Whisper Programmer Studio 3
User Guide

The powerful integrated visual development environment for
server based programming.

Copyright

0 1997-2000 by Whisper Technology Limited. All rightsreserved. No part of this
manual may be copied, photocopied, reproduced, trandated or converted to any
electronic form in whole or in part without prior written approval of Whisper
Technology Limited.

Trademarks

All trademarks are the property of their respective companies.

Third Edition, June 2000

Whisper Technology Limited
25-29 High Street
Leatherhead

Surrey KT22 8AB

United Kingdom

Contents

Installing the SOftwareccccoovv i 1
Installing Programmer StUIO........ccceceveieiise et eneas 1
Installing the SErver SOftWEaIEcocvce v 2
Introducing Programmer Studioccooevieieiiiiiiiiiiiiiiieeeeeeee 3
Programmer StUio CONCEPLooverueieeieeee e 3
Integrated Visual Development ENVIFONMENEccccoieiererenenienieeiee e e 3
ProjECt WOIKSDECEc.veveieiie ettt sttt sne e 4
CO0E EAITON ...ttt s 4

(@70 14010 AT o oS 4
COMMEANG LINE.....uiiiiiiiirieietesie ettt bbb 5
0= S 1 o S 5
ViSUal File COMPAIEooeieieeeieeeeie ettt et sae e e se e e sae s 5
Information for Experienced Windows USEN'Sccoeerinerineneneeee e 5
Getting STArt@U.......uuuieiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeee e 7
USING the ProjeCt WIzZard.........ccveueeeeeeescse st 7
Code Editor TemMPIatesccoovviiiiiiiiiiiee e 9
Introducing Code Editor TEMPIELES.ccoiiiieieeeese e 9
Supported Programming LANQUAGEScooeeruereerieriereeieeseese e seeseeeeseesie e sneeneens 9
(0010 (] \\F= Y/ o =1 o ST RRS 10

LI 10101 GRS 10
CUSLOM EdItOr SEiNGS.....cveieiiecieeeiesiese sttt sre e 13
Substituting TabS With SPACEScovevveii e 13
Defining Tab StOP POSItIONSccciiiicieieseee s 13
Files Containing Line NUMDEY'S.........ccoviiiiieiecie et n s 14
AUtomMatic RENUMDBEITNGccveeieiee e 14
Intelligent RENUMDEITNG.........ooiiie e 14
Line NUMDEr POSITIONcouiiieieeeee ettt s 15
COBOL LiNE TAUUING ..+ eueeueeeereentereeetereeeeseessestesuesseseeeessessessessessesseessessessessessesses 15
Defining a Standard Tag SENG.......coeeeeeereere e 15
Defining aProject File Tag Stringccoeverereieeeneeeee e 16
Using Date Variablesin Tag StNgS.......cocevereverenesesesseeieseesese e sse e esesneeens 16
Creating New Code Editor TEMPIALES.cccveeeeeeereereseseese e ereseeseese e sreenes 17
Using Code Editor TEMPIALES......cc.cieririeiesireeeeieesies e see e sse e st ste e s eeeneas 18
WOrking With FileS ... 19
OPENING FITES.....ee ettt et a et e e e e sne e 19
RUIESWIZAIT. ...ttt st eneas 20

Contents i

Creating NEW FilES.......ooi e 23

SAVING FITES. ..t et et e e et e 24
Using the Code EditOr.....ccooeeeiiiiiiiiiiiee e 27
Scrolling the Editable Areaand Moving the Insertion Point.........cc.cccoveveveevcnenne 27
Moving the Insertion Point to a SPeCIfic LiNe......cccveveverere v 28
0] o [O[S 28
S = o o 1= 28
UNAOING MISEBKES. ...t s 29
Moving, Copying and Pasting TeXEccceoeieiinene e 29
Drag-and-Drop EQitiNgccocoeiirereeeeieiee e 30
ViSUBl ETEIMENES ...ttt st sbe et e e e e e see e 31
TEXE RUIEY ...ttt st st st ne e e e 31
Virtual Line NUMDEIS........co ittt s 31
= = o (0 I\ = o1 32
Bracket and Brace MatChing........cccveceeieriniese e 32
Selected RaNGE TOOI-TIPS.....coverviieieeeeeeresees e s et e e e sae e 33
Finding and REPIACING TEXLccveieieeieeeeeere et 34
T 0T [T To T = RS 34
REPIACTNG TEXL ...ttt et sae e nee e 35
SEAICH OPLIONS. ...ttt e b et se e e 36
Advanced Search Criteria.ue oo 37
USiNg RegUIAI EXPIrESSIONS.......coiviriiierieeieeieieseesie st see s eeeeseesteseesae e eeeeeseeseas 38
Predefined Compound EXPreSSIONS..........coeieeerieerierieneseseesiee e see e seeseeeeseeseas 41
007 1T o T = USSR 41
(O gTo T To Y O S 41
Change COlUMNS......c..ocviiiieeeeeeee st ae st st reeneeaa e e enee s 43
ConVert TabST0 SPACES......ceevereerieiiseseeeesee e e et e et e e e saesee s e 44
Comment and UNCOMIMENEevruerieieirieieesieieesesee st 45
AQVENCEH FEALUMES ..ottt sttt 46
BOOKIMEIKS......oieiiitiiieiieti ettt ns 46
Named BOOKMEIKSc..ooiiiiieieee et 47
Moving to Specific Position in the Code Editorcccoooeiiienenienceieeiee e, 48
Open File UNAEr CUMSOcoeieieeeeeeeeie ettt sbe e see e e e e e e 49
FilE PrOPartiESooe ettt et sa e sne s 49
Changing Tah SIZE......ccooeeieeee e e 50
Changing the Format of @Fil€.......cccucveiieieiirse s 50
Changing the Code Editor Template.........ccoveveveienineseeeecese e 51
MPE/iX and Robelle Qedit FilES.........cocoviiieeiericece et 51
11T P 52
Additional Print OptioNS..........cccveeeieieeesesese s sae e sre e 52
The Code NaVIgator. ... 55
Introducing the Code NaVIQaLOciererieee e 55
ViSUBI COMPONENESeveviiterieeete ettt ettt sttt st st s be e 55

i Contents

SETUCLUNE VIBW ittt ettt e s sttt e s e et e e s e ta e e s sbe e e s sabasssnaneessabeness 56

[INF= YKo = (o g o] 7= | (OO RUTRR 57

[N E= Y7o = (o T o SR 58
Developing ProjecCts ... 59
UNderstanding ProjECES.ccvieeirieiesesese st se e s e st s e seesae e nneas 59
[o= 0] o [59
The ProjeCt WIiNAOWcccveiieiieiisierectesieeeee st ettt e s 59
PrOJECE SEHINGS.eiee ittt b et e e e b nne 59
Adding, Moving and Removing Files and Folders............ccoovorieienininieninieciee 61
Adding Files and Foldersto the Projectcooeiiieiineie e 61
Moving and Removing Foldersand Fil€S.........cccoiiiiininiinieee e 62
SErUCEUNTNG Y OUF PrOJECE.....cviiei ettt s 63
ProjeCt HIerarChyccocueciceceesese e s 63
Relative vs. ADsolute File LOCALIONS........cccoereeereirie e 64
(UL T alo . o= o] o (= S 66
Compiling YOUT FIl@S ... 69
Compile and Build COmMMaNGS...........cocorirerirerieienie e e 69
ComMPIlING BFITE....c.eeeeee et 69
Command VariabIEs..........ooi et 71
Folder Compile COMMANGScocvieieriie e e s eneas 71
BUIl COMMANGS.....c.eoeiitiieieiereee et 73
COMPIEN RESUITS ...ttt et e s a et saesrenneeneenes 73
Compiler OULPUL MASKS.......ccereeierieriesiesiesteseeee e sies e ste e esaeseesse e snesresseeneenes 73
Using Compiler OULPUL MASKS........ccceiuereieereeieiesieseesieseesresesseeeessenseseessessesnens 75
Examining RESUItING EITOrS........ccoveieiiie e e e sne s 76
Integrated DebUQQiNg ...ccouveiiiieiei e 77
Requirements and Supported DEDUGJENS.......ccevrrrereeeereesesesiesreeeesiesresiesnesseeseenes 77
HOW I WOTKS .t sttt 78
WOTKING MOGEL ..o 78
USING TELNET «.oetice et sttt st 78
LT 1] 10 RS = 11 =0 [P 79
Selecting your Debug SEttiNgS.......coeeereeieeree e 79
Project DebUg SELtINGScoeeeee et 80
LT 01 | SRR 80
=T o] o [P 82
AGVANCE ...ttt et h e a et e et e e ae e 83
TELNET SeSSION WiZardcccoiiiieiiiiiie et 85
(D= 010001010 JF= 1 (070 - 4 SR 88
Setting BreakPOiNtS. .. .ocvvieeeeeieeeiesese et e e sae e st sre s ae e et snesreenas 88
Starting a DEBUQY SESSTIONccuveieeriecieceseeee e nes 90
Controlling the DebUg Targetcoveeveeevere e e 20
ENding a DEbUQ SESSION.........ccieieeee et eee s 93

Contents iii

Accessing the REMOte DEDUGGEYceeereeee e 94

Terminal EMUIALTONcooiieiecie ettt 94
TRAX COBOL ...viveeecteeeeeeeee s eeeae s snas s s sen s ens s sen s sensesnaanes 95
Visual File COMPAre ...cooovvviiiiii e e e 97
COMPANTNG FIIES ..ot e e s 98
CoMPAriSON RESUILS......ccueiiiieeeiciese e e e sne e 100
SYNChIONIZING FIlESoveeeeeesec e 100

P AV @1= o @ oo = TSSO 100
Using FiNd IN FIleS. ... 103
Remote Command LiNeccoooeiiiiiiiiiiiii e 105
Regular Expression Charactersccoveevvveeeiiiviinieeeeeeeennnns 107
7-bit ASCIl Character Set........ccooivieiiiiiiiieeeie e 109

iv Contents

1

Installing the Software

Programmer Studio presents a brand new way to devel op enterprise-wide applications
from a single workstation. It combines the ease of use and speed of a standard
Windows based visual development environment with the power and flexibility of
native server operating systems.

Using Programmer Studio you can construct a model of your development

environment using a project hierarchy, edit source files and compile within asingle
environment.

Installing Programmer Studio

Programmer Studio is essentially a client/server development environment, requiring
server-based software to provide access to files and a command line.

Theinstallation program is largely self-explanatory. Simply follow the instructions
presented by the installation program.

The Programmer Studio CD-ROM is AutoPlay enabled. If your system supports
AutoPlay, simply insert the CD-ROM and the set-up browser will be launched
automatically.

If your system does not have AutoPlay, follow these instructions:
To install Programmer Studio

1 Insert the Programmer Studio CD-ROM

2 Open the My Computer folder from the desktop

3 Click on the CD-ROM icon and select Open from the File menu
4 Launch SETUP.EXE to start the installation program

Note To install Programmer Studio from diskette, follow the instructions above,
selecting the floppy drive icon instead of the CD-ROM icon in step 3.

Installing the Software 1

Installing the server software

Full instructions on installing the server software can be found in the online help
documentation that is installed with Programmer Studio.

2 Chapter One

2

Introducing Programmer Studio

Welcome to Programmer Studio — the powerful integrated visual development
environment for server based programming. Using Programmer Studio, you can
structure, edit, and compile your programs without leaving Windows.

Programmer Studio Concept

Programmer Studio introduces a new concept in devel oping server-based applications.
Using the popular Windows environment, Programmer Studio provides the ability to
edit files and compile programs from a familiar integrated devel opment environment.

Programmer Studio uses the familiar two-tier client/server paradigm, a Windows
based development environment (IDE) and server based file transfer and command
execution; together providing an powerful integrated visual devel opment environment
for server based programming.

Integrated Visual Development Environment

Programmer Studio has been designed to include many of the familiar features found
in common windows based development tools. The user interface uses the standard
controls found in windows applications to reduce the learning curve for those
programmers new to Windows based development.

This section describes the different elements of the programming environment. While
not all immediately visible, these components are the basis for Programmer Studio.

Introducing Programmer Studio 3

#% HPIX - Whisper Programmer Studio - [/WTRSH/C/DEMOS]

Fille Edit “iew Inset Format Project Tooks ‘window Help

|a-leBE 2Rk o esa

[HPIX files = [Edter | b Stueture
1 Dependancies
G Esternal Files
-] Inchude Files <% Main function *-
Ea Source Files woid main{ short sikirgl, char #pszArgV[])
: {
ER="I <% Function data Declarations #7
char szlnput[33]:
e JEL
[EQ Powethouse A% Function entry point *7
20 5P is ner("Welcome". 1 3
B
/% hooept DisplayBanner(char * pszText)
printf{ "“nEnter up to 32 characters: " };

~# THIS LINE CONTAINS AN ERROR #*-
getsi(szlnput):

<% Diszplay what we got =
printfi{ "~nACCEPTED: “"Hs\"“n', szlnput):

error 1619: Too m qunents for "Dis

ccomxl . pu]

Program terminated in an error state. (CIERR 976)
ERROR IN COMPILE, NO LINK DONE

END OF LINK

»» Command completed

>
5 | >|\ Output Finit Find in Files /

Connected Ln 22, Col1 ’m’m RE ~

The Programmer Studio visual development environment

Project Workspace

The project workspace window provides the focal point for development using
Programmer Studio. Y ou can structure the project to reflect the organization of your
existing files and directories, to identify specific components, or a combination of the
two.

Code Editor

The Code Editor isafully featured editor where you will be spending most of your
development time. The Code Editor provides many powerful features such as color
syntax highlighting, auto-indenting, virtually unlimited undo/redo and numbered line
support for languages such as COBOL.

Output Window

The output window provides real-time output from server based compilers offering the
ability to cancel at any time. Using Compiler Output Masks, the output can then be
parsed allowing the user to examine the location of any errors following the compile.

4 Chapter Two

Command Line

The Command Line provides limited access to the server command line. Itisnot a
terminal emulator and is intended solely for starting programs that do not require
further input and only generate simple output.

Project Settings

The Project Settings dialog is used to set the properties of each component of your
project. Thisincludes the connection details, file names, locations and compiler
commands.

Visual File Compare

Visual File Compare provides a conduit to external command line comparison utilities
displaying the results as a split-screen view of both files.

Information for Experienced Windows Users

If you are an experienced user of Microsoft Windows, you will find that Programmer
Studio conforms to many of the text editor standards found in other Windows based
development environments.

¢ Project oriented development model and environment

¢ Color syntax highlighting and Tool Tips

¢ “What'sThis?’ context sensitive help in al dialog boxes
¢ Context menu for most visual items.

¢ Standard Properties command for most visual items.

Introducing Programmer Studio 5

3

Getting Started

The concept of project based program development is central to Programmer Studio's
visual development environment. Each project determines how to connect to the
remote server, the files, and commands to compile the program.

To help you get started, Programmer Studio has a project wizard that will create a new

project from the answers to afew simple questions. The wizard isintended for use by
new and experienced users alike.

Using the Project Wizard

Before creating a new project, check that the server software is running and that you
have details of the server address (DNS name or | P address), port number, and login.
Y our system administrator will be able to confirm this information for you.

This chapter will describe in detail each step in the project wizard, from selecting a
programming language through connecting to the server and finally adding some files
to your new project.

The project wizard is simply the first step in creating a project. All the options
selected using the wizard can be easily changed within the project settings.

To create a new project using the wizard

1 From the File menu, select New Project.

2 Determine the programming language(s) of the files that will be included
in the project.

From the list, check each compiler that will be used with the project.

Enter the DNS name or IP address and port number or the server, and
then click Next.

5 Enter your user name and password, and then click Next.

Enter the project root folder. This is the location in which the majority of
your project files are located, and then click Next.

