 123

508 PowerHouse(R) 4GL Version 8.4E

Index

LOCKWORD resource file statement, 216
log file

naming, 147
logical entity

definition, 490
logical expressions

conditions, 289
logical function

definition, 490
general term, 275

logical sizes, 310
logical transaction

definition, 490
logical-function

condition, 289
logicals, CHECKSUM710, 82, 185
login file

definition, 490
logonid

general term, 275
returning, 422, 454

LOGONID function, 422
LOWER function, 423
lowercase

characters, syntax, 273
shifting to uppercase, 477

lowercase characters, 401
LOWEST option

LINKVALUE function, 421

M
m general term, 275
mantissa

floating point numbers, 318
matching

metacharacters, 353
patterns, 351-356
patterns in SQL, 356

MATCHPATTERN function, 424
TRUNCATE, 474

MATCHUSER function, 425
MAX

sql-summary-operation, 304
menu screen

definition, 490
message

definition in message file, 267
message file format

service layer, 266
message files

CATEGORY statement, 267
COMPONENT statement, 266
customized, 261
default service layer, 266
locating service layer, 265
NAME statement, 266
PARAMETER statement, 267
SEVERITY statement, 266

message format
runtime, 270

message templates, 263

messages, 261-271
alternative, 261
alternative in PowerHouse, 264
alternative PowerHouse, 262
confirmation by user, 89
creating in PowerHouse, 264
default, 262
designer, 261, 270-271, 462
designer format, 271
designer, creating, 271
displaying alternative, 262
displaying default, 262
formatting in PowerHouse, 263
in PowerHouse, 261
in service layer, 261, 265
internal, 261
locating, 261-262
modifying in PowerHouse, 264
nonportable syntax, 129, 218
obsolete syntax, 136, 221, 239
PowerHouse, 261
returning text, 384
runtime format in service layer, 270
service layer, 265-270
substitution characters, 267, 271
text order numbers, 271
using nontermcompat to suppress, 130

MESSAGES option
DBAUDIT resource file statement, 195

messages restructuring, 271
metacharacter, 351

definition, 490
meta-character general term, 275
metacharacters

alpha (^), 351
any (?), 351
changing reserved, 353
definition, 351
escape (!), 351
left parenthesis ((), 351
not (\), 351
null (!0), 351
optional (<), 351
optional repeating (*), 351
or (|), 351
pattern matching, 351-356
repeat (>), 351
reserved, 352
right parenthesis ()), 351
wild (@), 351

metadata
definition, 490

metadata references
COLUMNOWNER resource file statement, 188

MIN
sql-summary-operation, 304

minidictionary
definition, 490

minus sign (-)
FREEFORM items, 320
subtraction, 300

Index

PowerHouse Rules 509

MINUTE extract-option
EXTRACT function, 404

MINUTE general term
DATEEXTRACT function, 390

minutes general term, 275
MISSING function, 426
MISSING predefined condition, 295
missing value

definition, 490
mixing

six-digit and eight-digit dates, 368
mm general term, 275
mmm general term, 275
MOD function, 427
Mode field

definition, 490
modifying

messages in PowerHouse, 264
substitution order, 271

moduleext program parameter, 124
moduleloc program parameter, 125
monetary values

rounding down, 406
rounding up, 374

MONTH extract-option
EXTRACT function, 404

MONTH general term
DATEEXTRACT function, 390

MPE/iX
notimezone program parameter, 166
QTP error status settings, 24
QUIZ error status settings, 22
setting up the PowerHouse environment, 18
timezone program parameter, 166

MSGS option
DBAUDIT resource file statement, 195

msgs option
dbaudit program parameter, 96

multiple
conditional compilation, 282
conditions, modifying, 296

multiple-segment index
definition, 490

multiplication
asterisk (*), 300
calculations, 329

mutually exclusive options
syntax symbol, 274

N
n general term, 275
name general term, 275
NAME statement

service layer message file, 266
names

avoiding conflicting, 281
case sensitivity, 113

naming
log file, 147
trace files, 147

NCONVERT function, 428

NEAR option
ROUND function, 443

negative values
dates, 391
displaying, 329
storing FREEFORM, 320

nesting
functions, 359

newlink retainmarkpp, 154
NEWRECORD predefined condition, 290, 293
nls (no line split) program parameter, 126
no extra lineSee nxl
no line split See nls
noautodetach program parameter, 76
noblobs program parameter, 127
NOBLOBS resource file statement, 217
nobreakset program parameter, 128
noconsolekeys program parameter, 90
nodbdetach program parameter, 98
nodbwait program parameter, 99
nodcl program parameter, 100
NODELAY option

SUBDICTIONARY resource file statement, 239
nodelay option

subdictionary program parameter, 160
nodetail program parameter, 107
nofdl program parameter, 117
noinitnulls program parameter, 118
nointsize6 program parameter, 119
NOLIST option

SET resource file statement, 234
USE resource file statement, 258

nolist program parameter, 122
NONE option

DBAUDIT resource file statement, 195
SHIFT resource file statement, 236

nonportable program parameter, 129
NONPORTABLE resource file statement, 218
nonportable syntax

messages, 129
non-relational datatypes, 311
nonsubsitution character

definition, 490
nontermcompat program parameter, 130
non-text blobs, 345
noomnidex program parameter, 137
NOOMNIDEX resource file statement, 222
noosaccess program parameter, 138
noowner program parameter, 131
NOOWNER resource file statement, 219
noprefix_ownername program parameter, 132
noretainmark program parameter, 154
noreuse_screen_buffers program parameter, 155
NOSEARCH option

SUBDICTIONARY resource file statement, 239
nosearch option

subdictionary program parameter, 160
NOSET WARN STATUS resource file statement, 220
nosetjobshow program parameter, 158
nosetwarnstatus program parameter, 133
noshift program parameter, 113
nostatistics program parameter, 159

510 PowerHouse(R) 4GL Version 8.4E

Index

NOT
compound conditions, 282

not (\) metacharacter, 351
not equal to (<>)

operator in conditions, 289, 298
NOT logical operator

compound conditions, 296
notermpoll program parameter, 165
notimezone program parameter, 166

equivalent resource file statement, 166
notpi program parameter, 167
notrusted program parameter, 168
nouicbrackets program parameter, 134
nowarn option

debug program parameter, 102
nonportable program parameter, 129
obsolete program parameter, 136

NOWARNING option
DEBUG resource file statement, 199
NONPORTABLE resource file statement, 218
OBSOLETE resource file statement, 221