Getting Started 7

7 Click Add and Remove to determine which files to initially add to the
project.

8 Click Finish to create the new project.

Note When connecting to MPE/i X servers, the project wizard will prompt for
MPE/iX UDC and HPFS support. If you are unfamiliar with either of these terms
please contact your system administrator.

8 Chapter Three

A

Code Editor Templates

Programmer Studio supports many of the popular programming languages including
Basic, C, C++, COBOL, Fortran, Pascal, etc, etc. Each language has its own specific
reguirements for content editing, syntax highlighting, line numbers and formatting.

To support these many variations, Programmer Studio uses Code Editor Templates to
identify the options that are required on a language-by-language basis.

Introducing Code Editor Templates

Using Code Editor Templates, it is possible to define the settings to be used when
editing files for each specific programming language or task. The settings provided by
the templates are: -

¢ Custom editor settings, smart indenting, tab size, tabs to spaces, etc

¢ Support for languages using line numbers

¢ Language syntax definition and keyword lists

¢ Code Navigator support and context sensitive help

¢ Fileformat options, removing trailing spaces, line lengths, COBOL Tokens, etc

¢ Specific support for MPE/iX files

Asyou can see from the number of different options, it is very important to determine
which Code Editor Template you wish to use BEFORE you begin to edit your files.

Supported Programming Languages

Programmer Studio comes with a number of standard templates for C, COBOL, Java,
Pascal, Basic, etc, etc. These templates are intended to provide the most common
options for each language allowing you to get started without having to create your
own personal templates.

Code Editor Templates 9

In many cases the standard templates are configured to work with the most common
compilers given the platform and language. For example, the ANSI — COBOL
template has the option to “Insert tabs as spaces’ turned on, because many of the
COBOL compilersin use today do not support the use of the tab character for
formatting.

Code Navigator

Code Templates also determine which Code Navigator to use to provide a virtual
‘map’ of thefile being edited. The Code Navigator is discussed in greater detail in
Chapter 7.

Template Manager

Programmer Studio provides a Template Manager to alow viewing and editing of the
many different templates that are currently installed. It is recommended that you
examine the settings for each Code Editor Template you intend to use befor e you
begin editing.

To view the Code Editor settings for a specific template

1 From the Tools menu, select Code Editor Templates

2 From the Available Templates list, select the specific template

10 Chapter Four

Code Editor Templates 2| x|

g Ansi - Basic - General I Lire Murnbers I Syrtas I
Kewwords | Compier | Advanced | MPEAR

g Ans - COBOL

& Ansi- COBOL'SS Feyyord Shyle: I'I - Standard Keywaords j

@ Ansi - Fortran Hdefing "

@ AHinsi - Pascal ttelze

@ Ansi- RPG felit j

@ Arsi- SOLI2 Rendi

& CLIPS 6.1 o

@ Cognos - Powerhouse 7.03 Hifndef

@ Coagnos - Powerhouse QTP Hinclude

Cogrniog - Powerhouze Quick Htinclude

@ Cognog - Powerhouze Quiz EELadgeTa ﬂ

@ DISC - Omnidex Enviranment Catalog

&% Hewlett Packard - Allbase/SOL DDL ¥ kepwords are case sensitive

8. Moot Prack el - Ry sineos Bosie 2] ™ Partial keyword matching from IU_ characters

Mew... | Delete Cop... |

Cloge

The Template Manager displaying the Keyword properties for the ANS C template

The Template Manager is divided into two parts, alist of available templates to the
left, and the settings for the currently selected template to the right. Asthe selectionin
the Available Templates list changes, the contents of the tabs to the right will be
updated.

The template settings are grouped into 6 sections: -

General

The Editor tab provides options to override the standard Code Editor options found in
the Options dialog box. These include tab size and formatting, smart indenting etc.

Line Numbers

The Line Numbers tab provides support for files containing line numbers. These
features include automatic and intelligent renumbering, sequence, alignment, etc.

Syntax

The Syntax tab defines the syntax of the programming language, non-keyword
characters, quoted string support, and comment styles.

Code Editor Templates 11

Keywords

The Keywords tab lists the programming language keywords. Thelist isdivided into
four styles, which, using the Display options, are painted in different colors. Also
included, is the option to determine if the language is case sensitive or not.

Compiler

The Compiler tab defines how third-party language compilers are supported within the
Programmer Studio development environment. Options include compiler error
detection and pre-compile headings.

Advanced

The Advanced tab defines Code Navigator support, case sensitive help, and advanced
file content formatting options.

MPE/iX

The MPE/iX tab provides details for the format of new MPE/iX files, including
Robelle Qedit files.

Note When opening files using the ‘ (use rules wizard)’ Code Editor Template, the
MPE/iX MPE/iX properties can be used to identify a template when no file extension
is present.

12 Chapter Four

The Template Manager will only allow one template to be modified at atime. If a
change has been made to the properties of the selected template, you will be prompted
to save any changes made when selecting another template, or on clicking the Close
button.

If any changes have been made to the standard templates, (those installed with
Programmer Studio), the user will be prompted to save the changes as a new template.

The remainder of this chapter discusses the areas of consideration when choosing the

right template. It does not offer instructions on how to modify the many options
available, as these are evident when using the Template Manager.

Custom Editor Settings

When switching between programming languages, or more correctly language
compilers, specific limitations can be imposed on the content of files and how they are
edited.

Code Editor templates provide the option to override the standard Editor preferences
found in the options dialog. Thisis particularly useful for many of the legacy
compilers, which do not support Tab characters or languages imposing a fixed form to
code structure, such as COBOL.

Substituting Tabs with Spaces

An alternative to standard tab stopsisto insert a variable number of spacesin order to
simulate tab position formatting. This has a number of disadvantages, including
increased file size. However it is necessary in certain applications, notably when using
compilersthat do not support the tab character.

Defining Tab Stop Positions

Once the option to replace tabs with spaces has been selected, the option to define
specific tab positions becomes available. Specific tab positions are very useful in
fixed form programming languages like COBOL, imposing rules on the position of
specific elements of a program.

The tab positions are specified in order from left to right, in actual character positions
separated by acomma. The character positions are relative to the Code Editor ruler, so
they are alwaysin ascending order. Once the last defined tab position is reached, the
standard tab size comes into effect.

Code Editor Templates 13

For example, to define a series of tab stops every 4 characters and at 20 and 30, the tab
stop positions would be 4,8,12,16,20,30. The Code Editor ruler displays set tab
positions as inverted arrows, providing a guide to the current settings.

The Code Editor ruler displaying tab stop positions

Files Containing Line Numbers

For those programming languages that include a number on each line, Programmer
Studio provides increased productivity. Using Code Editor Templates, you can
remove line numbers while editing, restoring them when the file is saved.

Code Editor Templates provide two options for line number support; automatic
renumbering for instances where the existing line numbers are unimportant, and
intelligent numbering for instances where the existing line numbers have to be
preserved.

Automatic Renumbering

Automatic renumbering examines the first few lines of afile when it isopened. The
line numbers appearing on these lines are then used to determine the starting line
number and the sequence for the remaining lines. When thefile is saved, the existing
line numbers are replaced with the automatic line number sequence.

Using the Hide Line Numbers option in the Code Editor Template, it is possible to
remove any indication that a file has line numbers, perfect for programmers new to
line numbers and those wanting to forget the limitations line numbers impose.

Intelligent Renumbering

Intelligent renumbering saves the numbers assigned to each line as the file is loaded.
When anew lineis inserted, the Code Editor will assign a number to the new line as
long asthereis sufficient space in the existing sequence of lines. When no more lines
can be added, the user is prompted to renumber the current section or entire file to
allow new lines to be inserted.

This option isintended for those users familiar with the line numbers appearing in a
given file, and who wish to maintain the line numbers while editing.

14 Chapter Four

Line Number Position

Programmer Studio supports line numbering to both the left and right. For files with
line numbers appearing to the right of each line, the character position of the line
number isrequired. For fileswith line numbers to the left, the position should be set
to 1.

Note Remember when specifying a line number position greater than 1, that the
file will have trailing spaces when the line numbers have been removed.
Remember to set the ‘ Remove Trailing Spaces' option.

COBOL Line Tagging

In addition to lines numbers, the COBOL’ 85 language specification includes atag
field at character positions 73-80 (8 characters). Thetag field isfree format text,
commonly used to store modification dates, programmer initials, version numbers, etc.

Each Code Editor Template has an option to remove these ‘tags’ while editing, and
like intelligent line renumbering, to restore them when saving. If the tokens are
removed during editing, you can specify your own token that will be applied to
modified lines. These are added to the file when saving.

Programmer Studio provides two options for defining the tag used in COBOL files,
either as a standard tag string applied to al files, or, using an advanced property found
in project settings for individual files.

Defining a Standard Tag String

For files using a Code Editor Template that has line tagging enabled, the standard tag
string isused. This can be overridden using a project files property. Remember the
tag string is limited to a maximum of 8 characters. If the tag string islonger than 8
charactersit will be truncated.

To define the default tag string

1 From the Tools menu, select Options.
2 In the Line Tag Format box, enter the default tag string.
3 Click OK.

Note Changing the default tag string will replace unsaved tagsin all open files.

Code Editor Templates 15

Defining a Project File Tag String

Using the tag string property in the Project settings allows more control over the line
tags that are applied to the files being edited. When using line tags to record version
numbers, being able to specify tags on afile-by-file basis can be very useful.

To define atag string for a project file

1 Select a file from the project in the tree view.

2 From the View menu, select Properties.

3 Select the Advanced tab.

4 Select the Override standard COBOL line tag button.

5 In the COBOL tag format box enter the desired tag string.
6 Click OK.

Tip Using the Shift and Ctrl keys you can extend the selection in the tree to
include more than one file. Any Tag Format will then be applied to all those
files highlighted.

Using Date Variables in Tag Strings

A common use for the line tag is to store the date aline was added or last modified. In
order to make maintenance of these types of tags as painless as possible, Programmer
Studio provides special variables which can be used in tag strings to represent day,
month, year and century.

16 Chapter Four

The following variables can be used to represent the date 4™ July 1999.

For Variable Result
Day %d 4

Day (two digits space padded) %-+d <space>4
Day (two digits zero padded) %dd 04
Month (two digits zero padded) %mm 07

Short month text (sentence case) %mmm Jul

Short month text (upper case) %MMM JUL
Year excluding century %yy 99

Year including century %yyyy 1999
Robelle Qedit™ formatted date %qedit_date 4 JUL99
Filename %filename sample

Note The length of the tokens cannot exceed 8 characters. Any charactersin the
token past this point are truncated.

Creating New Code Editor Templates

As you become more familiar with Code Editor templates you will no doubt wish to
make changes to the standard templates to, for example, include new keywords, alter
compiler output masks, or simply tweak the editor settings.

It is strongly advised that no changes are made to the standard templates, as later
releases of Programmer Studio are likely to replace many of these files with more up-
to-date versions.

For those users wishing to create or alter the standard templates, Programmer Studio
provides User Code Editor Templates. These areidentical to the standard template,
with the exception that they are stored in an alternative location so thereis no chance
of losing thefiles.

Note All Code Editor Template names must be unique. Programmer Studio will
generate an error when attempting to use the same template name more than
once.

Code Editor Templates 17

To create a new template

1 From the Tools menu, select Templates

2 Click New
O orQd

From the Available Templates list, select the existing template that most
closely resembles the new template, click Copy
In the Name box, enter the name of the new template

4 Click OK

Note By default, the filename of the new template will be created using the
existing template’ s name. This can be overridden by editing the contents of
the filename box.

Using Code Editor Templates

It isimportant to remember that Code Editor Templates provide options for
formatting, in addition to the editor settings like color syntax highlighting. These
formatting options, like intelligent line numbering and strip trailing spaces, are used
when thefileisloaded. This makesit important to select the correct template before
loading afile.

The chapters “Working with Files’ and “Developing Projects’ discuss how to specify
the Code Editor Templates used to edit particular files.

18 Chapter Four

5

Working with Files

Programmer Studio attempts to hide many of the complexities of remote, server based
development by presenting a familiar interface to remote, server based file systems.
By providing dialog boxes that appear and operate in the same way as those found in
all Windows applications, any learning curve should be reduced to a minimum.

This chapter describes how to open existing files and create new files. It is assumed
that a project has been created and is currently connected to the server.

Opening Files

Using the File Open dialog box you can either open one, or many files from asingle
directory. Once selected, the files are then transferred in order from the server. The
transfer of files can be cancelled at any time by selecting Stop from the View menu,

pressing Ctrl+Break, or pressing the Stop button on the toolbar.

Once you have successfully opened afile, the file name will appear at the top of the
most recently used (MRU) filelist. Using the MRU, you can quickly open thefile
again by simply selecting the file name from an item in the File menu.

To open afile

1 From the File menu, select Open (CTRL+O).

2 Navigate to and open the folder in which the file is located.

3 In the File name box, enter the name of the file you want to open.
O Oord

From the file list, select the file you want to open.
Click Open as read only to stop any changes being made to the file.
Click Open to load the file.

Working with Files 19

Using the file name box, you can quickly change the open folder or limit the files
listed by entering and path or wildcard in the File name box and clicking Open

(RETURN).
To Enter
Change the open folder to ‘/usr/dev’ /usr/dev
List only those files beginning ‘de’ de*
List all the files in the open folder *
Change the open folder and list a subset of files /usr/dev/de*

Note MPE/iX users can aso use FILENAME.GROUP.ACCOUNT to identify file
MPE/iX names, and use the @ symbol for wildcard matches.

Tip When displaying the open file dialog box, Programmer Studio uses the
directory property of the currently selected project folder as the starting
location. This can provide a quick way to open files from a directory
represented by a project folder.

To open afile with a specific Code Editor template

1 From the File menu, select Open (CTRL+0)

2 In the File name box, enter the name of the file you want to open.

3 From the Open As dropdown, select the Code Editor Template to use
4 Click OK

Note The template selected in the file open dialog box will always override the
normal template if the file isincluded in the current project.

Rules Wizard

Obviously selecting the correct Code Editor Template in the Open dialog box isan
awkward addition to the steps required to open afile. Not only isit easy to select the
wrong template, (unless you know before hand the content of thefile), it can easily be
forgotten altogether in the rush to quickly edit afile.

20 Chapter Five

The Rules Wizard is intended to make the process of opening files with the correct
Code Editor Template far simpler. By alowing the user to determine which Code
Editor Template should be used, based on specific file properties such as filename,
server type, file location and line numbers, selecting the right template becomes much
easier.

Rules Wizard |

Apply rules in the following order:

(B rule for Hewlett-Packard - C [HPLE<)
rule for Microsaft - CAC++

rule for Hewlett-Fackard - COBOL'S5 Copy
rule For &nsi - COBOL

rule for &nsi - Pascal

rule for HTHL 4.0

rule for Microzoft - Visual B azic
rule far Sun Microsystems - Java Delete
rule fior Perl 5

rule far &nsi - Fortran
rule for Ainsi - COBOL vz U
Fixed mile for all MIPE Templates

todify. .

Bename...

| b

tove Down

Drescription of the selected ule

Thiz rule applies the Hewlett-Packard - C [HPLE] template to files if the
filename matches *.c h and the server operating systern is Hewlett-
Packard HPL

] I Cancel

The Rules Wizard displaying the description of a selected rule

The Rules Wizard isinvoked after afile has been successfully opened but before the
file has been displayed to the user, this allows the rules to match properties based on
the content of the file as well as the filename.

Rules can be easily added and modified using the Rule Wizard which takes you
through the process of creating a new rule, determining the conditions that must be
met in order to open a specific Code Editor Template.

Working with Files 21

To add arule to the Rules Wizard

1 In the Rules Wizard dialog, click New.

2 Determine the Code Editor Template that should be used if every
condition of the new rule is satisfied.

Click the check box next to each condition the rule must satisfy.
4 For each condition, enter/select the appropriate values.

Finally enter a name for the new rule and click Finish.

The following conditions can be matched by the Rule Wizard. It isimportant to
remember that every condition specified must be matched for the rule to be satisfied.

Filename

Specify afilename specification to match. The wildcard tokens **' and '? can be used
to match sub strings and individual characters respectively. Multiple filename
specifications may be entered using a semi-colon as a delimiter.

File Location/Directory

Enter afile specification to match afile's directory. Wildcard tokens and multiple
specifications may be entered.

Server Name

Specify the domain name or 1P address of the server.
Operating System

Select the operating system of the server from a predefined list.
Line Numbers

Specify the line number position and number of digitsin thefile.
Qedit File Type

Select the Qedit file type of thefile.

MPE File Type

Determine the specific MPE file properties that should be matched.

22 Chapter Five

The new rule will be added to the end of the list of rulesin the Rules Wizard. As each
ruleisevaluated in order, it isimportant to check that the conditions of a previousrule
will not be satisfied before the new rule is checked. Use the rule description to check
the preceding rulesin the list.

Note The rules wizard can also be used as the Code Editor Template for project
files and folders. See Chapter 8, Devel oping Projects, for more information.

Once a new rule has been added, it isimportant to check that it will work. This can be
easily checked by opening afile that should match the conditions of the new rule. If
the Code Editor Template used is not correct, use the file properties to determine
which rule was used, return to the Rules Wizard and fix the problem.

To determine which rule was satisfied for an open file

1 With the focus in the code editor, select Properties from the View menu.

2 In the Properties dialog box, select the Advanced tab.

Creating New Files

When creating new files, you first have to determine the Code Editor Template. This
determines the format of the new file, whether the file contains line numbers, specific
editing characteristics, and how special characters are interpreted.

In this example, anew fileis created using the Normal Code Editor Template. This
has no special format and will use the standard editor settings.

To create a new file

1 From the File menu, select New (CTRL+N).

2 From the list, select Normal, and then click OK.

Working with Files 23

Mew File 7] x] |

Filezz | Fecent Files I

iie] « | ¥ Add file bo project
Angi - Baszic file Fileranme:
Ansi - C file r :
Anzi - COBOL file I
Ansi - COBOL'35 file :
: _ Laocation
Anizi - Fortran file
Angi - Pazcal file Ia"US[a"SEFﬂD'E J
Anzi - RPG file
Az - SQLI2 file
CLIPS B.1 file

Coghios - Powerhouze 703 file
Cognos - Powerhouse QTP file
Coghos - Powerhouze Quick file
Coghioz - Powerhouze Quiz file

DISC - Omnidex Enviranment Catalog file
Hemlett Park ard - dllha<s S0 TN fls LI

] I Cancel

Note Templates also specify specific properties for MPE/iX file types including
MPE/X record length, QeditC] compatibility, file code, type and mode.

Saving Files

Programmer Studio provides all the standard save options found in other Windows
applications, including Save, Save Asand Save All.

Once you have successfully saved afile, the file name will appear at the top of the
most recently used (MRU) filelist. Using the MRU, you can quickly open the file
again by simply selecting the file name from an item in the File menu.

24 Chapter Five

To save a new file

1 From the File menu, select Save (CTRL+S). The Save As dialog opens.
2 Navigate to and open the folder the file is to be saved into.

3 In the File name box, enter the name for the new file.

4 Click Save to save the file and close the dialog box.

When you make changesto afile, an asterisk appearsin thetitle bar after thefile's
name to indicate the file has been modified. This modified tag disappears each time
you save the file, appearing again if the file is modified.

To save a file using its original file name

1 From the File menu, select Save (CTRL+S).

Before replacing the existing file, Programmer Studio first checks to ensure thefile
has not been changed since it was last loaded or saved. If a change has been detected,

the user is prompted to overwrite the newer version of the file with details of the
differencesin size and last modified times.

File Has Been Changed |

s % The file 'S TRSH/C/DEMOS has been alkered on the zerver
% ¥ gince you began editing. Do pau want o overnwrite the newer
file ?

Originally loaded file :

% 8.192 bytes
% modified an 22/07/38 10:09am
ozt recently modified file;

% 8.192 bytes
% maodified on 22/07/38 10:19am

Mo Cancel

The file changed warning when saving a file when a newer version exists.

Working with Files 25

To save a file using a different file name

1 From the File menu, select Save As. The Save As dialog opens.

2 Navigate to and open the folder the file is to be saved into.

3 In the File name box, enter the name for the new file.

4 Click Save to save the file and close the dialog box.

Note If afile already exists with the file name used, you will be prompted to

replace the file before saving.

26 Chapter Five

6

Using the Code Editor

Using Programmer Studio you edit code in the same way that you edit text in most
Windows based word-processing or development programs.

Scrolling the Editable Area and Moving the Insertion Point

To scroll the editable area to part of the code that does not appear in the Code Editor
you use the scroll barsto the right and bottom of the window. The vertical scroll bar
indicates the position of the first visible line in relation to the total number of linesin

thefile.

To position the insertion point, you can use either the mouse or the keyboard. Using
the mouse, scroll the editable area using the scroll bars, position the pointer and click
the left mouse button. Using the keyboard to position the insertion point will

automatically scroll the editable area ensuring the new insertion point is always

visible.

To move the insertion point
One character to the right
One character to the left

To the next line

To the previous line

To the next non-visible line
To the previous non-visible line
To the start of the file

To the end of the file

To the start of the current line
To the end of the current line
One word to the right

One word to the left

Press
RIGHT ARROW

LEFT ARROW

DOWN ARROW

UP ARROW

PAGE DOWN

PAGE UP
CTRL+HOME
CTRL+END

HOME

END

CTRL+RIGHT ARROW

CTRL+LEFT ARROW

Using the Code Editor 27

When using the mouse to determine the insertion point, you may find that the actual
point of insertion does not appear where expected. Thisis because the insertion point
can only appear before existing characters, or at the end of aline. For example,
clicking the mouse to the right of the last character on aline will position the insertion
point after the last character. Clicking the mouse inside atab character will position
the insertion point before or after the tab character, whichever is nearest.

Note The editable areais always scrolled into view when moving the insertion
point or editing thefile.

Tip You can use CTRL+t and CTRL+ 1 to scroll the editable area by one line up
and down respectively without moving the insertion point.

Moving the Insertion Point to a Specific Line

Astheinsertion point is moved within the editable area, the position of the insertion
point will appear on the status bar. The status bar displays the insertion point relative
tothefirst linein thefile. To scroll aspecific lineinto view, you can use the scroll bar
to the right of the editable area, the keyboard, or the Go to command from the Edit
menu.

Editing Code

Once you have identified the point at which you want to begin editing and have set the
insertion point, you will see aflashing cursor. Thisisyour visua indication of the
actual insertion point. The cursor will move as you insert or delete text, continually
reflecting the insertion point.

The appearance of the cursor represents the current editing mode. A single vertical
line cursor indicates that new text will be inserted at the current insertion point. A
block cursor indicates that new text will overwrite text following the insertion point.

Selecting Text

When editing more than one character, you will need to identify a selection. For
example, to delete a sentence, create a selection, and then deleteit. You can create a
selection using either the mouse or the keyboard.

28 Chapter Six

Creating a selection

¢ Placetheinsertion point at the start of the selection, hold the mouse button down,
and drag the insertion point to the end of the selection.

¢ Placetheinsertion point at the start of the selection, hold down the sHIFT key, and
click the insertion point to the end of the selection.

¢ Placetheinsertion point at the start of the selection, hold down the sHIFT key, and
use the cursor keys to move the insertion point to the end of the selection.

Tip Y ou can quickly select an entire word by simply double-clicking on the
word. To select al text on the current line press CTRL+L, or click in the | eft
hand margin.

To remove an existing selection, click anywhere in the editable area, or press one of
the arrow keys.

To extended or restrict an existing selection, move the insertion point using either the
mouse or keyboard while keeping the SHIFT key pressed.

Undoing Mistakes

If you make a mistake in the Code Editor, you can “undo” the last action or command.
For example, if you delete a selection, you can restoreit. If you then decide you
wanted to delete the selection after al you can “redo” it.

As you make changes in the Code Editor, your actions are recorded so that you can
“undo” them if required. The number or previous actions that you can “undo”, and
subsequently “redo”, is virtually unlimited based on the amount of available memory.

Moving, Copying and Pasting Text

The following steps show you how to move, copy, and paste text in Programmer
Studio using the clipboard. The clipboard is a shared resource that al Windows
applications can use to provide atemporary location for storing data to be moved or
copied. Thisallowstext to be copied from one window to another, either between
Code Editor windows or between Programmer Studio and Notepad.

The instructions below also include the short-cut key combination for the appropriate
commands. These appear in brackets after the menu item reference.

Using the Code Editor 29

To move or copy text using the Clipboard

1 Select the text you want to move or copy.
2 To move the text, select Cut from the Edit menu (CTRL+X)
0 orQ

To copy the text, select Copy from the Edit menu (CTRL+C)
Position the insertion point where you wish to insert the text.

4 From the Edit menu, select Paste (CTRL+V).

Note The Paste operation will automatically delete any existing selection before
adding the contents of the clipboard.

Note Programmer Studio also supports legacy Windows editor keystrokes
SHIFT+DELETE, CTRL+INSERT, SHIFT+INSERT for cut, copy and paste
respectively.

Drag-and-Drop Editing

Drag-and-drop editing is the easiest way to move or copy alimited selection a short
distance. However, when moving or copying alarge amount of text, Cut, Copy, and
Paste, are often more convenient.

To move or copy text using the mouse

1 Select the text you want to move or copy.
2 Point to the selected text, and then hold down the left mouse button.
3 Keeping the mouse button down, drag the insertion point to the new
location.
4 To move the text, release the mouse button.
O ord

To copy the text, hold down CTRL while releasing the mouse button.

30 Chapter Six

Visual Elements

Programmer Studio provides a number of visual interface elementsto increase
programmer productivity, from the text ruler to selected range tool tips.

Text Ruler

Thetext ruler provides avisual indication of the position of charactersrelative to the
first character of each line. It isimportant to remember that the toolbar presents only
an indication of character position; it does not reflect tab stops.

To display the text ruler

From the View menu, select Ruler

Virtual Line Numbers

Astheinsertion point is moved in the Code Editor, the status bar displays the number
of current line and character position. In some cases however, it can be useful to have
the number of each line displayed in the Code Editor.

Virtual line numbers can be displayed to the left of each line displayed in the Code
Editor. These start at one and incremented to the end of the file and are identical to the
line number appearing in the status bar.

To display virtual line numbers

From the View menu, select Line Numbers, Virtual.

Note Remember not to confuse virtual line numbers with the physical line
numbers appearing in afile, especialy if the selected Code Editor Template
supports files with line numbers such as COBOL.

Using the Code Editor 31

Selection Margin

The selection margin is displayed to the | eft of the editable areain the Code Editor
providing an easy way to highlight complete lines and view the modified state of each
line. The selection margin markers display the modified state of each line, modified,
new or newly modified line.

Margin Marker Indicates

r An existing line has been modified
i A new line has been added

" A new line has added and modified

The selection margin can be used to highlight a complete line of text by simply
clicking in the margin using the left mouse button. To select multiple lines, click in the
selection margin and drag the mouse pointer up or down while keeping the left mouse
button down. Release the left mouse button to finish the selection.

To hide or show the selection margin

1 From the Tools menu, select Options
2 Select the Editor tab

3 Click Selection margin

Bracket and Brace Matching

Bracket and brace matching is especially useful for programming languages that use
either brackets' ('and') ' or curly braces' { 'and '} ' to organize code blocks and
expressions. Often typing compound expressions and code blocks can leave the
programmer in doubt as to which end bracket or brace corresponds with which starting
bracket or brace. Consider the following situation:

if ((a=1) and (((b =a) or (b >1)) and (c = 2))

Bracket and brace matching allows the programmer to quickly determine if the
expression is complete, by highlighting the corresponding open bracket for each close
bracket typed. For example, typing a closing bracket at the end of the example
expression;

32 Chapter Six

if {fa = 1) and ({(b = a) or (b > 1)) and {(c = 21|
highlights the corresponding opening bracket. See the example below.

if nl:a= 1) and (kb = a) or (b > 1)) and (c = 2]11)

To enable or disable the bracket and brace matching

1 From the Tools menu, select Options
2 Select the Editor tab
3 Click Enable bracket and brace highlight

Selected Range Tool-Tips

For those situations when it is important to determine the range of charactersin the
current selection, selected range tool-tips can be displayed. The range tool-tips display
the actual character position of the first, last and number of inclusive charactersin the
current selection.

<% Function entry point %7

DisplayBanner i
2-1413)

=pt a s=tring *®

Selected range tool -tips displayed for a single line selection

Note Selected range tool-tips are only displayed for single line selections. Also,
tab characters included in a selected range are only counted as single
characters.

Using the Code Editor 33

To enable or disable selected range tool-tips

1 From the Tools menu, select Options
2 Select the Editor tab
3 Click Selected range ToolTips

Finding and Replacing Text

To find and change the text in your code, use the Find and Replace commands on the
Edit menu. For example, to change the name of a variable referenced in your code,
use Find to locate the text you specify and Replace to change instances of the text.

The find and replace dialog boxes are both modeless, this allows the user to switch
back to the code editor without closing the find window. Selecting Find or Replace
when the dialog box is visible will simply active the window placing the input focusin
the relevant field.

Finding Text

From the Edit menu, select Find (CTRL+F). In the Find what box type the text you wish
to find. Then choose Find Next to begin the search.

When Programmer Studio finds the text, you have the following options: -

¢ Choose Find Next to highlight the next occurrence of the find text.
¢ Choose Find All to list every occurrence of the find text in Find output window.

¢ Choose Mark All to add a bookmark to each line that contains the find text.

34 Chapter Six

Cancel

Find 7]
Direction :
™ Match whale word only ~ Up e A
[Match case = Down Mark Al |
™ Beqular Expression |

¥ ‘wirap search direction

Using the Find dialog box to find the text "long".

To cancel the search and return the input focus to the code editor, press Cancel. To
continue the search after having closed the Find dialog, press F3. Thiswill use the
previous find text criteria, search options and direction specified.

Tip The find and replace dialog boxes use the currently selected text in the code
editor astheinitia criteriain the Find what box. If thereis no selection, the
word at the current insertion point is used. Clicking the down arrow to the
right of the Find what box displays the previous criteria used.

Replacing Text

From the Edit menu, select Replace (CTRL+H). In the Find what box, type the text you
wish to find and the replacement text in the Replace with box. Then choose Find Next
to begin the search.

When Programmer Studio finds the text, you have the following options: -

¢ Choose Find Next to highlight the next occurrence of the find text.
¢ Choose Replace to replace the text and find the next occurrence.

¢ Choose Replace All to find and replace every occurrence of the text without
prompting the user.

Using the Code Editor 35

Replace E |
Fird what: ||'I'ﬂ5| - ﬂ
Fieplace with: |unsigned long j Replace |
[~ Match whole word anly Replace in Replace Al |
[~ Match caze ; %;L‘ZTS?;E Cancel |
[T Begular Exprezsion T

¥ ‘wiap search direction

Using the Replace dialog box to replace the test "long" with "unsigned long".

The replace dialog box provides the additional option to replace the text specified
within the confines of the current selection, thisoption is only available if a selection
has been created in the code editor.

To undo the effects of the last replacement, select Undo from the Edit menu. Thiswill
reverse the last change made. If you confirmed each replacement individually, you
will need to undo each change separately.

Search Options

By default, Programmer Studio searches the entire file in the code editor for text
matching the criteria specified. The search options can be used to alter how text is
matched

To Select

Find whole words and not sub-strings inside Match whole word only
words. For example, help and not helping.

Find words matching the case of the text in the Match case
Find what box. For example help and not HELP.

Continue the search after reaching the start or Wrap search direction
end of the file (depending upon the direction) to
search the entire file.