NT/2000/XP
DISAM data storage, 65

NULL
condition in SQL, 348
results, 297

null (0!) metacharacter, 351
NULL function, 429
NULL predefined condition, 293, 295
null response

definition, 490
NULL value

returning, 426, 429
null value

definition, 490
NULL VALUE NOT ALLOWED option

FIELD statement, 349
null values

assigning, 348
comparisons, 297
conditions, 297
counting in QUIZ, 348
disabling support, 347
entering, 347
exceptions to rules, 348
initializing, 347
missing, 292
operating, 348
selective record retrieval, 348
support in relational databases, 347-349
testing, 292, 293, 295

numbers
converting to character strings, 369
returning absolute values, 367
returning NULL value, 426, 429
returning random, 438
returning rounded, 443-445
rounding next-highest integer, 374
rounding next-lowest integer, 406

numeric
datatypes, fractional amounts, 330
elements, attributes, 326, 326-329

numeric (cont'd)
expressions, 300
expressions, arithmetic operators, 300
expressions, array subscripts, 285
items, alignment, 330
items, calculation, 331
items, storage, 330
patterns, 353
picture, output conversion, 327

numeric data
encrypting, 378, 415, 416

NUMERIC datatype, 321
numeric expression

definition, 490
numeric expressions

evaluating using 8-byte floating point, 300
numeric-expression

SQL, 303
numeric-expression general term, 275
numeric-item general term, 378
nxl (no extra line) program parameter

O
OBSOLETE option

VMSDATE resource file statement, 259
obsolete program parameter, 136
OBSOLETE resource file statement, 221
obsolete syntax

messages, 136, 239
OCCURRENCE

predefined item, 306
system function, 284

occurrence
definition, 490

OCCURRENCE function, 430
occurrences

arrays, referencing in QUICK, 284
OCTET_LENGTH function, 432
ODBC datatype, 317
ODS5 file names

locating, 46
OF record-structure

qualifier, 290
OFF option

DBDETACH resource file statement, 197
DBWAIT resource file statement, 198
DEFAULT CURSOR OWNER resource file statement, 200
HPSLAVE EXTRA LINE resource file statement, 208
HPSLAVE SPLIT LINES resource file statement, 209
LIST resource file statement, 213
OSACCESS resource file statement, 223
PREFIX ORACLE OPEN NAME resource file statement,

225
REUSE SCREEN BUFFERS resource file statement, 231
STATISTICS resource file statement, 237
TERMPOLL resource file statement, 249
TRUNCATE PARM VALUES resource file statement, 253
TRUSTED resource file statement, 254
UIC BRACKETS resource file statement, 256

Off option
SETJOBSHOW resource file statement, 235

Index

PowerHouse Rules 511

OFFoption
TIME ZONE resource file statement, 251

OLDVALUE function, 433
omnidex program parameter, 137
OMNIDEX resource file statement, 222
ON option

DBDETACH resource file statement, 197
DBWAIT resource file statement, 198
DEFAULT CURSOR OWNER resource file statement, 200
HPSLAVE EXTRA LINE resource file statement, 208
HPSLAVE SPLIT LINES resource file statement, 209
LIST resource file statement, 213
OSACCESS resource file statement, 223
PREFIX ORACLE OPEN NAME resource file statement,

225
REUSE SCREEN BUFFERS resource file statement, 231
SETJOBSHOW resource file statement, 235
STATISTICS resource file statement, 237
TERMPOLL resource file statement, 249
TIME ZONE resource file statement, 251
TRUNCATE PARM VALUES resource file statement, 253
TRUSTED resource file statement, 254
UIC BRACKETS resource file statement, 256

OPEN option
DATABASE resource file statement, 193

opening a data dictionary at startup, 202
opening data dictionary at startup, 108
open-name-string general term, 275
OpenVMS

PowerHouse commands, 31
QTP error status settings, 25
QUIZ error status settings, 23
running PHDPDL, 28
setting up the PowerHouse environment, 18

OpenVMS program parameters
checksum710, 82-83

operand
logical expression, 289

operating system
calling from PowerHouse, 138
entering commands, 283
rules for program parameters syntax, 67

operating systems
calling from PowerHouse, 223

operators
logical expressions, 289
precedence, 296

optimistic locking
definition, 490

option
definition, 491

optional (<) metacharacter, 351
optional repeating (*) metacharacter, 351
options

order entered, 281
SOUNDEX, 357

OR logical operator
compound conditions, 282, 296

ORACLE
database modules specifying owners, 224
limitations of using synonyms, 325
using synonyms in PowerHouse, 325

or-bar (|)
metacharacter, 351
syntax symbol, 274

OSACCESS predefined condition, 292
osaccess program parameter, 138
OSACCESS resource file statement, 223
output

conversion, 327
scaling, 330-333

overflowing statements, 281
overriding

order of precedence of metacharacters, parentheses, 353
owner option

OWNER resource file statement, 224
owner program parameter, 139
OWNER resource file statement, 224

P
PACK function, 434
PACKED datatype, 321, 330

fractional amounts, 330
packing

strings, 434
page numbers

returning, 471
PANEL option

TERMINAL BLOCKMODE resource file statement, 244
TERMINAL CHARACTERMODE resource file

statement, 245
panel option

blockmode program parameter, 77
charmode program parameter, 81

parallel driver file
definition, 491

parameter
definition, 491

PARAMETER statements
in message file, 267

parentheses ()
changing precedence, 296

parmfile program parameter, 140
parmprompt program parameter, 141
PASSWORD option

DATABASE resource file statement, 194
patch program parameter, 142
pattern

definition, 491
general term, 275
matching, 351-356, 474
matching in SQL, 356
matching, definition, 491
matching, exact-match characters, 351
matching, formal syntax, 354
matching, SQL, 298

patterns
comparing strings, 424
detecting invalid, 478
input conversion, 326
types, 353
types, character patterns, 353
types, date patterns, 354

512 PowerHouse(R) 4GL Version 8.4E

Index

patterns (cont'd)
types, numeric patterns, 353

PDC shared dictionary (OpenVMS), 53
PDL

entering program parameters, 27
exiting, 27
running, 27

PDL shared dictionary
installing, 56

PDL shared dictionary (UNIX), 56
PDL suboption

DICTIONARY resource file statement, 202
percent sign (%)

avoiding conflicting names, 281
percentages

calculations, 329
performance

scaling, 333
period (.)

eliminating, 434
permanent save file

definition, 491
pessimistic locking

definition, 491
PHD dictionaries

using CHECKSUM, 82
PHD dictionaries, using CHECKSUM, 185
PHD shared dictionary (OpenVMS), 55
PHD suboption

DICTIONARY resource file statement, 202
PHDATE datatype, 322

DATEEXTRACT function, 390
PHDPDL, 28

running, 28
PHEDIT environment variable, 138
phonetic code

constructing for string, 357
phonetic codes

creating, 456-457
physical entity

definition, 491
picture

definition, 491
PICTURE option

default scaling factor, 330
plus sign (+)

addition, 300
concatenator, 300
FREEFORM items, 320

pollspeed program parameter, 143
portable subfile

definition, 491
PORTID function, 435
POSITION function, 436
PowerHouse

alternative messages, 262
blob support, 345-346
default files, 48
functions table, 359-365
general terms, 275
non-relational datatypes, 311
prerequisites to running, 17

PowerHouse (cont'd)
relational datatypes, 313-316
transaction, definition, 491
using ORACLE synonyms, 325

POWERHOUSE command, 33-34
PowerHouse commands (OpenVMS), 31
PowerHouse functions, 359-481
PowerHouse menu

action field commands, 34
PowerHouse messages, 261
pre_chooseall program parameter, 144
precedence

changing order, 296
conditions, 296
metacharacters in pattern matching, overriding with

parentheses, 353
precision

ROUND function, 444-445
Predefined, 282, 293
predefined

conditional compile flags, 282
conditions, 290-293, 295

CURSOROPEN, 291
conditions, transactions, 292
items, 306-307, 347
items, FIELDTEXT, 347
items, SUBPATH, 307

predefined condition
definition, 491
EXISTS, 292
NULL, 292

predefined conditions
EXISTS, 295
IS MISSING, 293
IS NULL, 293
MISSING, 295
NULL, 295
RANGED, 292
RECORD EXISTS, 295
SQLOK, 292
TRANSACTION, 292

predefined conditions, EXISTS, 293
predefined-condition general term, 275
predefined-item general term, 275
predefined-value general term, 275
PREFIX ORACLE OPEN NAME resource file statement,

225
prepare phase

definition, 491, 495
prerequisites

running PowerHouse, 17
primary file

definition, 491
primary index

definition, 491
primary record-structure

definition, 491
printing

preventing extra blank lines, 135
procedural code

SQL using LINKVALUE function, 421
procedural-statement general term, 275

Index

PowerHouse Rules 513

procedure
definition, 492

procedures
FOR loop nesting, 306

PROCEDURES option
LIST statement, 213

process quotas
displaying, 40

processing
blocks of code, 184, 282
operators, precedence, 296

processing code
conditional compile statements, 80

PROCESSLOCATION function, 437
procloc program parameter, 145

returning values, 437
program parameter

definition, 492
program parameters, 67

auto, 75
autodetach, 76
blockmode, 77
broadcast, 78
bulkfetch, 79
cc, 80, 282
charmode, 81
checksum710, 82-83
close_detach, 84
columnowner, 85
commitpoints, 87
compress_buffers, 88
confirmer, 89
consolekeys, 90
createall, 91
createbase, 92
createfile, 93
cursorowner, 94
dbaudit, 96, 96-97
dbdetach, 98
dbwait, 99
dcl, 100
debug (QDESIGN), 101
debug (QUICK), 102
deleteall, 103
deletebase (MPE/iX), 104
deletefile, 105
designer_noretain, 106
detail, 107
dictionary, 108
dicttype (OpenVMS), 109
direct_file_base_zero, 110
disable_nulls, 111
dont_store_module, 112
downshift, 113
entering PDL, 27
entering PHDPDL, 28
entering QDESIGN, 20
entering QSHOW, 29
entering QTP, 24
entering QUICK, 21
entering QUIZ, 22
entering QUTIL, 30

program parameters (cont'd)
entering syntax, 67
entryrecall, 114
errlist, 115
fastread, 116
fdl, 117
initnulls, 118
intsize6, 119
jcwbase, 120
lineread, 121
list, 122
lockword, 123
moduleext, 124
moduleloc, 125
no line split (nls), 126
noautodetach, 76
noblobs, 127
nobreakset, 128
noconsolekeys, 90
nodbdetach, 98
nodbwait, 99
nodcl, 100
nodetail, 107
nofdl, 117
noinitnulls, 118
nointsize6, 119
nolist, 122
nonportable, 129
nontermcompat, 130
nontermcompat relationship with Axiant Build Profile

setting, 130
noomnidex, 137
noosaccess, 138
noowner, 131
noprefix_ownername, 132
noretainmark, 154
noreuse_screen_buffers, 155
nosetjobshow, 158
nosetwarnstatus, 133
noshift, 113
nostatistics, 159
notermpoll, 165
notimezone, 166
notpi, 167
notrusted, 168
nouicbrackets, 134
nxl (no extra line, 135
obsolete, 136
omnidex, 137
osaccess, 138
owner, 139
parmfile, 140
parmprompt, 141
patch, 142
pollspeed, 143
pre_chooseall, 144
proloc, 145
prompt, 146
qktrace, 147
quotedproccall, 149
read, 150
resetbindvar, 151

514 PowerHouse(R) 4GL Version 8.4E

Index

program parameters (cont'd)
resource, 152
restore, 153
retainmark, 154
reuse_screen_buffers, 155
search, 156
secured, 157
setjobshow, 158
statistics, 159
subdictionary, 160
subformat, 161
term, 162
termpoll, 165
timezone, 166
tpi, 167
trusted, 168
update, 170
upshift, 113
version, 171
vmsdate, 172

project-list general term, 275
prompt

definition, 492
prompt program parameter, 146
PROMPT resource file statement, 226
PROMPTOK predefined condition, 292
punctuation

eliminating, 434

Q
QDESIGN

blobs, 345
entering program parameters, 20
entering statements, 281
exiting, 20
functions, 359-481
running, 20

QKGO files
locating, 43

QKGO files in QUICK
locating, 43

QKGO parameter file
establishing, 75

qktrace program parameter, 147
QSHOW

entering program parameters, 29
exiting, 29
invoking from QDESIGN, QUIZ or QTP, 29
running, 29

QTP
displaying statistics, 25
entering program parameters, 24
error status settings, 24, 25
exiting, 24
reporting update activity, 26
running, 24
testing error status settings, 25
transaction, definition, 492

query-expression general term, 275
query-specification

definition, 492

query-specification general term, 275
question mark (?)

metacharacter, 351
QUICK

displaying null values, 347
entering program parameters, 21
running, 21
screen commands tables, 334

QUICK Debugger
running, 21

QUIT resource file statement, 227
QUIT statement, 20, 21
QUIZ

entering program parameters, 22
error status settings, 22, 23
exiting, 22
running, 22
subformat program parameter, 161
suppressing blank lines in reports, 135

quotedproccall program parameter, 149
QUTIL

entering program parameters, 30
exiting, 30
non-relational datatype mapping, 311
running, 30