36 Chapter Six

Advanced Search Criteria

Programmer Studio provides a more flexible approach to matching text using regular
expressions. Regular expressions can be very simple, such as f?r, which finds any
three letter word beginning with f and ending inr. Or it can be very complex, with
several parts described in parentheses that are individually evaluated.

By combining small expressions to form larger complex (compound) expressions, you
can create very specific search criteria. For example, you can find any word beginning
with "pre" which ends with "ed", such as "pretended" or "presented”.

Regular expressions can be used to search for text that can vary between occurrences.
For example, searching for a particular assignment operation which has been typed
with varying amounts of white space, is now possible using regular expressions.

To find text using regular expressions

1 From the Edit menu, select Find (CTRL+F)
Select the Regular Expression check box
3 In the Find what box, type the search criteria
You can use the right arrow to the right of the Find what box to select

from a list of standard regular expressions and predefined compound
regular expressions

4 Choose the Find Next button

Find 7] |
Find what |42z BZa209 1 =] ¢
Direction :
= | ateth whiale word ol ~ g el 2
= | 1 atelh case = Down Mark Al |
[V Reqular Expression |

- Cancel
¥ ‘wirap search direction

Using the find dialog to find any legal variable namesin C

Using the Code Editor 37

Using Regular Expressions

The following section describes the different regular expressions which can be used in
the Find what box for the find and replace dialog box.

Simple Expressions

Inits most simple form, a simple expression consists of one or more characters. For
example,

a

i f

nove

whi | e

A sequence of charactersis called a character string. This matches the sequence of
characters specified to complete the pattern.

Character Classes

A character classis a number of characters enclosed in square brackets. For example,
[0123456789]

matches any one of the charactersinside the brackets. This character class matches any
single digit. Thisdigit character class can be written more simply as:

[0-9]

The'-' indicates arange of characters between the '0' and '9". The order in which a
range of charactersis specified isrelated to the order in which characters appear in the
ASCII character set. A complete list of the 7-bit ASCII characters can be found in
Appendix B.

Another example of arange within a character classis,
[a-2]

this would match any lower case character, while
[a-zA-Z]

would match any uppercase or lowercase character.

If the first character after the ' isacircumflex (), the character class matches all
characters which are not listed in the brackets. For example,

38 Chapter Six

["0-9]

would match all charactersthat are not digits.

Note A - or ' asthefirst character after the [" isinterpreted literally to alow the
user to include dashes and square brackets in character classes.

Special Character Classes

The period (.) character class matches any single character except anew line. For
example,

f.r

would match any three character string starting with an 'f' and ending with a'r'.

Repeating Patterns

Any regular expression, either simple or compound, followed by an asterisk, indicates
that zero or more repetitions of the regular expression will be matched. For example,

[0-9][0-9]*

matches a pattern of characters starting with a digit, followed by zero or more
additional digits. Thisisatypical example of aregular expression used to match a
pattern of characters representing a typical number.

[A-Z][a-z]*

The regular expression above matches an uppercase letter followed by zero or more
lowercase | etters.

The'+' character can be used in asimilar manner to *' to match one or more
repetitions of the preceding regular expression. For example,

[0-9]+

matches a sequence of one or more digits.

Using the Code Editor 39

Which is the same as the previous example,
[0-9][0-9]*

Using the brace brackets you can specify a specific number or repetitions for aregular
expression. For example,

[0-9]{3}

matches a sequence of three digits. A range of repetitions can be defined within the
brace brackets. For example,

[0-9]{1, 10}
matches a sequence of 1 to 10 digits.

Optional Expressions

A regular expression immediately followed by a question mark (?) makesthe
expression optional. For example

A?
matches 0 or 1 occurrence of the letter 'A’.

Alternatives

Two regular expressions, ssimple or compound, may be separated by a vertical bar (|)
to produce an expression that matches either one of the expressions. For example,

[a-z] | [A-Z]

matches either a single lowercase or uppercase | etter.

Grouping

Using parentheses, expressions may be grouped together. For example,
(top| m ddl e| bott om

matches any of the strings top, middle or bottom. Grouping is especially useful when
constructing compound regular expressions which use one or more of the expressions
described above. For example,

([A-Za-z_J[A-Za-z0-9]1*)]| (-?+?[0-9])

matches any C style identifier or any integer constant.

40 Chapter Six

Predefined Compound Expressions

Programmer Studio provides a number of predefined compound regular expressions
for matching common string patterns. These greatly simplify the task of building a
compound regular expression.

To Match Use
An alphanumeric character \:a
An alphabetic character \ic
A control character \:n
A numeric character \:d
A graphical character \'g
A lowercase character \il
An uppercase character \'u
A printable character \:p
White-space character \:b
Hexadecimal character \:h
Any string enclosed in quotes, such as ‘sample’ or “sample” \:q
Any string enclosed in single quotes, such as ‘sample’ \:QS
Any string enclosed in double quotes, such as "sample" \:QD

Formatting Text

Programming Studio version 2.0 introduced new formatting capabilities for the Code
Editor, included sorting, changing case and inserting text. The following sections
describe how each of these new features can be used to greatly improve programmer
productivity.

Change Case

A popular requirement among programmers is the need to change the case of text
without re-typing. The Change Case dialog box provides 5 different options for
changing the case of the currently selected text;

Using the Code Editor 41

Sentence Case

Converts all charactersto lowercase, capitalizing the first character succeeding a
period. When the selection does not include a period, the first character in the selection
is capitalized.

Lowercase

Converts all characters to lowercase.

Uppercase

Converts all charactersto uppercase.

Title Case

Converts all characters to lowercase, capitalizing the first character of each word.

Toggle Case

Reverses the case of the existing characters, converting all lowercase charactersto
uppercase, and all uppercase charactersto lowercase.

To change the case of text in the Code Editor

1
2
3
4

Select the text you wish to change the case of
From the Format menu, select Change Case
Select the case style to use

Click OK

Change Caze | x| |

* Sentence case.

" lowercase - -
 |JPPERCASE ﬂl
" Title Case

" I0GGLE cASE

Changing the case of select text to Sentence case

42 Chapter Six

Change Columns

Change columns provides the functionality to insert into or delete from a selection on
a column-by-column basis. Using change columns, inserting characters at a specified
position, or deleting arange of columns from a fixed format file, can be achieved very
quickly.

Change columnsis especially useful when working with programming languages
which enforce very strict rules on the formatting of source code. In COBOL for
example, change columns can be used to quickly modify column 7 (indicator field) to
insert a special character for comments or debugging.

To change columns in each line

1 If you want to change a subset of lines, first select these lines.

2 From the Format menu, select Change Columns

3 Click Selection or Whole file to determine the range of line effected

4 In the "Starting at" field, enter the starting column

5 In the "Range" field, enter the number of columns to be changed. To
insert text, enter 0.

6 In the "Insert text" field, specify the contents of the columns being

changed. To delete the range of columns, leave this field empty.
7 Click OK

Using the Code Editor 43

Change Columns

|
1. Select the range of lines to be changed

£ Selection Cancel

™ wihale file

2. Determine the columns to be changed

Starting at: I? 3:
Range: I'I 3: [0 ko insert]

3. Inzert/replace the text in the zpecified columnz, leave this
emphy to delete the text in the specified columns.

®

Inzert text:

Changing column 7 in the selected range of lines to an asterisk

Tip The Starting at field uses the current cursor position asit'sinitia value.

Note If aline within the specified range is shorter than the starting column, the
line will be padded with the spaces up to the specified column.

Deleting arange of text will shift the text in each line to the left. To clear the columns
specified, enter the correct number of spacesin the Insert text field. Using change
columns, alonger line of text than the size of the range of columns being changed can
be specified, so care must be taken when making sweeping changesto afile.

Convert Tabs to Spaces

Although the Code Editor Template provide options to insert tabs as spaces while
typing, Programmer Studio also provides the option to convert the tabs in the entire
file or aselected range into spaces.

To convert tabs to spaces

1 To convert a block of text, first select the text to convert

2 From the Format menu, select Convert Tabs to Spaces

44 Chapter Six

Comment and Uncomment

Comment and uncomment use the comment styles defined by the current Code Editor
Template to allow the user to quickly comment or uncomment a selected block of text.

Commenting a block of text involves adding the comment identifiers into the selected
text. If the Code Editor Template defines both single and multi-line comments the user
is prompted to choose which style should be used.

To comment text in the Code Editor

1 Select the text into which you wish to insert comments

2 From the Format menu, select Comment

Select Comment Style

How do pou want the current zelection
commented ?

i* Black comment

" Line comment

Selecting the comment style when commenting a block of text

Note A space isinserted after each single-line comment to ensure that an
unrecognized keyword is not created from concatenated words. For
example, inserting the keyword COMMENT at the start of the line BEGIN
PROGRAM would create an unknown keyword COMMENTBEGIN unless
an additional spaceisinserted after COMMENT.

Uncomment will delete either multi-line or single-line comments from the currently
selected string based on the first comment type encountered from the beginning of the
selection. If a space is encountered immediately after the comment keyword, this will
also be deleted. Please see the note above for more information.

To uncomment text in the Code Editor

1 Select the text from which you wish to remove comments

2 From the Format menu, select Uncomment

Using the Code Editor 45

Advanced Features

In addition to the standard editing features described above, Programmer Studio
includes a number of more advanced features designed to increase productivity and
reduce development time.

Bookmarks

Bookmarks provide the ideal way to mark specific linesin afile when moving around,
providing the ability to jump to the next or previous bookmark, or cycle through the
bookmarks.

Bookmarks have atoggle state. This means they can be added and removed in exactly
the same way. For example, if aline has an existing bookmark toggling the bookmark
will remove it, otherwise one will be added.

The following commands are available using the Edit, Bookmarks menu: -

To Select

Toggle (add or remove) a bookmark Toggle Bookmark (CTRL+F2)

Move to the next bookmark Next Bookmark (F2)
Move to the previous bookmark Previous Bookmark (SHIFT+F2)
Clear all bookmarks in the file Clear All Bookmarks (CTRL+SHIFT+F2)

Note The direction in which the insertion point is moved when selecting the next
or previous bookmark is reversed when reaching the beginning or end of the
file.

In addition to manually setting bookmarks, Programmer Studio allows bookmarks to
be set on the results of afind. This can be particularly useful when determining what
toinclude in partial find and replace operations. Please refer to Finding and Replacing
Text in the previous section for more information.

46 Chapter Six

Named Bookmarks

In addition to normal bookmarks, named bookmarks can be used to mark specific lines
in any number of files. When selected, these bookmarks select the appropriate line in
the file activating the Code Editor for the file if necessary. If the file in which a named
bookmark islocated is not currently loaded, Programmer Studio will automatically
load the file and select the appropriate line.

Mamed Bookmarks | x| |

Hame: I Sdd |
Cloze |
Delet

wa-data COBOL definition il

File: A&TRSHASPL/DEMOS
Line: 146

Selecting a named bookmark to highlight in the Code Editor

Unlike standard bookmarks, lines with named bookmarks are not highlighted in the
Code Editor.

To create a named bookmark

1 Highlight the line to be bookmarked in the Code Editor

2 From the Edit menu, select Bookmarks, Named Bookmarks (ALT+F2)

3 Enter the name of the new bookmark

4 Click Add to save the named bookmark

Named bookmarks exist only aslong as the current project is open. Closing the current

project by exiting Programmer Studio, using the Close Project menu item or opening a
new project, will delete all named bookmarks.

Using the Code Editor 47

To move to or delete a named bookmark

1 From the Edit menu, select Bookmarks, Named Bookmarks (ALT+F2)
2 Select the named bookmark from the list

3 Click Go To to move to the highlighted bookmark
-Or -

Click Delete to remove the highlighted bookmark

Note The commands to move to the next and previous bookmarks, toggle
bookmark and clear all bookmarks do not affect Named Bookmarks.

Moving to Specific Position in the Code Editor

An alternative to using bookmarks or scrolling the editable areato find aline, isto use
the “Go to” command. Go to provides a number of options for jumping to a particular
lineinthefile. Thisline can beidentified by virtual or physical line number,
bookmark or Code Navigator item.

To go to a specific line
From the View menu, select Go To, Line (CTRL+G)
GoTo]
ﬂl Go ko what 7 Enter line number;
Bookmark [263 =l Previous |
Drefinition —
ErrorT a W Uze physical line numbers Clase |

b odified Line
Reference

Using the Go To dialog box with the default criteria

Depending upon the selection in the criterialist to the left, the drop down list to right
will change to reflect the options available. Clicking Go To will place the insertion
point on the desired line, highlight the line, and move the editable area to ensure the
lineisvisible.

48 Chapter Six

Normally the Go To dialog box would close after clicking the Go To button. If you
wish to keep the dialog box open after returning the input focus to the Code Editor,
click the pin button in the top left-hand corner.

Tip MPE/iX style line numbers can also be entered in the line number field. For
MPE/iX example, 3.2 would go to line 32000.

Open File Under Cursor

It is not uncommon to find that the files loaded into the Code Editor include references
to other files, either in the form of comments, quoted strings, or compiler specific
inclusion statements.

Programmer Studio makes it possible to quickly open these files simply by creating a
selection and clicking the right mouse button.

To open a file from text string
1 Create a selection that includes all the available components of the
filename.

2 Right-click inside the selection

3 From the context menu, select Open File...

Programmer Studio uses the current file’'slocation, the login directory, and any server
specific dependenciesto create afully qualified file name. If afully qualified file
name can be determined, Programmer Studio will then attempt to open thefile.

Note Programmer Studio will use the same case used in the Code Editor to
identify the file name.

File Properties

Once you have opened your file in the Code Editor, Programmer Studio can provide
more information on the properties of the specific file, including file size, tab stop size,
Code Editor Templates, file format, etc..

Using the Code Editor 49

Properties

|

Edior |

Filenarmne: Auzr2home/rdbrns/demodcdemo2.

T ermplate: I.-'-‘-.nsi -C j
Size: 12.654 bytes (504 lines) Tab size: I4 :Iv
Last Modified: 25/06/98 15:53pm File format |Unix =]

Viewing the properties of a standard ANS C sourcefile

Changing Tab Size

Tab stops provide the ideal way to format code to visibly illustrate structure and form.
The size of tab stopsis set in the Programmer Studio options, however once afile has
been opened this can be changed.

To open change the tab stop size in the current file

1
2
3
4

Make sure the insertion point is visible in the current file
From the View menu, select Properties (ALT+ENTER)
In the Tab Size box enter the new tab stop size

Press return

Changing the Format of a File

The format of afile describes the line delimiter used in the current file. When
transferring files between the server and PC, it isimportant to check the format of the
file, otherwise other editors may have problems displaying the file.

The following formats are supported

Format Line Delimiter Hex
Unix Line Feed 0A
DOS Carriage Return + Line Feed 0D + 0A
Mac Carriage Return oD

50 Chapter Six

Changing the Code Editor Template

Code Editor Templates are beyond the scope of this chapter. However for those users
familiar with using Templates, the properties dialog provides an option to change the
template for the current file.

To change the Code Editor Template in the current file

Make sure the insertion point is visible in the current file

From the View menu, select Properties (ALT+ENTER)

3 From the Template box drop down list, select the Code Editor Template
to use
4 Press return

Note Changing the Code Editor Template will only change the editor settings,
color syntax highlighting and Code Navigator support. It will not affect the
existing file's format or any line numbering support.

MPE/iX and Robelle Qedit Files

When editing files on MPE/iX or native Robelle Qedit files, the properties dialog will
add new tabs to allow format specific properties to be set.

Properties
[@ Edior | MPE/K| Robelle Qedi |
Filename: /DSPHERE/TEST/BEC1010

Template: I Hewlett-Fackard - COBOL j

Size: 10,102 bytes (458 lines] Tab size: I"‘1r]'
Last Modified: 18403498 14:40pm File farmat: I "I

Viewing the properties of a Robelle Qedit file

Using the Code Editor 51

Printing

This section describes the printing options available from the Code Editor.