R
RANDOM function, 438

seed general term, 438
random numbers

returning, 438
RANGED predefined condition, 292
rapid-fire entry

definition, 492
read program parameter, 150
read/write transaction

definition, 492
read-chain

definition, 492
read-only transaction

definition, 492
record

definition, 492
general term, 275
selective retrieval, 348
testing items for null values, 292

record buffer
definition, 492
returning audit trail status, 371

record complex
definition, 492

RECORD EXISTS predefined condition, 293, 295
record item

definition, 492
record items

testing for missing values, 293, 295
testing for null values, 293, 295

record numbers
zero-based, 110

record/tuple
definition, 492

Index

PowerHouse Rules 515

record-complex general term, 275
record-item general term, 275
RECORDLOCATION function, 439
records

items, 307
retrieving with SOUNDEX function, 457
returning audit trail status, 371
security, 381
settings summary status, 293
status, combinations, 293

record-structure
definition, 492
general term, 275

record-structures
setting assumed, 308

redefining
null value character, 347

redefinitions
converting for DISAM, 66

referencing
arrays, 284
arrays without subscripts, 285, 286
occurrences of arrays, 284

related record-structure
definition, 492

relational database
definition, 492
null values support, 347-349

relational datatypes
PowerHouse, 313-316
specifics, 316

relationships
definition, 493

remainders
returning, 427

REMOVECENTURY function, 440
repeat (>) metacharacter, 351
repeatable options

syntax symbol, 274
repeating index

definition, 493
repeating item

definition, 493
replacing

leading spaces with zeros, 481
substitution characters, 462

report
definition, 493

report security
definition, 493

report-group
definition, 493
general term, 275

report-item
definition, 493
general term, 275

report-name general term, 275
reports

returning current page number, 471
request

definition, 493

request status
determining at execution time, 26

required field
definition, 493

REQUIRED option
FIELD statement, 349

reserved metacharacters, 352
changing, 353

RESET BIND VARIABLES resource file statement, 228
resetbindvar program parameter, 151
resource file statements, 173-259

ALLBASE MODULE EXTENSION, 180
AUTODETACH, 181
BROADCAST, 182
BULKFETCH, 183
CC, 184
CHECKSUM710, 185
CLOSE DETACH, 187
COLUMNOWNER, 188
COMMITPOINTS OBSOLETE, 190
COMPRESS BUFFERS, 191
CONSOLE KEYS, 192
DATABASE, 193
DBAUDIT, 195
DBDETACH, 197
DBWAIT, 198
DEBUG, 199
DEFAULT CURSOR OWNER, 200
DESIGNER NORETAIN, 201
DICTIONARY, 202
DIRECTORY, 204
DISABLE NULLS, 205
ENTRY RECALL, 206
EXIT, 207
HPSLAVE EXTRA LINE, 208
HPSLAVE SPLIT LINES, 209
INITIALIZE NULLS, 210
INTEGER SIZE 6, 211
JCWBASE, 212
LIST, 213
LOCATION MODULE, 214
LOCATION PROCESS, 215
LOCKWORD, 216
NOBLOBS, 217
NONPORTABLE, 218
NOOMNIDEX, 222
NOOWNER, 219
NOSET WARN STATUS, 220
OBSOLETE, 221
OMNIDEX, 222
OSACCESS, 223
OWNER, 224
PREFIX ORACLE OPEN NAME, 225
PROMPT, 226
QUIT, 227
RESET BIND VARIABLES, 228
RESTORE LINES, 229
RETAIN MARK, 230
REUSE SCREEN BUFFERS, 231
RMS FAST READ, 232
RMS FILE BASE, 233
SET, 234

516 PowerHouse(R) 4GL Version 8.4E

Index

resource file statements (cont'd)
SETJOBSHOW, 235
SHIFT, 236
STATISTICS, 237
STORE MODULES, 238
SUBDICTIONARY, 239
SUBFORMAT, 240
summary, 173
TERMINAL, 241
TERMINAL BLOCKMODE, 244
TERMINAL CHARACTERMODE, 245
TERMINAL CONFIRMER, 246
TERMINAL POLLING SPEED, 247
TERMINAL READ, 248
TERMPOLL, 249
TIC RESOURCE FILE, 250
TIME ZONE, 251
TPI, 252
TRUNCATE PARM VALUES, 253
TRUSTED, 254
UIC BRACKETS, 256
UPDATE ORDER, 257
USE, 258
VMSDATE, 259

resource files
listing, 234

resource program parameter, 152
RESTORE LINES resource file statement, 229
restore program parameter, 153
restrictions

blobs treated as text items, 346
restructuring

messages, 271
results

comparison with null values, 297
RETAIN MARK resource file statement, 230
retainmark program parameter, 154
retrieving

data records with SOUNDEX function, 457
DISAM, 65

REUSE SCREEN BUFFERS resource file statement, 231
reuse_screen_buffers program parameter, 155
REVERSE function, 441
reversing

character strings, 441
REVISE statement

default list option, 213
list program parameter, 122
nolist program parameter, 122

RIGHT JUSTIFY|RJ function, 442
right parenthesis ()) metacharacter, 351
right-justification

characters in strings, 442
RMS FAST READ resource file statement, 232
RMS FILE BASE resource file statement, 233
rollback

definition, 493
rolling back transactions, 292
ROUND function, 443-445
rounded numbers

returning, 443-445

rounding
integer values downwards, 406
integer values upwards, 374

row
definition, 493
general term, 275

rules
entering program parameters, 67
exceptions, null values, 348
for entering conditional compile statements, 282

run
definition, 493

running
PDL, 27
PHDPDL, 28
QDESIGN, 20
QSHOW, 29
QTP, 24
QUICK, 21
QUICK Debugger, 21
QUIZ, 22
QUTIL, 30

running PowerHouse
prerequisites, 17

runtime message format
service layer, 270

S
save file

definition, 493
SAVE statement

locating files, 41
scaling

decimal alignment, 330-333
efficiency, 333
input, effect of calculations, 331
input, fractional amounts, 330
output, 330-333
stored values, 331

scaling factor
numeric items, default, 330

SCREENLEVEL function, 446
screen-name general term, 275
screens

establishing, 75
level number, 446

SEARCH option
SUBDICTIONARY resource file statement, 239

search option
subdictionary program parameter, 160

search program parameter, 156
searching

items, 308
SECOND extract-option

EXTRACT function, 404
SECOND general term

DATEEXTRACT function, 390
secondary record-structure

definition, 493
seconds general term, 275
secured program parameter, 157

Index

PowerHouse Rules 517

security
CHECKSUM function, 380
data records, 381
definition, 493
encryption, 402
returning logonid, 422

seed general term
RANDOM function, 438

segment
definition, 493

segment general term, 275
SELECTMODE predefined condition, 291
semicolon (;)

eliminating, 434
entering comments, 281

sequence
processing in pattern matching, 353

service layer message file
creating alternative, 269

service layer messages, 261, 265, 265-270
runtime format, 270

service message compiler, 268
SET resource file statement, 234
SET statement

ASSUMED option, 308
SET SUBFILE statement, 161, 240
SETDICTIONARY command session, 36
setjobshow program parameter, 158
SETJOBSHOW resource file statement, 235
SETSYSTEMVAL function, 447-450
setting up the PowerHouse environment

on MPE/iX, 18
on OpenVMS, 18
on UNIX, 18
on Windows, 19

SEVERITY statement
service layer message file, 266

shared memory management, 58
shared memory sections

deleting, 57
shell

accessing from PowerHouse, 138, 223
entering commands, 283

SHIFT resource file statement, 236
SHIFTLEVEL function, 451
SHOWDICTIONARY command, 38
SHOWPOWERHOUSE command, 39
SHOWQUOTA command, 40
SIGNED option

ZONED datatype, 323
significance

output conversion, 327
significant digits

representing floating point numbers, 318
SIGNONACCOUNT function, 452
SIGNONGROUP function, 453
SIGNONUSER function, 454
simple conditions, 295

modifying, 296
single

conditional compilation, 282
sitehook, 63

six-digit dates
converting eight-digit, 368
mixing with eight-digit dates, 368, 440

SIZE function, 455
sizes

blobs, 345
elements, 310
items, 310
logical, 310
returning string-expression, 455
storage, 310

slash (/)
division, 300

slave screen
definition, 493

sort-item
definition, 493
general term, 275

SOUNDEX function, 456-457
SOUNDEX option, 357
source file

definition, 493
SOURCE option

DEBUG resource file statement, 199
source option

debug program parameter, 102
source statements

establishing, 75
listing, 122, 213

spaces
adding between characters, 458
eliminating, 434
statements, 281

special character
definition, 493

special characters
ampersand (&), continuation character, 281, 282
arithmetic operators in numeric expressions, 300
at-sign (@) in conditional compile statements, 282
at-sign (@), continuation character, 282
operator in conditions, 289, 298
parentheses (), order of precedence, 296
percent sign (%), avoiding conflicting names, 281
semicolons (;), entering comments, 281
syntax, 273

specifying, 401
items addressed as character strings, 415, 416

specifying owners
ALLBASE/SQL database modules, 224
ORACLE database modules, 224
SYBASE database modules, 224
unqualified table name, 139
unqualified table names, 224

splitting
conditional compile statements, 282
statements, 281

SPREAD function, 458
SQL

conditions, 298-299
expressions, 303
NULL condition, 348
pattern matching, 356

518 PowerHouse(R) 4GL Version 8.4E

Index

SQL (cont'd)
procedural code using LINKVALUE function, 421

SQL option
LIST resource file statement, 213

SQLCODE
system function, 459

sql-conditions
general term, 275
HAVING option, query-specification, 298
WHERE option, query-specification, 298

sql-datatype general term, 275
sql-date-expression general term, 275
sql-date-literals

DATE, 303
INTERVAL, 303
TIME, 303
TIMESTAMP, 303

sql-expression general term, 275
SQLMESSAGE

system function, 461
sql-numeric-expression general term, 275
SQLOK predefined condition, 292
sql-operator general term, 275
sql-substitution general term, 275
sql-substitution-variable general term, 275
sql-summary-operations general term, 275
sql-syntax general term, 275
square brackets ([])

syntax symbol, 273
stacked syntax, 274
stacking

mutually exclusive options in syntax, 274
start screens

locating, 43
starting

position of substrings in strings, 414
statement

definition, 493
statements, 282

continuing, 281
EDIT, 286
entering, 281
EXECUTE, 42
EXIT, 21
GO locating compiled screens, 44
overflowing, 281
QUIT, 20, 21
splitting, 281
syntax, help, 17
USE, 42

statistics
displaying, 237
displaying in QTP, 25

statistics program parameter, 159
STATISTICS resource file statement, 237
status

audit trail, 371
of a request, 26
predefined conditions, Entry mode, 290
predefined conditions, Find mode, 290
returning code, 383

stopscreen
definition, 493

storage
conversion of values, 326, 326-329
forms of data, 309
size, 310

storage option
definition, 494

STORE MODULES resource file statement, 238
storing

binary numbers, 345
FREEFORM values, 320
numeric items, 331

string
definition, 494
general term, 275

string expression general term
INDEX function, 414

string expressions, 303
string-expression general term, 275
strings

appending with || in SQL, 303
appending with plus sign (+), 300
assigning to blobs, 345
centering characters, 375
character, converting numbers, 369
comparing to patterns, 424
concatenating, 300, 303
constructing phonetic code, 357
creating phonetic codes, 456-457
eliminating punctuation, 434
expressions, 300
extracting substrings, 465
finding substrings, 414
inverting, 441
left-justified, 420
operands in conditions, 289
packing, 434
removing trailing blanks, 474
returning checksums, 380
returning size, 455
reversing characters, 441
right-justified character strings, 442

subdict,Seesubdictionary
subdictionary program parameter, 160
SUBDICTIONARY resource file statement, 239
subfile, 161, 240

definition, 494
null values, 347

subfile format, 161
subfiles

locating, 44
subfilespec general term, 275
subformat program parameter, 161
SUBFORMAT resource file statement, 240
subordinate record-structure

definition, 494
SUBPATH

predefined item, 307
subquery

definition, 494
general term, 275

Index

PowerHouse Rules 519

subquery (cont'd)
general term, SQL, 298, 299

SUBSCREEN statement
procloc program parameter, 145

subscript
definition, 494
general term, 275

subscripting items, 285
SUBSTITUTE function, 462-463
substitution character

definition, 494
in message files, 267, 271

substitution characters
in message files, 264

substitution order
changing, 271

substitutions
replacing characters, 462

substitution-variable
definition, 494
general term, 275

SUBSTRING EXTRACT function, 465
SUBSTRING function, 464
substrings

extracting from strings, 465
locating within strings, 414

subtraction
minus sign (-), 300

SUM
sql-summary-operation, 305

SUM function, 466
summary

floating point types, 318
summary information

definition, 494
summary operations

SQL, 304
summary report

definition, 494
summing

entire arrays, 466
intermittent occurrences of arrays, 467
items in arrays, 466
subsets of arrays, 467

support
blobs, 345-346

suppressing
extra blank lines in QUIZ reports, 135

SYBASE
database modules specifying owners, 224

symbols
syntax, 273-274

syntax
abbreviating keywords, 281
definition, 494
explicit exclusion, 349
help, 17
indented, 274
obsolete messages, 136, 221, 239
program parameters, 67
special characters, 273
stacked, 274

syntax (cont'd)
symbols, 273-274

SYSDATE function, 468
SYSDATETIME function, 469
SYSNAME function, 470
SYSPAGE function, 471
system function

definition, 494
OCCURRENCE, 284
operands in conditions, 289
SQLCODE, 459
SQLMESSAGE, 461

system-function general term, 275
system-wide standards

definition, 494
SYSTIME function, 472

T
table/relation

definition, 494
table-name general term, 275
tables

item datatype defaults, 310
PowerHouse functions, 359-365
User commands, 342

tablespec general term, 275
templates

messages, 263
temporary item, 308

definition, 494
missing values, 293
null values, 293, 295, 347

temporary items
missing values, 295
null values, 295

temporary save file
definition, 494

temporary-item general term, 275
term

definition, 495
general term, 275
program parameter, 162

TERMINAL BLOCKMODE resource file statement, 244
TERMINAL CHARACTERMODE resource file statement,