Note Programmer Studio does not print any color syntax highlighting, or print any
bookmarks or jump locations displayed in the Code Editor.

To print the current file

1 Make sure the insertion point is visible in the current file and there is no
selection
2 From the File menu, select Print

Determine the number of copies to be printed
4 Click OK

In addition to printing the entire file, Programmer Studio allows a smaller range of text
to be printed. This can be especially useful for very large files containing thousands of
lines.

To print a range of text

1 Select the text you want to print

2 From the File menu, select Print

3 Determine the number of copies to be printed
4 Click OK

Additional Print Options

Programmer Studio provides a number of formatting options when printing from the
Code Editor, providing control over the printer font, header, footer etc.

To display the additional print options

From the File menu, select Page Set-up

52 Chapter Six

Page Setup

]|

Header: IEcF

o ok |

Footer: |Page &P

— Onentation

j Cancel |

karging [milimeterz)

% Portrait Lett: |2EI Biight: IEEI
" Land
ANEEEaRs Top: |2EI Euattam: IEEI

—Fonts

Maormal: Courier, 10 paint
Header: Arial, 8 paint

—
—

Page set-up dialog box displaying default settings

Using the Code Editor 53

v

The Code Navigator

The Code Navigator isthe key to much of the enhanced productivity enjoyed by
Programmer Studio users. By taking a source file and compiling avirtual ‘map’ of the
contents, Programmer Studio can offer many new options for navigating your code.

This chapter makes references to the procedural elements of a program as functions.

Whilst this terminology may not be correct for many other programming languages, it
is assumed the reader will make the necessary assumptions.

Introducing the Code Navigator

The Code Navigator is effectively an enhancement to the Code Editor. Once afileis
loaded, the selected Code Navigator parses the content of the file creating the virtual
‘map’ and updating the specific visual components. Thisvirtual ‘map’ is subsequently
updated every timethefileis saved.

Code Navigator support is provided on a per-programming language basis by external
plug-in modules called Programmer Studio Extensions (PSX's). These PSX’sare
designed and written specifically for each language to create the ‘map’ of the
components of a sourcefile. The various Code Navigator tools use this‘map’.

Currently Programmer Studio supports 12 languages. Thiswill grow with later
releases dependant upon user request. Any requests for Code Navigator support for
additional programming languages should be made to Whisper Technology Technical
Support.

Visual Components

The Code Navigator consists of three Programmer Studio components; the Structure
view provides a collapsible tree view of the elements of your program; the Navigator
Toolbar displays the function currently being edited and easy access to other functions,
and finally, Navigator Tips can provide definitions of known functions while editing.

The Code Navigator 55

Structure View

Within the Code Editor, the structure view provides the complete ‘map’ created by the
Code Navigator in the form of a collapsible tree view. Thistree view can have up to
four root level entries, from which the components of afile are organized in
alphabetically sorted order.

=l Functions

----- & connect_user

----- & describe_define[cda)

----- & do_binds[Cda_Def “cda, text “stmt_buf]
----- &y do_ewitre]

..... & get_sgl_statement

----- & oci_errorcda)

----- &y print_headernoolz)]
----- &y print_rows(cda, nools)
-4 Forward Declarations
El-@ Include Files

----- & <ctypeh:

----- & <ociaprhy

----- & <ocidem b

Code Navigator structure view of an ANS C file

Double-clicking on an entry in the tree view will automatically switch to the Code
Editor, highlighting the line on which the entry appears.

Tip Press cTRL+W to quickly switch between the Code Editor and Structure
views.

For those programming languages supporting function parameters, Programmer Studio
provides an option to display the parameter lists in addition to the function names
within the structure view. Thisisillustrated in the screen shot above.

56 Chapter Seven

To view function parameter lists in the structure view

From the Tools menu, select Options

Select the Workspace tab

Click Display function parameter lists in Code Navigator tree
Click OK

a A W N B

From the View menu, select Refresh (F5)

Navigator Toolbar

The Code Navigator toolbar uses the contents of the virtual ‘map’ to create a drop-
down list of al the functions and sections identified in the file, which are presented in
astructured and alphabetical order.

On selecting an item from the drop-down list, the Code Editor will highlight the line
on which the function exists and ensure the lineisvisible. Scrolling through the list,
either using the keyboard or mouse, will highlight each function asit isselected. To
cancel the selection, press escape to return to the original insertion point.

JJI & get_sgl_statement ;|| o | g o | & ”

Code Navigator Toolbar view of an ANS C file

Asthe insertion point in the Code Editor moves, the Navigator toolbar is updated to
reflect the name of the function or section appearing in the virtual ‘map’ at or before
the current line. It isimportant to remember that the name appearing in the toolbar is
based on the last time the Code Navigator parsed the file, either on a save or refresh.
Any functions added or removed are not immediately updated.

In addition to the drop-down list, the navigator toolbar aso includes buttons to refresh
the Code Navigator's virtual ‘map’ without saving the file, and to jump to the next or
previous function in the file.

Tip Press CTRL+Q to quickly activate and drop-down the Code Navigator
function list.

The Code Navigator 57

Navigator Tips

In the mgjority of programming languages, functions definitions can include parameter
lists, a series of variables passed into the function when it iscalled. If the parameter
definition isincluded as part of the function declaration, the Code Navigator can
display this information when the Code Editor detects the user is entering a call to the
function.

¥ Bind any input wariables. %~
if ((ncols = do_bind=(écds, "SELECT * FR

continue; do_hinds{Cda_Def "cda, text *stmt_l:uufjl|

Code Navigator Tips view of an ANS C function

To view function parameter lists in Navigator Tips

From the Tools menu, select Options

Select the Workspace tab

Click Enable Code Navigator tips when editing
Click OK

From the View menu, select Refresh (F5)

g h W N P

Note Support for function parameter listsis currently provided for Basic, C, C++,
Java and Pascal.

58 Chapter Seven

8

Developing Projects

The concept of project based program development is central to Programmer Studio's
visual development environment. Each project determines how to connect to the
remote server, the files, and commands to compile the program.

Understanding Projects

Projects are more than simply a collection of filenames. The project also stores
associated file information, read-only attributes and editing preferences in addition to
the commands you will use to compile these files.

Project Folders

Project folders allow the filesincluded in a project to be organized into a hierarchy.
This hierarchy can have an unlimited number of levels allowing the user to determine
exactly how a project should be organized.

The structure of a project can be easily adapted to illustrate an existing file system
structure or simply to logically organize files. When used together, these two
organizational approaches provide the most powerful way to structure your project.

The Project Window

The hierarchy of the current project is presented in the project window as a collapsible
tree view. Thisview can be expanded easily to view al the filesin a project, or left
partially collapsed to identify a specific group of files.

Project Settings

The project settings dialog provides access to the individual properties of the project,
files, and foldersin your project. Within the project settings you can set properties on
each item or as a group.

Developing Projects 59

To view the settings for a project item

1 From the project window, select the file, folder or root item
2 From the Project menu, select Settings (ALT+F7)
0 orQ

Right click on the selected tree item and select Properties

Project Settings

K E3
Falder: Saource Select » Gieneral | Templatel Compilel Advancedl
@ Oracle Year 2000 Project files Eilename:
D Include chem02.c
-] Source
Directary:
| O
Rezolved location:
~[#] calldema.sql Auzr2thomeArdbms/demoy
1] uisasel sl Description:
-] uloasedagl I
3 ulcazed zql
3 ulcazeh.zql I_ Open file as Bead Only
-] uloaseB.agl
-{#] ulcaseTesg)
-] ulcaseTzaqgl
IT' Cancel

The Project Settings dialog displaying the properties of the file cdemo2.c

The settings dialog is divided into two parts. A structured view of your project
appears on the left and the properties for the selected item on the right. Depending
upon the selection, the tabs to the right will change.

Not Unlike the structure displayed in the main project window, files and folders
0 cannot be deleted or moved in the Settings dial og.

A project can consist of three types of components; the project itself, project folders,
and files. Each component has its own selection of properties and in some cases these
are shared between items of different types.

60 Chapter Eight

Tip Using the Shift and Ctrl keys you can extend a selection to include a number
of components. When this selection includes components of different types
only those shared by the selection are displayed.

Use the Select drop down menu to extend the current tree view selection.

Adding, Moving and Removing Files and Folders

When adding filesto a project it isimportant to remember that you are simply adding
areferenceto thefile, anot acopy of thefileitself. Therefore any changes made to
the file will be reflected in any other projects that include the file.

It isimportant to understand the structure of a Programmer Studio project before you
begin adding files, or indeed creating new project folders. Each level in the project,
including the project root, has a Directory or location property. This property isused
to determine the location of subordinate files, and the working directory for compiling
your files.

Adding Files and Folders to the Project

Programmer Studio allows files and folders to be added at any level in the project
hierarchy, from the root upwards. The only limitation is that new items must be added
either to the project root or a project folder. Items cannot be added to the project’s
hierarchy below an existing file.

To add afile to the project

1 From the project window, select the item from the tree to which the new
file is to be added

2 From the Project menu, select Add Files to Folder
0 orQd

Right click on the selected tree item and select Add Files to Folder
Using the file dialog box, select the file to add to the project
Click OK

Tip To add multiple files to the project, use the sHIFT and CTRL keysto extend
the selection in the file dialog box.

Developing Projects 61

To add a folder to the project

1 From the project window, select the folder or project root to which the
new folder is to be created

2 From the Project menu, select New Folder
O ord

Right click on the selected tree item and select New Folder

In the name box, enter the name of the new folder

4 If the new folder represents a directory/location, enter a relative
directory path in the directory box.
5 Click OK

Therelative directory property for new foldersis discussed in greater detail in the
section titled Structuring your Project.

Moving and Removing Folders and Files

As each program grows, so will the requirements placed on the project. New files may
be added and old ones deleted. New project folders may be added and the existing
structure altered to fit. To make these changes as ssimple as possible, Programmer
Studio provides the ability to delete items from the project and move existing files and
folders within the hierarchy.

It is not possible to use Undo to reverse any changes made by moving or deleting
items from the project.

To move afile or folder

1 From the project window, point to the file or folder to move, and then
hold down the left mouse button.

2 Keeping the mouse button down, drag the pointer to the new location.

3 To move the file or folder, release the mouse button.

62 Chapter Eight

While moving the mouse, the pointer is updated to reflect the suitability of the item
under the cursor as a destination for the move. Positioning the mouse pointer at the
top and bottom of the tree view will scroll the contents of the window in the required
direction.

When moving files and folders, it is important to remember that the
properties of the items selected are not affected. If afile or folder uses
relative file locations, these may have been altered.

Note

To delete an existing file or folder

1 From the project window, select the file or folder to delete
2 Press DELETE
0 orQd

Right click on the selected tree item and select Remove

Note Deleting a project folder will delete all files and folders below this entry.

Structuring Your Project

A well organized project is the key to productive devel opment using Programmer
Studio. Theinitia set-up of compile and build options and the easy identification of
the many components of a complex program save many hours devel opment time.

Project Hierarchy

A Programmer Studio project consists of a collection of folders and files that exist in a
simple hierarchy. A key advantage of a hierarchical project model is the ability to set
properties for afolder which will then be inherited by the folders and files which
appear as descendantsin the hierarchy.

The following example illustrates how a Code Editor Template may be specified at a
project level, inherited by the files and foldersin the project, and then overridden at
either level.

Developing Projects 63

Code Editor Template Resolves As

& Project Ansi-C
test.c Ansi—C
‘3 source
main.c Ansi—C
‘A client Microsoft C/C++
win.c Microsoft C/C++
‘3 include
oradb.h Oracle ProC Oracle ProC

Although the property inheritance model requires some careful planning, the resulting
project should require little modification when adding subsequent files and folders.

Relative vs. Absolute File Locations

Programmer Studio can identify files using either relative or absolute file names. An
absol ute filename takes the format of afully qualified location, starting witha*‘/’ to
indicate alocation from the root directory. Relative file names do not have afully
qualified location. Instead Programmer Studio uses the location property of project
folders appearing above the file in the project hierarchy to determine an absolute
location.

Take for example, a project containing these two files:

¢ Jusr/devia
¢ Jusr/devib

Thesefiles can beidentified in asimple project in one of two ways, either as their
absolute file name or relative to the project’ s directory. The two examples are
illustrated below:

64 Chapter Eight

Location Resolves As

e Project
a Jusr/dev/a Jusr/devia
b /usr/dev/b Jusr/dev/b
Location Resolves As
i Project fusr/dev
a a /usr/dev/a
b b lusr/dev/b

From this simple example, the advantages of using relative file names and folder
directoriesto identify file locations is obvious. Not simply in reducing project
maintenance, but also providing an easy way to point the project at an alternative set
of filesin adifferent location as below.

Location Resolves As
& Project lusricopy
a a lusr/copy/a
b b lusr/copy/b

Note When adding files to the project or a project folder, Programmer Studio will
attempt to resolve the location of the files added so that they are relative to
the folder to which they are added.

Developing Projects 65

Using Project Folders

To best illustrate the benefits of structuring a project we will start with asimple
example; a project that contains 3 files and no project folders. In this example, the
project was created with the Directory property of the project set to /dev, into which
the following files were added:-

¢+ /devitest.c
¢ /dev/src/main.c
¢ /includeftest.h

When adding files to a project, whether to the root or project folder, Programmer
Studio attempts to store the files as relative whenever possible. In this examplefiles
added to the project which include /dev (project Directory) as the start of their location
have this removed.

Location Resolves As
& Project /dev /dev
test.c test.c /devi/test.c
main.c src/main.c /dev/src/main.c
test.h finclude/test.h fincludeftest.h

By storing the names of the project files asrelative, Programmer Studio allows the
user to change the location of the files. Aslong asthe structure is moved intact, the
project will only require the Directory property of the project to be changed.

Note The Resolved Location field in project settings dialog displays how
Programmer Studio will interpret relative file and directory names.

In order to reflect the structure of the file existing system, a new folder source is added
to the project. The Directory property of the new folder is set to src and thefile
/dev/src/main.c is then moved into the new folder as main.c. Using the name
resolution rules, the location of main.c is now determined by traversing the tree and
building a path, for example:

66 Chapter Eight

e Project

23 source

main.c

Location
/dev

Src

main.c

The resulting project looks like this:

e Project
test.c

a source

main.c
test.h

Location
/dev

test.c

src
main.c

/include/test.h

Resolves As
/dev

/dev/src

/dev/src/main.c

Resolves As
/dev

/dev/test.c

/dev/src

/dev/src/main.c

f/includeftest.h

To complete this example we will create afolder for test.h. Asthisisthe only project
file from an alternate location thisisreally not necessary, however it will result it a
much tidier project. The Directory property of the new folder will be absolute, as the
location starts with a slash, and the parent project Directory will be ignored.

e Project
test.c
3 source
main.c

A external

test.h

Location
/dev

test.c

Src

main.c

f/include

test.h

Resolves As
/dev

/dev/test.c
/devl/src
/dev/src/main.c
finclude

/include/test.h

Developing Projects 67

Note In these examples we have purposely limited the project folder Directory to
asingle server directory for smplification. It is possible to use any
directory that complies with standard Unix path resolution rules.

The examples given here illustrate how to structure a project to represent the structure

of the existing file system. Thisresultsin awell-organized project that is both simple
and portable.

68 Chapter Eight

9

Compiling Your Files

Programmer Studio provides no specific compiler support for software developers.
Instead it offers access to server-based compilers by executing a command on the
remote server. Thisimposes the limitation that the command must not require further
user input to reach completion.

Once executed, Programmer Studio traps the output from the specified command,

displaying the results in the output window in real-time. Y ou can cancel the command
at any time by selecting Stop from the View menu.

Compile and Build Commands

Programmer Studio provides a two-step model for compiling project filesinto the
finished program; compiling individual files and then building a program file from the
compiled files.