245
Terminal Compatible property, 130
TERMINAL CONFIRMER resource file statemen, 246
TERMINAL POLLING SPEED resource file statement, 247
TERMINAL READ resource file statement, 248
TERMINAL resource file statement, 241
terminal-parameter option

term program parameter, 162
terminals

identifying, 435
returning type, 473
type when running QUICK, 162
types when running QUICK, 241

terminal-type option
term program parameter, 162

terminology, 275
termpoll program parameter, 165

520 PowerHouse(R) 4GL Version 8.4E

Index

TERMPOLL resource file statement, 249
TERMTYPE function, 473
termtype general term, 275
testing

error status settings in QTP, 25
error status settings in QUIZ, 23
locally active transactions, 292
missing values, 292
null values, 292, 293, 295
status of output, 293
stored values, 331
values, predefined conditional compilation, 282

testing for null values, 348
text

centering, 375
text file

definition, 495
text order numbers and substitution characters, 271
TIC RESOURCE FILE resource file statement, 250
TIME

sql-date-literal, 303
TIME datatype, 316
TIME general term

DATEEXTRACT function, 390
TIME ZONE resource file statement, 251
times

returning current, 472
TIMESTAMP

sql-date-literal, 303
timezone program parameter, 166

equivalent resource file statement, 166
titles

returning current dictionary, 470
TOP DOWN option

UPDATE resource file statement, 257
topdown option

update program parameter, 170
tpi program parameter, 167
TPI resource file statement, 252

 See also OMNIDEX resource file statement
trace files

naming, 147
trailing

blanks, 474
sign, input conversion, 326
sign, output conversion, 327
spaces, FREEFORM items, 320

trailing blanks
removing from strings, 474

TRANSACTION, 292
transaction

definition, 495
general term, 275

transaction commit
definition, 495

TRANSACTION IS ACTIVE predefined condition, 292
TRANSACTION IS INACTIVE

predefined condition, 292
TRANSACTION IS LOCALLY ACTIVE

predefined condition, 292
TRANSACTION option

LIST resource file statement, 213

transaction rollback
definitions, 495

transaction set
definition, 495

transaction start
definition, 495

transactions
committing, 292
predefined conditions, 292
rolling back, 292

TRUE
results, 297

TRUNCATE function, 474
TRUNCATE PARM VALUES resource file statement, 253
truncating

numeric items, 331
trusted program parameter, 168
TRUSTED resource file statement, 254
truth tables

boolean operations, 297
two-phase commit

definition, 495
type general term, 275
TYPE option

DICTIONARY resource file statement, 202
type-option general term, 275

U
UIC BRACKETS resource file statement, 256
UIC function, 475
unauthorized access

preventing, 402
underlining

examples of functions, 359
uninstalled dictionaries

accessing, 57
unique index

definition, 495
UNIX

QTP error status settings, 24
QUIZ error status settings, 22
setting up the PowerHouse environment, 18

UNSIGNED option
ZONED datatype, 323

UP option
ROUND function, 443
SHIFT resource file statement, 236

update activity in QTP, 26
UPDATE ORDER resource file statement, 257
update program parameter, 170
UPPER function, 476
uppercase

characters in syntax, 273
specifying, 477

uppercase characters
shifting to lowercase, 401

UPSHIFT function, 477
upshift program parameter, 113
usage

definition, 495
general term, 275

Index

PowerHouse Rules 521

usage general term, 275
use file

definition, 496
USE option

LIST resource file statement, 213
USE resource file statement, 258
USE statement

default list option, 213
list program parameter, 122
locating files, 42
nolist program parameter, 122
procloc program parameter, 145

User, 324
user

commands tables, 342
user break

definition, 496
user mode

definition, 496
user-defined

datatypes, SYBASE SQL Server, 324
USERID option

DATABASE resource file statement, 194
username

returning, 454
usernames

returning, 422

V
VALIDPATTERN function, 289, 478
value

definition, 496
general term, 275

values
allowed, input conversion, 326
monetary, specifying decimal currencies, 328
negative, displaying, 329
returning absolute, 367
returning NULL, 426, 429
returning using the procloc program parameter, 437
returning, buffers, 433
ROUND function, 443-445
rounding down, 406
rounding up, 374

VALUES option
FIELD statement, input scaling, 331

value-set general term, 275
VARCHAR datatype, 322
verbs

DO BLOB, 345
version of document, 2
version program parameter, 171
versioning

definition, 496
view

definition, 496
VMSDATE datatype, 322
vmsdate program parameter, 172
VMSDATE resource file statement, 259
VMSTIMESTAMP function, 479

W
warn option

debug program parameter, 102
nonportable program parameter, 129
obsolete program parameter, 136

warning messages
alternative, 264
confirmation by user, 89
locating, 261-262
nonportable, 129
returning text, 384

WARNING option
DEBUG resource file statement, 199
NONPORTABLE resource file statement, 218
OBSOLETE resource file statement, 221

WEBLOGONID function, 480
wild (@) metacharacter, 351
Windows

QTP error status settings, 24
QUIZ error status settings, 22
setting up the PowerHouse environment, 19

Y
YEAR extract-option

EXTRACT function, 404
YEAR general term

DATEEXTRACT function, 390
yy general term, 275
yyyy general term, 275

Z
ZDATE datatype, 323
ZERO option

ROUND function, 443
zero-based

record numbers, 110
ZEROFILL function, 481
zeros

dividing by, 300
replacing leading spaces, 481

ZONED datatype, 323, 330
fractional amounts, 330

522 PowerHouse(R) 4GL Version 8.4E

Index

	PowerHouse Rules
	Table of Contents
	About this Book
	Overview
	Conventions in this Book
	Getting Help
	Cognos PowerHouse 4GL Documentation Set
	Cognos PowerHouse Web Documentation Set
	Cognos Axiant 4GL Documentation Set

	Chapter 1: Running PowerHouse
	Before Running PowerHouse
	Getting Help
	Setting Up the PowerHouse Environment
	MPE/iX
	OpenVMS
	UNIX
	Windows