This model is provided purely as a guide for developers. It can be readily applied to
programming languages that compile, and then link a number of individual source files
into a single executable program file, like C and C++. For other languages however,
this can be easily ignored.

Compile and build commands are specified as project properties. For afileto be
compiled or built, it must be included in the current project. Each filein aproject can
have its own compile command and each project folder its own build command.

Compiling a File

Before afile can be compiled, the project settings for the file need to specify the
command to be executed on the server. Programmer Studio imposes no restriction on
what command is executed, as it is the responsibility of the developer to ensure the
command is valid and can run without further user intervention.

Compiling Your Files 69

To set the compile command for a project file

From the project tree view, select the file
From the Project menu, select Settings (ALT+F7)
Select the Compile tab

Click Override folder compile command

g ~h W N P

In the Compile command box, enter the complete command that is to be
executed on the remote server to compile this file.

6 Click OK

Note Remember to include the filename and location in the compile command.

Once a compile command has been assigned to a project file there are two ways to
compile thefile; either using the file in the project tree or, more simply, choosing
compileif thefile is open and the insertion point is visible in the Code Editor.

To compile a project file

1 From the project tree view, select the file
2 From the Project menu, select Compile (CTRL+F7)
0 orQ

Right click on the selected tree item and select Compile

To compile the currently open file

1 Make sure the insertion point is visible in the Code Editor

2 From the Project menu, select Compile (CTRL+F7)

By default, Programmer Studio will automatically save all the files that have been
changed before compiling. Thisis done to ensure any errors or warnings generated by
the compiler can be correctly identified in the Code Editor.

70 Chapter Nine

Command Variables

To prevent typing mistakes and save time entering repetitive compile commands,
variables can be used in the command text that is evaluated prior to execution.
Variables can be used to identify the name of afile, afully qualified filename, Code
Editor Template, etc.

The following table lists the available compile command variables and gives the
output for the file /usr/dev/sample.pas.

For Enter Sample

File path $(FilePath) {usr/dev/sample.pas
File name $(FileName) sample.pas

File directory $(FileDir) {usr/dev

File extension $(FileExt) pas

File base name $(FileBase) sample

Code Editor Template $(Template) Ansi — Pascal
Project name $(ProjectName) Sample Project

In addition to the standard compile command variables, MPE/iX compatible file
names and locations are also supported. The following table gives the output for
/SYS/PUB/SAMPLE.

For Enter Sample
MPE/iX file path $(MpeFilePath) SAMPLE.PUB.SYS
MPE/iX file location $(MpeFileDir) PUB.SYS

Tip Clicking the arrow to the right of the Compile command box in the project
settings dialog displays a popup menu containing command variables to
choose from.

Folder Compile Commands

Even using compile command variables, entering a compile command for every filein
alarge project is not only likely to be very time consuming, but will probably
introduce problems. To simplify this process each project folder also has a compile
command that is used for al subordinate files without specific compile commands.

Compiling Your Files 71

To set the compile command for a project folder

From the project tree view, select a folder
From the Project menu, select Settings (ALT+F7)
Select the Compile tab

Click Override folder compile command

g ~h W N P

In the Compile command box, enter the compile command

Tip Clicking the arrow to the right of the Compile command box displays a
menu containing command variables

The following two examplesillustrate how compiler commands at different levels of
the project hierarchy are evaluated.

Compile Command

Resolves As

& Project
i source cc $(FilePath)
main.c cc /dev/src/main.c
test.c cc /dev/srcltest.c
client.c compile $(FileName) compile client.c
Compile Command Resolves As
& Project cc $(FilePath)
‘3 source
main.c cc /dev/src/main.c
‘A source compile $(FileName)
test.c compile test.c

72 Chapter Nine

Note The variables used in these examples are purely an indication of sample
compiler commands. There are no limits on which variables or how many
variables can be used for a compile.

At this stage, new users may find it useful to review the Project Structure section in
Chapter 3, as the considerations for project structure and identifying file locations can
be combined with folder compile commands.

Build Commands

Build Commands exist at the project folder level, to provide a command which is used
in conjunction with compile commands, for those devel opers needing to implement a
two-stage process to create a program file.

Build Commands offer the option to initiate a compile of all the files contained in the
folder that can then be followed by the build command.

Compiler Results

The resulting output from a compile command can produce many hundreds of lines,
even when successful. Examining every line of output, checking for warnings and
errorsis not only time consuming, but missing avital error can lead to many lost hours
of precious devel opment time.

The solution to this problemis to allow Programmer Studio to identify possible
warnings and errors in the compiler output, highlighting each offending line for closer
examination. As Programmer Studio provides no specific compiler support, this
detection of errorsis achieved using Compiler Output Masks.

Compiler Output Masks

Compiler Output Masks provide Programmer Studio with instructions on how to
detect warnings and errors in the compiler output in order to highlight these lines. If
the Compiler Output Mask indicates the location of a filename within the output, this
file is then opened and the offending line highlighted.

A Compiler Output Mask is constructed from a series of text identifiers, which are
matched verbatim, and special variables indicating known compiler components such
as line numbers, numeric identifiers and filenames.

Compiling Your Files 73

The mask can contain any number of literal fields or variables from the following list:-

To match
Any number of consecutive spaces
A single character not including spaces

Any number of consecutive characters not broken by a
tab, space or literal character.

A numeric value
Text on the next output line

Continue scanning on the current output line in order to
complete the mask

Scanning upwards from the current output line in order
to complete the mask

The line on which the error can be found

The number appearing on the line on which the error
can be found

The filename containing the error

MPE/iX style filenames — FILE.GROUP.ACCOUNT
MPE/iX style line numbers including a period

DOS style flenames — CANETLOG.TXT

Use
Space
$(Char)
$(String)

$(Number)
$(LineBreak)
$(ScanFor)

$(ScanUp)

$(Line) *
$(LineNumber) *

$(FileName) *
$(MpeFile) *
$(MpeLine) *
$(DosFile) *

* |ndicates variables that may only be used once within the Compiler Output Mask.

If the Compiler Output Mask identifies a filename that is not absolute, Programmer
Studio will attempt to match the filename against the files included in the current
project. Where two files areincluded with identical names, the first file found will be

used.

74 Chapter Nine

The following examplesillustrate how to create a Compiler Output Mask to detect
possible errors within the sample compiler output. To help in identification, Compiler
Output Mask variables appear in bold.

Example: cc: "hello.c", line 3: error 1507: Function...
Mask: $(String): $(FileNane), line $(Line): $(String)

Example; /usr/exanpl es/hello.c(3) : error...
Mask: $(Fil eNane) ($(Line)) : $(String)

Example: File: /usr/exanples/hello.c
Line 3

Mask: File: $(FileNane)$(LineBreak)Line $(Line)

Example; Error 523, unknown item at /usr/exanples/hello.c line 3

Mask: $(ScanFor)at $(FileNanme) |ine $(Line)

Example: File: /usr/exanples/hello.c
Error...
Line 3

Mask: Li ne $(Line)$(ScanUp) File: $(Fil eNane)

Using Compiler Output Masks

Programmer Studio comes with a number of compiler output masks for many of the
popular compilers on different servers. Code Editor Templates provide the ideal way
to organize these compiler output masks by programming language type, allowing the
user to simply select from a familiar list of programming language names.

To select the compiler output masks for the project

1 From the project tree view, select the project icon
2 From the Project menu, select Settings (ALT+F7)

3 Select the Output tab
4

From the Compiler Error Detection list, select the programming
languages used by the project

5 Click OK

Compiling Your Files 75

Asthe output from compilers can differ greatly between platforms, compilers and even
compiler versions, Programmer Studio also allows new compiler output masks to be
added to a project as required without the need to edit the Code Editor Templates.

To add a custom compiler output mask to the project

1 From the project tree view, select the project icon

2 From the Project menu, select Settings (ALT+F7)

3 Select the Output tab

4 Click the Custom button

5 In the Output mask box, enter the new compiler output mask
6 Click OK

Examining Resulting Errors

Using the Compiler Output Masks, Programmer Studio allows the user to quickly
move forward and backward through the resulting output to the next and previous line
matching the mask criteria.

As each warning and error is highlighted, Programmer Studio will attempt to load the
file containing the error, (if it is not already loaded), and highlight the line on which
the error is determined to have occurred.

To highlight the next error matching the Compiler Output Mask

1 Ensure the Output tab is activated in the Output Window

2 From the Edit menu, select Go To, then Next Error/Tag (F4)

In addition, by highlighting the first warning or error in the output window,
Programmer Studio provides the option to determine at the end of a compile or build,

the total number of lines matching the Compiler Output Mask, and also the option to
automatically highlight the first error.

To automatically highlight the first error in the output window

1 From the Tools menu, select Options
2 Select the Build tab

3 Click Highlight the first error found

4 Click OK

76 Chapter Nine

10

Integrated Debugging

With version 3.0, Programmer Studio has evolved to include support for server based
symbolic debuggers presented to the programmer within the standard development
environment.

This evolution brings the prospect of remote program development even closer to the
Windows-based IDE's that have become the standard for PC devel opment.

Requirements and Supported Debuggers

Programmer Studio is essentially a client/server development environment, requiring
server-based software to provide access to files and a command line. With version 3.0,
this approach has been expanded to include a TELNET client within the development
environment to allow server based software to be remotely controlled.

Obvioudly this places an immediate requirement on the user, - that the target server
supports connection via TELNET clients. For the mgjority of Unix usersthisisnot an
issue as TELNET isthe standard for establishing remote sessions. For HP3000 users,
from MPE/iX 5.5 onwards TELNET is also available, although this may need to be set
up before using the new features in Programmer Studio.

In addition, it is a requirement that the debugger used can be started from the directory
containing the debug target (usually the program).

Programmer Studio supports the following symbolic debuggers. Thislist will
continue to be expanded based upon user request.

¢ GDB (GNU Free Software Foundation) and compatibles (WDB HP-UX).
¢+ XDB / Symboalic Debugger/iX (Hewlett-Packard).
¢ TRAX COBOL (Corporate Computer Systems)

Integrated Debugging 77

How it Works

Programmer Studio is able to provide integrated debugging by assuming the role of a
user controlling a debugger via the command line interface.

Each debug feature, step into, quickwatch, break, etc. is converted into the correct
command line instruction and then sent to the debugger. The resulting responseis
then parsed and displayed to the user in the appropriate format. Programmer Studio
provides this support through external modules, which are specific to each debugger
used. These modules can then be enhanced and support provided for new debuggers
without requiring the user to upgrade the software.

Working Model

Programmer Studio begins the process of debugging by establishing a TELNET
session to the remote server. Following a successful connection, a number of
challenge response sequences, (typicaly user name followed by password), are
automatically completed before the session command line is detected.

The next step isto start the debugger on the server, set any user-defined breakpoints,
and then begin executing the debug target (program).

Programmer Studio will then assume the debugger is running and will wait for the
debugger to reach the first available statement (if this was the start option), a user-
defined breakpoint, or a message to indicate the program has terminated.

Using TELNET

Unlike many of the protocols used in today's applications, such as the web and email,
TELNET does not provide a programmatic interface for logging on. Instead text
prompts are displayed to the user to which responses specific to the prompt are
expected. After an undefined number of prompts have successfully been completed,
the user is "logged-on" and able to use the TELNET session.

Typically these prompts and responses are simply for a username and then a password.
These are easily configured, however some systems employ additional levels of
security.

Asasolution to this, Programmer Studio allows the user to determine a series of
prompts to wait for, the correct responses, and finally the prompt that signifies the
connection has been successful. These settings may either be specified by hand or the
New Session Wizard can take the user through a successful connection step-by-step
and compl ete the required fields.

78 Chapter Ten

Getting Started

Programmer Studio provides integrated debugging as part of a Programmer Studio
project, so you will need to have a project set-up and ready to use before you can
begin debugging. Please refer to Chapter 8, Developing Projects, in the Programmer
Studio User Guide.

It is recommended that all source/list files included within the debug target (program)
that may need to be opened within Programmer Studio should be included in the
current project.

Before continuing, please also ensure that the target has indeed been compiled to
include the information required by the debugger, or you have access to the relevant
symbol or list files. For GDB thiswill usually involve using a compiler command line
option. For XDB and TRAX this may involve creating a listfile during the compile.

Selecting your Debug Settings

Before you can begin debugging a program you will need to select which symbolic
debugger you use and provide details of the debug target and other information. The
following section describes each of the debug settings in detail.

Integrated Debugging 79

Project Debug Settings

To specify integrated debug settings within Programmer Studio, open an existing
project. After asuccessful connection, select Settings from the Debug menu. The
debug tab of the project properties will now be displayed.

The debug tab is subdivided into three categories, each is described below in detail:-

General

The general category specifies the debugger interface to be used, the debug target,
(typically the program name), the command line parameters for the debug target, and
the directory the debugger should be executed within.

Project Settings

Folder: Froject Select v Generall Compilel Euild I Output Debug |Connﬂ_’|
5 Witgid files Categorny:

D Dependancies

-2 Ewtemal Files Symbolic debugger:

% E;llu::r::::s IGDB compatible - GMU [free software foundation] j

{:| Saurce Files Program/Debug target:
thtgid

Program argurments:

wiarking directany:
I.n"usersfgrega’wttgid 3

[Prompt to redirect program input/output

ak. I Cancel |

Viewing the General category in the project debug settings

80 Chapter Ten

Symbolic Debugger

This drop-down determines the symbolic debugger that will be used. Depending upon
the selection, the remaining fields in this tab will be active and the status of itemsin
the Debug menu will change.

Note Changing the specified symbolic debugger will delete al existing
breakpoints.

Program/Debug Target

Thisfield specifies the target to be debugged. Thisistypically a program name
although this may depend upon the selected debugger used.

Note In Unix, commands are case-sensitive so be sure to ether the target name
correctly.

Program Arguments

Thisfield determines the additional arguments that should be passed to the target
program within the debugger. This should not be confused with arguments passed to
the debugger itself.

Working Directory

Thisfield determines the directory in which the debugger is executed. Thisistypically
the location of the debug target but may be any valid directory location. The working
directory is selected immediately after the session login has been completed, using the
cd command.

Note MPE/iX users debugging within the native file system should leave thisfield
empty, instead using the session login to determine the active group.

Integrated Debugging 81

Prompt to Redirect Program Input/Output

This option prompts the user for aterminal identifier to which all debug target input
and output is then subsequently redirected. This can be particularly useful when the
program has complex 1/0O that may become confused with the debugger command line
when allowed to run within the debug session tab in the output window.

Note Thisis currently only supported on Unix platforms.

Session

The session category specifies the process of a TELNET login, described as a series of
challenges and responses. Two fields specify the command prompt to be expected and
then the correct response. A Wait for field without a response indicates a successful
login. The Wizard button starts the TELNET session wizard that will take you step-by-
step though alogin process.

Project Settings

Folder: Project St Generall Compilel Build I Output Debug |C0nn 1 I ’I

@ Wllgid files Categg[_lﬂ; “wWizard... |

-] Dependancies

{:l External Files Wait for: Besponze: Prompt

D Inchude Files |Iogin: |$[Username] I

D Penl Scripts

-2 Saource Files IF'assword: |$[Passw0rd] I
I+ | r
| | r
| | r

The seszion login settings determine the series of
challengeresponze steps which must be successfully
completed before a TELNET zezsion becomes active.

ak. I Caticel

Viewing the Session category in the project debug settings

The TELNET session wizard is described in detail in the next section.

82 Chapter Ten

Advanced

The advanced category specifies additional options for debugger execution. Only users
familiar with the functionality of the target debugger should modify these settings.