	Running QDESIGN
	Running QUICK
	Running QUIZ
	Running QTP
	Running PDL
	Running PHDPDL (OpenVMS)
	Running QSHOW
	Running QUTIL
	PowerHouse Commands (OpenVMS)
	@SETPOWERHOUSE (OpenVMS)
	POWERHOUSE (OpenVMS)
	SETDICTIONARY (OpenVMS)
	SHOWDICTIONARY (OpenVMS)
	SHOWPOWERHOUSE (OpenVMS)
	SHOWQUOTA (OpenVMS)
	Locating Files
	Locating the Data Dictionary
	How the BUILD and SAVE Statements Locate Files
	How the EXECUTE and USE Statements and auto Program Parameter Locate Files
	Locating Start Screens or QKGO files in QUICK
	How the GO Statement Locates Files
	Locating Subfiles
	Locating ODS5 File Names (OpenVMS)

	Designated Files
	PDC Shared Dictionary (OpenVMS)
	Introduction
	Requesting Dictionary Installations
	Shared Memory Configuration

	PHD Shared Dictionary (OpenVMS)
	PDL Shared Dictionary (UNIX)
	Installing Your Dictionary
	Shared Memory Management

	Mailbox Support in PowerHouse (OpenVMS)
	Creating a Temporary or Permanent Mailbox
	Temporary Mailbox Application
	Permanent Mailbox Application
	Using Mailboxes to Pass Source Statements
	Mailboxes and System Crashes

	sitehook (OpenVMS)
	Large File Support (UNIX, Windows)
	DISAM Data Storage (Windows)

	Chapter 2: Program Parameters
	About Program Parameters
	Summary of Program Parameters
	auto
	autodetach|noautodetach
	blockmode (MPE/iX)
	broadcast (OpenVMS)
	bulkfetch
	cc
	charmode
	checksum710 (OpenVMS)
	close_detach
	columnowner
	commitpoints
	compress_buffers
	confirmer
	consolekeys|noconsolekeys (Windows)
	createall
	createbase (MPE/iX)
	createfile
	cursorowner
	dbaudit
	dbdetach|nodbdetach
	dbwait|nodbwait
	dcl|nodcl (OpenVMS)
	debug (QDESIGN)
	debug (QUICK)
	deleteall
	deletebase (MPE/iX)
	deletefile
	designer_noretain
	detail|nodetail
	dictionary|dict
	dicttype|dt (OpenVMS)
	direct_file_base_zero (OpenVMS)
	disable_nulls
	dont_store_module
	downshift|upshift|noshift
	entryrecall
	errlist
	fastread (OpenVMS)
	fdl|nofdl (OpenVMS)
	initnulls|noinitnulls
	intsize6|nointsize6 (OpenVMS)
	jcwbase (MPE/iX)
	lineread (MPE/iX)
	list|nolist
	lockword (MPE/iX)
	moduleext (MPE/iX)
	moduleloc (MPE/iX)
	nls (no line split) (MPE/iX, UNIX)
	noblobs
	nobreakset (MPE/iX)
	nonportable
	nontermcompat (Windows)
	noowner
	noprefix_ownername
	nosetwarnstatus (OpenVMS)
	nouicbrackets (OpenVMS)
	nxl (no extra line)
	obsolete
	omnidex|noomnidex (MPE/iX)
	osaccess|noosaccess
	owner
	parmfile (OpenVMS, UNIX, Windows)
	parmprompt
	patch
	pollspeed (MPE/iX)
	pre_chooseall
	procloc
	prompt
	qktrace
	quotedproccall
	read (MPE/iX)
	resetbindvar|noresetbindvar
	resource
	restore
	retainmark|noretainmark
	reuse_screen_buffers|noreuse_screen_buffers
	search
	secured
	setjobshow|nosetjobshow (Windows)
	statistics|nostatistics
	subdictionary|subdict
	subformat
	term
	termpoll|notermpoll (MPE/iX, OpenVMS)
	timezone|notimezone (MPE/iX)
	tpi|notpi (MPE/iX, HP-UX, Windows)
	trusted|notrusted (OpenVMS)
	update
	version
	vmsdate (OpenVMS)

	Chapter 3: Resource File Statements
	About Resource File Statements
	Summary of Resource File Statements
	ALLBASE MODULE EXTENSION (MPE/iX)
	AUTODETACH
	BROADCAST (OpenVMS)
	BULKFETCH n
	CC
	CHECKSUM710
	CLOSE DETACH
	COLUMNOWNER
	COMMITPOINTS OBSOLETE
	COMPRESS BUFFERS
	CONSOLE KEYS (Windows)
	DATABASE
	DBAUDIT
	DBDETACH
	DBWAIT
	DEBUG
	DEFAULT CURSOR OWNER
	DESIGNER NORETAIN
	DICTIONARY
	DIRECTORY (UNIX, Windows)
	DISABLE NULLS
	ENTRY RECALL
	EXIT
	HPSLAVE EXTRA LINE
	HPSLAVE SPLIT LINES (MPE/iX, UNIX)
	INITIALIZE NULLS
	INTEGER SIZE 6 (OpenVMS)
	JCWBASE (MPE/iX)
	LIST
	LOCATION MODULE (MPE/iX)
	LOCATION PROCESS
	LOCKWORD (MPE/iX)
	NOBLOBS
	NONPORTABLE
	NOOWNER
	NOSET WARN STATUS (OpenVMS)
	OBSOLETE
	OMNIDEX (MPE/iX)
	OSACCESS
	OWNER
	PREFIX ORACLE OPEN NAME
	PROMPT
	QUIT
	RESET BIND VARIABLES
	RESTORE LINES
	RETAIN MARK
	REUSE SCREEN BUFFERS
	RMS FAST READ (OpenVMS)
	RMS FILE BASE (OpenVMS)
	SET
	SETJOBSHOW (Windows)
	SHIFT
	STATISTICS
	STORE MODULES
	SUBDICTIONARY
	SUBFORMAT n
	TERMINAL
	TERMINAL BLOCKMODE (MPE/iX)
	TERMINAL CHARACTERMODE
	TERMINAL CONFIRMER
	TERMINAL POLLING SPEED (MPE/iX)
	TERMINAL READ (MPE/iX)
	TERMPOLL (MPE/iX, OpenVMS)
	TIC RESOURCE FILE (UNIX, Windows)
	TIME ZONE (MPE/iX)
	TPI (MPE/iX, HP-UX, Windows)
	TRUNCATE PARM VALUES
	TRUSTED (OpenVMS)
	UIC BRACKETS (OpenVMS)
	UPDATE ORDER
	USE
	VMSDATE

	Chapter 4: Messages in PowerHouse
	PowerHouse 4GL Messages
	Service Layer Messages
	How the Service Layer Locates Message Files
	Format of a Default Message File
	Service Message Compiler

	Designer Messages
	Text Order Numbering

	Chapter 5: PowerHouse Language Rules
	Syntax Symbols in PowerHouse
	Uppercase and Lowercase
	Square Brackets
	Braces
	Ellipsis
	Or-Bars
	Stacked Syntax
	Indented Syntax