Froject S5 etlimg EE
Frer Fiojeet Select = | General | Compls | Bud | Ouipwt Debug | Conn 4|+
iy Wiigid fies Congery [T ~ |
4] Deparadsnciss
a1] Esberal Fibes [imbugges commesrad e
A1) Inechads Files L]

] Pail Sonpls I -J
&) Sewce e Doy eoamcn | aluwy
| _
Bt il cheba e oavinands]
el kolcenfod: -moeda cRld j
| -
[o] canes |

Viewing the Advanced category in the project debug settings

Debugger Command Line

Thisfield allows an advanced user to override the command that would normally be
executed to start the host based debugger. This may be useful in circumstances where
the debug command line requires a fully qualified location or requiring specia options
to be included.

The button to the right of the field provides a popup menu containing variables which
may be used within the debugger command line, substituted for actual settings at run-
time. For example, if the debug target was witgid,

gdb $(DebugTarget)

would be converted to,

gdb wttgid

Integrated Debugging 83

A more complex example is that required by the TRAX COBOL debugger. Inthis
example the debug command line includes a fully qualified program and both the
target and target arguments.

RUN TRAX.RUN;INFO="$(DebugTarget) F $(DebugTargetArgs)"

In most cases the average user will probably not need to specify an alternate debugger
command line. However for those users who wish to, the option is there.

Debug Source Location

Thefield provides Programmer Studio with the location of files identified by the
debugger when stepping into a debug target or when abreak is reached in program
execution (as aresult of step over, step into or reaching a breakpoint). Most debuggers
identify files using afully qualified filename. For those just displaying a filename,
Programmer Studio requires a source directory to look in.

A good example of this requirement is when using the TRAX debugger, in which
filenames are identified by module name only and do not include the actual source (list
file) location.

Execute Initial Debugger Commands

Thisfield allows the user to enter any number of commands which should be executed
prior to the setting of theinitial breakpoints and before the program is started within
the debugger.

This can be very useful for setting debugger options which affect the execution of the
program being debugged. However, these commands are not expected to require
further input and will return the debugger to its normal input prompt after completion.

84 Chapter Ten

TELNET Session Wizard

The New Session Wizard uses the server name specified in the current project and
attemptsto establish a TELNET connection. |f successful, the prompt immediately
received is displayed to the user, who has to then determine if thisisindeed avalid
prompt or if additional text is expected.

Mew Session Wizard

W' ait until the dezired prompt appears, then enter the
rezponse in the field below. If the sezsion login has been
completed leave the responze field blank to finish the
wizard.

Wait for:

HP-LI< hpux B.17.00 4 30004303 [t1) _I

logir; j

[ogin:

Suggested Responze™

$1] zername]

$Uzemame] and $(Password] may be uzed as
replacement vanables.

< Back I Hest » I Cancel

Selecting a response for the displayed prompt in the TELNET session wizard

Astext isreceived from the TELNET server, thisis displayed in the Wait for field
with the very last line displayed in the editable field. Wait for the expected prompt to
appear in the Wait for field and then enter your selected response.

As each response is received the New Session Wizard will attempt to help the user by
providing responsesto "login" and "password" prompts using the current project
settings.

Integrated Debugging 85

Hew Session Wizard

“Wfait until the desired prompt appears, then enter the
rezponze ih the field below. [f the seszion login has been
completed leave the responge field blank ko finizh the
wizard.

W it fior;

)

368[home/greg)$ j
368[homegreal

Besponse:

$[Uzemame] and $[Pazsword) may be uzed as
replacement vanables.

< Hanh:

Cancel |

Sdlecting the login completion responsein the TELNET session wizard

This process should be repeated until the login process has been compl eted, at which
point the Suggested response field should be left blank and the Next button clicked.

The New Session wizard will now check the format of the prompt indicating the
connection is successful. As no session prompt is the same, some include date or time,
the user may be prompted to select a more general prompt to wait for (typically the
last character in the original wait for text).

86 Chapter Ten

Mew Session Wizard

& blank responze field indicates that the sezsion login
has been successfully completed and commands may
nov be izzued at the prompt.

M any gpstems genate a wariable prompt after a
successful login, thiz may include time, command index
ar other information. To enzure that additional
connections are succezsful the wizard, has identified a
zingle character o wait for.

€ Original wait for:
| 368 home/ greg]$

% wlait for:

< Back I Finizh I Cancel

Confirming the login completion response in the TELNET session wizard

Following the successful completion of the New Session Wizard, the session settings
will be entered in the project settings. Thislists the prompts and responses sel ected
during the wizard. If you wish to use the New Session Wizard again, click on the

Wizard button.

Integrated Debugging 87

Debugging a Program

Once the Debug settings have been specified within the project settings, the user may
set breakpoints and begin debugging the specified target. 1t should be remembered
that all debuggers are different, and although Programmer Studio attempts to duplicate
functionality across various platforms, no two debuggers behave exactly the same

way.

Before you begin debugging, it is recommended that you familiarize yourself with the
debugger you are intending to use. This document is not intended to be an in-depth
guide to interactive debugging, ssimply to provide an introduction to the interface that
Programmer Studio provides.

Setting Breakpoints

Before debugging the specified target, most users wish to set breakpoints, - identified
points within the target which, when reached, cause the debugger to suspend target
execution offering options to the user.

Breakpoints may either be set by location, filename and line number, or by
function/procedure entry point. Once the debugger has loaded the target, Programmer
Studio will attempt to set these breakpoaints, displaying an error message if this
location isinvalid.

Setting a breakpoint within the Code Editor

A breakpoint can be easily set within the Code Editor by selecting Toggle Breakpoint
from the Debug menu (F9). If the current line is already set as a breakpoint, this will
remove the breakpoint. It isimportant to ensure the line highlighted is valid, as
Programmer Studio will not be able to determine thisfor you. Y our symbolic
debugger documentation will provide details of what constitutes a valid Breakpoint
line.

Setting a breakpoint within the Breakpoints Window
An alternative way to set a breakpoint is through the Breakpoints window. Thislists
all breakpoints currently set, by either filename and line number or by

function/procedure name.

To display the Breakpoints window, from the Debug menu, select Breakpoints.

88 Chapter Ten

Breakpoints

— Inzert breakpoint

.] |
Location:
Iern:ur_e:-c ﬂ Cancel |

Breakpointz may be specified by named
gymbol [funchiondprocedure] or in the

farmat “filename'" line

— Existing breakpoints
Hemoyve

at "'fusersdgreadwttgid/main.c', 293
at emor_ex Femaove Al

|

Adding a named symbol breakpoint, "error_ex"

In this example screen shot, two breakpoints have been added to the current debug
target. The first breakpoint identifies a particular line in a source file, in this case line
293 in afile called main.c. The second breakpoint is set at the entry point for a
function/procedure named error_ex.

Note The case sensitivity of both filenames and function/procedure namesis very
important. Although specific operating systems and programmer |languages
may be case insensitive, please check before adding each breakpoint.

Pressing the OK button will update the breakpoints for the current debug target. All
breakpoints set by filename and line number will be updated within the Code Editor to
reflect their status. Breakpoints set by function/procedure name are not highlighted in
the Code Editor, as these are evaluated at debug time by the symbolic debugger.

Integrated Debugging 89

Starting a Debug Session

Programmer Studio provides a number of entry points from which to debug the
specified target:

¢ To start the debug target and to stop only at specified breakpoints, from the
Debug menu, select Start Debugging, then select Go.

¢ To start the debug target suspended at the first accessible statement, from the
Debug menu, select Start Debugging, then select Step Into.

¢ To attach the debugger to a existing process running on the server (UNIX only),
from the Debug menu, select Start Debugging, then select Attach to Process.

After selecting one of these options, Programmer Studio will establish anew TELNET
session to the server and invoke the chosen debugger with the relevant instructions.
Programmer Studio will then wait for the remote debugger to display a specific prompt
to indicate the debug target is suspended or the program has terminated.

Controlling the Debug Target

Programmer Studio will suspend all further debug options until it is detected that the
debugger has suspended execution of the debug target (this may have happened as
result of abreakpoint being reached or selecting to start the program suspended).

Once the debugger prompt has been identified, the main window's caption will be
modified to include the text [break] and many of the remaining options on the debug
menu will become enabled. Certain items will be dependant on the line and text
highlighted in the Code Editor.

This section will describe the functionality of each debug menu item and how it should
function. It is very important at this stage to remember that Programmer Studio is
merely controlling the debugger on the server, and that you may enter your own
commands in the debug session window.

References to current statement indicate the current position of execution of the debug
target and not the current/selected line in the Code Editor.

Continue

Thiswill continue the execution of the debug target.

90 Chapter Ten

Restart
Thiswill restart the debug target keeping existing breakpoints.
Stop Debugging

Thiswill terminate the debug target and exit the debugger, closing the TELNET
session.

Break

Thiswill attempt to suspend the execution of the debug target, locating the current
statement and highlighting this within the Code Editor. In the event the current
statement does not identify a filename and line number, the Call Stack is displayed.
Kill Debug Session

Thiswill simply close the current TELNET session, which in turn should terminate the
debugger and target on the server. This option should be used with caution and only in
cases where Stop Debugging fails.

Step Into

Thiswill attempt to step into the sub-procedure/function located on the current
statement. If the current statement does not identify a sub-procedure/function this may
fail or Step Over (depending upon the debugger).

Step Over

Thiswill attempt to execute the code represented by the current statement and break
execution at the next statement in the current file. If thereisn't a next statement in the
current file, this may fail or highlight the next executable statement (depending upon
the debugger).

Run to Cursor

Thiswill attempt to set atemporary breakpoint at the statement on which the cursor
entry point islocated in the Code Editor and then continue program execution.

Set Next Statement
Thiswill attempt to move the current statement to the statement on which the cursor

entry point is located in the Code Editor without executing code in between. This
should be used with caution as it may |eave the debug target in an unusable state.

Integrated Debugging 91

View Call Stack

Thiswill display the current call hierarchy for the current statement.

Call stack T
string_upper (IpzzString=0x7f7ea1b3 "Main’] in main.c[2272)]
ini_readstring [lpszS ection=0x400058c8 "Main", lpzzkey=0x400058d0 "ErarFile", lpszDefault=|
L main [arge=1, argy=0x77e751 8, envp=0x7F7e7520] in main.c[293)

Viewing the current callstack

View Locals

Thiswill display the contents of all local variables (if applicable to the programming
language) in their native format.

Locals

- bReturn =1

- file = [struct ...}] Ox7FEBB150

- gzLine = "PORTHUMEERNIOOT 200040004%000zionM000M0C
- g25echon = UMAIN", 000" <repeatz B9 times

- zziey = "PORTHUMBER", 000" <repeats 53 timeas:

- |pzzT oken = 0« 7FFe31bE "PORTHUMBER"

- |pzzltem = 047 7e31c3 "12000"

- |pgzE ot = De7FPedTcd ™

- iLength =16

- blnSection =1

4| | i3

Viewing the current list of local variables

Warning In COBOL thistypically displays al variables defined within the
WORKING-STORAGE section of the program, and as such should be
avoided.

Show Next Statement

Thiswill highlight the debug target's current statement in the Code Editor, opening
any necessary files.

92 Chapter Ten

Quick Watch

Thiswill display the Quick Watch dialog box. This evaluates the currently selected
text or the keyword at the insertion point in the Code Editor. The results of the
evaluation will then be displayed in the native format.

QuickWatch ﬁ
Expreszion:
IIpDnmains[iD amainz]. fields[0]
Add wiatch |
Current walue:
m . : - Cloze |
{zzMame = "${Merchant]”, 000" <repeats 52 timess, ;I
idffzet = 8,
iLength = 50,
iType =1,

iPrecision = 0}

[/

Displaying the value of the expression IpDomaing]iDomaing] .fields[0]

Within the Quick Watch window a watch may be placed on the specified expression.
Thiswill then be evaluated in the Watch output window every time the debug target
enters a suspended state.

Ending a Debug Session

The current debug session may be terminated either normally, by the program being
debugged terminating, by instructing the debugger to end the debug session, or by
terminating the debug session itself.

A debug session should only be 'killed' in the event Programmer Studio becomes
confused as to the state the debugger is currently in. For example, in the event the
debugger isterminated on the server.

Integrated Debugging 93

Accessing the Remote Debugger

The TELNET session is accessible as a tab within the output window. Displayed to the
right of Find in Files, the Debug Session tab contains the TELNET client in use by the
current debug session.

This client may be used while the debugger is suspended (this can be determined by
the presence of [break] in the Programmer Studio window caption) to access
information not provided by the standard development environment command items.
For example, the debug session window can be used to change local/active variables
or display debugger specific information such as registers.

Care should be taken when accessing the remote debugger from the session window as
this may leave Programmer Studio unable to determine the current state of the remote
debug session. In the event that a command is used which changes the current
statement, select Show Current Statement from the Debug menu.

Terminal Emulation

The debug session window, displayed in the output window, isitself a mini-terminal
emulator. The terminal window is limited in functionality to a subset of VT100 (Unix)
or HP2392 (HP3000) depending on the server connected to. The debug session
window is not intended to replace your existing terminal emulator, instead ssimply to
facilitate access to the host based debugger.

If you identify any shortcomings in the emulation for VT100 or HP2392 please email
support@whispertech.com providing details of the problem and preferably programs
which exhibit the problem.

94 Chapter Ten

TRAX COBOL

This section will take you through the process of setting up Programmer Studio to
debug a COBOL program using the TRAX COBOL debugger. For the purposes of
illustrating the interface between TRAX and Programmer Studio the examples used
here are based on the Introductory Tutorial installed with TRAX.

Start by creating a project and connecting to the HP3000, use the manager user and
login to the TRAX COBOL installation account (TXCBXL). The two files that will be
used in this section are located in the LST group and are named HTLST and LURQ.
Add these to the project specifying Hewlett-Packard COBOL as the Code Editor
Template.

From the Debug menu, select Settings. The project settings dialog box will now appear
with the Debug tab automatically selected. As previously described, the debug settings
are subdivided into three categories, General, Session and Advanced.

From the Symbolic debugger combo-box, select TRAX...

In the Program/debug target field, enter TSTPRG

From the Category combo-box, select Session

Click on the Wizard button

Complete the session wizard as described in the Getting Started section

From the Category combo-box, select Advanced

N OO g~ WN P

In the Debugger command line field, enter RUN
TRAX.RUN;INFO="$(DebugTarget) F $(DebugTargetArgs)"

In the Debug source location field, enter /TTXCBXL/LST
Click OK to save the settings
Y ou should be able to debug the sample program from within Programmer Studio.

Remember, Programmer Studio is only remotely controlling TRAX, so you can select
the debug session tab in the output window at any time to enter your own commands.

Integrated Debugging 95

11

Visual File Compare

A common task among programmers, especially those working in ateam, isto
determine differences between various versions of the same code. This can be avery
time consuming task which, when done by hand, is far from accurate.

Programmer Studio does not include file comparison tools; instead it provides a
conduit to external utilities which output results in one of two recognized formats.
Using an external utility has the distinct advantage of allowing the user to determine
which of the many tools available to use, while still providing a standard visual
interface to the results generated.

+% Whisper Programmer Studio O] =]
File Edit Wiew Insert Fomat Project Tools Window Help
]J‘i%-\@ﬁlﬁl Bz [a4 Bl s = | W@|0|”|& TSitring:operator+= =] = \@@]|(}"(}:|

a C:AWINDEY\comparel.cpp [Read O

[5) Editor | & Structure

&1 Edior [8 Stucture
;I TString &TString: operator+={LPSTR p=z) ;I

|
M=l B3} | B C:\WINDEV\compare2.cpp [Read Only) =[0O] =]

TString &TString: :operator+=(LPSTR psz)
AllocCati psz. SafeStrlen(ps=z)):
AllocCat({ psz, SafeStrlen(psz) }: return *this;

return *this:

SELITETEI LIS I TETETES LS IS IS IT TS,
/7 addition operators

<+ These member functions allow a class to be
< concatenating two of the following tvpes to
st

(1) TString class FEEEELEEEEEL SIS ST LT LTSS 55555 E L LS
s (2} Pointer character string s addition operators

(3) character _J <+ Theze memnber functionz allow a class to be
<7 concatenating two of the following types te
void TString: :CatCopy({ const char *pszl. int rod
{ <7 {1} TString clas=

Allocate{ lengthl + length2): <7 (2} Pointer character string

strcpy(m_Buf fer, psz1) 47 (3} character

strcpy(m_Buffer+lengthl, DSZZ)

n_Buffer[m_Length] = '~0' woid TString::CatCopy(const char ®pszl, int

+
Allocatei{ lengthl + length2)
strocpy(m_ Buffer p=zl):

5] +lengthl, p322 3

ofl th] = '~0°
TString =: B Reference line 233 @ % Elm
s CatCopy{strl.n_Buffer. I B lines added at line 232 _I

return =;
TString operator+(const TString &strl, const ¥
4 3 4

T
KNS v
Ready WO Ln238.Coll [TAE[OVE[RE

Visual File Compare highlighting a difference between two files

TString operator+{ const TSips

Programmer Studio supports file comparison result formats of DIFF compatible
utilities and Microsoft FC.