	General Terms in PowerHouse
	Entering Statements
	Abbreviating Keywords
	Avoiding Conflicts Between Keywords and Record or Item Names
	What Happens When You Enter Statements
	Entering Comments
	Entering Conditional Compile Statements
	Operating System Commands

	Arrays in PowerHouse
	Using Arrays in QDESIGN
	Subscripting in QUIZ and QTP
	Using Arrays in QUIZ
	Using Arrays in QTP

	Conditions in PowerHouse
	Logical Function
	Logical Expression
	Predefined Conditions in QDESIGN
	Predefined Conditions in QTP
	Predefined Conditions in QUIZ
	Simple Conditions
	Compound Conditions
	Modifying Simple and Compound Conditions
	Conditional Command List
	Conditions and NULL Values

	Conditions in SQL
	sql-expression operator {sql-expression|subquery}
	sql-expression operator {ALL|SOME|ANY} subquery
	columnspec [NOT] LIKE 'sql-pattern' [ESCAPE 'character']
	columnspec IS [NOT] NULL
	sql-expression [NOT] IN (value, value[...])|subquery
	[NOT] EXISTS subquery

	Expressions in PowerHouse
	String Expressions
	Numeric Expressions
	Date Expressions
	Conditional Expressions
	Case Processing

	Expressions in SQL
	String Expressions
	Numeric-Expressions
	Date Expressions
	SQL Case Processing
	Expressions within Program Variables

	SQL Summary Operations
	Items and Datatypes in PowerHouse
	Defined Items
	Global Temporary Items (QTP)
	Predefined Items (QDESIGN)
	Record Items
	Temporary Items
	How QDESIGN Searches for Items
	How QTP Searches for Items
	Item Types
	Item Datatypes
	Item Sizes
	Non-Relational PowerHouse Datatypes
	Relational PowerHouse Datatypes (Part 1)
	Relational PowerHouse Datatypes (Part 2)
	Relational Datatypes Specifics
	BLOB Datatype
	CHARACTER Datatype
	DATE Datatype
	DATETIME Datatype
	FLOAT Datatype
	FREEFORM Datatype
	INTEGER Datatype
	INTERVAL Datatype
	JDATE Datatype
	NUMERIC Datatype
	PACKED Datatype
	PHDATE Datatype
	VARCHAR Datatype
	VMSDATE Datatype (OpenVMS)
	ZDATE Datatype
	ZONED Datatype
	User-Defined Datatypes

	ORACLE Synonyms in PowerHouse
	Limitations to PowerHouse Statements

	Attributes of Numeric Elements
	The Input Conversion Process
	Default Assumptions Governing Input
	The Output Conversion Process
	Default Assumptions for Display Attributes
	Specifying Decimal Currencies
	Displaying Negative Values
	Multiplication and Percentage Calculations

	Decimal Alignment and Scaling
	Conditions and Scaled Values
	VALUES Options and Scaled Values
	Calculations and Scaled Values
	Floating Point Calculations
	Examples of Calculations
	Notes on Scaling Efficiency

	QUICK Screen Commands
	Using Screen Commands in Command Lists
	Action Commands:
	Data Commands:
	Action Bar Commands
	Field Marking Commands
	Line Edit Commands
	Menu/List/Selection Box Commands
	Popup Commands
	System Commands
	Text Edit Commands

	Blob Support in PowerHouse
	Using Blobs in PowerHouse Expressions
	Using Blobs
	Restrictions on Blobs

	Null Value Support in PowerHouse
	Enabling Null Value Item Initialization
	Automatic Item Initialization
	Entering and Displaying Null Values
	Assigning Null Values
	Testing for Null Values
	Operating on Null Values in PowerHouse
	Selective Record Retrieval Based on Null Values
	Controlling Null Value Entry in QDESIGN

	Pattern Matching in PowerHouse
	Types of Characters Used in Pattern Matching
	Types of Patterns
	Formal Pattern Matching Syntax
	Example Patterns

	Pattern Matching in SQL
	Using the SOUNDEX Option
	SOUNDEX Option Rules

	Chapter 6: Functions in PowerHouse
	About Functions in PowerHouse
	Summary of PowerHouse Functions
	ABSOLUTE
	ADDCENTURY
	ASCII
	ATTRIBUTE
	AUDITSTATUS
	Bit Extract
	BITEXTRACT
	CEILING
	CENTER|CENTRE
	CENTURY
	CHARACTERS
	CHARACTER_LENGTH|CHAR_LENGTH
	CHECKSUM
	COMMANDCODE
	COMMANDMESSAGE
	COMMANDSEVERITY (OpenVMS)
	COMMANDSTATUS (OpenVMS)
	CONTENTS
	DATE
	DATEEXTRACT
	DAYS
	DECIMALTIME
	DECRYPT
	DELETESYSTEMVAL (MPE/iX, UNIX, and Windows)
	DELETESYSTEMVAL (OpenVMS)
	DOWNSHIFT
	ENCRYPT
	EXTRACT
	FIRST
	FLOOR
	FORMATNUMBER
	GETSYSTEMVAL (MPE/iX, UNIX, and Windows)
	GETSYSTEMVAL (OpenVMS)
	INDEX
	HEXDECODE Function
	HEXENCODE Function
	INTERVAL
	JCW (MPE/iX)
	LASTDAY
	LEFT JUSTIFY | LJ
	LINKVALUE
	LOGONID
	LOWER
	MATCHPATTERN
	MATCHUSER
	MISSING
	MOD
	NCONVERT
	NULL
	OCCURRENCE
	OCTET_LENGTH
	OLDVALUE
	PACK
	PORTID
	POSITION
	PROCESSLOCATION
	RANDOM
	RECORDLOCATION
	REMOVECENTURY
	REVERSE
	RIGHT JUSTIFY | RJ
	ROUND
	SCREENLEVEL
	SETSYSTEMVAL (MPE/iX, UNIX, and Windows)
	SETSYSTEMVAL (OpenVMS)
	SHIFTLEVEL
	SIGNONACCOUNT (MPE/iX)
	SIGNONGROUP (MPE/iX)
	SIGNONUSER
	SIZE
	SOUNDEX
	SPREAD
	SQLCODE
	SQLMESSAGE
	SUBSTITUTE
	SUBSTRING
	Substring Extract
	SUM
	SYSDATE
	SYSDATETIME
	SYSNAME
	SYSPAGE
	SYSTIME
	TERMTYPE
	TRUNCATE
	UIC (OpenVMS, UNIX)
	UPPER
	UPSHIFT
	VALIDPATTERN
	VMSTIMESTAMP (OpenVMS)
	WEBLOGONID
	ZEROFILL

	Glossary
	Index