Visual File Compare 97

Comparing Files

Programmer Studio compares files by first loading each file, (if not already open), as

they would be when edited normally. Once loaded, each file is subsequently saved on
the PC removing any non-editable text, (line numbers and line tags), identified by the
Code Editor template or file compare options. Finally, the file compare utility is

invoked to compare the two files based on the compare options.

The Compare Files dialog box provides a number of options which determine how the
fileis formatted when passed to the comparison utility, and which options are used.

Compare Files

—File 1

I.-’u:.-’winu:lev.-’u:nmpare1 .Cpp

¥ Read Only

—File 2
I#c#windev#cnmparelcpp

¥ Read Only

— Optionz
[T Match cazs

¥ lgnore tabs and spaces
W lgnore line numbers

[~ Specily code editar template:

[Eade editarn femplate;

I [none] j

Cancel

]|
Compare |

Comparing two files, ignoring spaces and line numbers

Note

When using file compare for the first time, Programmer Studio will prompt
the user to select which compare utility to use, FC or DIFF. To change this

at any time, use the File Compare tab in the Options dialog box.

98 Chapter Eleven

To compare two files

From the Tools menu, select Compare Files
In the File 1 field, enter the name of the first file to compare
In the File 2 field, enter the name of the second file to compare

From the options, select additional compare settings

g A W N B

Click Compare to start the file comparison

Tip Use the arrow button to the right of the File fields to browse for local or
remote filenames or select from alist of currently open files.

The file comparison can be cancelled at any time by pressing the Stop button, or select
Stop from the View menu. Programmer Studio provides the following options for the
file comparison:

Match case

This setting is passed to the comparison utility as an optional parameter. When
selected, characters differing in case will be highlighted. By default this option is not
enabled.

Ignore tabs and spaces

This setting is passed to the comparison utility as an optional parameter. When
selected, compound tabs and spaces are treated as a single space when comparing
lines. By default this option is enabled.

Ignore line numbers

This setting instructs Programmer Studio to remove any detected line numbers from
the contents of afile prior to invoking the comparison utility. If the Code Editor
Template used by the file already removes line numbering while editing, this option
has no effect.

Specify code editor template

This setting overrides the Code Editor Template that would normally be assigned to
thefile, (either by project settings or the rules wizard). Thisis especially useful when
comparing files which would not normally be opened with the correct Code Editor
Template, ensuring that differences in non-editable code are not highlighted.

Visual File Compare 99

Comparison Results

Following a successful comparison, the differences tool window will be displayed and
the first difference highlighted in the Code Editors of the two files. The key provides a
visual indication of the difference highlighted, the starting line position and the
number of lines highlighted.

Difference 2 of 4

|]|
B Reference line 233 @l%lgﬁ il

[B lines added at line 238

Difference tool window following a file compare

The toolbar buttons allow the user to move forwards and backwards through the
differences highlighted, and also change the orientation of the windows between
portrait and landscape.

Synchronizing Files

Advanced users may wish to use the Visual File Compare to synchronize two files.
This can be particularly useful when consolidating changes made in two versions of
the samefile.

To allow synchronization, when comparing files, ensure that either file 1 or 2 (or both)
are compared with the read-only option off. When the files are displayed with their
respective differences, modify either file (or both) and click the refresh button in the
differences tool window.

Refreshing the comparison will then re-compare the two files, updating the differences
tool window and highlighting the first difference in the updated files.

Note Refreshing afile compare does not save any changes made to the file. Use
the Save, Save As or Save Local itemsin the File menu to save any changes.

Advanced Options

The File Compare tab in the Options dialog box provides options to select the
comparison utility to be used, determine additional options, and even set the default
settings for the File Compare dialog box.

100 Chapter Eleven

Options ki |

Advanced I Fareign Languages I Tools | File Locations I Dizplay I
E ditar I Build I YWiorkzpace File Compare | Speling

—LCoampare uzing: —l DIFF compatible program

Program: I.'\unsup‘adiff. ENE

[l

Command line: I--ignu:ure-l:ulank-lines

I phiErs: IMatch Caze j I

|@ Default compare options -
File 1 read anly

File: 2 read anly

[] Match caze b
Ighore tabs and spaces

Ignare line numbers

1B Niznlau momnariznn results ;I

| Ok I Cancel |

File Compare options, with an addition command line parameter for DIFF

To view file compare options

1 From the Tools menu, select Options
2 Select the File Compare tab
Depending upon the selection in the Compare using field, additional fields will

become enabled for additional settings. The following sections describe the options
available and their use.

Microsoft Windows FC.EXE

This uses the standard file compare utility installed as part of the Microsoft Windows
operating system. FC isagood utility for comparing files reporting general
differences, but lacks the accuracy of utilities written specifically for comparing line
based files.

There are no additional options.

Visual File Compare 101

DIFF Compatible Program

DIFF isapopular utility among UNIX users which has been ported to many non-
UNIX platforms, including Windows. DIFF is afar more sophisticated "differencing"
utility then FC, providing a number of additional optionsto generate a very accurate
list of differences.

The Program field specifies the location of the DIFF utility that will be used. The
Command line field specifies additional command line options for the diff utility.

Note Programmer Studio will automatically add command line options for
matching case and ignoring tabs and spaces based on the options selected in
the File Compare dialog. The command linefield is intended for additional
parameters only.

Tip To determine which additional command line options are available using
GNU DIFF (this versionisinstalled with Programmer Studio under the
GNU public license), run the program from the DOS prompt without any
command line parameters.

Windows Application

For those users wishing to use a third-party comparison application such as WINDIFF,
Programmer Studio provides the option to specify which program to launch when
comparing files. This method does not use the file compare conduit, so results will not
be displayed in Programmer Studio. Thisis the responsibility of the application being
launched.

The Program field specifies the Windows application that will be launched, use the
Command line field to determine the format of the command line parameters using the
following predefined variables:

To match Use

First file being compared $(Filel)

Second file being compared $(File2)
Command line option to match case when comparing $(MatchCase)
Command line option to ignore tabs and spaces $(IgnoreSpaces)

When adding command line options, $(MatchCase) and $(lgnoreSpaces), enter in the
options field below the actual text that should be inserted into the command line.

102 Chapter Eleven

12

Using Find In Files

With larger programs consisting of a number of relatively small files, searching for
text can be areal problem. Opening each file in turn to search for the specific string
can be time consuming and never 100% accurate.

Find in files provides the ideal solution to this problem, by providing the capability to
search for text in a subset of files. The search is quickly completed, returning alist of

matching files into the output window, allowing the user to examine each occurrence

in turn.

The search can be cancelled at any time by selecting Stop from the View menu.

To find a specific text string in a subset of files

1 From the Edit menu, select Find In Files (CTRL+SHIFT+F)

2 In the Find What box, enter the text string to search for

3 In the In File Types box, enter the UNIX style name pattern match which
is to be used to determine the files to search

4 In the In Directory box, enter the location of the files to be matched
against the criteria

5 To determine how you want the search to proceed, select any of the
options described in the table below.

6 Click Find

Tip To specify anumber of different name patterns use semicolon as a delimiter

i.e (t*;*.c).

Using Find in Files 103

The following options determine how the search proceeds:-

To Select

Find whole words and not sub-strings inside Match whole word only
words. For example, help and not helping.

Find words matching the case of the text in the Match case
Find what box. For example help and not HELP.

Use regular expressions when searching Regular Expression
Search files included in the project only Search project files only
Continue the search in sub-directories Search sub-directories
Display the file currently being searched in the Display progress

Output Window

Note See Chapter 6, Using the Code Editor, for more information on how to use
regular expressionsto find text strings.

As each occurrence of the search criteria is highlighted, Programmer Studio will
attempt to load the file containing the text string, (if it is not already loaded), and
highlight the line on which the criteriais matched

To highlight the line matching the Find in Files criteria

1 Ensure the Find In Files tab is activated in the Output Window

2 From the Edit menu, select Go To, from the secondary menu select
Next Error/Tag (F4)

104 Chapter Twelve

13

Remote Command Line

In addition to compile and build commands, Programmer Studio also provides access
to the remote server command line for executing simple commands.

The following example uses the standard Unix command |s to display the contents of
the current server directory. Thisisintended as an example. Any command can be
used aslong as it does not require user input.

To view the contents of the current server directory

1 From the View menu, select Command Line (F12)
2 At the command prompt enter Is and press return

The remote command can be cancelled at any time by selecting Stop from the View
menul.

The remote command line window such should not be confused with aterminal
emulator. It isprovided purely as atool for executing commands and not for running
programs requiring user interaction.

Remote Command Line 105

A

Regular Expression Characters

Programmer Studio provides extensive support for searching files using regular
expressions. A regular expression is simply a string of characters which provide a
method for describing a pattern using special characters (operators) and literal

characters.

A regular expression can be either simple or compound. A simple regular expression
describes one character. A compound regular expression describes a sequence of

simple and compound expressions.

To Match

Any single character

a,borc

Any lowercase alphabetic character

Any character except e

Any character except lowercase alphabetic characters
Either expression a or expression b

Groups a compound expression into a single expression or
reference by operators such as * or ?

The preceding item is optional and matched at most once
The preceding item will be matched zero or more times
The preceding item will be matched one or more times
The preceding item is matched exactly n times

The preceding item is matched n or more times

The preceding item is optional and is matched at most m
times

The preceding item is matched at least n times, but not
more than m times

Use

[abc]
[a-Z]
[e]
["a-Z]
alb

(expression)

{n}
{n.}
{im}

{n,m}

Regular Expression Characters 107

In addition to the standard expressions, specific compound expressions are predefined:

To Match Use
An alphanumeric character \:a
An alphabetic character \ic
A control character \in
A numeric character \:id
A graphical character \:g
A lowercase character \il
An uppercase character \:u
A printable character \'p
White-space character \:b
Hexadecimal character \:h

Any string enclosed in quotes, such as ‘sample’ or “sample” \:q
Any string enclosed in single quotes, such as ‘sample’ \:QS

Any string enclosed in double quotes, such as "sample" \:QD

108 Appendix A

Decimal

© 00 N OO 0o~ W N, O

N N NN P B P B B R B R R
W N P O © 0 N o 00 » W DN R O

Hex

o

M MmO oO @ > © 0 N o o b W N R

S A e o
N o o0~ W N RB O

B

7-bit ASCII Character Set

Octal
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027

Char
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
TAB
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

Description

(null

(start of heading)

(start of text)

(end of text)

(end of transmission)
(enquiry)
(acknowledge)

(bell)

(backspace)
(horizontal tab)

(NL line feed, new line)
(vertical tab)

(NP form feed, new page)
(carriage return)

(shift out)

(shift in)

(data link escape)
(device control 1)
(device control 2)
(device control 3)
(device control 4)
(negative acknowledge)
(synchronous idle)

(end of trans. block)

7-bit ASCII Character Set 109

Decimal
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Hex

18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33

Octal
030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063

Char
CAN
EM

SUB
ESC

w N P O

Description
(cancel)

(end of medium)
(substitute)
(escape)

(file separator)
(group separator)
(record separator)

(unit separator)

110 Appendix B

Decimal
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Hex

34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
ac
4D
4E
4F

Octal
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117

Char

IG)TIITIUOW:D@'\)VII © 0 N o o b

Oz < X «

Description

7-bit ASCII Character Set 111

Decimal
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

Hex

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B

Octal
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153

Char Description

> = - T N < X < c-H40u oo

> KQ —+ o o O T 9

112 Appendix B

Decimal
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hex

6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
7E
7F

Octal
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Char

- O T O

—

—~ — ~ N < %X 5 < C

l

DEL

Description

7-bit ASCII Character Set 113

	Installing the Software
	Installing Programmer Studio
	Installing the server software

	Introducing Programmer Studio
	Programmer Studio Concept
	Integrated Visual Development Environment
	Project Workspace
	Code Editor
	Output Window
	Command Line
	Project Settings
	Visual File Compare

	Information for Experienced Windows Users

	Getting Started
	Using the Project Wizard

	Code Editor Templates
	Introducing Code Editor Templates
	Supported Programming Languages
	Code Navigator

	Template Manager
	Custom Editor Settings
	Substituting Tabs with Spaces
	Defining Tab Stop Positions

	Files Containing Line Numbers
	Automatic Renumbering
	Intelligent Renumbering
	Line Number Position

	COBOL Line Tagging
	Defining a Standard Tag String
	Defining a Project File Tag String
	Using Date Variables in Tag Strings

	Creating New Code Editor Templates
	Using Code Editor Templates

	Working with Files
	Opening Files
	Rules Wizard

	Creating New Files
	Saving Files

	Using the Code Editor
	Scrolling the Editable Area and Moving the Insertion Point
	Moving the Insertion Point to a Specific Line

	Editing Code
	Selecting Text
	Undoing Mistakes
	Moving, Copying and Pasting Text
	Drag-and-Drop Editing

	Visual Elements
	Text Ruler
	Virtual Line Numbers
	Selection Margin
	Bracket and Brace Matching
	Selected Range Tool-Tips

	Finding and Replacing Text
	Finding Text
	Replacing Text
	Search Options
	Advanced Search Criteria
	Using Regular Expressions
	Predefined Compound Expressions

	Formatting Text
	Change Case
	Change Columns
	Convert Tabs to Spaces
	Comment and Uncomment

	Advanced Features
	Bookmarks
	Named Bookmarks
	Moving to Specific Position in the Code Editor
	Open File Under Cursor

	File Properties
	Changing Tab Size
	Changing the Format of a File
	Changing the Code Editor Template
	MPE/iX and Robelle Qedit Files

	Printing
	Additional Print Options

	The Code Navigator
	Introducing the Code Navigator
	Visual Components
	Structure View
	Navigator Toolbar
	Navigator Tips

	Developing Projects
	Understanding Projects
	Project Folders
	The Project Window

	Project Settings
	Adding, Moving and Removing Files and Folders
	Adding Files and Folders to the Project
	Moving and Removing Folders and Files

	Structuring Your Project
	Project Hierarchy
	Relative vs. Absolute File Locations
	Using Project Folders

	Compiling Your Files
	Compile and Build Commands
	Compiling a File
	Command Variables
	Folder Compile Commands
	Build Commands

	Compiler Results
	Compiler Output Masks
	Using Compiler Output Masks
	Examining Resulting Errors

	Integrated Debugging
	Requirements and Supported Debuggers
	How it Works
	Working Model
	Using TELNET

	Getting Started
	Selecting your Debug Settings

	Project Debug Settings
	General
	Session
	Advanced

	TELNET Session Wizard
	Debugging a Program
	Setting Breakpoints
	Starting a Debug Session
	Controlling the Debug Target
	Ending a Debug Session

	Accessing the Remote Debugger
	Terminal Emulation

	TRAX COBOL

	Visual File Compare
	Comparing Files
	Comparison Results
	Synchronizing Files

	Advanced Options

	Using Find In Files
	Remote Command Line
	Regular Expression Characters
	7-bit ASCII Character Set

